Complex Measure, Dual Space of L? Space, Radon-Nikodym
Theorem and Riesz Representation Theorems

By Ng Tze Beng

Our aim is to show how to identify the dual or conjugate space of L(X,x) and
Co(X), the space of continuous complex functions on a locally compact
topological space X, which vanish at infinity. There are some very useful and
basic results used. I should mention the Lebesgue decomposition of a bounded
positive measure with respect to another bounded positive measure. This is
analogous to the Lebesgue decomposition of an increasing function into sum of
an absolutely continuous increasing function, an increasing singular function
and a saltus type function. The Radon-Nikodym Theorem provides the seed for
the identification of a bounded complex linear functional on a L” space, through
the Radon Nikodym derivative. The Radon-Nikodym derivative is also the key
to integration over complex measure, through the polar decomposition of
complex measure. With this we can then represent a bounded complex linear
functional on Cy(X) by a Lebesgue integral over a complex measure. The aim is
to find this measure and show that it is unique. This is the Riesz Representation
Theorem for complex measure. The proof of the Radon-Nikodym Theorem
uses a crucial result in Hilbert space theory, more specifically that the bounded
linear functional of a Hilbert space is determined by inner product with a unique
element of the Hilbert space. This is played out here by the Hilbert space,
L’(X,A), where A is a positive measure. We have added the integral

representation of continuous real linear functional on the space of bounded
continuous real-valued functions on a normal Hausdorff topological space. We
end the article with a brief discussion on Riesz type representation theorems for
the topological dual of the space of bounded continuous function on a
completely regular Hausdorff space.

Recall that if X'is a set and . /’a o-algebra on X, then a positive measure on . /
is a countably additive function g .7 SR* mapping the o-algebra . 7 into the
extended positive real numbers, a real measure on . /1s a countably additive
function . 7—R mapping the o-algebra. 7 into the real numbers and a
complex measure on . /1s a countably additive function . 7/— C mapping the
o-algebra . 7/ into the complex numbers. Hence, a real measure is a complex
measure but a positive measure 1s not necessarily a real measure nor a complex
measure.



Suppose 1. #/—C is a complex measure. Then for any £ €. 7, u(E)eC and so

|u(E)| <. Our first consideration is to find a smallest positive measure A such

that |u(E) < A(E) forall E €. /. Suppose {E,}  is a countable disjoint
collection of sets in. 7. Then E = E, € .. Hence, by countable additivity,
i=1

u(E)=3 u(E).

i=l1

This means )_ u(E,) is convergent and as the summation is independent of the

i=l1

order of E,, the summation ) x(E,) must be absolutely convergent.
i=1

Theorem 1. Let . /— Cbe a complex measure on the measure space (X, . /),
where X'is a set and . /'1s a o-algebra on X'. Define

= sup  |u(E).

all partitions {El} of E
Then |4| is a measure on . 7, called the total variation measure of p .
Note that for any E in . 7 |u|(E) 2| u(E)|.

Proof. Plainly, |4/(@)=0. We shall show that || is countably additive. Take
Ee. 7

Suppose {F} is a partition of £ by disjoint sets in . /. We shall show that
[ (E) =3 |l ().
We show that > "|4|(F,)<|u|(E)as follows.

For each integer i, choose ¢, <|4|(F). Then by definition of |u|(F,), there exists

a partition {G

i,j

t, <Z‘,u(Gw.)
J

}J_ of F such that
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Then {G,,} isa partition of E. Now, > x(G,,) is an absolutely convergent

] i,j —
L]

double series. Therefore,

/(B)=Y|u(G,,) by definition of [4(E),

= Z;‘”(G@_/)

>t by (1) forall 7, <|y(F).
It follows that |u|(E)>>"|4|(F).

Next, we show that |u|(E)< > |4|(F).
Let {H j} be any other partition of £. Then for each j, {E NH j}iis a partition of

Hjand {F,~H | is apartition of F, . It follows that

YACATS ) CEYH

SZZ‘”(E nH,) =Z;‘y(F[0HJ)

< YJul(F).

This holds for any partition {H j} of E. Therefore, |4|(E)<> |4|(F,). It follows
that |4|(E)=)_|4|(F) and so || is countably additive on . /7 and is therefore a
positive measure on. /.

Our next result is an assertion that the total variation measure of a complex
measure is a finite positive measure.

Proposition 2. Let 1. 7/— C be a complex measure on the measure space (X,
.7), where X'is a set and . /'is a o-algebra on X. Then the total variation

measure of 4, ||, is a finite positive measure.

We already knew that|u|is a positive measure. We only need to show that it is

finite.

We shall need the following technical lemma.
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Lemma 3. Let z,z,,---,z, e C. Then there exists a subset S c{z,z,,--,z,} such

Sz

ieS

that i|zl.| <6
i=1

Proof. Let w= Z|z| . The two lines y =+x divide the complex plane into 4
i=1

quadrants, Q,,0,,0, and Q, as shown in the diagram below.

C y-axis

Qs Qi

Examine the points in each quadrant.

In one of the four quadrants, we must have that the sum of the modulus of the

points is greater than or equal to %w. Suppose it occurs in Q). Then

zAZlW.
LS

z€Q

Observe that if ze Q,, then Rez =|z|cos(6)> |z|% since |0 s%. Then

1 1 13 1<
ZReZzi=ZReZiZZ|Zi|EZ—Z |Zi|ZgZ|Zi|.

ieQ ieQ ieQ 2

2z

ieS=Q




Suppose Y |z| >1 A Then, similarly, for zeQ,, we get |Rez|=—Rez =|z|cos(
z;€0;

where |9| <Z . Thus —Rez> |z|L . It follows that
4 V2

ZZZ

ieS=0,

“Re) z =) (-Rez) ZIZ|f ZI 125 ZIZI

i€Qy ieQ; i€Qy

Suppose Z|z|> w. If zeQ, , then Imz =|z|cos(6)>0, where |9|s%. Hence,
z€0)

|Im z| =|z| cos (6) = since |6 s%. Then

1
i+

>z

ieS=0,

23z = Y imz > Flel =2 =432 3.

i€Q, i€0, i€0,

Suppose Z|z|> w. If zeQ, , then |Imz|=-Imz =|z|cos(8)>0, where |9|§%.
z;€0y

Hence, |Imz| = |z|cos () 2|z |T since |6?|£%. Then

ZZZ

ieS=0,

“mY s Y (cmz)2 T2 S 1S

ic0, ic0, ieQ,

So, we can take S to be one of 0,,0,,0, and Q, intersection with {z,z,,---,z,},
whose sum is greater than or equal to %w. This completes the proof of Lemma
3.

Proof of Proposition 2.

This 1s a proof by contradiction.

Suppose there exists B, €. /such that |4|(B,)=x.

We shall show that we can decompose B, = 4, U B, , a disjoint union with 4,,B

,u(Al)‘>1 and |y|(B,)=».




Repeat this procedure to B, and inductively to B, to get a sequence (4,), where
|u(4)|>1, {4} are pairwise disjoint and a sequence (B,) with |u](B,) = for all

integer i > 1.

Let C = A.. Then Ce . 7 and the collection {4} consists of pairwise disjoint
i=1

sets and so by the countable additivity of 4,

u(C)=iﬂ(A,-).

But the series i 1(4,) cannot converge absolutely as ‘ ,u(Al.)‘ >1. But we know

i=1
that the series must converge absolutely, since it is independent of the order of
the 4,. This contradiction shows that there does not exist a member B, €. 7/

with |z|(B,) == and so |4 is a finite positive measure.

Suppose |u|(B,) = . Then for any real number ¢ > 0, there exists a partition {E,}
of By such that

N
This implies that there exists an integer N such that )" |u(E,)>t¢. For if
i=1

Zn:‘y(Ei)‘gt for all integer n > 1, then i‘y(Ei)‘gt,

Note that |u(B,)| <= . So, we can take r=6(1+|u(B,)|). Hence, there exists an
integer N such that

N
St =6(1+}u(5,)
Therefore, by Lemma 3, there exists a subset S < {1,2,---,N} such that

6

2 H(E)

ieS

> g\ﬂ(g)\ > 6(1+]u(8,))-



Now, let 4, =UE,. Then 4 c B, and 6|u(4)|=6

ieS

2 u(E)

ieS

, since {E,} are

disjoint. It follows that 6|u(4)>6(1+|u(B,)|). Hence, |u(4)|>1+|u(B,)>1.
Let B, =B,—4,. Then ‘,u(Bl)‘=‘,u(BO)—,u(A1)‘Z‘y(Al)‘—‘y(Bo)‘>l.
Finally, since |x| is a measure, |u|(4,)+|4|(B,)=|y|(B,)==. So, one of |u|(4,) or

|u|(B,) must equal co. Arrange for this to be B; and the other to be 4;. Rename,

if necessary.

Thus, if |4|(X) =0, then call X = B, and apply the above process to B; and
inductively to B, for n>1, to obtain a collection of disjoint sets, {4,}” and a

collection of sets {B,}” with B, =4, UB

n?o

A NB =0,

y(An)‘ZI, forn>1,
|u|(B,)= forn>0. Let C= DAI.. Then Ce . 7 and by the countable additivity
i=1

of 4,

ﬂ(C)=iﬂ(A,~)-

But the series i #(4) cannot converge absolutely as |u(4,)|>1 contradicting

i=1

that for a complex measure g, i 1(4,) must converge absolutely. Thus

|u|(X)<oo. Tt follows that for all E €. 7, |u|(E) <|u|(X) < and so || is a finite

measurc.

Corollary 4. Let 1. 7/— C be a complex measure on the measure space (X, . 7/
), where X'is aset and . / 1s a o-algebraon X. Then { (E): E €./} isa

bounded subset of the complex plane. Thus, every complex measure u is of
bounded variation.

Proof. This is because |u(E)|<|u|(E) <|u|(X) <.

Now, let M(. /) be the collection of complex measures on the o-algebra. 7. If
A,y M(.7), define (A+ p)(E)=A(E)+pu(E) forall E € . 7 and
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(ad)(E)=al(E) forall E € ./ and any a e C. Then this makes M(. /) into a
complex linear space with norm given by ||| =|4|(X) for A € M(. 7). We verify
that ||| is anorm on M(. #) . Forany E € . 7/, take a pattition {F,} of E by
disjoint sets in . /. Then Y |(A+)(F)|< Y |AE)|+ D |u(F)| <|A|(E) +| | (E) .

Thus, by the definition of |(1+ w)|(E), |(A+ w)|(E) <|A|(E)+|u|(E). It follows that
|2+ )| = |2+ )| (X) <|A|(X) +| g (X) =|| 4| +|||. Plainly for any complex number
cand any A € M(. /), |cA| =|cA|(X) =|d[|4|(X) =|[|4]|. Also |4]|=0 implies

|4|(X) =0which in turn implies that |A|(E)=0forall E € .7, It follows that
|A(E)|=0 forall E € ./ and so A=0. Thus, M(. /) is a normed linear space.

When is M(. #') a Banach space? If X'is a Hausdorff topological space and . /s
a o-algebra containing the Borel sets of X, we can associate to each complex
measure, 4, in M(. /), a linear functional A on C (X)with the sup norm, defined

by A(f)= IX fdufor feC (X), when we can make sense of integration over a

complex measure. (See Definition 11). By Proposition 2, the total variation
measure of 2 1s a bounded positive measure and so A is a bounded linear
functional. However, we do not know if this association is one to one and
neither do we know if the association is onto. When X is a locally compact
Hausdorff topological space, we shall investigate this question in due course in
Theorem 20 (Riesz Representation Theorem).

Now we look at the situation of two measures, which are basically independent
of one another, meaning each one is non-zero on a set which is disjoint from the
set on which the other is nonzero. We describe such a situation as follows. Let
L be a Lebesgue measure on R. Let L'(R, ) be the equivalence classes of

absolutely integrable complex functions on R with the Z'(x) norm,
||f||=jR|f|dy< . Now for a fixed feL'(R,u), define /1(E)=J'Efd,u for

Lebesgue measurable set £. Then A is a measure. Suppose now we have two
functions f,, f, e L(R,u) such that f-f,=0. Let 4 ={x: f,(x)#0}. Then

44, =0. Let A(E)=| fdu fori=1,2. Then we have,

AE)=[ fidu=] _ fdu=A(End), i=1,2,



Al(EmAZ)=J'EmA2fldy=O and ﬂz(EmAl):J.EﬁAlﬁdy:O.

We abstract the properties of the two measures above in the following
definition.

Definition 5. Let (X, . /) be a measure space, where . 7 1s a o-algebra on X.

Let u be a positive measure on . #/ and A be a complex or positive measure on
.

(a) Wessay A is absolutely continuous with respect to ¢ and write A< i if Ee
.« and wu(E)=0 implies that A(E)=0.

(b) We say A is concentrated on A for some A € . 7/, ifforall E €. 7,
ME)=AUENA).

(c) Suppose A, is concentrated on 4, and 4, is concentrated on 4, with
A nA4,=2. Then we say 4and A, are mutually singular and write 2, 1L 4,. If 4

1s any complex measure concentrated on some set of /~measure aero, then we
write A L u.

Note that if A<, then £ € . 7/ and u(E)=0=|4|(£)=0. This is because for £
€. #and any partition, {F,}, of £ by disjoint sets in . /,

HE)=0= pu(F)=0= Z|/1(F,-)| =0=|u|(E)=0.
Proposition 6. Let (X, . /) be a measure space, where . / 1s a o-algebra on X.
Let 1 be a positive measure on . ~ and A be a complex or a real measure on. /.

A< u,if and only if, given any &> 0, there exists 0> 0, such that for all £ €. 7,
HE)<5=|ME)|<¢ .

Proof. Suppose given any &> 0, there exists 0> 0, such that for all £ €. 7,

H(E)< S = |A(E) <. Thus, there exists &, >0 such that u(E) <3, =|A(E)| <l. If
n

H(E)=0, then u(E)<s, for all integer n > 1. Hence, |A(E)|< 1 forall integer n >
n

1. It follows that |A(E)|=0and so A(E)=0. This means A< u.



Conversely, suppose 1< . We shall prove that given any > 0, there exists o
>0, such that for all E €. 7, u(E)<d&=|A(E)|<e. We show this by way of

contradiction. Suppose there exists an £> 0 such that for any 6> 0, there exists

Es e 7, with u(E;)< 6 but |A(E;)|>e. So, taking 5=%, r an integer > 1,there

. . 1
exists E, €. 7, with u(E)) <? but |A(E,)|z¢.

Let F. = U E, and E:ﬁF Then F, €. 7, for each integer r > 1, E €. / and
s=r r=l1

ﬂ(Fr)ﬁiﬂ(Es)< 0_0%22’1“ . Hence, y(E)Sy(F,)<% for integer r > 1. It

follows that z(E)=0. If A is a complex measure, then A is of bounded
variation so that |1(.X)| <. Since |4| is a finite positive measure by Proposition

2, by the continuity from above property of a measure,

r—>0

() =W (1 |=tim|al7 ).

Since |1|(F,) 2 |4|(E,)2|A(E, )|z ¢ for integer » > 1, we must have |4|(E)2&>0.
Buty(E£)=0 and 1< u implies that |2|(£)=0. So, we have arrived at a

contradiction and this means that given any ¢> 0, there exists 0> 0, such that
forall E €. 7, u(E)<S =|A(E)|<e. If A is areal measure, then 4 is a complex

measure and we obtain the same contradiction as above for the converse.

We have the following immediate consequence of Definition 5.

Lemma 7. Let (X, . /) be a measure space, where . /' is a o-algebra on X. Let

L be a positive measure on . 7. Suppose A, 4; and A, are complex measures on
.

(a) A1s concentrated on 4 <> forall E €. 7, En A=2 implies A(E)=0.

(b) If A is concentrated on 4, then so is its total variation |4.

(c)If 2, L4, then |4|L|4,].
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(dIf 4 Ly and 4, Ly, then (4 +4,)Lu.
(e)If 4 <p and 4, < u, then (4 +4,)< u.
(D If A< u, then |2 < u.

(g)lf 4 <pand 2, L u,then 2 L 4,.

(h)If A< x and AL u, then A= 0.

Proof.

(a) If A1s concentrated on 4, En A= = A(E)=A(ENA)=1(J)=0.
Conversely, suppose for all £ €. 7, EnA4=2 implies A(E)=0. Then for all £
€/ MEY=2((ENA)U(E-A))=A(ENA)+A(E-A4)=2(EnA4)+0=A(EN4).

Hence, A is concentrated on 4.

(b) Suppose A is concentrated on A. Then forall £ €. 7, A(E)=A(En4).
Take a partition, {F}, of E by disjoint sets in . /. Then

Y |A(F)|=2|A(F n4)| <|A|(En4) since {F,~ 4} is a partition of En 4.

Since this is true for any partition, {F}, of £ by disjoint sets in . /7,
|A|(E)<|4|(En4). Since En4c E and | is a finite positive measure,
|A|(En4)<|4|(E). Therefore, |A|(EnA4)=||(E) forany E . 7. Hence, | is

concentrated on 4.

(c) If 4, L 4, then A, is concentrated on A4, and A, is concentrated on A, for
some 4; and A in. 7/ with 4, "4, =J. By part (b), | 41| 1s concentrated on 4,

and |4,| is concentrated on 4,. Hence, |4| L|4,].

(d)If 4, Lu and 4, L u, then A is concentrated on 4; and A, is concentrated on
A for some A and 4, in. # such that u(4)=u(4,)=0. Forall E €. 7,
WE)=4(En4) and 4(E)=2(En4,). Now,
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En(4ud)=(En4)U(En(4,—-4)) and En4 and EN(4,-4,) are disjoint
and belong to . /. Therefore,

MEN(404A))=2(Ena)+A4(En(4,—4))=24(En4)+0,
since by part (a), 4, (En(4,-4,))=0 as (En(4,-4))n4 =0,
= A(E).

Similarly, we have 4, (E(4,04,))=14 (E).

Hence, for all £ €. 7, (4, +4,)(En (4,0 4,))=(4+4,)(E). Moreover,
u(AwA)<Su(A4)+p(4,)=0=pu(404,)=0. Thus, (4, +4,)Lu.

(e) Suppose 4, < u and 4, < u. Thenforany E €. 7 w(E)=0= 4 (E)=A4,(E)=0.
Therefore, (4 +4,)(E)=A(E)+A4,(E)=0. Thismeans (4 +4,)< u.

(f) We have already proved this immediately after Definition 5.

(g) Suppose 4 < u and A, L u. Suppose A, is concentrated on A, for some A
in. 7 with u(4,)=0. It follows that for all Ein. 7 and E < 4> u(E)=0. As
A < u, this implies that for all Ein. 7 and E < 4>, 4(E)=0. Thus A, is

concentrated on some set in the complement of 4, because for any £ in . /
AEY =4 ((Ena )U(End))=A(EnA )+ A4 (End)=4(En4).

Since 4,4 =D, 2, L 4,.

(h) Suppose A < 1 and A L u. By part (g) 2L 4. This can only happen if 1=0.

We can verify this directly. 4 L ¢ implies that 4 is concentrated on 4 for some 4
in. 7 with u(4)=0. Forany Ein. /7,

MENA) = AME)= MENA)+AUENA)= AENA)=0.But since u(4)=0,
wWENA)=0andas A< u, A(EnA)=0. Therefore, A(E)=0.
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Theorem 8. Let (X, . /) be a measure space, where . / is a o-algebra on X.
Suppose A and u are two positive bounded measures on. 7. Then

(a) (The Lebesgue Decomposition Theorem)

There 1s a unique pair of measures, 4, (the absolutely continuous part of 1 with

respect to 1) and A (the singular part of A with respect to 1) such that
A=A+,

where 4, < u and A, L z. Moreover, 4, L A and both measures are positive.

(b) (Radon-Nikodym Theorem)

There 1s a function / in L'(X, ) such that

A(E)=[ hdp forall Ein. 7

and / 1s almost everywhere unique with respect to .

Here LI(X,y):{f:X—>C;f is measurable and J-X|f|d,u<oo}.

Not all measure spaces are bounded measure spaces, for example, the Lebesgue
measure on R is not bounded. But R is a countable union of sets of finite
Lebesgue measure. We say a measure space (X, ./, 1), where u is a positive
measure, is o-finite or j1s a o-finite positive measure if every set £ in. / is at

most a countable union of sets in £ with finite z~measure.
Remarks.

