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Our aim is to show how to identify the dual or conjugate space of Lp(X,) and 

C0(X), the space of continuous complex functions on a locally compact 

topological space X, which vanish at infinity.  There are some very useful and 

basic results used.  I should mention the Lebesgue decomposition of a bounded 

positive measure with respect to another bounded positive measure. This is 

analogous to the Lebesgue decomposition of an increasing function into sum of 

an absolutely continuous increasing function, an increasing singular function 

and a saltus type function. The Radon-Nikodym Theorem provides the seed for 

the identification of a bounded complex linear functional on a Lp space, through 

the Radon Nikodym derivative.  The Radon-Nikodym derivative is also the key 

to integration over complex measure, through the polar decomposition of 

complex measure. With this we can then represent a bounded complex linear 

functional on C0(X) by a Lebesgue integral over a complex measure. The aim is 

to find this measure and show that it is unique.  This is the Riesz Representation 

Theorem for complex measure.  The proof of the Radon-Nikodym Theorem 

uses a crucial result in Hilbert space theory, more specifically that the bounded 

linear functional of a Hilbert space is determined by inner product with a unique 

element of the Hilbert space. This is played out here by the Hilbert space, 
2 ( , )L X  , where  is a positive measure. We have added the integral 

representation of continuous real linear functional on the space of bounded 

continuous real-valued functions on a normal Hausdorff topological space. We 

end the article with a brief discussion on Riesz type representation theorems for 

the topological dual of the space of bounded continuous function on a 

completely regular Hausdorff space. 

Recall that if X is a set and M  a -algebra on X , then a positive measure on M  

is a countably additive function  : M   ℝ  mapping the -algebra M  into the 

extended positive real numbers, a real measure on M  is a countably additive 

function  : M  ℝ  mapping the -algebra M  into the real numbers and a 

complex measure on M  is a countably additive function : M  ℂ  mapping the 

-algebra M  into the complex numbers.  Hence, a real measure is a complex 

measure but a positive measure is not necessarily a real measure nor a complex 

measure. 
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Suppose : M  ℂ  is a complex measure.  Then for any E M , ( )E ℂ  and so  

( )E   .  Our first consideration is to find a smallest positive measure  such 

that ( ) ( )E E   for all E M .   Suppose  
1i i

E



 is a countable disjoint 

collection of sets in M .   Then 
1

i
i

E E



 ∪   M .  Hence, by countable additivity, 

                                    
1

i

i

E E 




 . 

This means  
1

i

i

E



  is convergent and as the summation is independent of the 

order of iE , the summation  
1

i

i

E



  must be absolutely convergent. 

Theorem 1.  Let : M  ℂbe a complex measure on the measure space (X, M  ), 

where X is a set and M   is a -algebra on X .   Define 

                                     
 

 
all partitions  of 

( ) sup
i

i
E E

E E   . 

Then   is a measure on M , called the total variation measure of  . 

Note that for any E in M,   ( )E E  . 

Proof.   Plainly,   0   .  We shall show that   is countably additive.  Take 

E  M . 

Suppose  iF  is a partition of E by disjoint sets in M .  We shall show that  

                             ( ) i

i

E F  . 

We show that   ( )i

i

F E  as follows. 

For each integer i ,  choose  i it F .  Then by definition of  iF , there exists 

a partition  ,i j j
G  of  iF   such that 

                       ,i i j

j

t G   (  ( )iF  )   --------------------------  (1) 
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Then   , ,i j i j
G  is a partition of E.   Now,  ,

,

i j

i j

G  is an absolutely convergent 

double series.  Therefore, 

                       ,

,

( ) i j

i j

E G     by definition of ( )E , 

                               ,i j

i j

G     

                              i

i

t   by (1) for all  i it F . 

It follows that  ( ) i

i

E F  . 

Next, we show that  ( ) i

i

E F  . 

Let  jH  be any other partition of E.  Then for each j,  i j i
F H is a partition of 

Hj and  i j j
F H is a partition of iF  .   It follows that 

                   j i j i j i j

j j i j i i j

H F H F H F H             

                            i
i

F . 

This holds for any partition  jH  of E.  Therefore,  ( ) i

i

E F  .  It follows 

that  ( ) i

i

E F   and so   is countably additive on M   and is therefore a 

positive measure on M  . 

Our next result is an assertion that the total variation measure of a complex 

measure is a finite positive measure. 

Proposition 2.  Let : M  ℂ  be a complex measure on the measure space (X, 

M  ), where X is a set and M  is a -algebra on X.  Then the total variation 

measure of ,  , is a finite positive measure. 

We already knew that  is a positive measure.  We only need to show that it is 

finite. 

We shall need the following technical lemma. 
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Lemma 3. Let 1 2, , , nz z z ⋯ ℂ .  Then there exists a subset  1 2, , , nS z z z ⋯ such 

that 
1

6
n

i i

i i S

z z
 

   . 

Proof.   Let 
1

n

i

i

w z


 .  The two lines y x   divide the complex plane into 4 

quadrants, 1 2 3 4, ,  and Q Q Q Q  as shown in the diagram below.  

          

 

  

          

  

  

                     

 

 

 

Examine the points in each quadrant. 

In one of the four quadrants, we must have that the sum of the modulus of the 

points is greater than or equal to 
1

4
w .  Suppose it occurs in Q1.  Then 

1

1

4
i

i

z Q

z w


 . 

Observe that if 1z Q , then   1
Re cos

2
z z z   since 

4


  .   Then 

                    
1 1 1 1 1 1

1 1 1 1
Re Re

4 62 2

n n

i i i i i i

i S Q i Q i Q i Q i i

z z z z z z
      

          . 

Q2 

Q4 

y-axis 
ℂ   

y = x 

 Q1 Q3 

y = x 

x-axis 
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Suppose 
3

1

4
i

i

z Q

z w


 .   Then, similarly, for 3z Q , we get  Re Re cosz z z    , 

where 
4


  .   Thus 

1
Re

2
z z  . It follows that  

                
3 3 3 3 1 1

1 1 1 1
Re Re

4 62 2

n n

i i i i i i

i S Q i Q i Q i Q i i

z z z z z z
      

            . 

Suppose 
2

1

4
i

i

z Q

z w


 .  If 2z Q  , then  Im cos 0z z   , where 
4


  .   Hence, 

  1
Im cos

2
z z z  , since 

4


  .   Then 

                
2 2 2 2 1 1

1 1 1 1
Im Im

4 62 2

n n

i i i i i i

i S Q i Q i Q i Q i i

z z z z z z
      

          . 

Suppose 
4

1

4
i

i

z Q

z w


 .  If 4z Q  , then  Im Im cos 0z z z     , where 
4


  .   

Hence,   1
Im cos

2
z z z  , since 

4


  .   Then 

                 
4 4 4 4 1 1

1 1 1 1
Im Im

4 62 2

n n

i i i i i i

i S Q i Q i Q i Q i i

z z z z z z
      

            . 

So, we can take S to be one of 1 2 3 4, ,  and Q Q Q Q  intersection with  1 2, , , nz z z⋯ , 

whose sum is greater than or equal to 
1

4
w .  This completes the proof of Lemma 

3. 

Proof of Proposition 2. 

This is a proof by contradiction.  

Suppose there exists 0B M  such that 0( )B   .  

We shall show that we can decompose 0 1 1B A B   , a disjoint union with 1 1,A B

M  ,  1 1A   and   1B   . 
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Repeat this procedure to B1 and inductively to Bn to get a sequence  iA , where  

  1iA  ,  iA are pairwise disjoint and a sequence  iB with  iB   for all 

integer i ≥ 1. 

Let 
1

i
i

C A



 ∪ .  Then C M   and the collection  iA  consists of pairwise disjoint 

sets and so by the countable additivity of ,  

                             
1

( ) i

i

C A 




 .  

But the series  
1

i

i

A



  cannot converge absolutely as   1iA  .  But we know 

that the series must converge absolutely, since it is independent of the order of 

the iA .  This contradiction shows that there does not exist a member 0B M   

with 0( )B    and so   is a finite positive measure. 

Suppose 0( )B   . Then for any real number t > 0, there exists a partition  iE  

of B0 such that 

                          
1

i

i

E t




  . 

This implies that there exists an integer N such that  
1

N

i

i

E t


 .  For if 

 
1

n

i

i

E t


  for all integer n ≥ 1, then  
1

i

i

E t




 . 

Note that 0( )B   .  So, we can take  06 1 ( )t B  .  Hence, there exists an 

integer N such that 

                               0

1

6 1
N

i

i

E t B 


   . 

Therefore, by Lemma 3, there exists a subset  1, 2, ,S N ⋯  such that 

                                 0

1

6 6 1
N

i i

i S i

E E B  
 

    . 
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Now, let 
1 i

i S

A E

 ∪ .  Then 1 0A B  and  16 ( ) 6 i

i S

A E 


  , since  iE  are 

disjoint.  It follows that   1 06 ( ) 6 1A B   .  Hence,  1 0( ) 1 1.A B      

Let 1 0 1B B A  .  Then          1 0 1 1 0 1B B A A B         . 

Finally, since   is a measure,      1 1 0A B B      . So, one of  1A  or  

 1B  must equal ∞.  Arrange for this to be B1 and the other to be A1.  Rename, 

if necessary. 

Thus, if ( )X   , then call 0X B  and apply the above process to B1 and 

inductively to Bn for n >1, to obtain a collection of disjoint sets,  
1n n

A



 and a 

collection of sets  
0n n

B



 with 1n n nB A B   , n nA B  ,   1nA  , for n ≥ 1, 

 nB    for n ≥ 0.  Let 
1

i
i

C A



 ∪ .  Then C M   and by the countable additivity 

of ,  

                                          
1

( ) i

i

C A 




 .  

But the series  
1

i

i

A



  cannot converge absolutely as   1iA   contradicting 

that for a complex measure ,  
1

i

i

A



   must converge absolutely.  Thus  

( )X   .  It follows that for all E M, , ( ) ( )E X     and so   is a finite 

measure. 

Corollary 4. Let : M  ℂ  be a complex measure on the measure space (X, M  

), where X is a set and M   is a -algebra on X.  Then { ( )E : E  M  } is a 

bounded subset of the complex plane.  Thus, every complex measure  is of 

bounded variation. 

Proof.  This is because   ( ) ( )E E X      . 

 

Now, let M(M  ) be the collection of complex measures on the -algebra M  .   If  

,    M(M  ), define   ( ) ( ) ( )E E E       for all E  M   and 
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  ( ) ( )E E   for all E   M   and any  ℂ .  Then this makes M(M  ) into a 

complex linear space with norm given by ( )X   for   M(M  ).  We verify 

that .  is a norm on M(M  ) .  For any E  M  , take a partition  iF  of E by 

disjoint sets in M .  Then ( )( ) ( ) ( ) ( ) ( )i i i

i i i

F F F E E            .  

Thus, by the definition of  ( ) ( )E  , ( ) ( ) ( ) ( )E E E      .  It follows that 

( ) ( ) ( ) ( ) ( )X X X              .  Plainly for any complex number 

c and any   M(M  ), ( ) ( )c c X c X c      .  Also 0   implies 

( ) 0X  which in turn implies that ( ) 0E  for all E   M   ,  It follows that 

( ) 0E   for all E   M   and so 0  .  Thus, M(M  ) is a normed linear space. 

When is M(M  ) a Banach space?  If X is a Hausdorff topological space and M  is 

a -algebra containing the Borel sets of X, we can associate to each complex 

measure, , in M(M  ), a linear functional  on ( )cC X with the sup norm, defined 

by ( )
X

f f d   for ( )cf C X , when we can make sense of integration over a 

complex measure.  (See Definition 11).  By Proposition 2, the total variation 

measure of  is a bounded positive measure and so  is a bounded linear 

functional.  However, we do not know if this association is one to one and 

neither do we know if the association is onto.  When X is a locally compact 

Hausdorff topological space, we shall investigate this question in due course in 

Theorem 20 (Riesz Representation Theorem).    