1. After proving this theorem, we shall immediately extend to the case where
is a positive and o-finite measure (for example, when x is the Lebesgue
measure on R*) and A is a complex measure.

2. It is helpful to think of g as a Lebesgue measure on [0,1].

3. Obviously, if A is defined by A(E)= IE fdu for Ein . # and a fixed

fel(X,u),then 1< . The point of the part (b) of the theorem (Radon
Nikodym Theorem) is that the converse is also true.
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4. The Radon Nikodym Theorem is often abbreviated to

da,

dA,=hdy or h=
du

and / 1s called the Radon Nikodym derivative of 1, with respect to z.

5. The uniqueness part of the theorem may be proven easily as follows.
Suppose we have 1=4 +4 =4'+4',where 4,4 ' <u and 4,4 1 A .

Then A,-4'=1"-4. Letv=2,-4 =2 -4 . Then by property (¢) Lemma 7,
v=A -4 <pand v=A4 -1 L u by property (d) Lemma 7. It follows then by
property (h) Lemma 7 that v=0. Consequently, 1, =1 and 4 =4'.

In part (b) of the theorem (Radon Nikodym Theorem), that % is almost
everywhere unique with respect to £, i1s deduced as follows. Suppose &' is
another function in Z'(X, z) such that 1 (£)= J'Eh'd u forall Ein. ~. Then

0=2,(E)=2,(E)=[ hdu—[ Wdu={ (h-h)du forall Ein. .

Therefore, h—4' =0 almost everywhere with respect to zand so 4 =#4" almost
everywhere with respect to 1.

We shall need the following technical lemma for the proof of Theorem 8.

Lemma 9. If 1 is a bounded positive measure on the measure space (X, . /) and
feL(X,u) 1s such that

b
H(E)

J,fdulst,

for all £in . 7 with u(E)>0, then 0<|f|<1 almost everywhere with respect to

L. That is to say, if all the averages of fover all £ in. 7/ belong to the unit disk,
then almost all values of f'belong to the unit disk.

Proof. Let B ={z:|z|<1}be the unit disk. Take z, outside the unit disk B; and a

real number 7 such that 0<r<|z|-1. Let B ={z:|z—z|<r}. Then B nB,=@.
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Bo
By

v

Let E,=f"'(B,). Then Ey € . 7, since feL'(X,u). We shall show that

u(E,)=0. Assuming this is true for B, then it is true for any open disk in the
complement of B.. As B‘ is open and so is a countable union of such disks, it

follows that ,u( 7 (Bl”)) =0 as f~'(B°) is a countable union of sets of x measure

zero. Hence, 0<|f|<1 almost everywhere with respect to p.

Now we show that x(E,)=0. Suppose on the contrary that x(E,)>0.

1
Then (EO)IEOfdﬂ— —Eo(f_zo)dﬂ‘ (E)f \f = z|du
1
<#(E0)JEord,u—r.
But ‘ﬁjfﬂ zo| 2|z| - fdy2|zo|—1because0£ EO)J.EOfdySI.

This means r >|z,|-1. This contradicts that » <|z,|~1. Hence, p(E,)=0.

Remark.

In the proof of Lemma 9, we can use any closed disk in place of the closed unit
disk Bl .
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Lemma 9*. If 1is a bounded positive measure on the measure space (X, . 7)
and f e L'(X,u) is such that

1
<=

ffﬂ—— 5

(E)

for all E in. 7 with u(E)>0, then 0<|7—1 <

almost everywhere with respect

1
2
to L.

1
Z—_

For the proof, we may replace B, by B, = {z ;

1 .
SE}' Take z, outside the

disk Bj, that is

ZO—l > 1 Take 0<r<
2] 2

I 1
z, —E‘—E. Let B, z{z:|z—zo| <r} . Let
E, = f7(B,). Then as above we can show that x(E,)=0. It follows that

y(f“(Bl"))=0 and so 0<| /1<

f_

1
>

Suppose on the contrary that u(E;)>0.

1
Then fdu— — | (f-z ,u‘ f—z|du
(EO)IEO (Ey) J-EO( 0) H(E, )J- | O|
1
—( rdu-=
/U(EO)J.E”
But
[ fdu-z, J, fdu—srmz|2lm o[ rdu-
U(E)E (E,) 5 2 2 (E) 2
> _%_l
2] 2
Il 1 . . Il 1
Hence, r > ZO—E‘—E. This contradicts that 0 < r < zO—E‘—E. Hence, u(E,)=0.

For the proof of Theorem 8, we shall use a very useful property of a Hilbert
space.
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Let H be a Hilbert space with inner product (x, y) satisfying the following
properties:

(1) <x,x>20;<x,x>:0<:>x:0;

(2) (x,y)=(»,x), the complex conjugate of (y,x);
3) <x+y,z> = <x,z>+<y,z> ;

4) <ax,y> = a(x,y>.

If the norm of a Banach space V arises from an inner product, then it is called a
Hilbert space.

More precisely, an inner product on a (real or complex) linear space V'is a
scalar valued function on V'x¥V , whose value on (x, y) in V'xV is denoted by
(x,y)and the function satisfies the following properties:

(1) <x,x>20;<x,x>:O<:>x:0;

(2) <x, y> = < v, x> , the complex conjugate of ( y,x> ;
3) <x+y,z> :<x,z>+<y,z>;
4) <ax,y> = a(x,y>.

The norm on H is given by |x||=/(x,x) forx € H. We have the Schwarz

Inequality for inner product:

(x.y)| <[] forallx,y e H. With respect to the

metric associated with the norm, H is a Banach space, 1.e., a complete metric
space.

Define for a fixed y in H, the linear functional, A :H —C, given by
A, (x)=(x,y) forall x in H. Then A is a bounded (complex) linear functional.

As |A,(x)[=

A
G <ol - sup{‘ I 0} 1] and on account of

|~

A= 2) =D ] =11 -
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The basic result in Hilbert space theory is that the converse is also true.
Suppose A:H — C is a bounded linear functional, then A=A for some y in H.

It is in this way that we set up the conjugate linear isometry.

Suppose H * is the collection of all bounded complex linear functional on H.

The association of the bounded complex linear functional A with y as A=A :
T:H*—>H

given by T'(A)=y, where A=A , is a linear isometry preserving norm. Note

that I'(cA) =¢ y for any complex scalar c. Note also that |C(A)||=[y|=[A].

The proof of this result is independent of measure theory.

We briefly give the proof here. If A =0, then take y =0 and plainly, A=A, .

Suppose A#0. Let N={xe H:A(x)=0} = H . Itis easily seen that N is a closed

subspace of H. As H is complete, N being a closed subspace of H, is complete.

The orthogonal complement of N must contain a nonzero g. We may choose g
such that A(g)=1. Then A(x)=0 implies that x € N and so (x,g)=0.

Foreachx € H, A(x-A(x)g)=A(x)—A(x)A(g) = A(x)-A(x)=0 and so
x—A(x)geN. Hence (x—A(x)g,g)=0. It follows that

(x.g)-A(x)(g.g)=0.

This means A(x)| g||2 =(x,g) for all x in A and as ||g||2 %0,

A(x)<x, g”2> for all x in AH.
g

Thus, if y = ﬁ, then A(x)=(x,y) for all x in H. Note that y is unique.
g

For if y'e H is such that A(x)=(x,)") for all x in H, then (x,y—")=0for all x in

H.Hence, |y-y| =(y-»,y-»)=0. Therefore, y'=y.
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Proof of Theorem 8.

Let ¢=A+ u. Since A and u are bounded positive measures, ¢ is a bounded
positive measure on. ~. Then for any . / measurable function f: X —C,

[ rdp=[ rdi+] fdu. - ()

Evidently, (1) is true if f =y, for E €. 7. It then follows that (1) holds for

measurable simple functions since any simple function is a complex linear
combination of measurable characteristic functions. If f is real valued, non-
negative and measurable, then there exists an increasing sequence of non-
negative measurable simple functions {s,},% such that s, —» /' pointwise on X.

Then we have [ s,dp=| s,di+] s,du. Thenapplying the Lebesgue

Monotone Convergence Theorem, we have

ijdgo:nijsn d(p:nijsn d/1+1imJ-Xsn dy=Ide/1+Idey.

n—>0 n—>0 n—>0

Now if felL(X,p),1.€., IX|f|d¢ <o ,then Re f and Im f* are measurable and

(Re f)",(Ref) ,(Imf)" and (Imf) are all measurable and ¢ integrable, since

(Re /)" ,(Ref) ,(Imf)", (Imf) <|f|. Since (1) holds for non-negative real
valued measurable functions, (1) holds for f e L'(X,p). Moreover, feL(X,A)
and feL(X,u). Conversely, suppose feL'(X,A) and f e L'(X, ). Then

IXRefdwszRefdﬂ+IXRefdy< ©
and _[lefd(pz'fxlmfd/ﬂ'fxlmfd/,moo. It follows that f e L'(X,9) and
Josdo=[ sdr] sdu.
Now we take the Hilbert space,
H=1(X,)=|f: X —>C;f is measurable and [ [ /[ dp <o,
with inner product(/,g) = f-gde and norm | /], = (J'X|f|2 al(p)é . For the

proof that H is a Hilbert space, see Theorem 11 of Convex Function, L” Spaces,
Space of Continuous Functions, Lusin’s Theorem.
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We define a complex linear functional A:H —C by
A =], fd

Note that this is well defined. By Holders Inequality (Theorem 10, Convex
Function, L? Spaces, Space of Continuous Functions, Lusin’s Theorem),

[, sldo =11, < L, =(], o) (T, 1T do) = (o000) (], 11T o) <=

as o(X)=A(X)+u(X)<oo,since A and u are bounded measures and

(J-X|f|zd(p)i<oo for e H. Therefore, ijdl‘st|f|dﬂst|f|d¢<w since 4 is

positive. Hence, [ fd4 exists.
Moreover,
A =[[, raz|<] I Hlar<] |flde,

since y s positive and [ |fdo={ |fld2+] |f|du,

<(p0)): (] 11T do) =(p(x))’
Hence, |A| < (p(X ))% and A is a bounded complex linear functional.

Since H is a Hilbert space, there exists ge H, g is unique almost everywhere
with respect to ¢ such that A(f)=(f.g), forall fin H. Thatis,

IdeiZJng_dw ———————————————————————————— (*)

We shall next show that g is real and unique almost everywhere with respect to
@ and that 0< g <1.

Now, for Ee. /7, 0< IX 2:dA =A(E). Substitute f = y, in (¥), we get

0< [ zedi=[ x,8dp=AE)<p(E).

Hence, if we take E<. 7 such that ¢(E) >0, then

0<

1o
(/)(E)Lgd(p (E)I 2:8dp<l.
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Therefore, ImL I gdop=0. Hence, I Imgde=0 for all E€. 7. Therefore,
P(E)“E £

Img =Img =0 almost everywhere with respect to ¢ . Thus, g is real almost

everywhere with respect to ¢ and for all E€. 7 such that ¢(E)>0,

o<
P(E)

Lgd(pﬁl.

1 1
— | odo——
o(E) Josdo—

real almost everywhere with respect to ¢, 0<g <1 almost everywhere with

This means

< % Therefore, by Lemma 9%,

Ll Since g is
TN

respect to ¢ .

We now redefine g to take the value 0, where g is not real and where 0< g(x)<1
does not hold. This function is obviously equal to g almost everywhere with
respect to ¢ . We shall now assume that g is real, 0< g(x)<1 and

geH=LUX,p). If feH=0L(X,p),thenas ¢=A+ u, Aand i are bounded
positive measures, f,1-ge H =L’(X,1) and by the Holders Inequality,
(l—g)f eLl'(X,4) and

[a-g)fdi= fdi-[ gfdi=A(f)-] gfdA
= [ fedo-| grda
=], fgdu,as | fgdo=| feda+[ fedu.
Hence, we have for all f e H =I2(X,9),
JL0-e)fda=[ fegdu. -wwemrmrmmmememenenenes (**)

Notethat f,geH=L(X,p)= f.ge’(X,u)= fgel(X,u).

Let A={xeX:0<g(x)<1} and S={xe X :g(x)=1}. Then 4 and § are
measurable, X =4uS and ANS=0.

Let 2,(E)y=4(4nE) and A (E)=A(SNE) forall E €. 7. Then plainly, 4, is

concentrated on 4 and A, is concentrated on S. Thus 4, L 4 .

Put f =y, in (**),we get
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[ (-9)xdi=] zgdu.
Since X=4uUS, 1-g=0 onSand y, =00n 4, we have then
0= (-gpsdi=[ rgdu=[gdu=[du=pu(s).
It follows that 4, L x.

Note that g is bounded and so g” is bounded for any integer n > 1. Since
p(X)<w, g"e H=I[*(X,p). Now, putting f=(+g+g’+--+g")y, in (**), we
get,

[(-g)+g+g’+tgNdd=] (1+g+g ++g")gdu,
1.e.,

[(-g™di=[ (g+g + +g" " )dp. =wmmmmrmmmmmemmmmeemmaees (¥*%)

If x € S, then g(x)=1 so that 1-g""'(x)=0. If x € 4, then 0<g(x)<1 and so
g"(x) 0 on A. Therefore, by the Lebesgue Monotone Convergence Theorem,

[=g™di=[ x,(1-g""YdA— | y,di=AEnA)=2,(E),asn—ow,

forany £ €. 7.

The integrand on the right hand side of (***), g+ g’ +---+g"" , increases

monotonically to some function / pointwise and /% is non-negative. So, as 4 1s a
pointwise limit of an increasing sequence of non-negative measurable functions,
h is measurable and by the Lebesgue Monotone Convergence Theorem,

IE(g+g2+'~~+g’1*l)dy/j'Ehdy as 1 —>oo.
Therefore, /”ta(E)z_[Ehd/,z forany E €. 7.

If E = X, then za(X)szhdy=jX|h|dy and as 4,(X)=A(4nX)=A(A) <,

_[X|h|d,u <w. Hence, he L'(X,u). Plainly, if ((E) =0, then
A.(E) =J.Ehd,u =0.
Hence, 1, < u.
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This completes the proof of Theorem 8.

We now discuss the various extensions of Theorem §.
Various Extensions of the Radon Nikodym Theorem

(1) To where A is positive and bounded but x is positive and o-finite. For
example, ¢ may be the Lebesgue measure on R or R as R or R* is o-compact
forR or R* is a countable union of sets of finite Lebesgue measure.

We write X = U X, ,where u(X,)<o. We may suppose that the countable
n=1

n-1

family {X,} are pairwise disjoint. If not, we may replace X, by X, -UX,.
i=1

Then apply the theorem to each X, . We get, 4,4 , and 4, each defined on X, .

> ta,n®"s,n

Extend the definition to X trivially. Define value to be zero on X - X,. Then
splice together so that #(x)=#,(x) if xe X,. Since 0<h, <1, 0<h<1. As
AMX)<oo, hel'(X,u).

(2) To when p 1s positive and bounded but A is real.

Write 1=2"-1", A" =%(|/1|+/1) and A~ :%(|ﬂ|—/1). Then A* and A~ are positive
and bounded measures. Applying the theorem to the positive and negative parts
of ,weget 4,°,A4",h" and A, ,A ",k . Thenlet 4, =4"-4 and 4, =4" -4 .
Then A1=4,+4,.As A" <u and 4, < u, by property (e), 4, =4"-1, < u.

property (g), 4, L 4.

Now, for E € . 7, 2,7 (E)= [ h'du, 2,7 (E)=| h'du so that
A(E)=2"(E)-2, (E) =jE(h+ —h")du . Let h=h"—h".

(3) To when g s positive and bounded and A i1s complex.

Let 4, be the real part of A and 2, be the imaginary part of .. Now apply part
(2) and spliced together similarly.

(4) To when A is real but u is positive and o-finite.
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Write 1=4"-1", A" :%(|/1|+/1) and 1 =%(|/1|—/1). Then A* and A~ are positive
and bounded measures. Apply extension (1) to A* and A~ to get A,",4",h" and
A, .4 ,h . Then splice together as in (2) as follows. Let 4, =4"—-4, and

A =A4"-4 . Then A=, +4.As 4, <u and 4, < u, by property (e),

A =A"-A <u. Also,as A" Lypyand A~ Lu, A =4"—-A L u by property (d).
Thus, by property (g), 4, LA Now, for E € .7, 4,7(E)= | h'du,

A, (E)= J‘Eh*d,u so that A (E)=1,"(E)— A, (E) = jE(h —h)du.Let h=h"—h".

(5) To when A is complex but x 1s positive and o-finite. Write A=Rel+iImA.
Then ReA andIm A are real measures. Apply extension (4) to ReA andIm A
separately and then splice together.

(6) To when both 4 and y are positive and o-finite.

Write X = GX,, , where {X, } are pairwise disjoint, A(X,) <, u(X,)<cfor each

n
n=1

integer n > 1. Applying (1), we get4,,, 4, and 4, each defined on X, . Then

splice together as in (1). We obtain 4(x)=#h, (x) for x e X,. But we cannot

a,n’

conclude that € L'(X, 1), we can only assert that &|, € L'(X,,u), thatis, & is
locally in L'(X, u).

(7) To when g 1s complex and A is a bounded positive measure.

We need to define IX fdu for complex measure. Once defined, the extension is

immediate.

If y21s a complex measure on the measure space (X, . /), then its total variation
measure, |4, by Proposition 2, is a bounded or finite positive measure. Note
that for E'in. 7/, u(E)=0<|u|(E)=0. Following Definition 5, we say A is
absolutely continuous with respect to p1f u(E)=0= A(E)=0. This is equivalent
to A is absolutely continuous with respect to |z|. Thus, for a complex measure,

A< pu< A<|y. Similarly, we say 1 L u, i.e., if A is concentrated on 4 with

#(4)=0. This is equivalent to 1 L|4|.

Thus, if 4 is a bounded positive measure and x is a complex measure, then by
Theorem 8, 1=24,+4, , where 4, <|u|, A L|u| and there exists h e L' (X,|4|)
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such that A (E)= fE hd|y|. Thus, 2, < u and A L u. By the polar decomposition

of 1 (see Theorem 10 below), there exists re L' (X,

#|) such that |#|=1 and
dp=hd|u|. Therefore,

AE) = [ hd|u|=[ m(hh)d|p| =] (mh)hd|=] gdu,

where g =hh . The function ih e L'(X,
geL (X,u). (See Definition 11 below.)

4|) since £ is bounded and so

Some applications of the Radon-Nikodym Theorem

Observe that for a complex number z, we can write z=|z|e” , where ‘e”‘ =1. For
a complex function, f, we can similarly write f =|f|# , where |r|=1. For an

nxn complex matrix 4, we can write 4=UR , where U is unitary and R is
positive semi-definite Hermitian. For a complex measure &, we can write, as
we shall show later,

du=hd|y| ,
where|i|=1.

All these representations are known as polar decomposition in analogy with the
polar representation of complex numbers.

The Polar Decomposition of a Complex Measure

Theorem 10 (Polar Decomposition). If 1 is a complex measure on the
measure space (X, . /), then there exists a measurable complex function

h:X — Csuch that heL'( X,
Ee 7,

#), |n|=1 and du=hd|u|. More precisely, for any

wE)=[ hdly| .

Proof. Plainly, u<|u|. By Proposition 2, |4| is a bounded positive measure.

Therefore, by the Radon-Nikodym Theorem (Theorem 8, part (b)), there exists
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heL‘(X,

ﬂ|) such that u(E)= IEhd |u|. (We are using the extension (3) of
Radon-Nikodym Theorem, discussed above.)
We may prove it directly here.

Note that Re < || and Im x < |y|. Therefore, by Theorem 8, there exist

he € L'(X, y|) such that forall E € . 7,

) and #,, e L' (X,

y7i
Re u(E) = jE heod |u| and Im p(E) = jE hd || -

Therefore,

(E) =Re p(E)+ilm p(E) = [ (hy +ihy )d|p|= [ hd|u],

H).

Now we show that || =1almost everywhere with respect to |.

where = hy, +ih,, . Note that & is measurable and s € L (X ,

Firstly, we show that || >1almost everywhere with respect to |4
Let A={xeX:|h(x)|<r},for0<r<I.

Let {4,} be a partition of 4 by disjoint sets in. /. Then

2lu) =2

i

J el

<X, IHdlu <3 [ dld=r]ul4)=rl ).