Now we look at the situation of two measures, which are basically independent 

of one another, meaning each one is non-zero on a set which is disjoint from the 

set on which the other is nonzero.  We describe such a situation as follows. Let 

 be a Lebesgue measure on ℝ .  Let 1( , )L ℝ  be the equivalence classes of 

absolutely integrable complex functions on ℝ  with the 1( )L   norm, 

f f d  ℝ .  Now for a fixed 1( , )f L  ℝ , define ( )
E

E f d    for 

Lebesgue measurable set E.  Then  is a measure.  Suppose now we have two 

functions 1

1 2, ( , )f f L  ℝ  such that 1 2 0f f  .  Let  : ( ) 0i iA x f x  .  Then 

1 2A A  .  Let   ( )i i
E

E f d    for i = 1, 2.  Then we have,  

                  ( ) ( )
i

i i i i i
E E A

E f d f d E A   


     ,  i =1, 2, 
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2
1 2 1( ) 0

E A
E A f d 


    and 

1
2 1 2( ) 0

E A
E A f d 


   . 

We abstract the properties of the two measures above in the following 

definition. 

Definition 5.  Let (X, M  ) be a measure space, where M   is a -algebra on X.  

Let  be a positive measure on M   and  be a complex or positive measure on 

M  . 

(a)  We say   is absolutely continuous with respect to   and write  ≪  if  E 

M   and ( ) 0E   implies that ( ) 0E  . 

(b)  We say   is concentrated on A for some A  M  , if for all E M ,  
( ) ( )E E A   . 

(c)  Suppose 1 is concentrated on A1 and 2 is concentrated on A2 with 

1 2A A  .  Then we say 1 2and    are mutually singular and write 1 2  .  If  

is any complex measure concentrated on some set of -measure aero, then we 

write   . 

Note that if ≪ , then E  M   and ( ) 0 ( ) 0E E    .  This is because for E 

M  and any partition,  iF , of E by disjoint sets in M  ,   

            ( ) 0 ( ) 0 ( ) 0 ( ) 0i i

i

E F F E          . 

Proposition 6. Let (X, M  ) be a measure space, where M   is a -algebra on X.  

Let  be a positive measure on M   and  be a complex or a real measure on M  . 

 ≪ , if and only if, given any  > 0, there exists  > 0, such that for all E M , 

( ) ( )E E       . 

Proof.   Suppose given any  > 0, there exists  > 0, such that for all E M , 

( ) ( )E E      .  Thus, there exists 0n   such that 
1

( ) ( )
n

E E
n

     .  If 

( ) 0E  , then ( ) nE   for all integer n ≥ 1.  Hence, 
1

( )E
n

   for all integer n ≥ 

1.   It follows that ( ) 0E  and so ( ) 0E  .  This means  ≪ . 
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Conversely, suppose  ≪ .   We shall prove that given any  > 0, there exists  

> 0, such that for all E M , ( ) ( )E E      .  We show this by way of 

contradiction.  Suppose there exists an  > 0 such that for any  > 0, there exists 

E M , with ( )E   but ( )E  .   So, taking 
1

2r
  , r an integer ≥ 1,there 

exists Er M , with 
1

( )
2

r r
E   but ( )rE  .    

Let r s
s r

F E



 ∪   and 

1
r

r

E F



 ∩ .  Then Fr M , for each integer r ≥ 1, E M   and 

     1

1 1

2 2
r s s r

s r s r

F E 
 


 

     .  Hence,    
1

1

2
r r

E F 


   for integer r ≥ 1.  It 

follows that   0E  .  If    is a complex measure, then  is of bounded 

variation so that ( )X   .  Since   is a finite positive measure by Proposition 

2, by the continuity from above property of a measure, 

                        
1

limr r
rr

E F F  




   
 
∩ . 

Since      r r rF E E       for integer r ≥ 1, we must have   0E   .  

But   0E   and  ≪  implies that ( ) 0E  .  So, we have arrived at a 

contradiction and this means that given any  > 0, there exists  > 0, such that 

for all E M , ( ) ( )E E      .  If    is a real measure, then   is a complex 

measure and we obtain the same contradiction as above for the converse. 

 

We have the following immediate consequence of Definition 5. 

Lemma 7.  Let (X, M  ) be a measure space, where M   is a -algebra on X.  Let 

 be a positive measure on M .  Suppose , 1 and 2 are complex measures on 

M  .   

(a)  is concentrated on A  for all E M , E A   implies ( ) 0E  .   

(b) If  is concentrated on A, then so is its total variation  . 

(c) If 1 2  , then 1 2  . 
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(d) If 1   and 2  , then  1 2    . 

(e) If 1 ≪  and 2 ≪ , then  1 2   ≪ . 

(f) If  ≪ , then  ≪ . 

(g) If 1 ≪  and 2  , then 1 2  . 

(h) If  ≪  and    , then  = 0. 

 

Proof. 

(a) If  is concentrated on A,  ( ) ( ) 0E A E E A         .  

Conversely, suppose for all E M , E A   implies ( ) 0E  . Then for all E 

M ,             ( ) 0E E A E A E A E A E A E A                  .  

Hence,   is concentrated on A. 

(b) Suppose  is concentrated on A.  Then for all E M ,  ( )E E A   .   

Take a partition,  iF , of E by disjoint sets in M .  Then 

             i i

i i

F F A E A        since  iF A is a partition of E A . 

Since this is true for any partition,  iF , of E by disjoint sets in M ,  

   E E A   .  Since E A E   and   is a finite positive measure, 

   E A E   . Therefore,    E A E    for any E M .  Hence,   is 

concentrated on A.  

(c) If 1 2  , then 1 is concentrated on A1 and 2 is concentrated on A2 for 

some A1 and A2 in M   with 1 2A A  .  By part (b), |1| is concentrated on A1 

and |2| is concentrated on A2.  Hence, 1 2  . 

(d) If 1   and 2  , then 1 is concentrated on A1 and 2 is concentrated on 

A2 for some A1 and A2 in M    such that 1 2( ) ( ) 0A A   .  For all E M , 

 1 1 1( )E E A    and  2 2 2( )E E A   .  Now, 
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        1 2 1 2 1E A A E A E A A        and  1 2 1 and E A E A A    are disjoint 

and belong to M .  Therefore, 

         1 1 2 1 1 1 2 1 1 1 0E A A E A E A A E A             ,  

                          since by part (a),   1 2 1 0E A A     as   2 1 1E A A A    , 

                         1( )E . 

Similarly, we have     2 1 2 2E A A E    . 

Hence, for all E M ,        1 2 1 2 1 2E A A E        .  Moreover, 

       1 2 1 2 1 20 0A A A A A A          .  Thus,  1 2    . 

(e) Suppose 1 ≪  and 2 ≪ .  Then for any E M, 1 2( ) 0 ( ) ( ) 0E E E      . 

Therefore,   1 2 1 2( ) ( ) ( ) 0E E E       .  This means  1 2   ≪ . 

(f) We have already proved this immediately after Definition 5. 

(g)  Suppose 1 ≪  and 2  .  Suppose 2 is concentrated on A2 for some A2 

in M    with 2( ) 0A  .  It follows that for all E in M   and E  A2 ( ) 0E  .  As  

1 ≪ , this implies that for all E in M   and E  A2, 1( ) 0E  .  Thus 1 is 

concentrated on some set in the complement of A2 because for any E in M    

               1 1 2 2 1 2 1 2 1 2( ) c c cE E A E A E A E A E A              . 

Since 2 2

cA A  , 1 2  . 

(h) Suppose ≪  and    . By part (g)   .  This can only happen if 0  . 

We can verify this directly.    implies that  is concentrated on A for some A 

in M    with ( ) 0A  .  For any E in M  , 

 ( ) ( ) ( ) ( ) ( ) 0c cE A E E A E A E A             . But since ( ) 0A  , 

( ) 0E A    and as  ≪ , ( ) 0E A   .  Therefore, ( ) 0E  . 
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Theorem 8.  Let (X, M  ) be a measure space, where M   is a -algebra on X.  

Suppose  and  are two positive bounded measures on M .   Then 

(a) (The Lebesgue Decomposition Theorem) 

There is a unique pair of measures, a  (the absolutely continuous part of  with 

respect to )  and s  (the singular part of  with respect to ) such that 

                            a s     , 

where a ≪  and s  .  Moreover, a s   and both measures are positive. 

(b) (Radon-Nikodym Theorem) 

There is a function h in 1( , )L X   such that  

                               ( )a
E

E hd    for all E in M    

and h is almost everywhere unique with respect to . 

Here  1( , ) : ;  is measurable and 
X

L X f X f f d    ℂ .   

 

Not all measure spaces are bounded measure spaces, for example, the Lebesgue 

measure on ℝ  is not bounded. But ℝ  is a countable union of sets of finite 

Lebesgue measure.  We say a measure space (X, M  , ), where  is a positive 

measure, is -finite or  is a -finite positive measure if every set E in M   is at 

most a countable union of sets in E with finite -measure. 

Remarks. 

1. After proving this theorem, we shall immediately extend to the case where  

is a positive and -finite measure (for example, when  is the Lebesgue 

measure on kℝ ) and  is a complex measure. 

2.  It is helpful to think of   as a Lebesgue measure on [0,1]. 

3.  Obviously, if  is defined by ( )
E

E f d    for E in M   and a fixed 

1( , )f L X  , then  ≪ .  The point of the part (b) of the theorem (Radon 

Nikodym Theorem) is that the converse is also true. 
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4.  The Radon Nikodym Theorem is often abbreviated to 

             ad h d     or    ad
h

d




    

and h is called the Radon Nikodym derivative of a with respect to . 

5.  The uniqueness part of the theorem may be proven easily as follows. 

Suppose we have  a s a s         , where ,a a   ≪  and ,a a s    . 

Then a a s s       .   Let a a s sv         .  Then by property (e) Lemma 7,  

a av     ≪  and s sv       by property (d) Lemma 7.  It follows then by 

property (h) Lemma 7 that 0v  . Consequently,  a a    and s s   . 

In part (b) of the theorem (Radon Nikodym Theorem), that h is almost 

everywhere unique with respect to , is deduced as follows.  Suppose h  is 

another function in 1( , )L X   such that ( )a
E

E h d    for all E in M   .   Then 

                0 ( ) ( )a a
E E E

E E h d h d h h d              for all E in M   .    

Therefore, 0h h   almost everywhere with respect to  and so h h  almost 

everywhere with respect to  . 

 

We shall need the following technical lemma for the proof of Theorem 8.   

Lemma 9.  If  is a bounded positive measure on the measure space (X, M  ) and 
1( , )f L X   is such that 

                              
1

1
( ) E

f d
E




  , 

for all E in M   with ( ) 0E  , then 0 1f   almost everywhere with respect to 

.  That is to say, if all the averages of  f over all E in M   belong to the unit disk, 

then almost all values of f belong to the unit disk. 

Proof.  Let  1 : 1B z z  be the unit disk. Take 0z  outside the unit disk B1 and a 

real number r such that 00 1r z   .  Let   0 0:B z z z r   .  Then 1 0B B  . 
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Let 1

0 0( )E f B .  Then E0  M , since 1( , )f L X  .  We shall show that 

 0 0E  .  Assuming this is true for 0B , then it is true for any open disk in the 

complement of 1B .  As 1

cB  is open and so is a countable union of such disks, it 

follows that   1

1 0cf B    as  1

1

cf B  is a countable union of sets of  measure 

zero.  Hence, 0 1f   almost everywhere with respect to . 

Now we show that  0 0E  . Suppose on the contrary that  0 0E  . 

Then   
0 0 0

0 0 0

0 0 0

1 1 1

( ) ( ) ( )E E E
f d z f z d f z d

E E E
  

  
        

                                     
0

0

1

( ) E
rd r

E



  . 

But 
0 0

0 0 0

0 0

1 1
1

( ) ( )E E
f d z z f d z

E E
 

 
       because 

0
0

1
0 1

( ) E
f d

E



  . 

This means 0 1r z  .  This contradicts that 0 1r z  .  Hence,  0 0E  . 

 

Remark. 

In the proof of Lemma 9, we can use any closed disk in place of the closed unit 

disk B1. 

B1 

B0 

z0 

1 

i 
r 
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Lemma 9*.  If  is a bounded positive measure on the measure space (X, M  ) 

and 1( , )f L X   is such that 

                           
1 1 1

( ) 2 2E
f d

E



   , 

for all E inM   with ( ) 0E  , then 
1 1

0
2 2

f    almost everywhere with respect 

to .   

For the proof, we may replace B1 by 1

1 1
:

2 2
B z z
 
   
 

.  Take 0z  outside the 

disk B1, that is 0

1 1

2 2
z   . Take 

0

1 1
0

2 2
r z    .  Let  0 0:B z z z r   .  Let 

1

0 0( )E f B . Then as above we can show that  0
0E  . It follows that 

  1

1
0cf B    and so 

1 1
0

2 2
f   . 

Suppose on the contrary that  0
0E  . 

Then   
0 0 0

0 0 0

0 0 0

1 1 1

( ) ( ) ( )E E E
f d z f z d f z d

E E E
  

  
        

                                     
0

0

1

( ) E
rd r

E



  . 

But 

  
0 0 0

0 0 0

0 0 0

1 1 1 1 1 1 1

( ) ( ) 2 2 2 ( ) 2E E E
f d z f d z z f d

E E E
  

  
            

                               
0

1 1

2 2
z   . 

Hence, 
0

1 1

2 2
r z   .  This contradicts that 

0

1 1
0

2 2
r z    .  Hence,  0

0E  . 

 

For the proof of Theorem 8, we shall use a very useful property of a Hilbert 

space. 
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Let H be a Hilbert space with inner product ,x y  satisfying the following 

properties:   

(1) , 0; , 0 0x x x x x    ; 

(2) , ,x y y x , the complex conjugate of ,y x ; 

(3) , , ,x y z x z y z   ; 

(4) , ,x y x y  . 

If the norm of a Banach space V arises from an inner product, then it is called a 

Hilbert space.    

More precisely, an inner product on a (real or complex) linear space V is a 

scalar valued function on V V  , whose value on (x, y) in V V  is denoted by 

,x y and the function satisfies the following properties:   

(1) , 0; , 0 0x x x x x    ; 

(2) , ,x y y x , the complex conjugate of ,y x ; 

(3) , , ,x y z x z y z   ; 

(4) , ,x y x y  . 

The norm on H is given by ,x x x  for x  H.   We have the Schwarz 

Inequality for inner product: ,x y x y  for all x , y  H.   With respect to the 

metric associated with the norm, H is a Banach space, i.e., a complete metric 

space.  

Define for a fixed y in H, the linear functional, :y H ℂ , given by 

( ) ,y x x y   for all x in H.   Then y  is a bounded (complex) linear functional.   

As ( ) ,y x x y x y   ,  
( )

sup : 0
y

y

x
x y

x

  
    

  
 and on account of 

( ) ,y y y y y y   , y y  . 
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The basic result in Hilbert space theory is that the converse is also true.  

Suppose : H ℂ  is a bounded linear functional, then y   for some y in H. 

It is in this way that we set up the conjugate linear isometry. 

Suppose *H  is the collection of all bounded complex linear functional on H.  

The association of the bounded complex linear functional  with y as y  : 

                : *H H    

given by ( ) y   , where y  , is a linear isometry preserving norm.  Note 

that ( )c c y   for any complex scalar c.  Note also that ( ) y     . 

The proof of this result is independent of measure theory.   

We briefly give the proof here.  If   = 0, then take y = 0 and plainly, y  . 

Suppose 0  .  Let  : ( ) 0N x H x H     .  It is easily seen that N is a closed 

subspace of H.  As H is complete, N being a closed subspace of H, is complete.  

The orthogonal complement of N must contain a nonzero g.  We may choose g 

such that ( ) 1g  .  Then ( ) 0x   implies that x  N and so , 0x g  . 

For each x  H,  ( ) ( ) ( ) ( ) ( ) ( ) 0x x g x x g x x           and so 

( )x x g N  .  Hence ( ) , 0x x g g  .  It follows that 

                                , ( ) , 0x g x g g  . 

This means  
2

( ) ,x g x g   for all x in H and as 
2

0g  , 

             
2

( ) ,
g

x x
g

   for all x in H. 

Thus, if 
2

g
y

g
 , then ( ) ,x x y   for all x in H.  Note that y is unique. 

For if y H  is such that ( ) ,x x y   for all x in H, then , 0x y y  for all x in 

H. Hence, 
2

, 0y y y y y y       .  Therefore, y y  . 
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Proof of Theorem 8. 

Let   =  +  . Since  and  are bounded positive measures,   is a bounded 

positive measure on M  .   Then for any M   measurable function :f X ℂ , 

                          
X X X

f d f d f d      .   ---------------------------  (1) 

Evidently, (1) is true if Ef   for E  M .  It then follows that (1) holds for 

measurable simple functions since any simple function is a complex linear 

combination of measurable characteristic functions.  If  f  is real valued, non-

negative and measurable, then there exists an increasing sequence of non-

negative measurable simple functions   1n ns 
  such that ns f  pointwise on X.  

Then we have 
n n n

X X X
s d s d s d      .   Then applying the Lebesgue 

Monotone Convergence Theorem, we have 

              lim lim limn n n
X X X X X Xn n n

f d s d s d s d f d f d     
  

          . 

Now if  1( , )f L X  , i.e., 
X

f d    , then Re f  and Im f  are measurable and  

       Re , Re , Im  and Imf f f f
   

 are all measurable and  integrable, since  

       Re , Re , Im , Imf f f f f
   

 .  Since (1) holds for non-negative real 

valued measurable functions, (1) holds for 1( , )f L X  .  Moreover, 1( , )f L X 

and 1( , )f L X  .  Conversely, suppose 1( , )f L X   and 1( , )f L X  .  Then  

        Re Re Re
X X X

f d f d f d           

and Im Im Im
X X X

f d f d f d        . It follows that 1( , )f L X   and 

             
X X X

f d f d f d      . 

Now we take the Hilbert space, 

          22 ( , ) : ;  is measurable and 
X

H L X f X f f d     ℂ , 

with inner product ,
X

f g f g d   and norm  
1
22

2, X
f f d


   .   For the 

proof that H is a Hilbert space, see Theorem 11 of Convex Function, Lp Spaces, 

Space of Continuous Functions, Lusin’s Theorem. 
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We define a complex linear functional  : H ℂ   by 

                        ( )
X

f f d    . 

Note that this is well defined.  By Hölders Inequality (Theorem 10, Convex 

Function, Lp Spaces, Space of Continuous Functions, Lusin’s Theorem), 

          
1 1 1

12 2 2
2

2 2

1, 2, 2,
1 1 1 ( )

X X X X
f d f f d f d X f d

  
              , 

as ( ) ( ) ( )X X X      , since  and  are bounded measures and  

 
1
22

X
f d    for f H .  Therefore,  

X X X
f d f d f d         since  is 

positive.  Hence, 
X

f d  exists. 

Moreover, 

     ( )
X X X

f f d f d f d        , 

                              since  is positive and 
X X X

f d f d f d      ,  

                   
1

1 12
2 2

2

2,
( ) ( )

X
X f d X f


    . 

Hence,  
1
2( )X   and  is a bounded complex linear functional.       

Since H is a Hilbert space, there exists g H , g is unique almost everywhere 

with respect to  such that ( ) ,f f g


   for all f in H.   That is, 

                       
X X

f d f g d   .  ----------------------------  (*) 

We shall next show that g is real and unique almost everywhere with respect to 

 and that 0 1g  . 

Now, for EM  , 0 ( )E
X

d E    .  Substitute Ef   in (*), we get 

                              0 ( ) ( )E E
X X

d g d E E          . 

Hence, if we take EM   such that ( ) 0E  , then  

                    
1 1

0 1
( ) ( )

E
E X

g d g d
E E

  
 
    . 
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Therefore, Im
1

0
( ) E

g d
E




 . Hence, Im 0
E

g d   for all EM .  Therefore,  

Im Im 0g g   almost everywhere with respect to  .   Thus, g is real almost 

everywhere with respect to   and for all EM   such that ( ) 0E  ,  

                                   
1

0 1
( ) E

gd
E



  . 

This means 
1 1 1

( ) 2 2E
gd

E



  .  Therefore, by Lemma 9*, 

1 1

2 2
g   .  Since g is 

real almost everywhere with respect to ,  0 1g   almost everywhere with 

respect to  .                 

We now redefine g to take the value 0, where g is not real and where 0 ( ) 1g x 

does not hold. This function is obviously equal to g almost everywhere with 

respect to  .  We shall now assume that g is real, 0 ( ) 1g x   and 

2 ( , )g H L X   .  If 2 ( , )f H L X   , then as   =  +  ,  and   are bounded 

positive measures, 2,1 ( , )f g H L X     and by the Hölders Inequality, 

  11 ( , )g f L X    and 

  (1 ) ( )
X X X X

g f d f d g f d f g f d              

                      
X X

f g d g f d     

                       
X

f g d  , as 
X X X

f g d f g d f g d      . 

Hence, we have for all 2 ( , )f H L X   , 

                         (1 )
X X

g f d f g d    .   -----------------------------  (**) 

Note that  2 2 1, ( , ) , ( , ) ( , )f g H L X f g L X f g L X        . 

Let  : 0 ( ) 1A x X g x     and  : ( ) 1S x X g x   .  Then A and S are 

measurable, X A S   and A S  .   

Let  ( )a E A E    and  ( )s E S E    for all E  M  . Then plainly, a  is 

concentrated on A and s  is concentrated on S.  Thus a s  . 

Put  Sf   in (**),we get 
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                            (1 ) S S
X X

g d g d      . 

Since X A S  , 1 0g   on S and 0S  on A, we have then 

         0 (1 ) ( )S S
X X S S

g d g d g d d S               . 

It follows that s  . 

Note that g is bounded and so ng  is bounded for any integer n ≥ 1.  Since 

( )X   , 2 ( , )ng H L X   .  Now, putting  2(1 )n

Ef g g g     ⋯  in (**), we 

get, 

        2 2(1 )(1 ) (1 )n n

E E
g g g g d g g g g d           ⋯ ⋯ , 

i.e.,  

                       1 2 1(1 ) ( )n n

E E
g d g g g d        ⋯ .  -------------------------  (***) 

If  x  S, then ( ) 1g x   so that 11 ( ) 0ng x  .   If  x  A, then 0 ( ) 1g x   and so 

( ) 0ng x ց  on A.   Therefore, by the Lebesgue Monotone Convergence Theorem, 

          1 1(1 ) (1 ) ( ) ( )n n

A A a
E E E

g d g d d E A E                , as n ∞, 

for any E  M  . 

The integrand on the right hand side of (***), 2 1ng g g   ⋯  , increases 

monotonically to some function h pointwise and h is non-negative.  So, as h is a 

pointwise limit of an increasing sequence of non-negative measurable functions, 

h is measurable and by the Lebesgue Monotone Convergence Theorem,  

                        2 1( )n

E E
g g g d h d    ⋯ ր  as n ∞. 

Therefore, ( )a
E

E h d    for any E  M  . 

If E = X, then ( )a
X X

X h d h d     and as  ( ) ( )a X A X A       ,

X
h d   .  Hence, 1( , )h L X  .  Plainly, if  (E) = 0, then 

                         ( ) 0a
E

E h d   . 

Hence, a ≪ . 
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This completes the proof of Theorem 8. 

 

We now discuss the various extensions of Theorem 8. 

Various Extensions of the Radon Nikodym Theorem 

(1) To where  is positive and bounded but  is positive and -finite.  For 

example,  may be the Lebesgue measure on  or kℝ ℝ  as  or kℝ ℝ  is -compact 

for  or kℝ ℝ  is a countable union of sets of finite Lebesgue measure. 

We write 
1

n
n

X X



 ∪  , where  nX   .  We may suppose that the countable 

family  nX  are pairwise disjoint.  If not, we may replace nX   by 
1

1

n

n i
i

X X



 ∪ .  

Then apply the theorem to each Xn .  We get, , ,,  and a n s n nh   each defined on Xn . 

Extend the definition to X trivially. Define value to be zero on nX X .  Then 

splice together so that ( ) ( )nh x h x  if nx X .  Since 0 1nh  ,  0 1h  .  As 

( )X   ,  1( , )h L X  . 

(2) To when  is positive and bounded but  is real.  

Write       ,   1

2
      and  1

2
     .  Then  and    are positive 

and bounded measures.  Applying the theorem to the positive and negative parts 

of , we get  , ,a s h     and , ,a s h    .  Then let a a a      and s s s     .     

Then a s    . As a  ≪  and a  ≪ , by property (e), a a a      ≪ .  

Also, as s    and s   ,  s s s        by property (d).  Thus, by 

property (g), a s  . 

 Now, for E  M , ( )a
E

E h d    ,  ( )a
E

E h d     so that 

 ( ) ( ) ( )a a a
E

E E E h h d          . Let h h h   .  

(3) To when  is positive and bounded and  is complex.  

 Let R  be the real part of  and I  be the imaginary part of .  Now apply part 

(2) and spliced together similarly. 