Therefore, |u|(4) <r|u|(4)for 0 <r<1. Hence, |y(4)=0 for 0 <r<1. This

implies that |4|>1 almost everywhere with respect to |44

Next, we show that |r| <1 almost everywhere with respect to |

Suppose E € ./ and |u[(E)>0. As IEhd|”|:”(E)’

[, 1] =B < |2 ()

Therefore,

1

|\u|(E)

[ | |‘=|”(E)|<1
£ ()~

It follows then by Lemma 9, that 0<|A|<1 almost everywhere with respect to |z.
Hence, |#| =1 almost everywhere with respect to |4. Thus, u{xe X :|r|=1}=0.
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Redefine / so that on this set {xe X :|i|#1}, h(x) =1. Then we have |a(x)|=1for
all x in X.

We shall now proceed to define integration over a complex measure.

n
For a measurable simple function, s=>a,7, , where E, is measurable and q,is
i=l

a complex number for 1<i<n,

L{Sd/u :iaiﬂ(Ei):iaiJ.E.hd|ﬂ|=iainZEidﬂ
i=1 i=1 ! i=1

=S, hdlil= | Sz, pals
i=1 i=1

= [ shd|ul.

If £ is real valued, non-negative and measurable, then there exists an increasing
sequence of measurable non-negative simple functions {s,} such that s, /1 .

We can write 7 =Re & +iIm h, Reh=(Reh) —(Reh) and Imh=(Imh) —(Im#h) .
It then follows from the Lebesgue Monotone Convergence Theorem that
J.Xsn(Reh)+a’|,u|/| JXf(Reh)+d|y| , J.Xsn(Reh)_d|,u| /! IXf(Reh)_d|u|,

[ s,(mh)d|ul /[ f(imh) d|u|,and [ s, (mh)d|u /[ f(Imh) d|u.

So for a non-negative function /', we say jx fdu exists if J'X f(Reh)d|u| and

[ f(mh)d|u| exist,ie., [ fdu=][ fhd|y|. Forareal value measurable
function, we can write /="~ /" anddefine [ fdu={ f'du-[ fdu and

finally for measurable complex function £, 'fX fdu= 'fX Re fdu+ i_[X Im fdu.

Definition 11. In summary, we may define for fa complex measurable
function, i a complex measure,

J sdu=], s hdlu.
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So, feL'(X,p), if and only if, | [Re f||h|d|y| <= and [ |im f||4|d|x] <o, if and

only if, _[X|f|d|,u|<oo.

If 4 and u are complex measures, the relation,
[ fd(2u)=] fdas] fdp, e (*)

holds whenever f is a bounded measurable function or when f e L (X ,
H)-

Plainly, (*) holds for /" a measurable characteristic function. This is because

4|) and
fel(X,

[ 2pd(A+p)=(A+p)(E)=AUE)+u(E) = [ zpdi+[ z,du

Hence, (*) is true for measurable simple functions. Then (*) holds for any
bounded measurable function f. Evidently, if feZ(X,4]) and fel'(X,

A+ u|) and so (*) holds.

H),
then feL'(X,

We may define complex measure by using any fixed complex function f in
L'(X,u), where g 1s a positive measure on . /.

Proposition 12. Suppose 1 1s a positive measure on the measure space (X, . /)
and fe'(X,p)={f:X >C |f|du<w|. If di=fdu then d|A|=|f|du.

That is, if A(£) = | fdu, then |4|(E)= | f|du.

Proof. It is easy to show that A is a complex measure on. /. By Theorem 10
(Polar Decomposition of Complex Measure), there exists a measurable function,
h:X — C, such that heLl(X, A

Ee 7,

), |n|=1 and d2=hd|4|. More precisely, for any

ME)={ hd|4] .

By hypothesis, A(E)= 'fE fdu. Now for a characteristic function y, , where E is

measurable, J'X 2pdA = A(E) = J'X -/ du. Therefore, for a measurable simple
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function s, IX sdA = J'Xs fdu. It follows that for a bounded measurable function
g, | gdi=| gfdu. Sincehisabounded measurable function,
[ hdi=[ hfdu. Hence, for any measurable £ €./, [ hdi=[hfdu.

Similarly, by using A(E)=[ hd ||, we get
[ nda=| hhdlal=] d|i|=]i(E)=0.

It follows that _[Eﬁfd,u =|4|(E)z0forall E €. /. Therefore, i f>0 almost
everywhere with respect to z. Therefore, & f :‘}_z f ‘ =|/f| almost everywhere
with respect to x. Hence, |1|(E)= L|f|dﬂ forany E €. /.

This completes the proof.
Now we use Theorem 10 for a real measure on (X, . 7).

Theorem 13. Hahn-Jordan Decomposition Theorem.

Let u be a real measure on (X, . /).

(Jordan) Write u" =—(|u|+ ) and u =—(||- ), where |4 is the total variation

1 1
2 2
measure of ¢z. Then u=u" -, ' and 1~ are bounded positive measure.
(Hahn) 4" L .
Thatis, X=4"u4™ with 4 'n4 =& and forany £ €. 7,
H(E)=m(EnA") and p (E)=m(ENA).

Proof. By Theorem 10 (Polar Decomposition), there exists a measurable
function, /: X — C, such that he L'(X,||), |h|=1 and du=hd|u|. More

precisely, forany E €. 7,

wE)=[ hdly|.
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Since u is real, we may assume that /4 is real. Hence,z=+1. Let
A" ={xeX:h(x)=1} and 4 ={xe X:h(x)=-1}. Then 4" and 4~ are measurable.

Plainly, 4"n4" =@ . Since+u <|u| and || is a bounded positive measure, by
Proposition 2, 4" and = are bounded positive measures on. 7/ and pu=pu" —pu.

h(x),xe A" 1 {O,x eAd"

and —(1-h)= Hored

Now, ~(1+h)=
2 0,xe A 2

IfEe 7,

w B =[ S+ )= [ S+l = [ hdlul=[  du=pEoa).
Similarly,

w B)=[ sdl-w)=[ =Rl =], ~hdlud=[,  du=pEAL),

Therefore, 4" is concentrated on 4 and x4 1s concentrated on 4~ and so
u L.
Next, we show that the Jordan Decomposition is optimal in the following sense.

Corollary 14. Let x be a real measure on (X, . 7). Suppose u= 2, -4, , where

4 and 2, are positive measures. Then 4 >x4" and 4, >y .

Proof.

Recall that y=p"—p and p* L 4.

Forany E €. 7, |u(E)|=|4(E) - 4,(E)| < |4 (E)|+| L (E)| = A (E)+ 4,(E).
Therefore, for any partition, {E }, of E by disjoint sets in . 7,

D HEN < T AE)+ 3 A (E) = A(E)+ A (E).

Hence, by definition of |4, |u|(E)<A4,(E)+A,(E) forall E €. 7. Now,
p=p —u =A—A sothat 4 —pu" =4 -u .

Observe that y+(E)=%(|u|(E)+ y(E))=%(|y|(E)+/L(E)—/1Z(E)) so that
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240" (E) = || (E) + 4, (E) ~ 24,(E) S 24,(E) .

Thus, A4(E)> 4 (E) forall E €. #. This means 4 >x". Now,
A-pu =A-u">0andso 4, >u .

The Dual Space or Conjugate Space of 77 (X, x)

Suppose (X, . ) is a measure space and 1 . 7/ SR isa positive measure.

Suppose fel’(X,u) and ge L'(X,u), where 1< p<owo and 1<g <o are

conjugate indices such that l+l =1. Then we have the Holders inequality (see
pP 9
Theorem 10, Convex Function, L? Spaces, Space of Continuous Functions,

Lusin’s Theorem),

7l <ll/1

< 00
PH g”q,# ’

where ||h||/ is the L' (X, #) norm given by ] =(L{|h|" d ,u)% forn>1.

Therefore, fgeL'(X,u).
Define @, : I’ (X, ) - C by (Dg(f)zj-xfgd,u. Then for any f eI’ (X, u)
@, (N|=[, £ gau <[ |1 eldu<]el,, /1,

Hence, @, is a bounded complex linear functional on ”(X, ) and the norm of

this linear functional,

®,|<[g|, , - Recall that for a linear functional ®:¥ —C

o= sup{|®(ﬁ)| xeVx 0} |

on a norm space ¥ with norm ]
X

We investigate if the converse is true. Is any bounded complex linear functional
®: [ (X, 1) —> C expressible as @ =® for some ge L'(X, u)?

One case is clear. Take p=¢g=2 and we know (X, «)is a Hilbert pace with
inner product (f,g)= _[X f-gdp. By anon-measure theoretic argument, if

®: H — C 1s a bounded linear functional on a Hilbert space H, then there exists
y €H such that ®(x)=(x,y) forall x in H. AsH =I’(X,u) is a Hilbert space, for
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a linear functional ®: I’ (X, u) — C, there exists a function g € I*(X, ) , unique

almost everywhere with respect to 1, such that ®=®,.

One case is false. This is the case when p=w. For L”(X, 1), the answer is false
because L' (X, u)does not furnish all bounded linear functionals on L*(X, u).
(See Example 25.16, Principle of Real Analysis, Aliprantis and Burkinshaw.)

If 1< p <o, the answer is always ‘yes’. However, we will prove this together
with the case p =1 with the additional hypothesis that the measure x be o-finite.
Subsequently, we shall prove the case for 1< p <, without the o-finiteness

condition on the measure g One case is “usually” yes, except in very big
spaces (i.e., where open sets are not o-finite), for p =1.

We note that for g e L'(X, 1), we can define a bounded complex linear
functional @, : L*(X, ) > C by @, (f)=[ fedufor feLl”(X,p).

This is because since f e L”(X, ), there exists a set B of y~measure zero such
that |f(x)|<|f ||W <o forall xe B so that |/ g|<|f ||W |g| almost everywhere with

respect to gand so fge L'(X,u). Thus,
@, (1| =[, £ gau| <[ |feldu<] |ellf]., du

<|71... ], leldr=lel,, 171,

b

Therefore, by the definition of |@,

@ |<|g],, <. Hence, ®, is a bounded

complex linear functional. Next, we shall show that Hd) gH =|g

Lu

Lu*®

Since g is measurable, there exists a measurable function / such that |#|=1 and
g =|g|n so that g =|g|. Indeed, we can define / as follows. Let

B,={xe X :g(x)=0}. Then B, and V' = B, are measurable since g is measurable.

z

Let ¢:C—-{0} - C be defined by ¢(z)=— . Then ¢ is continuous on C—-{0}. Let

g

g =g+, - Then g, is measurable and g, #0. Define h=¢-g ,i.e.,
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h(x)=¢og,(x)=¢(g(x)+ x.(x)). The function /4 is measurable because ¢ is

continuous on C—{0}. In particular, |#|=1. Moreover,

Mm% —g(x)xeV

1
|g|(x)-I=O,xeBO

g+ 75, (x)

h(x) = =
el A |g|(x)\g(x>+zgo<x)\

=g(x).

Let f(x)=h(x). Plainly, f is measurable and |f|=1 and so it is essentially
bounded and | ||W =1. Therefore,

o, ()= fedu=| hgdu=] |g|ldu=|sg],,-

Hence,

@, ()| =lel,, =lel,, 17]..,- Therefore,
o [ =sup{[@,(N:1A1.., =17 e (X0} .

@,|=lgl,,as

Likewise, if g € L”(X, 1), then the complex linear functional @, : L'(X, ) - C
defined by @ (/)= IX fedufor fel'(X,u) is a bounded linear functional as

0, (N =], £ edu|<[ |7 eldus<] |Fllel., du<]el. 11,
so that || <], , <.

Forany E € . 7. CDg(;(E):J‘X;(Egd,u:J.Egd,u and

[, gaul=|o, ol <[@ Iz, = || «cE>.

Hence, for u(E)+#0, ﬁ“; gd,u‘ < HCDgH Then by Lemma 9, with closed disk of

radius HCD .

, we conclude that |g| < HCD gH almost everywhere with respect to .

Consequently, [g], , <|®,|. Therefore, |, |=]e], -

Now, we assume that 1< p<ow. Take ge L’(X, 1), Where l+l=1. We have
P 49

already shown that o |<|g| ,, We now show by a similar argument as above
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that |@,| =|g], ,- Take f =|g|"" . Then f is measurable. Moreover,

17" =gl =|e|" and so j'X|f|” du :IX|g|q du <. It follows that f e I’ (X, u).

Now,
®, ()=, (2" M =] (e h)edu=] |g' du
il 1 il 1
=([ el ) ([, lal" du) =([ 111" du) (el du) =l 171,
Hence, d)g(f)‘ =|gll, ,[./],.,- Thus,if |g] , =0,by definition of HCDgH and that
|o.] <l [®.]=lsl, - I [], , =0.then g = 0 almost everywhere with respect

to 2. Hence, ®,=0 and so ||@,| =||g| , =0. In summary, we have the following

result.

Theorem 15. Suppose (X, . 7) is a measure space and 1 . 7/ SR isa positive
measure. Suppose 1< p <o and 1< ¢ <ooare conjugate indices such that
I 1

—+—=1. Then for any g e L(X, 1), the complex linear functional,
P 4

®,:L’(X,u) > C, defined by @, ()= [ fgdu,is abounded complex linear

functional such that |@ | =|g]. -

For a measure space with a o-finite measure we have the following
representation of bounded complex linear functional.
Theorem 16. Suppose (X, . 7)) is a measure space and . 7/ R’ is a o-finite

positive measure. Let 1< p <o and 1< ¢ <o be such that 11 1. Suppose
p 9q

®: 1’ (X,u)— Cis abounded complex linear functional. Then there exists a
unique g in L/(X, ) such that

O(f)=[ fedu=2,(f),

for all fel”(X,u). Moreover,

®,|=[g||, - More precisely, the dual space of
L’(X,u), (L”(X , ,u)) *, 1s isometric isomorphic with L7(X, 4), under a Banach

space isomorphism preserving norm.
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Proof.

The proof is difficult and we shall do it in two steps. The uniqueness part is
easy and we shall dispose of this presently.

Suppose g and g’ in L(X, i) are such that they both satisfy the conclusion of the

theorem.

Take any f = y, for any £ in. 7/ with u(E)<o. Then
0=0(/)-(f)=] zegdu-[ r:g'du=| z:(g-g)du=[ (¢-g")du.
It follows that for all £ in. 7, IE( g—-g')du=0. Hence, g =g’ almost everywhere

with respect to .

By Theorem 15, || = g], -

We shall use the functional ® to define a measure on. 7. We shall use the
Radon Nikodym Theorem.

First of all, if |®||=0, then we can just take g to be zero almost everywhere with

respect to 4. So we assume that |®>0.

Step 1. We consider the special case when  is a finite positive measure, 1.€.,

HX) < 0.

For any E in. 7/, y, plainly belongs to 1”(X, ), since _[X Zedp=pu(E)< u(X)<o.

We define a measure Aon ./ by A(E)=®(y,)for Ein. /.

We check that this defines a measure on . 7. Trivially, A(J)=0. Plainly 2 is
finitely additive, for E, and E, €. 7/ with E,nE, =T,

AE, VE,))= q)(ZEluEz ) = (I)(}(El + X, ) = CD(ZEI )+CD(ZEZ ) =A(E)+AE,).

Thus, by induction, we obtain that, if {£,}"  is any finite collection of disjoint

measurable sets in . /7, then ﬂ(U E,.j => A(E)). Now we show that 1 is
i=1

i=1
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countably additive. Suppose E = U E, 1s a disjoint union of countably infinite
i=1

members of . 7. Let 4, :L"JEI. . Then
i=1

1
P =|y(E—An)|ﬁ —0 asn — o,

HZE — X4, HP’” = UX ZE—A,,d/u

by the “continuity from below” property of the measure 1. So, since @ is
bounded and so is continuous, ®(y , ) —>P(y,) as n — o, because

(2, )0z =[@ (2~ 2, )| <Ill 2 ~ 2, ], >0 asn - o0

Hence, 4(4,)=®(z, )= /I(Lnj E,.j = anxl(El_) — O(E) = /1(@ Eij . Therefore,
" i=1 pany i=1

AME) = iﬂ(Ei) . This proves that A is a complex measure.
i=1

If Ee. 7 andu(E)=0,then y, =0 almost everywhere with respect to .
Hence, A(E)=®(y,)=®(0)=0. Thus, 1< u,1,e., A1s absolutely continuous
with respect to 1. Therefore, by the Radon Nikodym Theorem (Theorem 8
Extension (3) for positive finite # and complex A), A=4 +4, 4, <u, A, L pand
there exists a measurable function g e L' (X, ») such that A (E)= IE gdyu. Hence,

A =A-2, <ubyLemma 7 (e)and soas A4 L u, A, =0, by Lemma 7 (h).
Therefore, 2=4, and
A(E) = jE gdu.
It follows that, for any E €. 7,
()= AE)= [ gdu=[ redu.

We shall extend this equality to arbitrary f e L’ (X, ),

We have just shown that (*) is true for measurable characteristic functions.
Therefore, (*) is true for measurable simple functions. We then claim that (*)
holds for every f in L*(X,u). Note that (*) holds for non-negative measurable
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bounded function, because if f is bounded and non-negative, then there exists
an increasing sequence of measurable simple non-negative functions {s,} such

that s, /" /. Because fis bounded, s, /" f uniformly. (See Theorem 17). As
D(s,) = jx s, gdu , by the Lebesgue Dominated Convergence Theorem,
lim®(s, ) = lim L s, gd = jX fgdu. Note thatas s, /" f uniformly, |s, - /]  —0

and so im®(s,)=d(f). Thus ®(f)= Ingdy and so (*) is true for a bounded

measurable non-negative function. If fis a bounded measurable real valued
function, then we can write f = f*— f, where f* andf~ are bounded non-

negative measurable functions and so by linearity, (*) holds for bounded
measurable real valued function. Finally, if fis a bounded measurable complex
function, then write /' =Re f+ilm /', where Re f and Im f are bounded real

valued measurable functions. Therefore, by linearity (*) holds for any bounded
measurable functions. If f e L”(X,u), then there exists measurable subset B of

f(x), xe B
,XEB ’

Xsuch that |/ (x)| <] f||w <o forall xeB‘and w(B)=0. Letf(x)= {

Then f, = almost everywhere with respect to ¢zand f, 1s bounded and
measurable. Therefore, o(f)=®(f) =] figdu=[ fgdu.

Now we shall show that g e L/(X, ).
We consider the case p = 1.

Forany Ein. 7, =|®| x(E). Therefore, for u(£)>0,

[, gdu]=loCz) <]l 2]

Lu

1
ELgdﬂ‘S”q’”'

Therefore, by Lemma 9, with closed disk of radius |®

g|<|®| almost

... <l

2

everywhere with respect to 1. Hence, g € L”(X, 1) and

Now for the case 1 <p < .

As shown in the proof of Theorem 15, there exists a measurable function / such
that g =|g| and ‘Z‘ =1. For each integer n > 1, let E, ={x:|g(x)|<n} and

f = Z| g|“1 25, - Plainly, f, is measurable and bounded and so f, € L*(X, ). It
follows that 1, € L’ (X, ).
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|g|(q71)p _ |g|q on En,
0 onESf

Now, || :{ Putting 7 in (*), we get

o(f,)= | f,gdu= IE” gl hgdu= Lﬁ lg" du.

1

1 1
We also have, (/) =] Ll 2 du) =l lel" du)

<[]

J,

i 1
Hence, (J‘E g’ auz)l g :(IE 2|’ dy)q <|®|. Letting n tends to oo, we get

1
([ lel" du) <|@].

This is because |g|' 7, /"|¢|" monotonically and so by the Lebesgue Monotone

Convergence Theorem, lim Ln|g|q du=lim | lgl' 7, du=| |e|'du.

n—>0

It follows that g € L7(X, 1) . Now we shall show that ®=®_,. We recall that the
collection, S = {s : X — C;s is a simple measurable function with ,u({x :s(x) #0}) < oo} 1S

dense in I”(X, ) in the 17(X, ) metric. (See Proposition 16, Convex Function,
L7 Soaces, Space of Continuous Functions, Lusin’s Theorem.) Since u(X)<oo,

every simple measurable function is in S. We have already shown that (*) holds
for all simple measurable functions and that means ® and @, agrees on S. As

® and @, are both continuous on (X, u), ®=@,. By Theorem 15,

o] =[] =,

Step 2.