(4) To when  is real but  is positive and -finite.   
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Write       ,   1

2
      and  1

2
     .  Then  and    are positive 

and bounded measures.  Apply extension (1) to  and     to get , ,a s h     and 

, ,a s h    .  Then splice together as in (2) as follows.  Let a a a      and 

s s s     .  Then a s    . As a  ≪  and a  ≪ , by property (e), 

a a a      ≪ .  Also, as s    and s   ,  s s s        by property (d).  

Thus, by property (g), a s  .  Now, for E  M , ( )a
E

E h d    ,  

( )a
E

E h d     so that  ( ) ( ) ( )a a a
E

E E E h h d          . Let h h h   .  

(5) To when  is complex but  is positive and -finite.  Write Re Imi    .  

Then Re  and Im   are real measures.  Apply extension (4) to Re  and Im 

separately and then splice together. 

(6) To when both  and  are positive and -finite.   

Write 
1

n
n

X X



 ∪  , where  nX are pairwise disjoint,  nX   ,  nX   for each 

integer n ≥ 1. Applying (1), we get , ,,  and a n s n nh   each defined on Xn .  Then 

splice together as in (1).  We obtain ( ) ( )nh x h x for nx X . But we cannot 

conclude that 1( , )h L X  , we can only assert that 1| ( , )
nX nh L X  , that is, h is 

locally in 1( , )L X  . 

(7) To when  is complex and  is a bounded positive measure. 

We need to define 
X

f d  for complex measure.  Once defined, the extension is 

immediate. 

If  is a complex measure on the measure space (X, M  ), then its total variation 

measure, ||, by Proposition 2, is a bounded or finite positive measure.  Note 

that for E in M  , ( ) 0 ( ) 0E E    .  Following Definition 5, we say  is 

absolutely continuous with respect to  if ( ) 0 ( ) 0E E    .  This is equivalent 

to  is absolutely continuous with respect to ||. Thus, for a complex measure, 

   ≪ ≪ .  Similarly, we say   , i.e., if  is concentrated on A with 

( ) 0A  .  This is equivalent to   . 

Thus, if  is a bounded positive measure and  is a complex measure, then by 

Theorem 8,  a s     , where a ≪ , s   and there exists  1

1 ,h L X   
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such that 1( )a
E

E h d   .  Thus, a ≪  and s  .  By the polar decomposition 

of  (see Theorem 10 below), there exists  1 ,h L X   such that 1h   and 

d hd  . Therefore, 

                   1 1 1( )a
E E E E

E h d h hh d h h hd gd           , 

where 1g h h .  The function 1

1 ( , )h h L X   since h is bounded and so 

 1 ,g L X  . (See Definition 11 below.)      

 

Some applications of the Radon-Nikodym Theorem  

Observe that for a complex number z, we can write iz z e   , where 1ie   .   For 

a complex function,  f , we can similarly write f f h  , where 1h  .  For an 

n n  complex matrix A, we can write A UR  , where U is unitary and R is 

positive semi-definite Hermitian.  For a complex measure  , we can write, as 

we shall show later, 

                             d h d   , 

where 1h  . 

All these representations are known as polar decomposition in analogy with the 

polar representation of complex numbers. 

 

The Polar Decomposition of a Complex Measure  

Theorem 10 (Polar Decomposition).  If  is a complex measure on the 

measure space (X, M  ), then there exists a measurable complex function 

:h X ℂ such that  1 ,h L X  , 1h   and d h d  .  More precisely, for any 

E M  ,  

                                      ( )
E

E h d    . 

Proof.  Plainly,  ≪ .  By Proposition 2,   is a bounded positive measure.  

Therefore, by the Radon-Nikodym Theorem (Theorem 8, part (b)), there exists 
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 1 ,h L X   such that ( )
E

E h d   .  (We are using the extension (3) of  

Radon-Nikodym Theorem, discussed above.) 

We may prove it directly here. 

Note that Re ≪  and Im ≪ .  Therefore, by Theorem 8, there exist 

 1

Re ,h L X   and  1

Im ,h L X   such that for all E  M  , 

               
ReRe ( )

E
E h d    and 

ImIm ( )
E

E h d   . 

Therefore, 

             Re( ) Re ( ) Im ( ) IM
E E

E E i E h i h d hd          , 

where Re IMh h i h  .  Note that h is measurable and  1 ,h L X  . 

Now we show that 1h  almost everywhere with respect to ||.  

Firstly, we show that 1h  almost everywhere with respect to ||.  

Let  : ( )A x X h x r    , for 0 < r < 1. 

Let  iA  be a partition of A by disjoint sets in M .  Then 

         ( ) ( ) ( )
i i i

i i
A A A

i i i i i

A hd h d r d r A r A                . 

Therefore, ( ) ( )A r A  for 0 < r < 1.  Hence, ( ) 0A   for 0 < r < 1.  This 

implies that 1h   almost everywhere with respect to ||.  

Next, we show that 1h   almost everywhere with respect to ||.    

Suppose E  M   and ( ) 0E  .  As ( )
E

hd E  , ( ) ( )
E

hd E E    .  

Therefore, 

                             
( )1

1
( ) ( )E

E
hd

E E




 
  . 

It follows then by Lemma 9, that 0 1h   almost everywhere with respect to ||.   

Hence, 1h   almost everywhere with respect to ||.  Thus,  : 1 0x X h    .  
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Redefine h so that on this set  : 1x X h  , h(x) =1.  Then we have ( ) 1h x  for 

all x in X. 

 

We shall now proceed to define integration over a complex measure. 

For a measurable simple function, 
1

i

n

i E

i

s a 


  , where 
i

E  is measurable and 
i

a is 

a complex number for 1 i n  , 

       
1 1 1

( )
i

i

n n n

i i i i E
X E X

i i i

sd a E a h d a d    
  

          

                  
1 1

i i

n n

i E i E
X X

i i

a h d a hd   
 

 
   

 
    

                  
X

s hd   . 

If  f  is real valued, non-negative and measurable, then there exists an increasing 

sequence of measurable non-negative simple functions  ns  such that ns fր  .   

We can write h = Re h +i Im h,    Re Re Reh h h
 

   and    Im Im Imh h h
 

  . 

It then follows from the Lebesgue Monotone Convergence Theorem that 

   Re Ren
X X

s h d f h d  

 ր ,    Re Ren
X X

s h d f h d  

 ր , 

   Im Imn
X X

s h d f h d  

 ր , and    Im Imn
X X

s h d f h d  

 ր . 

So for a non-negative function f , we say 
X

f d  exists if  Re
X

f h d   and 

 Im
X

f h d   exist, i.e., 
X X

f d f hd   .  For a real value measurable 

function, we can write f f f     and define 
X X X

f d f d f d        and 

finally for measurable complex function f, Re Im
X X X

f d f d i f d      .   

Definition 11.  In summary, we may define for f a complex measurable 

function,  a complex measure, 

                                  
X X

f d f hd   . 



28 

 

So, 1( , )f L X  , if and only if, Re
X

f h d     and Im
X

f h d    , if and 

only if, 
X

f d    . 

 

If   and  are complex measures, the relation,  

                           
X X X

f d f d f d        , ------------------------- (*) 

holds whenever  f  is a bounded measurable function or when  1 ,f L X   and  

 1 ,f L X  . 

Plainly, (*) holds for  f  a measurable characteristic function.  This is because 

                      ( ) ( ) ( )E E E
X X X

d E E E d d                    

Hence, (*) is true for measurable simple functions.  Then (*) holds for any 

bounded measurable function  f .  Evidently, if  1 ,f L X   and   1 ,f L X  , 

then  1 ,f L X     and so (*) holds.  

 

We may define complex measure by using any fixed complex function  f  in 

 1 ,L X  , where  is a positive measure on M  . 

Proposition 12.  Suppose  is a positive measure on the measure space (X, M  ) 

and  1( , ) : ;
X

f L X f X f d     ℂ .  If  d f d   , then  d f d  .   

That is, if ( )
E

E f d   , then ( )
E

E f d   . 

Proof.   It is easy to show that  is a complex measure on M  .  By Theorem 10 

(Polar Decomposition of Complex Measure), there exists a measurable function, 

:h X ℂ , such that  1 ,h L X  , 1h   and d h d  .  More precisely, for any 

E M  ,  

                                      ( )
E

E h d    . 

By hypothesis, ( )
E

E f d   .  Now for a characteristic function 
E
  , where E is 

measurable,  ( )E E
X X

d E f d       .  Therefore, for a measurable simple 
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function s, 
X X

sd s f d   .  It follows that for a bounded measurable function 

g, 
X X

g d g f d   .  Since h is a bounded measurable function,  

X X
h d h f d   .  Hence, for any measurable E M  ,  

E E
h d h f d   .  

Similarly, by using ( )
E

E h d   , we get 

                  ( ) 0
E E E

h d h h d d E         . 

It follows that ( ) 0
E

h f d E   for all E M  .  Therefore, 0h f   almost 

everywhere with respect to  .  Therefore, h f h f f   almost everywhere 

with respect to  .  Hence, ( )
E

E f d    for any E M  . 

This completes the proof.  

 

Now we use Theorem 10 for a real measure on (X, M  ).   

 

Theorem 13.  Hahn-Jordan Decomposition Theorem. 

Let  be a real measure on (X, M  ).   

(Jordan) Write  1

2
      and   1

2
     , where   is the total variation 

measure of  .   Then       ,  and     are bounded positive measure. 

(Hahn)     . 

That is, X A A     with A A
    and for any E M  , 

     ( ) ( )E E A     and ( ) ( )E E A    . 

Proof.  By Theorem 10 (Polar Decomposition), there exists a measurable 

function, :h X ℂ , such that  1 ,h L X  , 1h   and d h d  .  More 

precisely, for any E M  ,  

                                      ( )
E

E h d   . 
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Since  is real, we may assume that h is real.  Hence, 1h   .   Let 

 : ( ) 1A x X h x     and   : ( ) 1A x X h x     .  Then  and A A
   are measurable. 

Plainly, A A
   . Since     and   is a bounded positive measure, by 

Proposition 2,  and     are bounded positive measures on M   and      . 

Now,   
( ),1

1
2 0,

h x x A
h

x A





 
  


  and  

0,1
1

2 ( ),

x A
h

h x x A





 
  

 
 . 

If E M  ,     

          1 1
( ) (1 ) ( )

2 2E E E A E A
E d h d hd d E A      

 

 

 
           . 

Similarly,  

          1 1
( ) (1 ) ( )

2 2E E E A E A
E d h d hd d E A      

 

 

 
            . 

Therefore,    is concentrated on A  and    is concentrated on A  and so 

   . 

Next, we show that the Jordan Decomposition is optimal in the following sense. 

Corollary 14.  Let  be a real measure on (X, M  ).  Suppose 1 2     , where 

1 2 and    are positive measures.  Then 1    and 2  . 

Proof. 

Recall that       and    . 

For any E M  , 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )E E E E E E E            . 

Therefore, for any partition,  iE , of E by disjoint sets in M ,   

                    1 2 1 2( ) ( ) ( ) ( ) ( )
i i i

i i i

E E E E E          . 

Hence, by definition of ||,  1 2( ) ( ) ( )E E E     for all E M .  Now, 

1 2          so that 1 2       . 

 Observe that      1 2

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2
E E E E E E            so that 
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                  1 2 12 ( ) ( ) ( ) ( ) 2 ( )E E E E E         . 

Thus, 1( ) ( )E E   for all E M .   This means 1  .  Now, 

2 1 0         and so 2  . 

 

The Dual Space or Conjugate Space of ( , )pL X     

Suppose (X, M  ) is a measure space and : M   ℝ  is a positive measure.  

Suppose ( , )pf L X   and ( , )qg L X  , where 1 p    and 1 q    are 

conjugate indices such that 
1 1

1
p q
  .  Then we have the Hölders inequality (see 

Theorem 10, Convex Function, Lp Spaces, Space of Continuous Functions, 

Lusin’s Theorem), 

                                  
1, , ,p q

f g f g
  
   , 

where 
,n

h

 is the ( , )nL X   norm given by  

1

,

nn

n X
h h d


    for n ≥ 1.    

Therefore, 1( , )f g L X  . 

Define : ( , )p

g
L X  ℂ  by ( )g

X
f f gd   .    Then for any ( , )pf L X   

             
, ,

( )
g q pX X

f f gd f g d g f
 

      . 