Now we move on to the case when the measure space (X, . 7, ) is o-finite.
We may assume that X = GX[ , a disjoint union of measurable sets {X,} with
i=l1

w(X,)<o foreachi>1.
Let Yn:LnJXl.. Then ,u(Yn):,u(LnJX[j:Zn:,u(Xi)<oo.
i=1 i=l =

Note that for any £ €. 7/, we can define ¥: L7 (X,u) — C by
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Y()=@(x.f) for fel (X,u).
It is easy to see that ¥ is a complex linear functional.

¥ satisfies W (/)| =|P(z,.)| <[P xz/ forall f e L’ (X, u).

Therefore, |¥|<|®| .

<[lefls

pP.H pP.H

Take E = X, . Let ¥, :L"(X, ) - C be defined as above by ¥, (f)=®(x, f) and
we have |¥,|<|®|. Note that y, feL”(X,,ul,), where (X,,. 7 |, ) is the sub-

measure space of (X, . 7, ). Consider

¥, (X, ul ) > C
defined by ¥, (h)=®(x, h), forany heL’(X,,u|, )and h: X —C is given by
h(x) ={h(x)’xe *o Plainly, 7: X —C is z~measurable. Obviously ¥, isa

O,xeg X,

linear functional. Moreover, as noted above,

¥, 0| = |0, | <] | 2., 7

Jeli,, -
It follows that H‘PH <|®|and ¥, is a bounded linear functional on Z*(X,, x|, ).

As u(X,) <, by what we have just proved for finite measure, there exists
g, €L'(X,,ul, ) such that for any he I”(X,, |, ),

W, (=, )= hgduly

and H‘i’ H =le.l. . =|g.

9.y,

, where g : X — C is a measurable extension of g, to

q,H1

g,(x),xeX,,

X defi g (x)=
defined by g, (x) {O,x ‘X

Thus,

Y (f)= CD(anf) = ‘i’n (;(an) , where )(X"f is considered as a function on X, ,
=], (o s)gduly =] (2 s)gdu=] (x.f)g.dn.

n

Therefore, for all fe”(X,u),
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&

&

e, (=], (2 1) 2du <z 1] e, <l

q,H4

Hence, |¥,| < H§

9,4

Now, consider A, :L7(X, ) —C defined by A,(f)=®(x, f).

Then A,(f)=®(z, /)= @[Z zfj =Y 0 (2 f) =2 () =2 ], (2 )z

Z fgid/u (g1 éz é,,)fd,u
X X
i=1

Let A, :L’(Y,,ul,)—>C be defined by A,(f)=A,(f) for fel’(¥,, ul,)and 7 is
the obvious extension of f to X by defining f(x)= f(x), when x e Y and

f(x)=0 when x¢Y,. A, is obviously a complex linear functional and for all
fel’ (¥, uly,),

AN=] @ +g+.+g ) du=] (& +g+.+g )1, fdul, .
Thus, A =0,D| =], @+ &+t 2)T a4

g tg,+...tg, g tg,+...+ g,

|

=11

Py,

pu 4, 44ly,

Therefore, A, is a bounded linear functional and HA_H = Hél g, .. tg,

q,H4

Now [8,(n|=|A, ()| =|@ (2, 7)< ]l@] so that [A,[ <[@]. It

7] =loll]

<|®|. In particular,
U

PHly,

follows that H§1 g+t g,

é” <|®| for each integer
Hlg.p

q,

i>1.
Let g=g,+g,+...4g, += Z§ . Note that this is well defined. For any x €X,
i=1
~ k ~ ~
x € X, for some integer n so thatg.(x) =0 for i # n and Zgi(x) =g (x) for k>n.
i=1

As g, is measurable, g is measurable.

i=1
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Observe that by definition of g,, |g(x)= ig (x) = liminf (x). Therefore,

>e,
i=1

by Fatou’s Lemma,

n ~ 9 ~ ~ ~
[ lef'du< lir'giilfj-x‘Zgi‘ dp= lir’giilf(ugl +g, +...+gan #)q <[
i=1 ’

1
Hence, ||g||M =(Ix|g|qdﬂ)q <|®|. It follows that g e (X, ).

Now A, (f)=®(x, f)—>®(f) asn —> .

Forall fel”(X,un),
fngdu=fGngdu=fo_gfdu=ZfX§ifdﬂ
P i=1 i=] i

=lim | (g, +g,++g,) fdu=limd(z, )= (f).
Hence, by Theorem 15, ||| =||g||qjﬂ.

Now, we consider the case p =1.

The preceding argument applies to the case p =1, yielding, ¥, : L'(X, u) - C,
v, :Ll(Xn,an)—)C, g, €L"(X,,ul, ) such that ¥ (h) =D(yy h) =IX hg,dul, for
heL(X,,uly),

¥, =l

= H§ . We also have A, : L'(X,u)—>C,
y7

OO,H\X,,

A, :L(¥,,ul,) > C, with A, (/)= A,(f) for feL'(Y,,ul,) and

CD,

A,,(f)=CD(;(YHf):Zn:‘Pi(f):iJ.X(;(X[f)gidu:J.X(él +g,+..+g,)fdu. We have

also deduced that

IO R Ry ] PR I V4 W PR W 1

0,41

A=

Laly,

so that A, is a bounded linear functional and so ‘

g4zt e,

o

Since HA_H <|®|, we deduce as before that H§1 gyt §”HW <|®||. Hence, there

exists a measurable set B, such that x(B,)=0 and

g () +g,()+...+g, (x)‘ <|®|| forall xe By .
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Let B= GB,, . Then ux(B)=0 and B° :(G Bn) =N B < B. Therefore, for all
n=1 n=1 n=1
xe B,
‘él(x)+§2(x)+...+ én(x)‘ <|@|| for all integer n > 1.

Hence,

lim|g, () +2,(x)+...+, ()| =|g(x)| <|®] for all xe 5* so that |g], , <[@].

This implies that g e L* (X, u), ®(f)= Ingdﬂ and |@] =|g]

0, 11

Theorem 17. Suppose (X, . 7, 1) is a measure space and f: X - C isa

measurable function. If fis integrable with respect to x, then the set
{x: f(x)#0} is o-finite.

It follows easily that for any feL’(X,u), 1 <p <oo, the set {x: f(x) =0} is o
finite.

Proof.

The function f is integrable means that f is measurable and jX| fldu<oo.

Partition (0, o) by {[L lj} U[Lo). Let E, =|/] [— lj for integer n > 1
h n=1

1+ n
and E, =|f['[l,0). Plainly, E, is measurable for 0 <n <oo. Since J'X|f|dy <o,

j | fldu <. Note thatj |f|dy2%y(En)for integer n > 0 and so u(E,) <« for
E, E, n

integer 7> 0. As {x: f(x) =0} ={x:|f](x) %0} = f] E,, {x: f(x)=0} is o-finite.

If fel’(X,u),then jX|f|”dy<oo and as {x;f(x)¢o}:{x:|f|"(x)¢o}: @Eﬂ,it

follows that {x: f(x)#0} is o-finite. Here we note that J /] d,u>( o ] u(E,)

for each integer n > 0 and the same argument applies to give the same
conclusion.

We now show that in Theorem 16, for 1< p <o, we may drop the condition that

the measure 1 be o-finite.
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Theorem 18.

Suppose (X, . /) is a measure space and 1. 7/ SR’ isa positive measure. Let

1< p<ow and 1< g <o be such that l+l:1. Suppose @ : (X, u)—>Cisa
P q

bounded complex linear functional. Then there exists a unique g in L7(X, u)
such that

o(f)=] fedu=®,(f),

for all fel”(X,u). Moreover,

o, |=]gl,,- More precisely, the dual space of
L’(X,u), (LP (X, ,u)) *, 1s isometric isomorphic with L7(X, 4), under a Banach

space isomorphism preserving norm.

Proof.

Let S be the collection of o-finite measurable subsets of . /. That is,
S={FEe.7: Eis o-finite}.

Now for each E in S, by Theorem 16, there exists a unique g, vanishing outside
of E such that for any f e 1”(X,u) and f vanishing outside of E, such that

() =] (f2:)gedu=[ 1/ gdu.

This is because

®,:L(E.ul,)—>C,

defined by @E(f):cb(f), for fel’(E,u|,), where 7(x):{(];(;);;EE ,is a

bounded complex linear functional. Since f:E—C is./|r measurable, f is
.« measurable. Actually, Theorem 16 gives a unique g, € L'(E, u|,) such that

©,(f)=[ fgd(ul;) for fel’(E ul).

g (x),xeE

Note that g, : E — C is . /|g measurable and so the extension g, (x) = {0 s
,xe E*

1s .~ measurable. Hence, @E(f):jxf’é;dy. Moreover, for f e I’ (E, 1],),
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?‘p;(Edy = J'medy <o so that fel’(X,u). We note that if

Jlrld(ul)=],

Bc E ,then g, =g, almost everywhere with respect to & on B by uniqueness.

"du<ow. Now, for f e I’(E, ul,),

For each E in §, define A(E)= IX §;

.0 =[o(7) <lell|7] | =llls,.,, -

Db,

Hence |[®,|<|®|. By Theorem 16, |g,||

Je.] =le.l<]al.

q.4lg

It follows that {A(E): E € S} is bounded above by |®|". Let a =sup{A(E):E<S}.

Then there exists a sequence {E,} of o-finite measurable sets in S such that
ME)—>a. Let H= U E, . Plainly, H is o-finite and so // € S and as
n=1

__ {gﬂ(x),er

AME)<A(H) for E,cH, A(H)=a. Let g=g, = . Therefore,
0,xeH®

n

gel'(X,p).

Note that if £ is any set of o-finite measure and contains H, then by uniqueness,

g, =g, almost everywhere on H with respect to . On the other hand,

g du= 2015 o= ] o =] o

[ |ge|du=] |g:['d(ul;)=],
and
IE ;g; qd’u :IH ‘/g\; qdﬂ+jE—H ;g; qd’u
- IH“E; qdﬂ_i_jE—H ‘/g\; qd’u - jx|g|qdﬂ+jE—H ‘/g\; qd’u
and so IE_H g, du=0. This implies that g, =0 almost everywhere on E— H.

Thus, g =g, almost everywhere on E with respect to 4.

Now we take any function f in (X, u). Let G={x:|f|(x)=0}. Then G is

measurable and o-finite by Theorem 17. Therefore, £=GUH is o-finite. Let
7=/l . Then
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()=, (f)=[ fed(uls)=] fecdu=| fedu=[_ fedu.

Thus, we have shown that for any f e I’ (X, u), ®(f) = L fedu. Asin Theorem

16, we can deduce that || = ||g||W.

This completes the proof.

However, for p =1, we may not relax the o-finiteness condition for the measure
1 in Theorem 16. For there is an example of a measure space (X, . 7, u) with u
not o-finite and a bounded linear functional, ®, on L'(X, x) such that there does

not exist g e L”(X, u) satisfying ®(f)= L{ fedu.

The next theorem is a result, which we have used, about approximation of
measurable non-negative function by simple measurable functions.

Theorem 19. Suppose f:X —R" is a non-negative measurable function,
where (X, . /) is a measure space. Then there exists an increasing sequence of
measurable simple functions (s,) converging pointwise to f. If fis bounded,

then (s,) converges uniformly to 1.
Proof.

We construct the sequence (s,) as follows. For each integer n > 1, divide the
. . . 1
interval [0, n] into nx2" sub-intervals of length o

Let £, = f [[’ S

7’?jj ’ i=1>25"'5n2n s F;:f*] ([n,OO)) and

n2" l—l
S :z on ZEn,i +nZFn .

i=1

Since f 1s measurable, the sets E,; and F, are measurable.

1
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-1 i-1
Note that E,, =E,, , VE,, .., , where J2 — = lzn or j=2i-1. Ontheset E,, ,
j-1 - . jo_i-1
s, (x) takes on the value EYERY whenxisin £, ; and the value o>
whenxisin E,_, ;. Observe also that
F=f" ([n,oo)):f‘1 ([n+1,oo))uf'l ([n,n+1)):Fn+l uf ([n,n+1))
and ' ([nn+1))=U{E,,,, :i=n2"" +1to (n+1)2""}.
Thus, on the set £, s,,,(x) takes on the value n +1 whenxisin £, ; and on the

set /' ([n,n+1)), s,,(x) takes on values >n, when s,(x) is defined and is equal

to n. Therefore, s, >s, .

> Y+l —

Since f(x)<x , take an integer N such that N > f'(x), then for all n > N,
s,.,(x)< N and so the sequence is pointwise convergence. Moreover, for each

integer n > f'(x), f (x) lies in [Zz;léj for some i such that 1<i<#»2" and so
s, (x)< f(x). Furthermore, s,(x)> f (x)—%n. Hence lims, (x) = f(x) .

Now, suppose f is bounded such that 0< f <K and K> 1.

First of all, note that F, =& for all integer n > K. For any integer n > K,

E =2 L=z if vks1<i<n2
n, 2[‘[ 2”

This means for 0< f < K, we effectively partition the interval [0, K] into 2" K

sub-intervals each of length 2—1”

Observe that since f(x) <K, for any integer N > K, N> f(x) for all x, and so for
alln>N, s, (x)< N for all x and so the sequence is uniformly bounded.

Moreover, for each integer n > N, f(x) lies in [12;1%) for some i such that

1<i<n2" sothat, s (x)> f (x)—% for all x. Hence, for all » > N and for all x,

9 n

f(x)=s,(x)=> f (x)—%. This means that (s,) converges uniformly to 1 .
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The Riesz Representation Theorem - The Complex Version

In Positive Borel Measure and Riesz Representation Theorem, we represent a
positive (complex) linear functional, A:C,(X)— C, where X is a locally

compact Hausdorff topological space and C (X)is the space of continuous

complex functions on X with compact support with the uniform norm, by
A =] fda,

for some positive measure A , which is a/most regular and complete on a o~
algebra . 7 containing all the Borel sets of X.

There was no question of A being continuous, i.e., bounded. Actually, in some
cases, with additional condition on X, it is true that A is positive implies that A
is bounded. Note that C (X)is endowed with the uniform sup norm. If the

representing measure A satisfies A(X) <o, then for any feC,(X),

s

[, raz<] |rlar<|s

L aa=r

CAX).

Recall that | f||, =sup{|/(x)|: xe X| <o, since f is continuous with compact

support. It follows that |A|| < A(X) < and so A is bounded. This means that if X’

1s compact, by Theorem 1 (Riesz Representation Theorem) of Positive Borel
Measure and Riesz Representation Theorem, the representing measure is finite
and so the positive complex linear functional is bounded and so is continuous.
If we specialize to positive real linear functional A:C,,(X) - R, where C_,(X)

is the space of continuous real valued function on X with compact support, then
as a consequence of the representation theorem, A is a bounded real linear
functional if the representing measure A is finite. But we would need some
additional condition, for example when X is compact, to obtain a finite
representing measure. However, a real linear functional on the normed linear
space Cy(X) with the sup norm is continuous if and only if it is bounded. When
X 1s compact and Hausdorff, a real linear functional on the normed linear space
C,(X) can be represented by a regular finite real Borel measure expressible as
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the difference of two regular finite positive measures. (See Theorem 3, Finite
Borel Measure and Riesz Representation Theorem.)

Now we want to consider any bounded complex linear functional ®:C (X)—C

and represent @ as d(f) = IX fdu for some complex measure on a o-algebra . 7/
containing all the Borel sets of X. Since ®:C, (X)— C is bounded, we can
J)-1e (G0,

continuous complex functions on X which vanishes at infinity. (See Proposition

extend @ to the completion of (Cc (X),

,) the space of

25, Convex Functions, LP Spaces, Space of Continuous Functions, Lusin’s
Theorem.) Hence, we might as well consider the representation of bounded

)

complex linear functional @ :C,(X) —C on (C,(X),

Theorem 20. Riesz Representation Theorem - The Complex Version

Let X be a locally compact Hausdorff topological space and ®:C,(X) > C a
bounded complex linear functional on C,(X) with the uniform sup norm. Then

there exists a unique regular complex Borel measure x such that
®()=[, fdu.

Moreover, |®|=|u|(X). That is to say, the dual space or conjugate space of
C,(X), (Cy(X))*=M(X), where M(X)is the collection of all regular Borel
complex measures with norm given by | x| =|x|(X) and "=" here means Banach

space isomorphism preserving norm.

Recall that a complex measure u is regular if | is regular as a positive
measure. 1is finite if |4 is finite as a positive measure.

If X =[0,1], then (C,[0,1]1)*=(C[0,1])* is the space of all regular complex Borel

measures on [0, 1].

Before we prove the theorem, we present a technical result concerning the
regularity of the sum of regular complex measures.
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Proposition 21. Suppose X is a topological space and (X, . /) is a measure
space, where . /1s a o-algebra containing all the Borel sets of X.

Suppose 4 and s are two regular complex Borel measures. Then g + g, is also

a regular complex Borel measure.

Proof.

Plainly, g + 4, 1s a complex Borel measure. The measures x4 and g4 are regular

means that |z4] and |z5| are regular.

We show that | + | is inner regular.

|tu1] 1s inner regular implies that for any £ €. /7, given &> 0, there exists
compact Ky < E such that | |(E)-& <|u|(K,). That is to say,

|| (E = K) = || (B) = |14 (K)) < & . =mmmmmmemmmmmmeeneas (1)

Similarly, as |z&] 1s inner regular, for any £ €. 7, given &> 0, there exists
compact K, < E such that

|| (E = K,) = |1, (E) = |18, (K,) < & . =mmmmmmmmmmmmmmmmm e (2)
Let K=K, UK,. Then K is compact andK c £ .
|1y + 11| (E = K) < || (E = K) +| | (E-K) < 2¢ .
Hence, i+ m,|(E)—2¢ <|u + m,|(K) <|p, + 1,|(E) . This implies that
|14, + 1| (E) = sup {| s, + 11, (K), K compact and K c E .

Thus, forany E €. 7, |,ul+,u2|(E)=sup{|,u1 + 1, (K), K compact anngE}. It

follows that |z, + u,| is inner regular.

We now show that |z + 4| is outer regular. |zu| and |zs| are both outer regular.

This means for any E €. /7, given &> 0, there exists an open set J'; D E such
that | |(V)) <|m|(E)+¢& . Therefore, |1|(V,—E)<e. Similarly, there exists an

open set V> D E such that |u|(V,-E)<e. Let ¥ =V,nV,. Then Vis open and
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V o E. Therefore, |u +u,|(V -E)<|u|(V-E)+|w|(V -E)<2¢. Hence,

ity + 1| (V) =11+ | (V = E) + |aty + 11, (E) <[t + | (E) + 25

It follows that |z + s,|(E) = inf{|,ul +1,|(V), V openand V o E} . As this holds for

any E €./, |u + w,| is outer regular.
Therefore, | + u,| is regular and so g, + 1, is regular.

Proof of Theorem 20.
We prove the uniqueness part of the theorem.

Suppose 4 and o are two regular complex Borel measures satisfying the
conclusion of the theorem. Then

0=0(f)-(f)=[ fdu~[ fdu,=[ fdv,where v=pu -pu.
By Proposition 21, v =g, — 4, is also a regular complex Borel measure.

By Theorem 10, there exists a measurable complex function #: X — C such that
heL(X,V|), |h|=1 and dv =hd|v|. That s, for any E €. 7

14

V(E) = thd|v|
and forany /e Cy(X), [ fav=[ fhdly|.

We shall show that |v|(X)=0. Once we have shown this, then since for all £
€. 74 [v(E)|<|[(E)<|v|(X)=0, |[v(E)|=0. It follows that for all £ €. 7 v(E)=0
and so 1 = .

Now,

)= dlv|=[ nhdly|=[ hhd|v|-[ fdv

= [ mhdlv|=[ fhdlv|=] h(h-1)dy
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forany feC,(X).

Since C,(X)is dense in L' (X,

v|), (see Theorem23, Convex Functions, L
Spaces, Space of Continuous Functions, Lusin’s Theorem), when C_ (X)1is

endowed with the L' (X,

v|)norm and since he L' (X,

v|), we can take a sequence

of functions {/,} in C (X) suchthat f, >4 in L'(X,

v|) so that
J'X‘Z—fn‘dM —0 asn —0.
It follows then from (*) that |v|(X)=0.

Note that given a bounded linear functional @ on C,(X), if |®[ =0, we may

normalise it by taking — @ so that its norm is unity. If |®|=0, we can just

]

take the trivial Borel measure. So now we assume that ||<D|| >0 and normalise it

by considering 1o . We shall thus assume without lost of generality that

||

o] =1

The key to the proof is to use the positive measure version of the Riesz
Representation Theorem (Theorem 1, Positive Borel Measure and Riesz
Representation Theorem).

Assume that we can construct a positive complex linear functional A on C,(X)
such that

T A () (1)

Then we can apply the positive measure version of Riesz Representation
Theorem (Theorem 1, Positive Borel Measure and Riesz Representation
Theorem) to A to give a positive complete Borel measure, A, which is outer
regular and inner regular with respect to open set and sets of finite measure,
such that

A(f):_[xfd/i ,forall feC (x).
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Note that A(X) =sup {A(f): f € C.(X), f < X} =sup{A(f): f € C.(X),0< f <1} . It
follows from (1) that for f eC, (X)

NG RGEZEIN(T))
<|f| <1, if o< f<1.

It follows that A(X) <1< and so by Theorem 1 of Positive Borel Measure and

Riesz Representation Theorem, A is inner and outer regular for all measurable
sets in . /7, 1.e., a finite regular Borel measure.

By (1), |on|<A(lf])=] [flaa=|s],, forall feC.(x).

Therefore, @: (Cc (X),

1 ﬂ) — C is a bounded complex linear functional of norm
|@|, less than or equal to 1. Therefore, we can extend @ by continuity to

L'(X, 1), since (c{,(X),

1 1) is dense in L'(X, 1) (see Theorem 23, Convex

Functions, L? Spaces, Space of Continuous Functions, Lusin’s Theorem). Let
the extension be denoted by @ :(LI(X A 1) > C. Then ® is a bounded

complex linear functional on L'(X,A1).

v
Q

(c.o0.)
N
(LML)

Therefore, by Theorem 16, as A is a finite positive measure, there exists a
unique g in L”(X,A) such that

forall feL(X,4). Moreover, |g], , :HCB

1 =|®|, <1. It follows that |g|<1

almost everywhere with respect to 4.

(2) 1s of course valid for @: (Cc (X),

M)—)C.
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Note that ®:(C,(X),

. ) — C 1s a bounded linear functional and

o(f)=] fgda forall feC, (X). -mmmrmmmrmmmremam 3)

Note that the left-hand side of (3) is the restriction to C, (X) of our original
bounded (continuous) linear functional ® on C,(X) with the uniform sup norm.
The right-hand side of (3), IX f gd A, 1s also a bounded linear functional on

)3

C,(X) with the uniform norm. Since (Cc (X),

,)is dense in (C,(X),

holds for all feC,(X).

Extend (3) to the completion of C_(X) in the uniform norm, C,(X). Therefore,

we can write for all /e C,(X),
cp(f):jxfdﬂ, where du=gdA.

More precisely, for any £ € . 7/, u(E)= IE gdA. It can be easily check that ;is a

complex measure.

From (3), for all feC,(X), |®(f)| :Uxfgdi‘énf
Thus,

S Jeldas] lelaa if | 7], <1.

| @] = sup MifGCO(X),f?fO =sup{|®(f)|: £ € C,(X),
I

1. < 1} < jX| glda.

u

Since ||®| =1, we have 1 =|®| < IX lglda < JX dA=A(X) since |g|<1 almost

everywhere with respect to 4. We have previously shown that A(X)<1 and so
it follows that A(X)=1 and |g|=1 almost everywhere with respect to 4. Since
du=gdl and geL'(X,4), by Proposition 12, d|u|=|g|dA=dA. Therefore,

W)= 2)=1=o].

As A 1s aregular measure, i.e., it 1s inner and outer regular for all measurable
sets in . /, it follows that |z 1s regular and so x is a regular complex Borel
measure.
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It now remains to construct the positive complex linear functional A on C,(X)

with the required property (1).

Let C’(X) denote the set of non-negative real-valued functions in C,(X)and
define for feC (X),

A(f) =sup{|®(h)|:h e C (X) and |h|< f}.
Then plainly, A( /) >0 forall feC’(X) and A satisfies
|o(f)| <A(|f]) forall feC.(X).
This is because for any /e C.(X), |f|eC/(X) and
A(f] =sup{|®@(h)|:he C.(X) and |1 <|f]}.
Al =

Now, for any i e C.(X), |®(h)| <||®|| h

It follows that for all feC (X),

, since || =1. If 4| <| /], |

N

u | u

A(f) =sup {|®(h)|: he C.(X) and |H|<|f]} <]/

.
u

Now, A:C;(X)—R is non-negative and by definition, if f, f, € C. (X),
fi < f, = Af,) <A(f,). Obviously, for any real number ¢ >0, A(cf)=cA(f) for
any feC/(X). Weneed to show that A(f + f,)=A(/)+A(f,) for f, f, e C/(X).

We show that A(f)+A(f,)<A(f;+ f,). By definition of A(f),i=1, 2, given ¢
> 0, there exists 4, e C,(X)such that | |< f; and

A(f)—e<|®(h)| fori=1,2.

Since ®(4,)is a complex number, we can write |®(4,)| = ¢, ®(h,) for some complex

number o, with |a|=1 fori=1,2. Then
A+ AL <|D)|+|@(hy)|+ 26 = @(h) + a,@(h,) + 26 = D(a,hy + a,hy) +2¢ .

Hence, A(f)+A(f,) <|®(eh +a,h,)|+2¢ .
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Since |/ +ahy| <|hy|+ || < £+ 5.

O(a,hy +a,h)| < A(f,+ f,). It follows that

A +ASL) <A, + 1) +2¢ .
Since ¢1is arbitrary, A(f;)+A(f,) <A(f,+1,).
Now, we show that A(f, + £,) < A(f,) +A(f,).

Take heC.(X) with |h|< f,+f, . Let V={xe X: f,(x)+ f,(x)>0}. Then Vis
openin X. Fori=1, 2, let

h(x)= )+ fo(x)
0,xelVe
Then |4 (x)| < f,(x) fori=1,2, since ﬂgl for xev.
SH(x)+ £,(x)

Note that 7 (x) = 0= h(x) = 0for x in V. Therefore, support 4 < support 4,
which is compact. We claim that # is continuous for i =1, 2. Plainly, 4 is
continuous on V fori=1,2. For aeV*, h(a)=0 but since |a|< f,+ f,, h(a)=0.
As|n|<|h| and h is continuous at a with h(a)=0, &, is continuous at a. Hence,

hi 1s continuous on V¢ and so is continuous on X. Similarly, we deduce that 4,
is continuous on X . Hence, 4,4, € C.(X). Observe that 4 +h, =h.

Therefore,
|(h)| =| D () + D(hy)| <| D) +| ()| < AS) +A(S) -

Since this holds for all 2eC,(X) with |h|< f,+ f,, A/, + /) SAL) +AS)
Therefore, A(f, + f,) =A(f))+A(f,). We can now extend A to C.(X) as follows.
If feC (X)is real valued, write f as f =" - f~, where f* :%(|f|+f) and
f=%(|f|—f). Then f*,f eC’(X). Define

AN =A(S)=A(f)-
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If feC (X) is complex valued, then write /' =Re f +iIm /. Plainly,

Re f and Im f are real valued and continuous with compact support. Define
A(f)=A(Re f)+iA(Im f).
We now check that we have thus defined a complex linear functional on C,(X).
Suppose f eC, (X) and fis real valued. Then for ¢ > 0,
cA(f)=cA(f)=eA(f7)=A(cf)-A(ef ) =A(cf).
Forc <0,

() =3 (S +ef)=e5 (U4 £)==e5{lf-f) ==~ and

(o) =5t =cf) =5 (A=) ==e5(s1+0) ="
Therefore,
A& =A((ef))=A(() )= A(-e s )=A(=es")
=—cA(f)+cA(f7)=cAS).
Thus for real valued f C,(X)and any real valued ¢, A(¢f)=cA(f).

Now suppose f,,f, €C (X) and f, andf, are real-valued. We observe that

K=+ £) =(h+ ) =1+ 1=+ 1),
Therefore,

(F+5) +(f+57)=(f+4) + £+ /720 and so
A((fl +f2)+)+A(fl‘)+A(f2‘)=A((fl +£) )+ A7)+ A ().

It follows that
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M+ A) ) =M+ £) )=A(5) =AU )+ A (L) -A(£).

Hence, A(f,+/,)=A(f)+A(f,).

Suppose for any feC (X) and f is complex valued, f=Ref+ilmf . For real

scalar c,
A(cf)=A(cRef+iclm f)=A(cRe f)+iA(cIm ) =cA(Re f)+icA(Im )
=c(A(Ref)+iA(Im f))=cA(f).
Suppose c is a complex scalar, ¢ =Rec+ilme.

Then ¢f =RecRe f—ImcIm f+i(RecIm f+ImcRef). It follows that
A(cf)=RecA(Re f)—ImcA(Im f)+i(RecA(Im f)+ImcA(Re f))
=(Rec+ilmc)(A(Re f)+iA(Im f)) =cA(f).

Suppose £, f, eC.(X), f,=Ref,+ilmf and f,=Ref, +ilm f,.
A(f;+£,)=A(Re f,+Re f,)+iA(Im f, +Im £, )

=A(Re f;)+A(Re f,)+i(A(Im f;)+A(Im f,))

= A(f)+A(1):
Hence A 1s a complex linear functional on C (X).

Let M (X)be the collection of all regular Borel complex measures with norm
given by || =|x(X). Note that if s and y, are regular complex measures, then

u + u, 1s also a regular complex Borel measure, by Proposition 21. Obviously,

for any complex number ¢, and xe M(X), cuis a regular complex Borel
measure. Thus, M(X)is a complex linear space. Define a norm on M(X), by
|| = x| (X for weM(X). We check that this is indeed a norm.

Plainly, for all xeM(X), |u|=|x/(X)=0 and |cu|=|c||x](X).

|| = (X)=0< u=0. Suppose u,u,eM(X). Forany E €. 7,
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i+ 1| (E)= sup }OfEZ\(uﬁuz)(Ei)\S sup > (| (B)|+|u (E)))

all partitions { E; all partitions {E;} of E
p i i

< sup Z‘ﬂl(Ei)‘+ sup fEZ‘:uz (Ei)‘:|ﬂ1|(E)+|ﬂz|(E)-

all partitions {Ei} of E all partitions {E,}

Therefore, | + ] = |1 + 1| (X) <| 14| (X) +| 0, |(X) =] +|1,| . Therefore, M (X)

1s a normed complex linear space. The Riesz Representation Theorem says that
M (X)1s a Banach space. Let (C,(X))* be the set of bounded complex linear

functionals on C,(X)with the uniform sup norm. By the Riesz Representation

Theorem, to each bounded complex linear functional @, there corresponds a
unique complex regular measure u such that o(f)= _[X fdu forall feCy(X).

Let I':(C,(X))*—> M (X) be this correspondence. Thatis, I'(®)=x. This
correspondence is linear. Let @ ,®, (C,(X))*. Suppose I'(®,)=y, fori=1, 2.
Then for all f eC,(X),

(@, +D,) (=@ (N + O, (N =] fdu+][ fduw=] fd(um+m)-

Thus, ®,+®, is represented by z + 4, and so by uniqueness,
[(®,+®,)=p+u,=T(®,)+I(D,). If cis a complex number, then for

® e (C,(X))* with [(®) = u, forany feCy(X), co(f)=c[ fdu=[ fd(cu).It
follows by uniqueness that c® is represented by cu =cI'(®). Hence
['(c®)=cI(®). Thus, I'is a complex linear transformation. Note that I is norm
preserving. We deduce this as follows. Suppose I'(®)= u, then

|®] =z (X)=|#|. This means HF((D)H =|®|. By uniqueness of the Riesz
Representation, I" is injective. I' is also onto. Take any xe M (X). Then take
®:C,(X)—>C given by ®(f)= L fdu. Then @ is a bounded complex linear
functional and by the uniqueness of the Riesz Representation, I'(®)= . Hence

I" is a norm preserving isometric isomorphism. Since any conjugate space is a
Banach space, (C,(X))*is a Banach space and so M (X)is a Banach space.

We present a proof that (C,(X))*1is a Banach space modelled on the standard
proof.
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Let {®,}be a Cauchy sequence in (C,(X))*. This means given any &> 0, there

exists an integer NV, such that

nm=N= |0, -®

<& .

m

For a fixed feC)(X), {®,(/)} 1s a Cauchy sequence in C. This is because

@, (-2, (/)<
for each feC,(X). Let T(f)=lim®, (). Then plainly, T is a complex linear

_<¢l||f], forn,m>N. Therefore, lim®,(f) exists

functional. We claim that 7"is bounded. Since {®,}is a Cauchy sequence, {®, }

is bounded. That is, there exists K > 0 such that |, |<K for all integer n > 1.

Therefore, [7(f)| = lim|®,(f)]<

_. It follows that |IT]|< K <o

n—o u

and so 7' is a bounded complex linear functional.

We now show that ®, — 7 in norm.

For each feC (X)with |f| =1, forn,m>N.

f, =

m m

Letting m — oo, we get |®,(/)-T(/)|<¢ for ||f] =1. It follows that |®, -T|<¢.

This is because for any linear functional, # :7 — C, on a normed linear space
( ) |H#| = sup{| ”(”)| x# 0} sup{ [” ”J x# O}sup{‘H )H|x|| :1} .
X

Therefore, ®, - T in norm. Thus, any Cauchy sequence in (C,(X))* converges

in norm and so (C,(X))*1s a Banach space.

This completes the proof of Theorem 20.

We now state the real measure version of theorem 20.
Theorem 22. Riesz Representation Theorem - The Real Version

Let X be a locally compact Hausdorff topological space, C,(X,R)be the space of

continuous real valued functions on X vanishing at infinity and ®:C,(X,R) > R
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a continuous real linear functional on C,(X,R) with the uniform sup norm.

Then there exists a unique regular real Borel measure # such that
o(f)=] fdu.

Moreover, |®|=|u|(X). That is to say, the dual space or conjugate space of
C,(X,R), (C,(X,R))*= M (X,R), where M(X,R)is the collection of all regular
Borel real measures with norm given by || =|z(X) and "=" here means
isometric isomorphism preserving norm.

Proof. The proof is similar to that for Theorem 20. We use the corresponding
results for real measure and real linear functional.

Uniqueness.

Suppose 1 and i are two regular real Borel measures satisfying the conclusion
of the theorem. Then

0=0(f)-®(f)=[ fdu~[ fdu,=[ fdv,where v=pu-pu.
By Proposition 21, v =g, — 4, is also a regular Borel measure.

By a real version of Theorem 10 (the proof of which is exactly the same via
replacing open disks by open intervals), there exists a measurable real valued

function 7:X — Rsuch that he Z'(X,|v|), |h|=1 and dv =hd|v|. That is, for any E

€. 7

v(E):thd|v|
and for any f eC,(X,R), _[dev='[xfhd|v|.

We shall show that |v|(X)=0. Then since for all £ €. /4 |v(E)|<|v|(E)<|v|(X)=0,
v(E)|=0. It follows that for all £ €. 7 v(E)=0 and so s = fb.

Now,

)= dlv|=][ nhd|v|=[ hhd|v|-[ fdv
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- =[£G

forany feC,(X,R).

Since C,(X,R)is dense in L‘(X,

v|), the space of all real valued |v| -integrable

functions (see the real version of Theorem 23, Convex Functions, L? Spaces,
Space of Continuous Functions, Lusin’s Theorem), when C, (X,R)is endowed

with the L' (X,

v|)norm and since heL'(X,

v|) , we can take a sequence of

functions {f,} in C,(X,R) such that £, > in L'(X,

v|) so that

dlv|—>0 asn —oo.

Jilh=1,
It follows then from (*) that |v|(X)=0.

Note that given a bounded linear functional ® on C,(X,R), if |®] =0, we may

normalise it by taking — @ so that its norm is unity. If |®|=0, we can just

]
take the trivial Borel measure. So now we assume that || >0 and normalise it
. . 1 . .
by considering HCD . We shall thus assume without lost of generality that

| =1.

As in the proof of Theorem 20, the key to the proof is to use the positive
measure version of the Riesz Representation Theorem (Theorem 1, Positive
Borel Measure and Riesz Representation Theorem).

Assume that we can construct a positive real linear functional A on C,(X,R)
such that

T A () (1)

Then we can apply the positive measure version of Riesz Representation
Theorem (Theorem 1, Positive Borel Measure and Riesz Representation
Theorem) to A to give a positive Borel measure, A, which is outer regular and
inner regular with respect to open set and sets of finite measure, such that
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A(f)=[ rda,forall feC(X,R).

Note that A(X) =sup{A(f): f € C.(X,R), f < X} =sup{A(f): f € C.(X,R),0< f<1}.
It follows from (1) that for f e C, (X,R)

NS B MVAEEEPN()
<|f] <1,if o< f<1.

Hence A(X) <1< and so by Theorem 1 of Positive Borel Measure and Riesz

Representation Theorem, A is inner and outer regular for all measurable sets in
./, 1.e.,a finite regular Borel measure.

By (1), |o(N|<A(f))=] |rlda=]s], forall feC.(X,R).

Therefore, @: (CC (X,R),

1 ﬂ) — R 1s a bounded real linear functional of norm

|®|, less than or equal to 1. Therefore, we can extend @ by continuity to

L'(X, 1), since (cc (X,R),

1 ﬂ) is dense in L'(X, 1) (see Theorem 23, Convex

Functions, L? Spaces, Space of Continuous Functions, Lusin’s Theorem). Let
the extension be denoted by @ :(Ll XA, i) —R. Then @ is a bounded real

linear functional on L'(X,1).

®
(CC(X,R),~M) > R

L
(LML)

Therefore, by Theorem 16 (real version), as A is a finite positive measure, there
exists a unique g in L*(X,A) such that

O(f)=[ fgdA, =mmrmmmmmmmmmmmmmemoeee ()

forall feL(X,2). Moreover, |g|, , :“5“1 =|@[, <1. It follows that |g| <1

almost everywhere with respect to A4 .
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(2) 1s of course valid for @: (Cc (X,R),

u)_)R'

Note that ®:(C,(X,R),

. ) — R 1s a bounded real linear functional and
o(f)=] fgda forall feC,(X,R). -mmrrmmrrmmmmmmev 3)

Observe that the left-hand side of (3) is the restriction to C,.(X,R)of our original
bounded (continuous) linear functional ® on C,(X,R) with the uniform sup

norm. The right-hand side of (3), IX f gdA,1s also a bounded linear functional

on C,(X,R) with the uniform norm. Since (CC(X ,R),

) ) is dense in

(Co(x,R),

u), (3) holds for all feC,(X,R).

Extend (3) to the completion of C,(X,R)in the uniform norm, C,(X,R).

Therefore, we can write for all /e C,(X,R),
D(f) = ijdﬂ, where du=gdA.

More precisely, for any £ € . 7/, u(E)= IE gdA. It can be easily check that i is a

real measure.

From (3), for all feC,(X.R), |®(f)|= ‘ [ 7 gdi‘ <|r
Thus,

S leldas] lelaa if 7], <1.

@
@] = sup {|||J(”—f)| [ eCy(X.R), [+ 0} =sup{|(/)]: f € C,(X.R),

f||u < 1} < IX|g|d/1.

u

Since |[®]=1, we have 1=[@] <[ |gli2<| di=2(X) since [g]<1 almost

everywhere with respect to 4. We have previously shown that A(X)<1 and so
it follows that A(X)=1 and |g|=1 almost everywhere with respect to 4. Since
du=gdl and geL'(X,4), by Proposition 12, d|u|=|g|dA=dA. Therefore,

=400 =1=o].

As A 1s aregular measure, 1.e., it 1s inner and outer regular for all measurable
sets in . /7, it follows that |z 1s regular and so y 1s a regular real Borel measure.
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It now remains to construct the positive real linear functional A on C (X,R)with

the required property (1).

Let C’(X,R) denote the set of non-negative real-valued functions in C (X,R)
and define for feC (X,R),

A(f)=sup{|®(h)|:he C,(X,R) and |1 < f}.
Then plainly, A(f) >0 for all feC; (X,R) and A satisfies
[o(f)|<A(|f]) forall feC.(X,R).
This is because |f]e C/(X,R) and A(f]) =sup{|®(h)|: e C.(X,R) and |1 <|f]}.