Hence, g  is a bounded complex linear functional on ( , )pL X   and the norm of 

this linear functional, 
,g q

g


   .  Recall that for a linear functional :V ℂ  

on a norm space V with norm  , 
( )

sup : , 0
x

x V x
x

  
    

  
. 

We investigate if the converse is true.  Is any bounded complex linear functional  

: ( , )pL X  ℂ  expressible as g  for some ( , )qg L X  ? 

One case is clear.  Take 2p q   and we know 2 ( , )L X  is a Hilbert pace with 

inner product ,
X

f g f g d  .   By a non-measure theoretic argument, if

: H ℂ  is a bounded linear functional on a Hilbert space H, then there exists 

y H such that ( ) ,x x y   for all x in H.  As 2 ( , )H L X   is a Hilbert space, for 
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a linear functional 2: ( , )L X  ℂ , there exists a function 2 ( , )g L X  , unique 

almost everywhere with respect to , such that g  . 

One case is false.  This is the case when p   .  For ( , )L X  , the answer is false 

because 1( , )L X  does not furnish all bounded linear functionals on ( , )L X  . 

(See Example 25.16, Principle of Real Analysis, Aliprantis and Burkinshaw.) 

If 1 p   , the answer is always ‘yes’.  However, we will prove this together 

with the case p =1 with the additional hypothesis that the measure   be -finite.  

Subsequently, we shall prove the case for 1 p   , without the -finiteness 

condition on the measure .  One case is “usually” yes, except in very big 

spaces (i.e., where open sets are not -finite), for p =1.   

  

We note that for 1( , )g L X  , we can define a bounded complex linear 

functional : ( , )
g

L X  ℂ  by ( )g
X

f f gd   for ( , )f L X  . 

This is because since ( , )f L X  , there exists a set B of -measure zero such 

that 
,

( )f x f


    for all c
x B  so that 

,
f g f g


  almost everywhere with 

respect to  and so 1( , )f g L X  .  Thus, 

            
,

( )
g

X X X
f f gd f g d g f d


  


       

                       
, 1, ,X

f g d g f
  


 

  . 

Therefore, by the definition of g , 
1,g g


    .  Hence, g  is a bounded 

complex linear functional.  Next, we shall show that 
1,g g


  . 

Since g is measurable, there exists a measurable function h such that 1h   and 

g g h  so that hg g .  Indeed, we can define h as follows. Let 

 0 : ( ) 0B x X g x   . Then 0 0 and cB V B  are measurable since g is measurable.  

Let : {0}  ℂ ℂ  be defined by ( )
z

z
z

   .  Then   is continuous on {0}ℂ .  Let  

01 Bg g    .  Then 1g  is measurable and 1 0g  .  Define 1h g 	  , i.e., 
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1( ) ( ) ( ( ) ( ))
E

h x g x g x x    	 .  The function h is measurable because   is 

continuous on {0}ℂ .  In particular, 1h  .  Moreover,  

              0

0

0

( )
( ) ( ),

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) 1
( ) 0,

1

B

B

g x
g x g x x V

g x x g x
g x h x g x g x

g x x
g x x B





   
  

    

. 

Let  ( ) ( )f x h x .  Plainly, f  is measurable and 1f   and so it is essentially 

bounded and 
,

1f

 .   Therefore, 

        
1,

( )g
X X X

f f gd h gd g d g


         . 

Hence, 
1, 1, ,

( )g f g g f
  

   .  Therefore, 
1,g g


  as 

 ,
sup ( ) : 1, ( , )

g g
f f f L X





     . 

Likewise, if ( , )g L X  , then the complex linear functional 1: ( , )
g

L X  ℂ  

defined by ( )g
X

f f gd   for 1( , )f L X   is a bounded linear functional as     

         
, , 1,

( )
g

X X X
f f gd f g d f g d g f

  
  

 
       , 

so that 
,g g


    .   

For any E  M  ,  ( )g E E
X E

gd gd        and      

                
1,

( ) ( )
g E g E g

E
gd E


         . 

Hence, for ( ) 0E  , 
1

( )
g

E
gd

E



  .  Then by Lemma 9, with closed disk of 

radius g , we conclude that gg    almost everywhere with respect to .  

Consequently, 
, gg

  .  Therefore, 

,g g


  . 

Now, we assume that 1 p   .  Take ( , )qg L X  , where 
1 1

1
p q
  .  We have 

already shown that 
,g q

g


  ,  We now show by a similar argument as above 



34 

 

that 
,g q

g


  . Take 
1q

f g h


 .  Then  f  is measurable. Moreover, 

( 1)p p q q
f g g


   and so 

p q

X X
f d g d     . It follows that ( , )pf L X  . 

Now, 

               1 1
( ) ( )

q q q

g g
X X

f g h g h gd g d  
       

                               
1 1 1 1

, ,

q q p qp q p q

q pX X X X
g d g d f d g d g f

 
         . 

Hence,  
, ,

( )g q p
f g f

 
  .  Thus, if 

,
0,

q
g


 by definition of g  and that 

,g q
g


  , 

,g q
g


  . If 

,
0,

q
g


 then g = 0 almost everywhere with respect 

to  .  Hence, 0g   and so 
,

0g q
g


   .  In summary, we have the following 

result. 

Theorem 15.  Suppose (X, M  ) is a measure space and : M   ℝ  is a positive 

measure.  Suppose 1 p    and 1 q   are conjugate indices such that 

1 1
1

p q
  .  Then for any ( , )qg L X  , the complex linear functional, 

: ( , )p

g
L X  ℂ , defined by ( )g

X
f f gd   , is a bounded complex linear 

functional such that 
,g q

g


  .   

For a measure space with a -finite measure we have the following 

representation of bounded complex linear functional. 

Theorem 16.  Suppose (X, M  ) is a measure space and : M   ℝ  is a -finite 

positive measure. Let 1 p    and 1 q    be such that  
1 1

1
p q
  .  Suppose 

: ( , )pL X  ℂ is a bounded complex linear functional.  Then there exists a 

unique g in ( , )qL X   such that  

                               ( ) ( )g
X

f f gd f    , 

for all ( , )pf L X  .  Moreover,  
,g q

g


  .   More precisely, the dual space of   

( , )pL X  ,  ( , ) *pL X  , is isometric isomorphic with ( , )qL X  , under a Banach 

space isomorphism preserving norm.  
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Proof. 

The proof is difficult and we shall do it in two steps.  The uniqueness part is 

easy and we shall dispose of this presently. 

Suppose  and g g  in ( , )qL X  are such that they both satisfy the conclusion of the 

theorem.   

Take any
E

f   for any E inM   with ( )E   .  Then 

          0 ( ) ( ) E E E
X X X E

f f g d g d g g d g g d                    . 

It follows that for all E in M ,   0
E

g g d  .  Hence, g g  almost everywhere 

with respect to .   

By Theorem 15, 
,q

g


  . 

We shall use the functional   to define a measure on M  .  We shall use the 

Radon Nikodym Theorem. 

First of all, if 0  , then we can just take g to be zero almost everywhere with 

respect to .  So we assume that 0  . 

Step 1.  We consider the special case when  is a finite positive measure, i.e., 

(X) < ∞.   

For any E inM  , 
E
  plainly belongs to ( , )pL X  , since ( ) ( )E

X
d E X       .   

We define a measure  on M   by ( ) ( )
E

E   for E in M  .   

We check that this defines a measure on M .  Trivially, ( ) 0   .  Plainly   is 

finitely additive, for 1 2 and E E M   with 1 2E E  , 

              
1 2 1 2 1 21 2 1 2( ) ( ) ( )E E E E E EE E E E                 . 

Thus, by induction, we obtain that, if  
1

n

i i
E


 is any finite collection of disjoint 

measurable sets in M  , then 
1 1

( )
nn

i i
i i

E E 
 

   
 

∪ .  Now we show that   is 
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countably additive.  Suppose 
1

i
i

E E



 ∪  is a disjoint union of countably infinite 

members of M  .    Let 
1

n

n i
i

A E

 ∪  .  Then         

                       
1

1

,
( ) 0

n n

p
p

E A E A n
p X

d E A


          as n  ∞, 

by the “continuity from below” property of the measure  .  So, since   is 

bounded and so is continuous, ( ) ( )
nA E    as n  ∞, because 

                   0
n n nA E E A E A

p
               as n  ∞. 

Hence,  
1 11

( ) ( ) ( )
n

nn

n A i i i
i ii

A E E E E    


 

           
   

∪ ∪ .  Therefore, 

1

( ) ( )i

i

E E 




 .  This proves that  is a complex measure. 

If  E M   and ( ) 0E  , then 0
E
   almost everywhere with respect to  .   

Hence, ( ) ( ) (0) 0.
E

E        Thus,  ≪ , i,e.,  is absolutely continuous 

with respect to  .  Therefore, by the Radon Nikodym Theorem (Theorem 8 

Extension (3) for positive finite  and complex ), 
a s

    , a ≪ , s  and 

there exists a measurable function 1( , )g L X   such that ( )a
E

E g d   .  Hence, 

s a
     ≪ by Lemma 7 (e) and so as s  , 0s  , by Lemma 7 (h). 

Therefore, 
a

   and 

                                        ( )
E

E g d   . 

It follows that, for any E M , 

                            ( ) ( )E E
E X

E gd gd         . 

We shall extend this equality to arbitrary ( , )pf L X  , 

                                    ( )
X

f f gd   .   ---------------------------------  (*) 

We have just shown that (*) is true for measurable characteristic functions.  

Therefore, (*) is true for measurable simple functions.  We then claim that (*) 

holds for every f  in ( , )L X  .  Note that (*) holds for non-negative measurable 



37 

 

bounded function, because if  f  is bounded and non-negative, then there exists 

an increasing sequence of measurable simple non-negative functions  ns  such 

that ns fր . Because f is bounded, ns fր  uniformly. (See Theorem 17).  As 

( )n n
X

s s gd   , by the Lebesgue Dominated Convergence Theorem, 

lim ( ) limn n
X Xn n

s s gd f gd 
 
    .  Note that as ns fր  uniformly, 

,
0n p

s f


   

and so lim ( ) ( )n
n

s f

   .  Thus ( )

X
f f gd    and so (*) is true for a bounded 

measurable non-negative function.  If f is a bounded measurable real valued 

function, then we can write f f f   , where  and f f   are bounded non-

negative measurable functions and so by linearity, (*) holds for bounded 

measurable real valued function.  Finally, if  f is a bounded measurable complex 

function, then write Re Imf f i f  , where  Re   and Imf f  are bounded real 

valued measurable functions.  Therefore, by linearity (*) holds for any bounded 

measurable functions.  If ( , )f L X  , then there exists measurable subset B of 

X such that 
,

( )f x f


    for all c
x B and ( ) 0B  .  Let 1

( ),  
( )

0,  

cf x x B
f x

x B

 
 


. 

Then 1f f   almost everywhere with respect to  and 1f  is bounded and 

measurable.  Therefore, 
1 1( ) ( )

X X
f f f gd f gd       . 

Now we shall show that ( , )qg L X  . 

We consider the case p = 1.  

For any E in M  ,  
1,

( ) ( )
E E

E
g d E


         .  Therefore, for ( ) 0E  ,   

                               
1

( ) E
g d

E



  . 

Therefore, by Lemma 9, with closed disk of radius  , g    almost 

everywhere with respect to .  Hence, ( , )g L X   and 
,

g

  . 

Now for the case 1 < p < ∞. 

As shown in the proof of Theorem 15, there exists a measurable function h such 

that hg g  and 1h  .  For each integer n ≥ 1, let  : ( )nE x g x n   and  

1

n

q

n Ef h g 


 .  Plainly, 
n

f  is measurable and bounded and so ( , )nf L X  .  It 

follows that ( , )p

nf L X  . 
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Now, 
( 1)

on ,

0  on 

q p q

p n

n
c

n

g g E
f

E

 
 


 .   Putting 
n

f   in (*), we get 

                
1

( )
n n

q q

n n
X E E

f f gd g h gd g d  


      . 

We also have,    
11

( 1)

,
( )

n
n

q p q pp

n n Ep X E
f f g d g d


  


        . 

Hence,    
1 1

1

n n

q qp q

E E
g d g d 



    .   Letting n tends to ∞, we get 

                          
1

q q

X
g d   . 

This is because 
n

q q

Eg g ր  monotonically and so by the Lebesgue Monotone 

Convergence Theorem,  lim lim
n

n

q q q

E
E X Xn n

g d g d g d   
 

    . 