Now, for anyh e C,(X,R), |®(h)| <| |4, = || , since |@||=1. If |7 <]|f],
|7, <]|], - It follows that for all feC,(X,R),

A(f] =sup{|®@(h)|:he C.(X,R) and || <|f]} <|f

u

We have thus shown that (1) holds. It remains to show that A can be extended
to C.(X,R).

Now, A:C/(X,R)—> R is non-negative and by definition, if f,, f, € C. (X,R),
fi< f, = A(f,) <A(f,) . Obviously, for any real number ¢ >0, A(cf)=cA(f) for
any feC;(X,R). We need to show that A(f,+ f,)=A(f)+A(f,) for

fi, £, €CIHX,R).

We show that A(f)+A(f,) <A(f,+f,). By definition of A(f)),i=1,2, given ¢
> 0, there exists 4, e C,(X,R)such that |4|< 7, and

A(f)-e<|D(h)| fori=1,2.
We can write |®(h,)| = ,®(h,) for some number o, with o, =+1 fori=1,2. Then
A+ A <|D)|+|@(hy)|+ 26 =, @(h) + a,@(h,) + 26 = D(a,h, + a,hy) +2¢ .

Hence, A(f)+A(f,) <|®(eh +a,h,)|+2¢ .
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Since |/ +athy| <|hy|+ || < £+ 5.

O(a,hy +a,h,)| < A(f,+ f,). 1t follows that

A +ASL) <A, + 1)+ 2.
Since ¢1is arbitrary, A(f;)+A(f,) <A(f,+1,).
Now, we show that A(f, + £,) < A(f,) +A(f,).

Take heC.(X,R) with |h|< fi+f, . Let V ={xeX: fi(x)+ f,(x)>0}. Then Vis
openin X. Fori=1, 2, let

h(x)= )+ fo(x)
0,xelVe
Then |4 (x)| < f,(x) fori=1,2, since ﬂgl for xev.
SH(x)+ £,(x)

Note that 7 (x) = 0= h(x) = 0for x in V. Therefore, support 4 < support 4,
which is compact. We claim that # is continuous fori =1, 2. Plainly, 4 is
continuous on V fori=1,2. For aeV*, h(a)=0 but since |a|< f,+ f,, h(a)=0.
As|n|<|h| and h is continuous at a with h(a)=0, &, is continuous at a. Hence,

hi 1s continuous on V¢ and so is continuous on X. Similarly, we deduce that 4,
is continuous on X . Hence, 4,4, € C.(X,R). Observe that 4 +h, =h.

Therefore,
|O(h)| =|D(h)+ D(hy)| < |D(h)| +|D(B)| < A +AL) -
Since this holds for all 2eC,(X,R) with |[h|< f,+ f,, A(f;+ /) SA)+A(S).
Therefore, A(f, + f,) =A(f;))+A(f,). We can now extend A to C.(X,R) as
follows. For feC.(X,R), write f as f=f*—f~, where f~ :%(|f|+f) and
f=%(|f|—f). Then f*,f eC'(X,R). Define
AN =A(S)=A(f)-

It 1s easy to check that we have thus defined a real linear functional on C.(X,R).
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Now for ¢ >0, cA(f)=cA(f")=cA(f7)=A(cf*)-A(ef )= A(cf).

Suppose ¢ <0. Then for any feC.(X,R),
(o) =5+ ef) =5 (Us1+s) = =5 {111-1) ==~ and

(o) =5 (lrl=er)=eq (Arl=1) =511+ 1) =<
Therefore,

A )=A((e) ) =A((er) )= A(-es ) =A(-e ")

=—cA(f)+cA(f7)=cAf).

Now suppose f,, f, e C.(X,R). We note that

K=+ B) =G+ A =1+ 1=+ 1),
Therefore,

(fi+fo) (i +f7)=(fi+ o) +/7+ £ 20 and s0

MUY ) A )AL )= A h) )+ A )+ A (L),

It follows that
M+£Y ) =AU+ £) )=AR) =AU )+ AL )AL ).

Hence, A(f;+/£,)=A(£)+A(f).
It follows that A is a real linear functional on C, (X,R).

Let M(X,R)be the collection of all regular real Borel measures with norm given
by ||« =|#/(X). Note that if x, and u, are regular Borel real measures, then

w4 + 4, 1s also a regular real Borel measure, by Proposition 21. Obviously, for

any real number ¢, and x e M(X,R), cuis a regular real Borel measure. Thus,
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M(X,R)is areal linear space. Define a norm on M (X,R), by|u|=|u|(X) for
pueM(X,R). Asin the proof of Theorem 20, it is easy to check that this is
indeed a norm. Thus, M (X,R)is a normed real linear space. The Riesz
Representation Theorem says that M (X,R)is a Banach space as explained
below. Let (C,(X,R))* be the set of all bounded real linear functionals on
C,(X,R)with the uniform sup norm. By the Riesz Representation Theorem, to
each bounded real linear functional @, there corresponds a unique real regular
measure x4 such that o(f)= fody forall feC,(X,R).

Let I':(C,(X,R))* > M (X,R) be this correspondence. Thatis, I'(®)=x. I'isa

norm preserving isometric isomorphism. Since any conjugate space is a Banach
space, (C,(X,R))* is a Banach space and so M (X,R)1is a Banach space.

Remark.

Now a locally compact Hausdorff topological space is completely regular and a
normal Hausdorff topological space is also completely regular. The proof of
Theorem 20 uses indirectly Lusin’s Theorem by using the result that

(CC(X ), ) is dense in (L‘ (X, 1),

Hausdorff. There is a form of Lusin’s Theorem for normal Hausdorff space X
for normal measure u on the Borel G-algebra, which is outer regular, finite on

L ) , when X is locally compact and

1,4

closed sets and inner regular with respect to closed sets so that for a -
measurable function f: X — C and any &> 0, there exists a bounded continuous
function g such that u({xeX:g(x)= f(x)})<e. Note that the measure s is
special and is specified and not connected with any bounded positive linear
functional on BC(X), the collection of all bounded continuous functions on X.
For such a normal topological space, X, we use the following version of
Urysohn’s Lemma:

Suppose X is a normal Hausdorff space, U < X is open, K is closed with K c U .
Then there exists f € BC(X) suchthat K < f<U .

However, if one starts with BC(X) and define the measure ¢ associated with a
positive complex linear functional, A : BC(X)— C, as in the proof of Theorem 1

in Positive Borel Measure and Riesz Represntation Theorem, but using closed
subsets instead of compact subsets and pursue the argument there, we find that
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we could not prove (1) (o-subadditivity) there and hence we could not deduce
countable additivity.

However, a normal Hausdorff space need not be locally compact and a locally
compact Hausdorff space need not be normal with the exception of compact
Hausdorff space, which is always normal.

For normal Hausdorff space X, and continuous real linear functional, it is
possible to show that a continuous real linear functional, A: BC(X,R) > R,
where BC(X,R)1is the space of bounded continuous real valued functions
endowed with the sup norm, is represented by a normal finitely-additive
measure (1,6, 1 . #— Ris finitely additive, |z is outer regular with respect to
open sets in .~ and also inner regular with respect to closed sets in. / and . 7/
is the algebra generated by the open sets in X') with bounded variation, as

A(S) =jxfdy=jxfd/f —jxfd/f for all feBC(X,R),
with A =] (X).

Riesz Representation Theorem for normal Hausdorff space.

For normal Hausdorff space and positive complex linear functional on the
vector space of bounded continuous complex function on X, without additional
condition on X, we can only associate a finitely-additive measure on the algebra
generated by the open sets of X. Thus, we shall discuss integration over a
finitely-additive measure or charge.

Suppose 4 1s an algebra of subsets of X. A set function x: 4 —[0,] is said to be
a finitely-additive measure or a charge if for any collection of finite number of

pair-wise disjoint sets in 4, {E,} __, then lu(U Efj = Z u(E). Itis easy to see that
h =l i=1

for an additive measure u, u(@)=0 and u is monotonic, that is, if B, C € 4 and
B c C, u(B)< u(C). We shall use the terms, finitely additive measure and

charge, interchangeably. A finitely-additive measure x is said to be finite if
u(E)<woforall Ein A. A simple y-measurable function, s, is a linear

combination of characteristic functions of sets in 4 of finite y~-measure, i.e.,

s=. ¢, where ¢,eRorC, ﬂ(ZE,.)<O° for 1 <i <n. The integral of a simple

i=1
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function s=) cy, is defined as usual to be given by J'X sdpu=>Y cu(E). Itis
i=1

p
easy to show that this integral is independent of the representation as simple
function. Then by linearity, this definition of the integral is a linear functional
on the collection of simple g#~measurable functions. In particular, this integral is
a positive linear functional, that is, for a simple function ¢, ¢>0= IX pdu>0.

Let S(X) be the space of simple functions on X.
We now assume that u is a finite charge, i.e., u(X)<o.

For a bounded real valued function fon X, we define the lower Lebesgue
integral of f with respect to xto be

L(_fdﬂ=sup{fxfpdﬂr¢ﬁf,¢eS(X)}

and the upper Lebesgue integral of f to be L(_fd” = inf{J‘X pdu: f<p,pe S(X)} .

Since f1s bounded and u(X) <o,
—oo<L(_]”dy£L(_fdy<oo.

We say a real valued function f is g-integrable or simply integrable if the
lower and upper Lebesgue integrals are the same and we denote the common
value by J'X fdu. A bounded complex valued function is p-integrable if Re f

and Im fare p-integrable and
Idey =jXRefdy+in1mfdﬂ.

It is easy to prove the following regarding integration over a finitely-additive
measure.

Theorem 23. The collection of all bounded z+~integrable functions on X with

respect to a finite charge & on an algebra of subsets of X is a vector space.
Moreover, the integral is a continuous positive linear functional on the vector
space of bounded g-integrable functions with the sup norm.
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In order to describe an integral not just for bounded function but for measurable
function, we state the following version of the integrability of bounded
measurable function over bounded finite charge.

Theorem 24. Let X be a non-empty set. Let Ax be an algebra of subsets of X .
Let 4, be the algebra generated by the collection of half open intervals

{la,b):a<b}. A bounded real valued function, f, is said to be (4, 4, )-
measurable, if for any U'in 4,, f'(U)e 4.

Every bounded (4, 4, )-measurable real valued function f is integrable with

respect to any finite charge 2 on A.

Suppose fis a bounded complex function on X such that both Re fand Im f are
(Ax, 4,)-measurable, then f is integrable and L fdu= L Re fdy+z‘J'X Im fdu.

Proof.

Let f:X —> R be abounded (4x, 4,)-measurable function. Therefore, there
exists M > 0 satisfying -M < f(x)<M foreachx € X. Lete>0.

Given ¢> 0, partition [-M,M] as follows
M=y, <y <y, <<y =M with y,—y_<eg forl1 <i<nm.

Let £, ={xeX:y_ < f(x)<y} for1 <i<n. Thatis, E,= "' ([y_,»)). Sincef1is

(Ax, 4,)-measurable, each E; € Ax. Moreover, {E,} are pairwise disjoint and

U(E) < u(X)<oo. The simple g-measurable functions, ¢ = Z v.xe and

i=1

w=> vy satisfy y<f<¢p. Then

L{(co—l//)duzi(y,- —yi1)u(Ei)<Siﬂ(E,-)=8ﬂ(X)-

It follows by the usual characterization of integrability that f is integrable.

70



Theorem 25. If X is a topological space and u: Ax —[0,%0) is a finite charge on
the algebra Ax generated by the open sets of X, then BC(X,R) the real vector

space of bounded continuous real valued functions on X, is a partially ordered
real vector space of all bounded u-integrable real functions on X. The ordering
is the usual ordering: f,g e BC(X,R), f<g< f(x)<g(x)forall x in X.

Proof: If f:X — R is continuous, then it is (4x, 4,)-measurable, since

£ @by =1 ((=.0) (7 ((2.0)) € Ax,
The conclusion then follows from Theorem 23.

Proposition 26. Suppose Y is a normal Hausdorff topological space. Suppose
U is open in Y and K is a closed subset such that K cU . Then there is an open

neighbourhood of K| i.e., an open set ¥ such that K cV <V cU.
Proof.

Note that K and U* are disjoint closed set. Therefore, by normality there exist
open sets V and Wsuchthat Kc V, U°c Wand VW =0. Hence V¥ cW°cU.
Since weis closed, VcW*cU.

Lemma 27. Urysohn’s Lemma for normal Hausdorff space

Suppose X is a normal Hausdorff space, U < X is open, K is closed with K cU .
Then there exists f e BC(X) such that K < f<U.

Proof.

We shall make use of the rational number in [0, 1] to construct the Urysohn
function f. Take an enumeration r:N —[0,1] of the rational numbers, i.c., a

bijective function of N onto [0, 1] such that » =r(1)=0 and » =r2)=1. We
denote the image r(k) by r,.

Suppose K is closed, K c U and U is open.

Let U, =U, be the open neighbourhood of K as given by Proposition 26, such
that

) Q= U T TPy ) S —— (1).

71



Since K cU,, let U, =U, be the open neighbourhood of K as given by
Proposition 26 such that

KgUlgagUo (2).

We shall inductively define the open set U, .

Suppose U, .U, ,---,U, have been chosen so that if 7, <7, , j<n , then
U cU, cU,. Then arrange r,r,,---,r, in increasing order. Suppose in this

sequence 7 <7, <r;. Thenusing U, c U, , by Proposition 26 choose open U,

such that

U cU <cU

i Tns1 Tpil

o (3)

In this way we obtain a collection of open sets {U, : r rational [0,1] } satisfying

U, cU, whenevers>r, KcU, and U,cU.

Define a collection of functions {f, : 7 rational €[0,1]} by defining f : X —[0,1]
by

r,if xeU,

seo-]

0 , otherwise

and a collection {g, :s rational €[0,1]} by defining g : X —[0,1] by

1, if xea
gs(x): M
s , otherwise

Note that f.=ry, . Since U, is open for each rational »<[0,1] , f, is lower

semi-continuous for each rational r€[0,1]. Observe that {x:g (x)<a}=X ifa >
1, {x:g,(x)<a} :(Us)cif s<a<land {x:g (x)<a}=0 if a<s. Thus g, is

upper semi-continuous for each rational s <[0,1].

Therefore, by Proposition 21, Convex Function, L7 Spaces, Space of Continuous
Functions, Lusin’s Theorem, f =sup{f,:r rational [0,1]}is lower semi-

continuous and g =inf{g, : r rational €[0,1]} is upper semi-continuous.
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We shall next show that /= g and thus deduce that f'is both lower and upper
semi-continuous and so f'is continuous.

Firstly, we show that f<g .

Suppose on the contrary, there exists x in X such that f(x)> g(x). Then by the
definition of supremum, there exists » in Q ~[0,1] such that f.(x)> g(x). Next by
the definition of infimum, there exists s in Q n[0,1] such that f,(x)> g (x). This
can only happen if xeU,, xeU, andr>s. Butr>simplies that

U cU cU,cU, andso xeU, and we have a contradiction. This proves that

f<g.
Next, we show that 7> g.

Suppose on the contrary, there exists x in X such that f(x)< g(x). Then by the
density of the rational numbers we can find rational numbers 7 and s such that
f(x)<s<r<g(x).

Since f(x)<s, x¢U, and since g(x)>r, xeU, . Ass<r, U cU cU, cU,
and so xeU, and we arrived at a contradiction and so we have f>g. Hence,

f=g

Plainly 0 < f < 1. Now observe that U c U, for all » in Q~[0,1]. Therefore,
f(x)#0=xeU, and it follows that support /= {xf(TO} c U, cU and so the
support of f isin U. Hence f<U . As KcU, for all » in Qn[0,1], f(x)=1 for
all x in K. Therefore, K < f . It follows that K < f <U .

Our next technical lemma is a partition of unity for normal topological spaces.

Theorem 28. Partition of unity for normal Hausdorff space

Suppose X is a normal Hausdorff topological space. Then any closed subspace
F of X is a normal space.

Suppose {U,,U,,---,U,} is an open covering of the closed set F, i.e., U, is open in

n

Xfor1<i<n and F c L"JUI. . Then there exists 4 € BC(X,R), a continuous

i=1
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bounded real valued function on X, such that 7 <U, for 1 <i<n and
h+h,+---+h =1 onF. Thatistosay, 0<# <1 and » =0 on (U,)" for 1 <i<n.
The collection of continuous functions, {4,h,,---,h,}, is called a partition of

unity on F subordinate to the covering {U,,U,,---,U,} of F.

Proof.

Our first task is to shrink the covering {U,,U,,---,U,} to another covering

V.V, V, } of F such that V.cU, for1<i<n.

We shall proceed to this by induction. Let B=F - U U,. Then B is closed in X

i=2

and

B:Fm(LjJUijc :Fm(LjJUl.jc :Fm(LnJUijm(gJUijC cU,.

i=i

Therefore, by Proposition 25, there exists open set V; such that BcV, <V, cU,.

Then {¥,,U,,---,U,} covers F. Next consider now B=F -V, - U U.. Then B is

i=3
closed in X and B cU,. Again, by Proposition 26, there exists open set V> such
that BV, c¥, cU,. Then {},¥,,U,,---,U,} covers F. In general, suppose

WV Vi, Upye,U, L covers F with 1<k <n, with ¥V, ¥, cU, for 1 <i<k

n

Then let B=F - LkJ V,— U U,if k <n-2. It follows that B is closed in X and

i=l1 i=k+2

BcU,,. Applying Proposition 26 again to give open set V,,, such that
BcV,, <V, cU,,. Proceeding in this way we get V-V

n—1°

U,}covers F.
n-1

Then B=F-UYV, is closed in X and Bc U,. One more application of
i=1

Proposition 26 gives an open set ¥, with BcV, ¥, cU,. Hence, {V,,V,,---,V,}

covers F.

Then by Lemma 27 (Urysohn’s Lemma), there exists bounded continuous
function g; on X such that

V.<g <U forl <i<n.
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Let h=g, h=»1-g)g,, ..., h,=(1-g)(1-g,)--(1-g,)g,. Since g, <U,,
h<U, for 1 <i<n. Now take any xe F. Since {I;,V,,--,V,} covers F, xeV,

for some 1 <;j <n and it follows that g,(x)=1. Now

hoth+oth =1-(1—g)1-g,)-(I=g,). =mmmmmmmmmmmmemmmmmee (*)

We can show this by induction. (*) is plainly true for n=1 and for n=2. If (*) is
true for n—1, then

h+h++h_+h =1-(1-g)1-g,)(1-g,)+g,(0-g)-g,)-U-g,)
=1-(I-g,)(1-g)1-g,)-0-g, ).

Forany xe F, (1-g,(x))(1-g,(x))---(1-g,(x))=0 and so # +h, +---+h, =1 on F.

We are now ready to explore a Riesz type representation theorem for positive
linear functional on the space BC(X) with the uniform norm for normal
Hausdorff space.

Theorem 29. (Riesz Representation Theorem For Normal Hausdorff Space)

Let X be a normal Hausdorff topological space. Let
BC(X)={f:X —C; f is continuous and bounded}. Let A:BC(X)— C be a positive

complex linear functional on BC(X), i.e., whenever f e BC(X) and fis real
valued with /> 0, then A(f)>0. Then we have the following:

(a) There exists an algebra . 7 on X, generated by the open sets of X and a
unique finite finitely-additive measure y, on. 7, 1.e., y:.7/— R is a finitely
additive set function, such that

A(f) :jxfdy for all feBC(X).
(b)Forall E €. 7 u(E)<wo.
(c)Forall E € . 7 p(E)=inf{u(V):V 2 E and V is open}. (Outer regularity)

(d)Forall E € .7
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M(E) =sup{u(F):F c E and F is closed in X } . (Inner regularity)

(e) . 7 1s p~complete, i.e., for all N € . 7/ such that u(N)=0, for EcN,E €. 7.

Moreover, ||A| = x(X), when BC(X) is endowed with the sup norm.

Remark.

Assertion (d) is called inner regular only for finitely additive measure and is
different from assertion (d) in the complex version of the Riesz representation
theorem, where it means approximation from below by compact subsets and is
sometimes refer to as tight measure. These two similarly named notions
coincide when X is compact and Hausdorff.

A measure satisfying (c) and (d) in Theorem 29, is said to be normal.
Proof.

Firstly, we prove that the measure z 1s unique. Then we show the existence of

the measure 1. The remaining of the proof deals with the conclusions (b) (¢)
(d) and (e) of the theorem.

Uniqueness of 4.

Suppose g, and w1, are two finite finitely-additive measures on . 7 satisfying the

conclusion of the theorem. Note that the value of the additive measure, u, 1s
entirely determined by the value of 1 on closed subsets of X by part (d). Thus,
it 1s sufficient to show that x (F)= u,(F) for any closed subset F' of X.

Take any closed subset F'of X. Then F' € . /. Note that, 1 (F), u,(F)<».

Therefore, given any ¢ >0, by part (c), there exists an open set V' containing F
such that

L)< p(F)+e.

Now we use Urysohn’s Lemma (Lemma 27). Since X is a normal Hausdorff
topological space, and F <V, with F' closed and V' open, by Urysohn’s Lemma,
there exists a continuous function f e BC(X) such that F < £ <V . This means

that y,. < f < y,. Note that
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w(F) = ypdu <[ fdum =N = fdm <[ rdu=mV)<mF)+e.
Since ¢ s arbitrary, it follows that s, (F) < g (F).

Similarly, by reversing the role of x4, and x,, we can show that 4 (F) <, (F).
Hence y,(F)= u,(F) for any closed subset /' of X. Thus, the uniqueness of the

measure y is established.

Now we shall define x4 first on open set, then on any subset of X. Subsequently
we shall define the algebra . 7.

Let V' be an open set of X. Define wx(V)by
p(V)=sup{A(f): f e BC(X) andf <V}.
For any subset £ c X, define
p(E)=inf{u(V):EcV and V is open in X} .
Let . /p= {Eg X4 (E)y<wand y'(E) =sup{y'(F): F  E and F is closed inX}}
and
AW={EcX:EnFe. rsrforall closed Fc X}.

Now suppose U and V are open subsets of Xand V c U, then u(V)< u(U). This
is because {f: f e BC(X)andf <V} c{f:feBC(X)andf <U} so that

u(V)=sup{A(f): f € BC(X) and f <V} <sup{A(f): f € BC(X)andf <U}=u(U).
Therefore, if £ is open, u(E)< u(U) for all open U containing £. Hence,

#(E)=inf{p(U): EcU and U is open in X} = u(E). Thus, our definition of s *(E)

for any subset E of X is consistent with the open sets in X.

We shall prove in stages that * is finitely additive on . / and that. 7/ is an
algebra generated by the open sets in X.

We note the following properties of the positive (real or complex) linear
functional A and the function, x*, which is define on all subsets of X.
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(1) A is monotone, i.e., for f and g e BC(X) and f'and g are real valued,
f<g=A(f)<A(g). This is because by linearity, A(g)=A(f)+A(g—f)=>A(f)
as A(g—-f)=0.

(2) u*1s monotone, i.e., for any subsets A and B of X, A< B= u*(A)< u*(B).
If AcB,then (¥ :B<V andV isopeninX}c{V:AcV and V is openin X}.
Therefore,

u*¥(B)=inf{u(V): B<V and V' is open in X'}
>inf{u(V):AcV and V isopenin X} = u*(A).

(b)

Since u(X)=sup{A(f): feBC(X)andf <X} and as 1 eBC(X), A(f)<A(1) for
0< £ <1, we deduce that u4(X)<A(l)<~. Hence, for all subset £ of X, 1/*(E) <
LX) = i(X) < co.

Trivially x(@)=0.

We can prove part (e) easily.

Proof of part (e)

Suppose u*(E)=0. Plainly, by the monotonicity of x*, E € . 7/r and that for
any closed subset F of X, u*(EnF)=0 sothat EnF €.7r. It follows that £

€ .. This means forany Nc E, E €. 7. Thus, we may take . 7/ to be -
complete.

Part (c) of the theorem plainly holds by the definition of z*.

Therefore, we only need to prove parts (a) and (d). That is, we need to prove
that the restriction of 4/* to. 7/, also denoted by s, 1s a positive charge or a
finitely-additive positive measure on ./, . / is an algebra, A(f)= IX fduforall

f e BC(X)and u satisfies part (d).
Note that * is defined on all subsets of X. We need to show that z7* is finitely
additive on . /. We have the following consequence of the definition of x#* on

all subsets of X, which will contribute to part of the proof of the finite additivity
of u*on. .
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(1) For any finite family {E,},

n

<i<n

i=l1

~of subsets of X, ,u*( Eijﬁiﬂ*(Ef)-
i=1

To prove (1), we begin by considering open sets in X. If ¥, and 7, are two open
sets in X, then u(V, UV,)< u(V)+u(V,). We shall prove this as follows. Recall
that x(V, UV,)=sup{A(g): g€ BC(X)and g=<V,UV,}. Suppose geBC(X) and
g=<V,uV,. Then support g < ¥V, UV,. Since support g is closed and plainly,
{V,,V,}1s an open cover for support g, by Theorem 28, we can take a partition of
unity {%,h4,} on support g subordinate to the covering {/},7,}, such that

h eBC(X), 0<h <1, h <V, hl.((Vl.)c):O, i=1,2 and h +h, =1 on support g.
Note that support < V; ,i=1,2. Hence, we get hg=<V, for i=1,2 and
hg+hg=g. Therefore,

A(g)=A(hg)+ A(hg) < u(V,)+uV,). This is true for any g e BC(X) with

g=<V,uV,. Hence,
p(VoV,)=sup{A(g):g <V, WV, and g € BC(X)} < (V) + u(7,)-
It then follows by induction that for a finite family of open sets, {V,}

A

subsets {E,}

1<i<n?

Cs

Vij < Z w(V). With this proven, we shall apply this to arbitrary family of

i=1

. We shall show that y*(QEijgiy*(Ei).

1<i<n

Note that x*(E,) <o for all integer 1 <i<n. By the definition of x*(E,), given

&> 0, there exists open set ¥, such that £, cV,
ulh) < p(E)+> .

Let v =) V.. Then V'is an open subset of X. Take any f e BC(X) such that
i=l1

f <V . Since support f is closed and support f < V, {V;} __ covers support f.

1<i<n

Hence,
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It follows that u(V)SZn:y*(Ei)+g. Since UE v,
i=1

i=1

,u*(QEijs,u*(V):,u(V)Silu*(Ei)+8.

As ¢is arbitrary, y*(UE] < Zy*(E)
=1 i=1

(2) Every closed subset of X belongs to . 7.

Take any closed subset /' of X. Then u*(F)<~. Plainly, by the monotonicity of
(¥ on subsets of X, sup{u*(L):L < F and L is closed} = u*(F) and so F'is in. /F .

(3) Every open subset V of X belongs to . 7 .

Take any open subset V' of X with x(7) <. By definition of x on open subset,

given £> 0, there exists a bounded continuous function f such that f <V and
uV)—e<A(f)<u). Let F=support f. Then FcV and so u*(F)<uV).
Suppose now W is any open set containing . Then f<Ww . By the definition of
u(W), A(f)< puW). Therefore, A(f) is a lower bound for

{u(V):F <V and V is openin X} and so
A(f)Sy*(F):inf{,u(V):FgVand V is openinX}.

It follows that u(V)—-e<A(f) < u*(F)< u*(V)=u). This means
pu(V)=sup{u*(F):FcV and F is closed in X}. Hence, V e . 7F.

(4) u* 1s finitely additive on . 7 . That is, suppose E\, E», ....., E, are in. /F and
are pairwise disjoint, then *(Lnj El.j => p*(E,). Moreover UE €. /.

i=1 = i=1
We shall prove this in stages, firstly, on closed subsets since closed subsets are
contained in . 77 by (2).

Suppose K,,K, are disjoint closed subsets of X. We shall show that
p*(K UK,)=u*(K,)+u*(K,). Since X is normal and Hausdorff, there exists
open sets, ¥, oK, and ¥, o K, suchthat V,nV,=0. As K, UK, is closed, by (2)
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K, UK, isin. 7. Aspu*(K, UK,)=inf{u(V):K, UK, <V and V' is openin X |,

given &> 0, there exists open set W o K, UK, such that
,u*(Kl UKZ)S,u(W)< ,u*(Kl UK2)+8.

Note that W NV, and W nV, are open in X and are disjoint. As,
u(W V)< u(W)<w fori=1, 2, by the definition of x on open set, there exists

f;€BC(X) such that f/,<wW ¥V, and A(f))>u(WnV,)-¢ fori=1,2.
Note that support f, € WnV;, fori= 1,2, and so since f,,f,>0, f,+f,<W.
Now, u*(K)+u*(K) S u(W V) +uW nV,) as K, c WV, and K, c WV,
SA(f)+e+A(f,)+e=Af+ 1)) +2¢
<uW)+2¢ , by definition of u(W),
<u*(K,UK,)+3e.

Since ¢1is arbitrary, u*(K,)+u*(K,)<u*(K,VK,). We have already proved as
in (1) that x*(K, UK,)<pu*(K,)+p*(K,) and so u*(K, UK,)=u*(K,)+u*(K,).
By a simple mathematical induction, if K, K>, ....., K, are closed subsets of X

and are pairwise disjoint, then ,u*(U K’) => u*(K,)
i=l i=1

Now suppose Ei, Es, ....., E, are in . 7/F and are pairwise disjoint. Let £ = U E, .

i=1

Then it follows by the inequality in part (1), x*(E)=u *(L_J E,.j < i,u* (E)<o.

Since each £; € . 7F, u*(E,)=sup{u*(K):K c E, and K is closed in X} . Given &>

0, there exists closed subset K, c E, such that
&
H*(E) 2 u*(K;) >,U*(E1-)—; :

Let H = L"JKi. Then Hc UE =E. Therefore,
i=1

ﬂ*(E)2#*(H)=ﬂ*(QKfj=iZ:lﬂ*(Ki)a
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since K1, K>, ..., K, are pairwise disjoint closed sets,
n n 1 n
>Zlﬂ*(Ei)_€;;:;ﬂ*(Ei)_g .

It follows that x*(E)> Zn: w*(E)—¢. Since ¢ is arbitrary, p*(E)> Z u*(E).
i=1

i=1

Hence this together with part (1) gives x*(E)= z u*(E). We now show that £
i=1

E_//F.

Since H is closed, H c E and u*(H)> Zn:y*(E,.)—g = u*(E)-¢ It follows that
i=1

y*(E):sup{y*(K):KgE and K is closed}. Therefore, E € . 7% .

(5) Forall E €. 7F, given &> 0, there exists closed subset K of X and open
subset V' withK < EcVsuchthat u*(V -K)=u(V-K)<e¢.

ForE €./, u*(E)=sup{u*(K):K c E and K is closed|. Hence given &> 0,

there exists closed subset K — E such that
&
u*(E)z u*(K)> ﬂ*(E)_E'

Since p*(E)=inf{u(V): EcV and V is open in X}, there exists open set V' such
that £V and

ul) < * (E)+
Hence, ,u(V)—§<,u*(E)<,u*(K)+§. By part (4), since K and V' - K €. /7,

p*V)=u*(K)+u*(V-K) and so u*(V-K)=p*(V)-u*(K)<e.
(6) IfA1 ,Az S .//F, thenA1 —Az ,Al UAZ andA1 ﬁAz € . /F.

By (5), given € > 0, there exist closed K; , open V; such that K; — 4; — V; and
ulV.—K)<efori=1,2.

Then 4, -4, cV,-K, c(V,-K,)u(K,-V,)u(V,-K,). Therefore,
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pF(A - A) < p* (V- K) +* K, = V,) + pu* (V, - K,)
<2e+u*(K, -V,)<2e+pu*(K,).

Note that K, -V, 1s closed, K, -V, c 4, -4, and u*(K,-V,)> u*(4, - A4,)-2¢.
This shows that given any &> 0, there exists a closed set L such that L < 4, — 4,
and u*(4,—A,)> u*(L)> u(A — 4,)—¢ . Hence,

(4 —Ay) =sup{p*(L): L < 4, — A4, and L is closed] .
Therefore, A1 — A, € . 7F.
Now, 4, ud,=(4,—-4,)ud, and as A1 — Az, A> € . 7r and A1 — A, A are disjoint
and so by part (4), 4,04, =(4 -4,)ud, €. 7F.
Next, 4,nd4,=4,—(4,—-4,) € .7r,since Ay —Arand 4, € . /F.
(7) . 7 1s an algebra generated by open sets of X.

Recall that 4 € . 7 if AnK e . 7F for all closed K of X. Take 4 €. 7. We
shall show that the complement A € . 7. Now 4°NnK=K-AnK € ./Fby part
(6) since K and ANK € . 7. Hence, A° € . 7. If {4} is a finite collection of

sets in . 7, then by part (6) for any closed K, (U A,.jmK ~U A4 NK €. 7rand so
i=l1 i=1

LHJA,. €. /.

i=1

Next we shall show that if C < X is closed in X, then C € . /. In particular, X €
.

If Cis closed, then C € . 77 by part (2). Then CK is closed for any closed
subset K of Xand so CnK € . 7. Thus C € . 7. Hence, X € ./ and. /7 is an
algebra containing all closed subsets of X, hence all open subsets of X.

(8)//F://

Suppose E € . 7. Then by (6), since by (2) any closed K € . 7¢, ENK € . 7F .
Hence, £ €. # Thatis,. 7r . /.
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Conversely, suppose E € . 7. Take any open V' in X such that Ec V. Since V'
is open, by (3), V € . 7r. Hence, u(V)= sup{y*(K) :K cV and K is closed inX}.

Therefore, given any &> 0, there exists a closed set K — V' such that
pu*(K)> u(V)—esothat u(V-K)<e. Since by definition of . 7/ ENK € . 7,

there exists closed H c EnK such that p*(H)>u*(EnK)-¢. Since
Ec(EnK)u(V-K),

pH*(E)S u*(EnK)+p*(V—K)< u*(H)+2e¢ .
As H is closed and H c E, this shows that
p*(E)=sup{u*(H):H < E and H is closed in X} .
Therefore, E € . #z. Hence,. 7/ <. 7r. Thus,. 7/=./F.
(9) i 1s finitely additive on . 7.

We have proved that #* is finitely additive on . 7 and since . 7/ =. 7F , /* 1s
finitely additive on . 7.

(11) Forall feBC(X), A(f):Ideu.

We note that it is sufficient to prove this for real f. For complex f we may write
f=Ref+ilmyf. Then the real part of f, Re f, and the imaginary part of f, Im f,

are continuous bounded real valued functions. Then,
A(f)=A(Re f+ilm )= A(Re f)+iA(Tm f)= [ Refdu+if tmfdu=[ fdu.

Let f'be a bounded continuous real valued function in BC(X). Let K = support f
and so K is closed. Since fis bounded, f(X) is contained in a bounded subset
on the real line. Thus, we may assume that 7 (X)c[a,b). Given &> 0, partition
[a,b] as follows

Vo=a<y <y, <<y =b with y—y <eforl <i<n.

Let E,={xeX:y_ < f(x)<y} forl1 <i<n. Thatis, E,=f"([y_,»)). Sincefis
continuous and so is (. 7, 4,)-measurable, it follows that each E; is a Borel set in
the algebra generated by the open and closed sets and is in . /. Moreover {E,}

are pairwise disjoint and covers K. We assume that each E, # & .
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w*(E)< u*(X) <o and L_JIE =X. Note that E; €. 7p for 1 <i<n. By the
definition of x*(E,), given &> 0, there exists open set W, o E, such that

uWw) < y*(E,.)+S. Note that this holds even if £, =&. Let D, =(y_, —¢,y,).
Then U, = f7'(D,) is open and if U, is non-empty, y, —¢< f(x)< y, forall x in U,
. Then U, o E,. Let V,=W, U, and we have u(V,) < u(W,) < y*(Ei)+% and
y.,—e< f(x)<y, forall x in V; when V, #<&. Note that L_JIV QQE,- =X . Take a

partition of unity {#} __ on X subordinate to the covering {V;} __ such that, for

1<i<n
1<i<n, 0<h <1, h<V,and h+---+h =1 on X. Note thatif V, =g, then

h, =0. Then we have
D> hf=f since ) h=1onX, and for 1 <i<n,
i=1 i=1

h(x)f(x) < h(x)(y,) since h, <V, and f(x)<y, forallxin V; when V, # &,

and

yo,—e<f(x)<y <y +¢ forall x in E;, when E, # D
By linearity, A(f)= Zn:A(hl. /). As A is a positive linear functional and
i=l
hf<h(y), Ahf)<SA((y)h)=yAh) for 1 <i<n. Therefore,
AN =S ARS) < S HA®R).
i=l i=l1

Since h <V, for 1 <i<n, by definition of x(V,), A(h)<u®,) for1<i<n. For

1<i<n,a<y <bsothat y_ +|a|>0. Therefore,

n

,Z:ll(yH +&)A(h)= g(yl.l +8+|a|)A(hl.)—g|a|A(hl.)

:g(y,._l+a+IaI)A<hf)‘|“|A[§h"]

< (yl._1 +g+|a|),u(Vl.)—|a|A(Zhi]
i=1 i=1
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<3 (yi,1+g+|a|)y*(Ei)+ ” (yi1+5+|a|)g_|a|A(Zn:hij
i=1

i=1 i=1 n

n n

=3 s () (e +ld) St (5 B el

i=1 i=1 i=1

S,Z;:yi_lﬂ*(Ei)+(8+|a|)'u*(X)+(b+8+|a|)8_|a|A(§hij
Sian:j-Eifd,u+g(,u*(X)+(b+g+|a|))+|a|,u*(X)—|a|A(§:hij
:jXfdﬂ+g(y*(X)+(b+g+|a|))+|a|ﬂ*(x)_|a|A@hij.

We already knew that x*(X)<A(l)= A(i hij . Hence,
i=1

A(f)sjXfdy+g(y*(X)+(b+g+|a|))+|a|y*(X)—|a|A(Z":h,}
g_[de,u+g(,u*(X)+(b+g+|a|)).
Since ¢1is arbitrary, A(f)< Idey.

As A is linear, —A(f):A(—f)sIX(—f)dy:—Idey and so A(f)zjxfdy,
Thus, A(f)=] fdu.

Now for any f € BC(X), |A(f) :Udey‘ <[ |f]du<| ], n(X) < u(x) for |f], <1,
where | f| =sup{|f(x)|:xe X} is the uniform sup norm on BC(X). Therefore,

[A] =sup{|ACS)|: f € BC(X) and || f]], =1} < u(X) < AQ) .
Hence, |A] = u(X)=AQ).

Note that the algebra generated by the open sets of X is a subalgebra of . 7. We
now denote this subalgebra of open sets also by the symbol . / and called it the
Borel algebra and sets in . / the Borel sets. Denote u to be the restriction of z/7*
to the Borel algebra. Then u is a finite finitely-additive measure or finite
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charge satisfying (c) and (d) and A(f)= L fdu forall fin BC(X). Thus uis

outer regular and inner regular.

We say a positive charge or finitely-additive measure A on an algebra
containing all the open sets is normal, if the conclusion (c¢) and (d) holds for any
set £ in the algebra without any condition.

Hence, the finite positive charge or the finite finitely-additive measure g on . 7/
given in the last theorem is a finite normal charge.

If need be we may choose the algebra . 7 to be complete by part (e) .

This completes the proof of Theorem 29.

Now we consider bounded real linear functional on BC(X,R) the space of

bounded continuous real valued functions on X. For such a bounded linear
functional, since 1€ BC(X,R), we can decompose the bounded real linear

functional as the difference of two positive real linear functionals.

Proposition 30. Suppose X is a Hausdorff topological space and
BC(X,R)={f:X —>R; f is continuous and bounded} . Suppose ®:BC(X,R) >R isa

bounded real linear functional. Then we can decompose @ as ® =®* —®~ such
that @ and @~ are positive real linear functionals and
o] = o]+ | =2 +o).

Proof.

Let BC*(X,R) denote the set of non-negative functions in BC(X,R).
Define for f in BC*(X,R),
O (f)=sup{®(h):he BC(X,R)and 0< /< f}
=sup{®(h):he BC*(X,R) and 0< < f}.

This is well defined since @ is bounded so that the supremum above exists.
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Since ®(0)=0, ®*(f)=0 forall BC*(X,R). Plainly, ®*(f)=d(f) forall
feBC*(X,R). Obviously, for k>0, @' (k f)=kD"(f).

We need to show that @ (f,+ £,) =0 (f,)+P®"(f,) for £, f, e BC'(X,R).