It follows that ( , )qg L X  . Now we shall show that g  .   We recall that the 

collection,    : ;  is a simple measurable function with : ( ) 0S s X s x s x    ℂ  is 

dense in ( , )pL X  in the ( , )pL X  metric.  (See Proposition 16, Convex Function, 

Lp Soaces, Space of Continuous Functions, Lusin’s Theorem.)  Since ( )X   , 

every simple measurable function is in S.  We have already shown that (*) holds 

for all simple measurable functions and that means  and g   agrees on S.  As 

 and g  are both continuous on ( , )pL X  , g  .  By Theorem 15, 

,g q
g


    . 

Step 2. 

Now we move on to the case when the measure space (X, M  ,  ) is -finite.  

We may assume that 
1

i
i

X X



 ∪  , a disjoint union of measurable sets  iX  with 

( )
i

X    for each i ≥ 1.  

Let 
1

n

n i
i

Y X

 ∪ .  Then   

1 1

( )
nn

n i i
i i

Y X X  
 

     
 

∪ . 

Note that for any E M  , we can define : ( , )pL X  ℂ  by 
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                   ( ) ( )
E

f f    for  ( , )pf L X  . 

It is easy to see that   is a complex linear functional. 

  satisfies 
, ,

( ) ( )E E p p
f f f f

 
         for all ( , )pf L X  .  

Therefore,     . 

Take E = Xn .  Let : ( , )p

n L X  ℂ  be defined as above by ( ) ( )
nn Xf f   and 

we have 
n
   .  Note that ( , | )

n n

p

X n X
f L X  , where (Xn , M   |

nX ) is the sub-

measure space of (X, M  ,  ). Consider 

                                 : ( , | )
n

p

n n XL X  ɶ ℂ  

defined by ɶ( ) ( )
nn Xh h  ɶ , for any ( , | )

n

p

n X
h L X  and ɶ :h X ℂ  is given by 

ɶ ( ), ,
( )

0,

n

n

h x x X
h x

x X


 


.  Plainly, ɶ :h X ℂ  is -measurable.  Obviously nɶ  is a 

linear functional.  Moreover, as noted above,  

              ɶ ɶ
, |,

( ) ( )
n n Xn

n X X pp
h h h h


       ɶ . 

It follows that 
n  ɶ and nɶ  is a bounded linear functional on ( , | )

n

p

n X
L X  . 

As ( )
n

X   , by what we have just proved for finite measure, there exists  

( , | )
n

q

n n X
g L X   such that for any ( , | )

n

p

n X
h L X  , 

                         ɶ( ) ( ) |
n n

n
n X n X

X
h h h g d    ɶ  

and  �
, | ,Xn

n n nq q
g g

 
  ɶ , where � :

n
g X  ℂ  is a measurable extension of gn to 

X defined by �
( ), ,

( )
0,

n n

n

n

g x x X
g x

x X


 


. 

Thus, 

         ( )
n nn X n X

f f f     ɶ  , where 
nX f  is considered as a function on Xn , 

                    �   �|
n n n n

n n
X n X X Xn n

X X X
f g d f g d f g d          . 

Therefore, for all ( , )pf L X  , 
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                � � �
,, , ,

( )
n nn X Xn n nppX q q

f f g d f g f g
  

       

Hence, �
,

n n
q

g


  . 

Now, consider : ( , )p

n L X  ℂ  defined by  ( )
nn Y

f f   . 

Then         �
1 1 1 1

( )
n i i i

n n n n

n Y X X i X i
X

i i i i

f f f f f f g d    
   

 
          

 
    . 

                   � � � �
1 2

1

( )
n

i n
X X

i

f g d g g g f d 


      … . 

Let  : ( , | )
n

p

n n YL Y  ℂ  be defined by  �( ) ( )n nf f    for ( , | )
n

p

n Y
f L Y  and �f  is 

the obvious extension of  f  to X by defining �( ) ( )f x f x , when 
n

x Y  and 

�( ) 0f x   when 
n

x Y . 
n  is obviously a complex linear functional and for all

( , | )
n

p

n Y
f L Y  , 

        � � � � � � �
1 2 1 2

( ) ( ) ( ) |
n n

n
n Y Yn n

X Y
f g g g f d g g g f d           … … . 

Thus,               � � � � �
1 2( ) ( ) ( )

n n n
X

f f g g g f d       …  

                         � � � � � � �
1 2 1 2, |, , , |Yn Yn

n npp q q
f g g g f g g g

  
       … … . 

Therefore, 
n  is a bounded linear functional and � � �

1 2
,

n n
q

g g g


    … . 

Now � �  �
, |,

( ) ( )
n n Yn

n n Y Y pp
f f f f f


          so that 

n
   .  It 

follows that  � � �
1 2

,
n

q
g g g


    … .  In particular, �

,
i

q
g


   for each integer 

i ≥ 1.   

Let  � � � �
1 2

1

n i

i

g g g g g




     … ⋯  .  Note that this is well defined.  For any x X, 

x  Xn for some integer n so that � ( ) 0
i

g x   for i  n and � �
1

( ) ( )
k

i n

i

g x g x


  for k ≥ n.  

As �
1

n

i

i

g

  is measurable, g is measurable. 
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Observe that by definition of �
i

g , � �
1 1

( ) ( ) liminf ( )
n

i i
n

i i

g x g x g x



 

   .   Therefore, 

by Fatou’s Lemma,     

                    � � � � 1 2
,

1

lim inf liminf

q
qnq q

i n
X X qn n

i

g d g d g g g


 
 



        … . 

Hence,  
1

,

q q

q X
g g d


   .  It follows that ( , )qg L X  . 

Now    ( )
nn Y

f f f     as n  ∞.   

For all ( , )pf L X  , 

          �

1 1 1i i i
i

i
X X X X

i i

g f d g f d g fd g fd   



 

 

      ∪
  

                      � � �     1 2lim lim
n

i
Yn

Yn n
g g g fd f f 

 
        ⋯ . 

Hence, by Theorem 15, 
,q

g


  . 

Now, we consider the case p =1. 

The preceding argument applies to the case p =1, yielding, 1: ( , )n L X  ℂ ,

1: ( , | )
nnn n XL X  ɶ ℂ , ( , | )

nn n X
g L X   such that ɶ( ) ( ) |

n n
n

nn X n X
X

h h h g d    ɶ for 

1( , | )
nn Xh L X  , �

, | ,Xn
nn n n

g g
  

  ɶ .  We also have 1: ( , )n L X  ℂ ,

1: ( , | )
nn n YL Y  ℂ , with �( ) ( )n nf f    for 1( , | )

nn Yf L Y   and 

      � � � �
1 2

1 1

( ) ( )
n i

n n

n Y i X i n
X X

i i

f f f f g d g g g f d   
 

            … .  We have 

also deduced that              

� � � � � � � � � � � �
1 2 1 2 1 2

, 1, , 1, |
( ) ( )

Yn

n n n n
X

f g g g f d g g g f g g g f
   


 

             … … …

so that 
n  is a bounded linear functional and so � � �

1 2
,

n n
g g g


    … .   

Since 
n
   , we deduce as before that � � �

1 2
,

n
g g g


    … .  Hence, there 

exists a measurable set 
n

B  such that ( ) 0
n

B   and  

                           � � �
1 2( ) ( ) ( )

n
g x g x g x    …  for all c

nx B  . 
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Let  
1

n
n

B B



 ∪  .  Then   0B   and 

1 1

c

c c c

n n n
n n

B B B B
 

 

    
 
∪ ∩ .   Therefore, for all 

c
x B , 

                          � � �
1 2( ) ( ) ( )

n
g x g x g x    …  for all integer n ≥ 1. 

Hence,   

      � � �
1 2lim ( ) ( ) ( ) ( )n

n
g x g x g x g x


     …  for all c

x B  so that  
,

g

  . 

This implies that ( , )g L X  ,  
X

f f gd    and 
,

g


  . 

Theorem 17.  Suppose (X, M  ,  ) is a measure space and :f X ℂ  is a 

measurable function.  If f is integrable with respect to , then the set 

 : ( ) 0x f x   is -finite.    

It follows easily that for any ( , )pf L X  , 1  p < ∞, the set  : ( ) 0x f x   is -

finite.    

Proof.   

The function  f  is integrable means that  f  is measurable and 
X

f d   . 

Partition (0, ∞) by  
1

1 1
, 1,

1
n

n n





        
.  Let 

1 1 1
,

1
nE f

n n

     
 for integer n ≥ 1 

and  1

0 1,E f


  .  Plainly, 
n

E  is measurable for 0  n < ∞.   Since 
X

f d   , 

nE
f d   .  Note that 

1
( )

1n
n

E
f d E

n
 

 for integer n ≥ 0 and so ( )
n

E   for 

integer n ≥ 0.  As    
0

: ( ) 0 : ( ) 0
n

n

x f x x f x E



    ∪ ,  : ( ) 0x f x   is -finite. 

If  ( , )pf L X  , then 
p

X
f d    and as    

0

: ( ) 0 : ( ) 0
p

n
n

x f x x f x E



    ∪ , it 

follows that  : ( ) 0x f x   is -finite.   Here we note that 
1

( )
1n

p
p

n
E

f d E
n

       

for each integer n ≥ 0 and the same argument applies to give the same 

conclusion. 

We now show that in Theorem 16, for 1 p   , we may drop the condition that 

the measure  be -finite. 
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Theorem 18. 

Suppose (X, M  ) is a measure space and : M   ℝ  is a positive measure. Let 

1 p    and 1 q    be such that  
1 1

1
p q
  .  Suppose : ( , )pL X  ℂ is a 

bounded complex linear functional.  Then there exists a unique g in ( , )qL X   

such that  

                               ( ) ( )g
X

f f gd f    , 

for all ( , )pf L X  .  Moreover,  
,g q

g


  .   More precisely, the dual space of   

( , )pL X  ,  ( , ) *pL X  , is isometric isomorphic with ( , )qL X  , under a Banach 

space isomorphism preserving norm.  

Proof. 

Let S be the collection of -finite measurable subsets of M  .  That is,  

                           S = { E  M  :  E is -finite}. 

Now for each E in S, by Theorem 16, there exists a unique 
Eg  vanishing outside 

of E such that for any ( , )pf L X   and f  vanishing outside of E, such that   

                         ( ) E E E
E X

f f g d f g d      . 

This is because 

                               : ( , | )
p

E EL E  ℂ  , 

defined by � ( )
E

f f  , for ( , | )
p

Ef L E  , where �
( ),

( )
0, c

f x x E
f x

x E


 


 , is a 

bounded complex linear functional.  Since :f Eℂ   is M  |E measurable,  �f  is 

M   measurable.  Actually, Theorem 16 gives a unique ( , | )
q

E Eg L E   such that 

 ( ) |E E E
E

f f g d     for ( , | )
p

Ef L E  . 

Note that :
E

g Eℂ  is M  |E measurable and so the extension 
( ),

( )
0,

E

E c

g x x E
g x

x E


 


 

is M   measurable.  Hence, � ( )E E
X

f f g d   .  Moreover, for ( , | )
p

Ef L E  , 
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  � �|
p pp

E E
E E X

f d f d f d          so that � ( , )pf L X  .  We note that if  

B E  , then  
B Eg g  almost everywhere with respect to  on B by uniqueness.  

For each E in S, define ( )
q

E
X

E g d    .  Now, for ( , | )
p

Ef L E  , 

               �  �
, |,

( )
E

E pp
f f f f


       . 

Hence 
E
   .  By Theorem 16, 

, | ,E
E E Eq q

g g
 
     . 

It follows that  ( ) :E E S  is bounded above by 
q

 .  Let  sup ( ) :E E S   .  

Then there exists a sequence  iE  of -finite measurable sets in S such that 

( )
n

E  .  Let  
1

n
n

H E



 ∪  .  Plainly, H is -finite and so H  S and as 

   n
E H   for 

n
E H ,  H  .  Let  ( ),

0,

H

H c

g x x H
g g

x H


  


.  Therefore, 

( , )qg L X  .   

Note that if E is any set of -finite measure and contains H, then by uniqueness,

 
E Hg g  almost everywhere on H with respect to .  On the other hand, 

              | ( )
q q qq q

E E E E H
E E X X X

g d g d g d E g d g d                  

and  

                    q q q

E E E
E H E H

g d g d g d  


      

                                  q q qq

H E E
H E H X E H

g d g d g d g d   
 

          

                                          

and so  0
q

E
E H

g d


 .  This implies that  0Eg   almost everywhere on E H.  

Thus, 
Eg g  almost everywhere on E with respect to  . 

Now we take any function  f  in ( , )pL X  .  Let  : ( ) 0G x f x  .  Then G is 

measurable and -finite by Theorem 17.  Therefore, E G H   is -finite.  Let 

|Ef f  .  Then  
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                 ( ) ( ) |E E E E
E E E X

f f f g d f g d f gd f gd             . 

Thus, we have shown that for any ( , )pf L X  , ( )
X

f f gd   .  As in Theorem 

16, we can deduce that 
,q

g


  .     

This completes the proof. 

 

However, for p =1, we may not relax the -finiteness condition for the measure 

 in Theorem 16.  For there is an example of a measure space (X, M  ,  ) with  

not -finite and a bounded linear functional, , on 1( , )L X   such that there does 

not exist ( , )g L X   satisfying ( )
X

f f gd   .   

 

The next theorem is a result, which we have used, about approximation of 

measurable non-negative function by simple measurable functions. 

Theorem 19.  Suppose :f X
ℝ  is a non-negative measurable function, 

where (X, M  ) is a measure space.  Then there exists an increasing sequence of 

measurable simple functions ( )
n

s  converging pointwise to  f.  If  f is bounded, 

then ( )
n

s  converges uniformly to  f  . 

Proof. 

We construct the sequence ( )
n

s  as follows.  For each integer n ≥ 1, divide the 

interval [0, n] into 2nn  sub-intervals of length 
1

2n
. 

Let 1

,

1
,

2 2
n i n n

i i
E f 

       
 ,  1,2, , 2ni n ⋯  ,   1 [ , )nF f n   and  

,

2

1

1

2

n

n i n

n

n E Fn
i

i
s n 




   . 

Since  f  is measurable, the sets ,n iE  and 
n

F  are measurable. 
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Note that , 1, 1, 1n i n j n jE E E     , where 
1

1 1

2 2n n

j i


 
  or 2 1j i  .   On the set ,n iE  ,  

1( )
n

s x  takes on the value 
1

1 1

2 2n n

j i


 
  when x is in 1,n jE   and  the value 

1

1

2 2n n

j i



  

when x is in 1, 1n jE   .   Observe also that   

                     1 1 1 1

1[ , ) [ 1, ) , 1 , 1n nF f n f n f n n F f n n   
           

and     1 1 1

1,, 1 : 2 1 to ( 1)2n n

n if n n E i n n  
    ∪ . 

Thus, on the set 1n
F  , 1( )

n
s x  takes on the value n +1 when x is in 1,n jE   and on the 

set   1 , 1f n n  , 1( )
n

s x takes on values n , when ( )
n

s x  is defined and is equal 

to n. Therefore, 1n n
s s   . 

Since ( )f x    , take an integer N such that N > f (x), then for all n ≥ N, 

1( )
n

s x N   and so the sequence is pointwise convergence.  Moreover, for each 

integer n > f (x), f (x) lies in 
1

,
2 2n n

i i 
 
 for some  i  such that 1 2ni n   and so 

( ) ( )
n

s x f x .   Furthermore, 
1

( ) ( )
2

n n
s x f x  . Hence lim ( ) ( )

n
n

s x f x


  . 

Now, suppose  f  is bounded such that 0 f K   and K ≥ 1. 

First of all, note that 
n

F   for all integer n ≥ K.  For any integer n > K, 

1

,

1
,

2 2
n i n n

i i
E f 

        
  if  2 1 2n nK i n   . 

This means for 0 f K  , we effectively partition the interval [0, K] into 2n K 

sub-intervals each of length 
1

2n
. 

Observe that since ( )f x K , for any integer N ≥ K, N > f (x) for all x, and so for 

all n ≥ N, 1( )
n

s x N  for all x and so the sequence is uniformly bounded.  

Moreover, for each integer n ≥ N,  f (x) lies in 
1

,
2 2n n

i i 
 
 for some  i  such that 

1 2ni n   so that, 
1

( ) ( )
2

n n
s x f x   for all x.  Hence, for all n ≥ N and for all x,

1
( ) ( ) ( )

2
n n

f x s x f x   .  This means that ( )
n

s  converges uniformly to  f  . 
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The Riesz Representation Theorem -  The Complex Version 

 

In Positive Borel Measure and Riesz Representation Theorem, we represent a 

positive (complex) linear functional, : ( )
c

C X ℂ , where X is a locally 

compact Hausdorff topological space and ( )
c

C X is the space of continuous 

complex functions on X with compact support with the uniform norm, by 

                                      ( )
X

f f d   , 

for some positive measure   , which is almost regular and complete on a -

algebra M   containing all the Borel sets of X. 

There was no question of  being continuous, i.e., bounded. Actually, in some 

cases, with additional condition on X, it is true that  is positive implies that  

is bounded.  Note that ( )
c

C X is endowed with the uniform sup norm.  If the 

representing measure  satisfies ( )X   , then for any ( )
c

f C X ,  

                     ( ) ( )
u uX X X

f f d f d f d f X          . 

Recall that  sup ( ) :
u

f f x x X    , since f  is continuous with compact 

support.  It follows that ( )X    and so  is bounded.  This means that if X 

is compact, by Theorem 1 (Riesz Representation Theorem) of Positive Borel 

Measure and Riesz Representation Theorem, the representing measure is finite 

and so the positive complex linear functional is bounded and so is continuous.  

If we specialize to positive real linear functional ,: ( )cC X ℝ ℝ , where , ( )cC Xℝ

is the space of continuous real valued function on X with compact support, then 

as a consequence of the representation theorem,  is a bounded real linear 

functional if the representing measure  is finite.  But we would need some 

additional condition, for example when X is compact, to obtain a finite 

representing measure. However, a real linear functional on the normed linear 

space ( )C Xℝ  with the sup norm is continuous if and only if it is bounded.  When 

X is compact and Hausdorff,  a real linear functional on the normed linear space 

( )C Xℝ  can be represented by a regular finite real Borel measure expressible as 
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the difference of two regular finite positive measures. (See Theorem 3, Finite 

Borel Measure and Riesz Representation Theorem.)  

Now we want to consider any bounded complex linear functional : ( )
c

C X ℂ  

and represent  as ( )
X

f f d    for some complex measure on a -algebra M   

containing all the Borel sets of X.  Since : ( )
c

C X ℂ  is bounded, we can 

extend  to the completion of   ( ),c u
C X  , i.e.,  0 ( ),

u
C X   the space of 

continuous complex functions on X which vanishes at infinity. (See Proposition 

25, Convex Functions, Lp Spaces, Space of Continuous Functions, Lusin’s 

Theorem.)  Hence, we might as well consider the representation of bounded 

complex linear functional 0: ( )C X ℂ  on  0 ( ),
u

C X  . 

 

Theorem 20.  Riesz Representation Theorem - The Complex Version 

Let X be a locally compact Hausdorff topological space and 0: ( )C X ℂ  a 

bounded complex linear functional on 0 ( )C X  with the uniform sup norm.  Then 

there exists a unique regular complex Borel measure   such that  

                        ( )
X

f f d   . 

Moreover, ( )X  .  That is to say, the dual space or conjugate space of  

0 ( )C X ,  0 ( ) * ( )C X M X , where ( )M X is the collection of all regular Borel 

complex measures with norm given by ( )X   and " "  here means Banach 

space isomorphism preserving norm. 

Recall that a complex measure  is regular if || is regular as a positive 

measure.   is finite if || is finite as a positive measure. 

If [0,1]X  , then    0[0,1] * [0,1] *C C  is the space of all regular complex Borel 

measures on [0, 1]. 

  

Before we prove the theorem, we present a technical result concerning the 

regularity of the sum of regular complex measures. 



49 

 

Proposition 21.  Suppose X is a topological space and (X, M  ) is a measure 

space, where M  is a -algebra containing all the Borel sets of  X.  

Suppose 1 and 2 are two regular complex Borel measures. Then 1 2   is also 

a regular complex Borel measure. 

Proof. 

Plainly, 1 2  is a complex Borel measure. The measures 1 and 2 are regular 

means that |1| and |2| are regular.   

We show that 1 2   is inner regular. 

|1| is inner regular implies that for any E M  , given  > 0, there exists 

compact K1  E such that 1 1 1( ) ( )E K    .  That is to say, 

                     1 1 1 1 1( ) ( ) ( )E K E K       .  -----------------------  (1) 

Similarly, as |2| is inner regular, for any E M  , given  > 0, there exists 

compact K2  E such that  

                       2 2 2 2 2( ) ( ) ( )E K E K       . ---------------------- (2) 

Let 1 2K K K  .  Then K is compact and K E .  

                1 2 1 2( ) ( ) ( ) 2E K E K E K           . 

Hence,  1 2 1 2 1 2( ) 2 ( ) ( )E K E            .  This implies that 

        1 2 1 2( ) sup ( ),   compact and E K K K E       . 

Thus, for any E M  ,  1 2 1 2( ) sup ( ),   compact and E K K K E       .  It 

follows that 1 2   is inner regular. 

We now show that 1 2   is outer regular.   |1| and |2| are both outer regular. 

This means for any E M  , given  > 0, there exists an open set V1   E such 

that 1 1 1( ) ( )V E    .  Therefore, 1 1( )V E   .  Similarly, there exists an 

open set V2   E such that 2 2( )V E   .  Let 1 2V V V  .  Then V is open and 
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V E .  Therefore,  1 2 1 2( ) ( ) ( ) 2V E V E V E           .   Hence,  

1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) 2V V E E E                 . 

It follows that  1 2 1 2( ) inf ( ),   open and E V V V E       .  As this holds for 

any E M  , 1 2   is outer regular. 

Therefore, 1 2   is regular and so 1 2  is regular. 

Proof of Theorem 20. 

We prove the uniqueness part of the theorem. 

Suppose 1 and 2 are two regular complex Borel measures satisfying the 

conclusion of the theorem. Then 

               
1 20 ( ) ( )

X X X
f f f d f d f d          , where 2 2    . 

By Proposition 21,  2 2     is also a regular complex Borel measure.   

By Theorem 10, there exists a measurable complex function :h X ℂ such that 

 1 ,h L X  , 1h   and d h d  . That is, for any E M,  

                                      ( )
E

E h d     

and for any 0 ( )f C X , 
X X

f d f h d   . 

We shall show that ( ) 0X  .  Once we have shown this, then since for all E 

M, ( ) ( ) ( ) 0E E X     , ( ) 0E  . It follows that for all E M, ( ) 0E   

and so 1 = 2. 

Now,     

( )
X X X X

X d hh d hh d f d            

          
X X X

hh d f hd h h f d         

          
X

h f d   ,  ------------------------------  (*)               
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for any 0 ( )f C X . 

Since ( )
c

C X is dense in  1 ,L X  , (see Theorem23, Convex Functions, Lp 

Spaces, Space of Continuous Functions, Lusin’s Theorem), when ( )
c

C X is 

endowed with the  1 ,L X  norm and since  1 ,h L X  , we can take a sequence 

of functions  nf  in ( )
c

C X  such that 
nf h  in  1 ,L X   so that 

                   0
n

X
h f d    as n ∞ . 

It follows then from (*) that ( ) 0X  . 

Note that given a bounded linear functional   on 0 ( )C X , if 0  , we may 

normalise it by taking 
1



 so that its norm is unity.  If 0  , we can just 

take the trivial Borel measure.  So now we assume that 0   and normalise it 

by considering 
1



.  We shall thus assume without lost of generality that 

1  . 

The key to the proof is to use the positive measure version of the Riesz 

Representation Theorem (Theorem 1, Positive Borel Measure and Riesz 

Representation Theorem). 

Assume that we can construct a positive complex linear functional  on ( )
c

C X

such that 

                                ( )
u

f f f    .           --------------------------   (1) 

Then we can apply the positive measure version of Riesz Representation 

Theorem (Theorem 1, Positive Borel Measure and Riesz Representation 

Theorem) to  to give a positive complete Borel measure, , which is outer 

regular and inner regular with respect to open set and sets of finite measure, 

such that  

               ( )
X

f f d   , for all ( )
c

f C X . 
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Note that    ( ) sup ( ) : ( ), sup ( ) : ( ),0 1
c c

X f f C X f X f f C X f        ≺ . It 

follows from (1) that for ( )
c

f C X  

                    ( )
X

f f d f     

                            1
u

f  , if 0 1f   . 