By definition of ®*(f)), given € > 0, there exists # € BC*(X,R)such that
0<h <f, and @ (f))—e<®(h)fori=1,2. Then we have,as 0<h +h, < f,+ f,,

O (f)+D(f,) <D(h)+D(h)+2e =D(h +h)+2e <O (f, + f,)+2¢.
Since ¢1is arbitrary, ©" () +®"(f,) <D (f;+ f,).

Take he BC*(X,R) with 0<ha< fi+ f,. Let V ={x: f,(x)+ f,(x)>0}. Then Vis

open in X.
JOhx)
Let A (x)=1 fi(x)+ f,(x)
0, xeV*

We claim that 4, 1s non-negative, continuous and bounded, 0<4 < f, fori=1,
2.

Plainly, #(x)>0for all xe X, A (x)< f,(x) for xeV and i (x)= f,(x)=0for xeV*
for i=1, 2.
Since S and /(x) 1s continuous on the open set V, CCN 1S

S1(x)+ f5(x) L)+ £5(x)
continuous on ¥ so that 7 is continuous on V fori =1, 2. Now we show that 7,
1s continuous at any point x, € V. For such a x, eV*, h(x,)=0 and also 7(x,)=0.
Since /4 is continuous at x,, given any open interval 7 =(-§,58), 6 >0, containing
h(x,) =0, there exists an open set U containing x, € V' such that A(U)c 7. Now
forx € U, |h(x)|<|h(x)|<s implies that 4 (x)e and so h(U)cI. Hence, h is
continuous at xo. Therefore, 4 1s continuous on X. Similarly, we can show that
h, 1s continuous on X. Note that /(x)=0= h(x)=0 and xeV . Therefore,

support /; < support 4 and soh, € BC*(X,R)for i =1,2. Then

h(x)+ h,(x) = h(x) for all x in X and ®(h)=D(h)+D(h,) <D (£)+D (f).
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This means that for all 7e BC*(X,R) with 0<a< [+ f,, O(h) <D (f,)+DP*(f,).
Therefore, ®*(f,+ 1,) <O (f/;,)+ D" (f,). Thus, @ (f,+1,)=0"'(f,)+D (/).

We now extend this definition of ®* to all of f e BC(X,R). For feBC(X,R),
| /(x)| is bounded above, say by a positive constant, N. Then f+N=>0. We

define ®*(f)=®*(f+N)-®*(N). This is well defined. For suppose f+M >0,
then © (F+N+M)=®"(f+N)+® (M)=® (f+M)+d (N)so that

O (f+N)-D(N)=D"(f+M)-D"(M).

It is clear that ®* is linear on BC(X,R). Suppose f,, f, e BC(X,R) and
f[i+N>0,/,+M >0. Then ®*(f;+ /) =@ (f;+f, +M + N)—® (M + N)

=@ (f +N)+D'(f, + M) - D (M)—D*(N)
=07 (/) +D(f).
Plainly, ®*(0)=0 and for ¢ >0, ®*(c /) =c®"(f) forall feC_ ,(X).

In particular, for /e BC(X,R), @ (f)+®" (=f )= (f+(-f))=D"(0)=0 so that
@' (—f)=—®" (/). Thus, ®"1is a linear functional on BC(X,R). Since ®*(f)>0
for £ >0, ®"is a positive linear functional on BC(X,R). Note that by definition
of @' for />0, ®(f)<®*(f). Define @ (f)=d"(f)-d(f) for f e BC(X,R).

Then for />0, @ (f)=0*(f)-D(f)=0, it follows that @ is also a positive
linear functional on BC(X,R) and ®=0" -®".

Note that

()=

O (/)= (f)<

O (f)|+[@ (1)

=

- H(D’H . Note that for positive linear functionals, ®* and @,

s\qr o

/

el e ls

Therefore, ||®| < ‘ o

in BC(X,R), A(f),A-)<A(]f]). Thus,if |f|<1, |A()|<A(f])<AD)as

®+

=@*(1) and @ |=@"(1). (f Ais a positive linear functional, then for any f

e BC(X,R) and since ||A| = sup{|A(f)| |/

. =land /€ BC(X,R)}, [A|=A®).)
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Recall that ®*(1) =sup{®(h):he BC(X,R) and 0<h <1}.

Take any he BC(X,R) with 0<h<1. Then -1<2h-1<1. Therefore, by
definition of |@|, |®(2k-1)|<|®||2r-1| <|®| so that
O2h-1) <|®2h-1|<||d|2h -1

_<|@||. This means, 2d(h)—d(1)=D(2~—1)<|D|
for all 7 e BC(X,R)such that 0 < <1. Therefore, by definition of ®*(1),
20 (1)~ (1) < @[, that is to say,

O ()+® (1) =20"(1)- () <|®|. Consequently, ®*(1)+d (1) =||d].

This completes the proof of Proposition 30.

Total variation measure for a finitely additive measure

For a real additive measure, £, on an algebra of 4 of subsets of X, the variation
measure of z, is defined to be |u|: 4 — R* given by

|4 (E) = sup fEZIﬂ(Ei)I .

All finite partitions { }

Note that for any E in 4, |u|(E)>|u(E)|.
It is easy to see that if U < V, then || (U) <|u|(V).

Note that if || is finite, that is,

H|(X) <o , |4 is a finite finitely-additive

measurc.

Proposition 31. Suppose u: 4 — R is a signed finitely-additive measure or real

finitely-additive measure on the algebra 4 of subsets of a non-empty set X. If
|| is bounded or finite, i.e., when |](X) <, then || is a finite finitely-additive

positive measure.

The proof of this fact is similar to the proof when x is a complex measure. It is
easier as we shall deal only with finite partitions of £ in the algebra. (See
Theorem 1.)
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Proof of Proposition 31.

Plainly, |4|(@)=0. We shall show that || is finitely-additive. Take £ € 4.

Suppose {F,}"  is a finite partition of £ by disjoint sets in 4. We shall show that
l(E) =3 Jul(F).

We show that Zn] 4| (F,) <|u|(E) as follows.
i=1

For each integer i, choose 0<¢, <|u|(F) if |¢/(F)>0 otherwise set #, =0. Then
by definition of ||(F,), for |u|(F)>0, there exists a partition {G, ]}/:1 of F such
that

L<Y

J=1

L B ()

u(G,))
If |4|(F;) =0, then take the trivial partition {F,} ={G,,| for F,.

Then {G,,} is a finite partition of E. Now, > x(G,,) is a finite sum.
i,j

v

Therefore,

/(B)=Y|u(G,,)| by definition of [4(E),

=ZZ4‘”(GM)
zzi:ti :

It follows that |u|(E) > Z|y|(F) .

Next, we show that |u|(E)<>|4|(F)).

Let {Hj}j:l be any other partition of £. Then for each j, {E. mHj}:ll 1s a partition

of H; and {E. mHj}j;l 1s a partition of F, . It follows that
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This holds for any finite partition {# }"

_of E. Therefore, |y|(E)£Zn:|u|(E.). It
i=1

follows that |u|(E)= Z| |(F;) and so || is finitely-additive on 4 and is therefore
i=1

a finitely-additive positive measure on 4 .

Proposition 32.

Suppose A=y —u, , where g and u, are finite positive charge on 4, which is an
algebra of subset of a non-empty set X. Then A has finite variation and so |4] is
a finite finitely-additive positive measure. Moreover, |4|(E) < (E) + 1, (E) for all

Ein 4.

Proof.
Suppose E'is in 4 and {E,}"  is a partition of £ by pairwise disjoints sets in 4.

Then

Zn:|ﬂ”(Ez)| = i|:u1 (£) _/uz(Ei)|

Si(lul(Ei)-'_luZ(Ei)):i:ul(Ei)"'i/uz(Ei) = (E)+ 1, (E) <o

i=1 i=1 i=1

Hence |1|(E) = sup D |AE)| < s (E)+ p,(E) <o . Thus, the variation
All finite partitions {E,} of E

measure of 4 is bounded and so by Proposition 30, is a finite finitely-additive
positive measure.

Suppose 4=y —u,, where 4, and u, are finite finitely-additive positive
measures. Then |A(E)|<|A|(E)

For any finite partition {E,}” of E by pairwise disjoints sets in 4,
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ME) =t (B) = 1(B) = Xt (E) = 3t (E) = 2 (14 () = ()

< i|ﬂ1(Ei) —H, (E,)|

<|A|(E).

Similarly, -A(E)<|4|(£). It follows that |1(E)|<|4|(E).

Proposition 33. Suppose X'is a topological space and . / is the algebra
generated by the open sets of X, 1.e., Borel algebra.

Suppose 1 and g are two finite normal finitely-additive positive measures on
.7, 1.e., finite normal finitely-additive Borel measures. Then the total variation
|14 — 1| 1s a finite normal finitely-additive Borel measure. We say a signed

finite finitely-additive measure, x, is normal if its variation is normal. Hence,
4, — 14, 1s normal.

Moreover, suppose x4 and g4 are two finite normal finitely-additive signed
Borel measures on. . Then t4 — s 1s also a finite normal finitely-additive
signed measure.

Proof.

Plainly, if 14 and g4 are two finite normal finitely-additive positive measures on
./, then by Proposition 32, s —x,1s a finite signed finitely-additive Borel and

|14 — 1] 1s a finite finitely-additive positive Borel measure. The measures 4 and

L6 are normal means that |£4| and |z&| are normal.

We show that |z — 4| is inner regular.

A 1s inner regular implies that for any £ €. 7, given £> 0, there exists closed
set K, < E such that 1 (E)-& <y (K,). That is to say,

,U1(E_K1):,u1(E)_,U1(K1)<‘9' _______________________ (1)

93



Similarly, as /4 1s inner regular, for any £ €. /7, given &> 0, there exists closed
set K> < E such that

,Uz(E_Kz)zluz(E)_,uz(Kz)<5' ______________________ (2)

Let K =K, UK, and K is closed and K < £. Then by Proposition 32,
|\, — 1| (E - K) < i (E-K)+ i, (E-K) < 2¢.
Hence, |1 — w|(E)-2¢& <|u — 11| (K) <|p, — .| (E) . This implies that
|,ul —,uz|(E)=sup{|,u1 —,u2|(K), K closed and K gE} .

Thus, for any E €. 7, |1, — 1| (E) =sup{|,ul — 1| (K), K closed and K gE} . It follows

that |z — u,| is inner regular.

We now show that |, —u,| is outer regular. 4 and 24 are both outer regular.

This means for any £ €. /7, given > 0, there exists an open set J'; o E such
that (V) < u,(E)+&. Therefore, u (V, - E)<e. Similarly, there exists an open

set Vo D Esuchthat »,(V,-E)<e. Let V=V,nV,. Then Visopenand V o E.
Therefore, by Proposition 32, | — u,|(V —E) < 4(V —=E)+ u1,(V —E) < 2¢ . Hence,

|,u1 _/J2|(V) :|:u1 _:u2|(V_E)+|:u1 _,u2|(E) <|/11 —/12|(E)+28 .

It follows that |1 — u,|(E) =inf {|14 — 1| (V), V openand ¥ 2 E}. As this holds for

any E €./, |, — | is outer regular.
Therefore, |z — u,| is normal and so z, — i, is normal.

Suppose now g and £ are two finite normal finitely-additive signed Borel
measures on . ~. That is to say, || and |z&| are normal finitely-additive
positive Borel measures.

Plainly, g —u,1s a finite signed finitely-additive Borel measure. The measures

L and g6 are normal means that |z4| and |z»| are normal.

We show that |z — | is inner regular.
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| 0| 1s inner regular implies that for any £ €. /7, given > 0, there exists closed
K1 < E such that |u|(E)-¢ <|p|(K,). That is to say,

|| (E = K) = || (B) = |14 (K}) < & . =mmmmmmemmmmmmeeneae (1)

Similarly, as |z&|is inner regular, for any £ €. 7, given &> 0, there exists closed
K> < E such that

|| (E = K,) =| | (B) = | (K,) < & . =mmmmmmmmmmmmeemeee )

Let K=K, UK,. Then K is closed andK ¢ £. Now for any finite partition{E,}
of E by pairwise disjoints sets in . /7,

i‘(ﬂl _1u2)(Ei)‘ = Z|;u1 (Ei)_lu2(Ei)| < Z|:u1 (Ei)|+Z|lu2(Ei)| < |,u1|(E)+|,u2|(E) .

It follows that |z — 15|(E) <[ |(E) +| 1| (E) < || (X) +| 18, (X) < 0.

Hence, by proposition 32, |x — | is a finite finitely-additive positive Borel

measure and from (1) and (2) we get,

|y1—,u2|(E—K)£|yl|(E—K)+|y2|(E—K)<23.
Therefore, |u — |(E)-2¢ <|u, — 1,|(K) <|1, — 1,|(E) . This implies that
|,u1 —,u2|(E):sup{|,u1 —,u2|(K), K closed anngE}.

Thus, for any E €. 7, |1, — 1| (E) =sup{|,ul — 1| (K), K closed and K gE} . It follows

that |z — u,| is inner regular.

We now show that |z, — | is outer regular. Now, || and |zs| are both outer

regular. This means for any E €. /7, given ¢> 0, there exists an openset J; D F
such that |14|()) <|u|(E)+&. Therefore, |u|(V;—E)<e. Similarly, there exists an

open set ¥, O E such that |u,|(V,-E)<e. Let V=V,nV,. Then Vis open and
V o E. Therefore, |u —u|(V —E)<|u|(V-E)+|w|(V -E)<2e. Hence,

|,u1 _/U2|(V) =|:u1 _l[l2|(V_E)+|l[ll _/U2|(E) <|/U1 _/12|(E)+25 .
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It follows that |1 — u,|(E) =inf {|14 — 1| (V), V openand ¥ 2 E}. As this holds for

any E €./, |, — | is outer regular.

Therefore, |, —u,| is normal and so , — x,1s normal.

Theorem 34. Suppose X 1s a normal Hausdorff topological space and
BC(X,R)={f:X - R; f is continuous and bounded}. Suppose ®:BC(X,R) >R isa

bounded real linear functional. Then there exists an algebra . 7/ on X, containing
all the open sets of X and a unique finite real finitely-additive measure (signed
finitely-additive measure), A, on. /7, expressible as the difference of two finite
normal finitely-additive positive measures, such that ®(f)= J'X fdA and
|®[=|4|(X). Let M be the collection of all finite normal real finitely-additive

Borel measures or finite normal real Borel charge, expressible as the difference
of two finite normal finitely-additive positive Borel measures or finite normal
positive Borel charge, with a norm on M given by | x| =|x|(X) for #in M. Then
the association I': BC(X,R)* — M , where BC(X,R)* is the real dual space of
BC(X,R), given by T'(®) =1, where ®(f)= J'X fda,1s alinear isometric

isomorphism preserving norm.
Proof.
Suppose X is a normal Hausdorff topological space.

Suppose @ : BC(X,R) — R is a bounded real linear functional. Then by
Proposition 8, we can decompose ® as ® =®* —®~ such that ®* and ®~ are

positive real linear functional and |®| = ‘ N +HCD’H =®*(1)+® (1). By the Riesz

Representation Theorem (Theorem 29), there are unique finite normal finitely-
additive positive Borel measures, 1 and 5, on. / , the algebra generated by
the open sets of X, such that ®*(f)= jx fdu and & (f)= jX fdu,. Thus,

O(f) =J.deyl —Lfdyz =Ide(yl —u). Let A=y, —u,. Then Ais a finitely-
additive real measure. Moreover, by Proposition 33, A is normal and |4| is a

normal finitely-additive finite positive measure.

Then for all e BC(X,R),
cD(f):ijd/l and
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(N =[], £t =)\ =[], £ A=)~ [ £~ )
<|[, raz+|[ rraal<[ rralal+ ], ralal=] |1la}A

<|lr

S aldl=lr

A(X).

u

Hence, |®[ <|A|(X). But |A|(X)< 4(X)+ ,(X) =" (1)+® (1) =|®| and so
|@f =[2](X) = 2,(X) + 1, (X).

We shall now show that 4 is unique.

Suppose there exist finite normal finitely-additive real Borel measures, 4 and 4,
such that op(f):jxfcm1 :Ixfdiz. Let y=4 -4, , then Ixfdy:O. By
Proposition 33, x s a finite normal finitely-additive real Borel measure. We

(|| - 1) are finite finitely-

can write u=u" —u , where u*=%(|y|+y) and :%

additive positive Borel measures.

As Ixfdy:O for all f € BC(X,R), Ixfdy* :Ixfdy’ for all f e BC(X,R) and
both define the same positive real linear functional. Therefore, by the
uniqueness part of Theorem 29 (Riesz Representation Theorem), u* = u~,
consequently =0 and so 4, =4,.

Hence, we conclude that the real dual space of BC(X,R), that is, the space of all
bounded real linear functional on BC(X,R) is isometrically isomorphic (i.e., via

a norm preserving map) with the space of all normal finitely-additive real
(signed) Borel measures (i.e., with bounded variation), expressible as the
difference of two finite normal finitely-additive positive measures, on the
algebra . ~ on X, with norm given by x| =|x|(X).

Remark. The situation with bounded complex linear functional on BC(X,C)

with the sup norm is somewhat unclear.

Since both locally compact Hausdorff space and normal Hausdorff space are
completely regular, it is natural to seek Riesz type representation theorem for
positive or bounded linear functional on BC(X). This is a many faceted
problem. If we extend to the representation of continuous linear functional on
C°(X), the algebra of complex continuous functions endowed with the “c”

97



topology of compact convergence, we have a nice formulation of the
representation of continuous linear functionals by complex Borel measures with
compact support, attributed to Brooks and Dietrich, Jr. We describe this
development as follows.

Theorem 35. Suppose X is a completely regular Hausdorff topological space.
Let M(X) be the vector space of all regular complex Borel measures on the
Borel o-algebra of X. Let M (X) be the subspace of M(X), consisting of all

regular Borel measure, w, which is concentrated on some compact set, i.e, the
support of £ is compact. Then there is an isomorphism of vector space,

M (X)>C(X),

onto the topological dual of C¢(X), the algebra of all continuous complex
functions on X, under the topology . /. of compact convergence, where the
topology . /. is defined by the m-semi-norms |||, = ||/ || for every K €./ =
collection of all compact subspaces of X. C¢(X)' is the space of continuous

linear maps C(X)—C. I'is given by I'(x)=A,, where A (/)= J'dey , for all

feC(X). Moreover,

A ﬂH =|u|(X) and A, is positive if and only if s is

positive.

For the details and proof see Chapter 6, Theorem 25.1 of Topological Algebras
with Involution by Maria Fragoulopoulou.

In another direction if we take the space BC(X) of bounded complex function on
X, when X is a completely regular Hausdorff space, we can consider the
topology, the strict topology . /', on BC(X), in between the topology of compact
convergence . /. and the uniform topology . /. given by the sup norm. For the
definition of the strict topology see 2.10D Locally Convex Spaces, by Hans
Jarchow.

Theorem 36 . Let X be a completely regular space, and let ./, , be the strict
topology on BC(X), the space of bounded continuous complex functions. For
every ./ i -continuous linear form A on BC(X), there is a unique regular
complex measure e M(X), the space of regular complex Borel measures on X,
such that
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A(f):Idey for all feBC(X).

The map, (BC(X), ./ « ) — M(X), obtained in this way is an isomorphism.

The three topologies we mentioned above satisfy the relation, ./ . ./ 4 C ./ .

For BC(x) with the uniform topology, i.e., with the sup norm, we have the

following.

Theorem 37. Suppose X is a completely regular Hausdorff topological space.
Let (BC(X), ./ « )" be the topological dual of BC(X) with the uniform topology
./ . Then for every I in (BC(X), ./ . ), there exists x a unique regular
Borel measure of the Stone-Cech compactification px of X such that

r(H=[ fdu,
for every f € BC(X), where f is the unique natural extension of f to g.X .

(For the proof of Theorem 36 and Theorem 37, see Theorem 7.6.3 and
Corollary 7.6.2 of Locally Convex Spaces, by Hans Jarchow. Theorem 36 is
Theorem 2.6 of the article, The o-compact open topology and its relatives, by
Denny Gulick, Math Scand 30 (1972) 159-178 and also Theorem 2 of 4
generalization of the strict topology, Math Scand 30 (1972) 313-323 by J.
Hoffman-JORGENSEN.)

When X is a compact Hausdorff space and therefore, a completely regular
Hausdorff space, Theorem 34, 35 and 36 coincide as C(X) = BC(X), C*(X)=

(BC(X), ./ »)=(BC(X), ./ s), X=X and ./ .= ./ 3= . /.
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