It follows that ( ) 1X     and so by Theorem 1 of Positive Borel Measure and 

Riesz Representation Theorem,  is inner and outer regular for all measurable 

sets in M  ,  i.e., a finite regular Borel measure. 

By (1),   
1,

( )
X

f f f d f


      for all ( )
c

f C X . 

Therefore,  1,
: ( ),

c
C X


  ℂ  is a bounded complex linear functional of norm 

1
  less than or equal to 1.  Therefore, we can extend   by continuity to 

1( , )L X  , since  1,
( ),

c
C X


  is dense in 1( , )L X  (see Theorem 23, Convex 

Functions, Lp Spaces, Space of Continuous Functions, Lusin’s Theorem).  Let 

the extension be denoted by �  1

1,
: ( , ),L X


  ℂ .  Then �  is a bounded 

complex linear functional on 1( , )L X  .         

                                                    

                        1,
( ),

c
C X


                            ℂ   

                                                              

                         1

1,
( , ),L X


   

Therefore, by Theorem 16, as  is a finite positive measure, there exists a  

unique g in ( , )L X   such that  

                               �( )
X

f f gd   ,  ----------------------------   (2) 

for all 1( , )f L X  .  Moreover, �
, 11

1g

     .  It follows that 1g   

almost everywhere with respect to  . 

(2) is of course valid for  1,
: ( ),

c
C X


  ℂ .  

�   
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Note that  : ( ),c u
C X  ℂ  is a bounded linear functional and 

                 ( )
X

f f gd    for all ( )
c

f C X .  -------------------  (3) 

Note that the left-hand side of (3) is the restriction to ( )
c

C X of our original 

bounded (continuous) linear functional   on 0 ( )C X  with the uniform sup norm.  

The right-hand side of (3), 
X

f gd , is also a bounded linear functional on 

0 ( )C X  with the uniform norm.  Since  ( ),c u
C X  is dense in  0 ( ),

u
C X  , (3) 

holds for all 0 ( )f C X . 

Extend (3) to the completion of ( )
c

C X in the uniform norm, 0 ( )C X .  Therefore, 

we can write for all 0 ( )f C X , 

                              ( )
X

f f d   , where d g d  . 

More precisely, for any E  M  , ( )
E

E g d   .  It can be easily check that  is a 

complex measure.  

From (3), for all 0 ( )f C X , ( )
uX X X

f f gd f g d g d         if 1
u

f  .  

Thus, 

      0 0

( )
sup : ( ), 0 sup ( ) : ( ), 1

u X
u

f
f C X f f f C X f g d

f


  
         

  
 . 

Since 1  , we have 1 ( )
X X

g d d X         since 1g   almost 

everywhere with respect to  .  We have previously shown that ( ) 1X   and so 

it follows that ( ) 1X   and 1g   almost everywhere with respect to  .  Since 

d g d   and 1( , )g L X  ,  by  Proposition 12, d g d d    .   Therefore, 

               ( ) ( ) 1X X     . 

As  is a regular measure, i.e., it is inner and outer regular for all measurable 

sets in M  , it follows that || is regular and so  is a regular complex Borel 

measure. 



54 

 

It now remains to construct the positive complex linear functional  on ( )
c

C X

with the required property (1). 

Let ( )cC X  denote the set of non-negative real-valued functions in ( )
c

C X and 

define for ( )cf C X , 

             ( ) sup ( ) : ( ) and cf h h C X h f     . 

Then plainly, ( f ) ≥ 0 for all ( )cf C X  and  satisfies 

                ( )f f    for all  ( )
c

f C X . 

This is because for any ( )
c

f C X , ( )
c

f C X  and  

               ( ) sup ( ) : ( ) and cf h h C X h f     . 

Now, for any ( )
c

h C X , ( )
u u

h h h    , since 1  .  If h f , 
u u

h f . 

It follows that for all ( )
c

f C X , 

                         ( ) sup ( ) : ( ) and c u
f h h C X h f f      . 

Now, : ( )cC X ℝ  is non-negative and by definition, if 1 2, ( )cf f C X , 

1 2 1 2( ) ( )f f f f     .  Obviously, for any real number c ≥ 0,  ( ) ( )c f c f    for 

any ( )cf C X .  We need to show that  1 2 1 2( ) ( )f f f f      for 1 2, ( )cf f C X . 

We show that  1 2 1 2( ) ( )f f f f     .  By definition of ( )
i

f , i = 1, 2, given  

> 0, there exists ( )
i c

h C X such that 
i i

h f  and  

                                ( ) ( )
i i

f h      for i = 1, 2. 

Since ( )
i

h is a complex number, we can write ( ) ( )
i i i

h h   for some complex 

number 
i
  with  1

i
   for i = 1, 2.  Then 

      1 2 1 2 1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) 2 ( ) ( ) 2 ( ) 2f f h h h h h h                      . 

Hence, 1 2 1 1 2 2( ) ( ) ( ) 2f f h h        . 
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Since 1 1 2 2 1 2 1 2h h h h f f      , 1 1 2 2 1 2( ) ( )h h f f      .  It follows that  

                  1 2 1 2( ) ( ) ( ) 2f f f f       . 

Since  is arbitrary, 1 2 1 2( ) ( ) ( )f f f f     . 

Now, we show that 1 2 1 2( ) ( ) ( )f f f f     . 

Take ( )
c

h C X  with 1 2h f f   .  Let  1 2: ( ) ( ) 0V x X f x f x    .   Then V is 

open in X.  For i = 1, 2, let  

                  1 2

( ) ( )
,

( ) ( )( )

0,

i

i

c

f x h x
x V

f x f xh x

x V

   
 

 . 

Then ( ) ( )i ih x f x  for i = 1,2, since 
1 2

( )
1

( ) ( )

h x

f x f x



 for x V . 

Note that ( ) 0 ( ) 0ih x h x   for x in V.  Therefore, support ih   support h , 

which is compact.  We claim that ih  is continuous for i =1 , 2.  Plainly, ih  is 

continuous on V for i =1 , 2.  For c
a V , 1( ) 0h a   but since 1 2h f f  , ( ) 0h a  . 

As 1h h   and h is continuous at a with ( ) 0h a  , 1h  is continuous at a. Hence, 

h1 is continuous on c
V  and so is continuous on X.   Similarly, we deduce that h2 

is continuous on X .  Hence, 1 2, ( )ch h C X .  Observe that 1 2h h h  . 

Therefore, 

          1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )h h h h h f f            . 

Since this holds for all ( )ch C X  with 1 2h f f  , 1 2 1 2( ) ( ) ( )f f f f     .  

Therefore, 1 2 1 2( ) ( ) ( )f f f f     .  We can now extend   to ( )cC X  as follows.  

If ( )cf C X is real valued, write f  as f f f   , where  1

2
f f f    and 

 1

2
f f f   .  Then , ( )cf f C X   .   Define  

                       ( )f f f     . 
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If ( )cf C X  is complex valued, then write Re Imf f i f  .  Plainly,

Re  and Im f f are real valued and continuous with compact support.  Define 

                  ( ) Re Imf f i f     . 

We now check that we have thus defined a complex linear functional on ( )cC X .        

Suppose ( )cf C X  and f is real valued.  Then for c > 0,  

                    ( )c f c f c f cf cf cf             . 

For c < 0,     

                   1 1 1

2 2 2
cf cf cf c f f c f f cf

             and 

                      1 1 1

2 2 2
cf cf cf c f f c f f cf

           . 

Therefore,   

                         cf cf cf c f c f
             

                            ( )c f c f c f        . 

Thus for real valued ( )cf C X and any real valued c,    cf c f   . 

Now suppose 1 2, ( )cf f C X  and 1 2 and f f  are real-valued.  We observe that 

                   1 2 1 2 1 2 1 2 1 2f f f f f f f f f f
              .    

Therefore, 

                   1 2 1 2 1 2 1 2 0f f f f f f f f
             and so 

                           1 2 1 2 1 2 1 2f f f f f f f f
             .   

  It follows that  
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                       1 2 1 2 1 1 2 2f f f f f f f f
              . 

Hence,      1 2 1 2f f f f     . 

Suppose for any ( )cf C X  and  f  is complex valued,  Re Imf f i f  . For real 

scalar c, 

               Re Im Re Im Re Imcf c f ic f c f i c f c f ic f             

                      Re Imc f i f c f      . 

Suppose c is a complex scalar, Re Imc c i c  . 

Then   Re Re Im Im Re Im Im Recf c f c f i c f c f    .  It follows that          

          Re Re Im Im Re Im Im Recf c f c f i c f c f          

               Re Im Re Im ( )c i c f i f c f       . 

Suppose 1 2, ( )cf f C X , 1 1 1Re Imf f i f   and 2 2 2Re Imf f i f  . 

     1 2 1 2 1 2Re Re Im Imf f f f i f f         

                      1 2 1 2Re Re Im Imf f i f f       

                    1 2f f   . 

Hence  is a complex linear functional on ( )cC X . 

Let ( )M X be the collection of all regular Borel complex measures with norm 

given by ( )X  .  Note that if 1 2 and    are regular complex measures, then     

1 2   is also a regular complex Borel measure, by Proposition 21.  Obviously, 

for any complex number c, and ( )M X , c is a regular complex Borel 

measure.  Thus, ( )M X is a complex linear space. Define a norm on ( )M X , by

( )X  for ( )M X .  We check that this is indeed a norm. 

Plainly, for all ( )M X , ( ) 0X    and ( )c c X  .  

( ) 0 0X      .  Suppose 1 2, ( )M X   .  For any E  M  ,  
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    1 2 1 2 1 2
all partitions  of all partitions  of 

( ) sup sup
i i

i i i
E E E E

E E E E            

                     
 

 
 

 1 2 1 2
all partitions  of all partitions  of 

sup sup ( ) ( )
i i

i i
E E E E

E E E E        . 

Therefore, 1 2 1 2 1 2 1 2( ) ( ) ( )X X X              .   Therefore, ( )M X

is a normed complex linear space.  The Riesz Representation Theorem says that 

( )M X is a Banach space.  Let  0 ( ) *C X  be the set of bounded complex linear 

functionals on 0 ( )C X with the uniform sup norm.  By the Riesz Representation 

Theorem, to each bounded complex linear functional , there corresponds a 

unique complex regular measure  such that ( )
X

f f d    for all 0 ( )f C X . 

Let  0: ( ) * ( )C X M X   be this correspondence.  That is,      .  This 

correspondence is linear.   Let  1 2 0, ( ) *C X   .  Suppose  i i    for i =1, 2. 

Then for all 0 ( )f C X , 

               1 2 1 2 1 2 1 2( ) ( ) ( )
X X X

f f f f d f d f d              . 

Thus,  1 2   is represented by 1 2   and so by uniqueness, 

     1 2 1 2 1 2           .  If c is a complex number, then for 

 0 ( ) *C X  with      , for any 0 ( )f C X ,    
X X

c f c f d f d c     . It 

follows by uniqueness that c  is represented by ( )c c    . Hence  

   c c     .  Thus,  is a complex linear transformation. Note that  is norm 

preserving.  We deduce this as follows.  Suppose      , then 

( )X    .  This means       .   By uniqueness of the Riesz 

Representation,  is injective.    is also onto. Take any ( )M X .  Then take 

0: ( )C X ℂ  given by ( )
X

f f d   .  Then   is a bounded complex linear 

functional and by the uniqueness of the Riesz Representation,      .  Hence 

 is a norm preserving isometric isomorphism.  Since any conjugate space is a 

Banach space,  0 ( ) *C X is a Banach space and so ( )M X is a Banach space. 

We present a proof that  0 ( ) *C X is a Banach space modelled on the standard 

proof. 
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Let  n be a Cauchy sequence in  0 ( ) *C X .  This means given any  > 0, there 

exists an integer N , such that  

                     , n mn m N       . 

For a fixed 0 ( )f C X ,  ( )n f  is a Cauchy sequence in ℂ .  This is because 

( ) ( )n m n m u u
f f f f       for n , m ≥ N.  Therefore, lim ( )n

n
f


  exists 

for each 0 ( )f C X .  Let ( ) lim ( )n
n

T f f


  .  Then plainly, T is a complex linear 

functional.  We claim that T is bounded.  Since  n is a Cauchy sequence,  n

is bounded.  That is, there exists K > 0 such that n K   for all integer n ≥ 1.  

Therefore, ( ) lim ( ) limn n u un n
T f f f K f

 
     .  It follows that T K    

and so T is a bounded complex linear functional.   

We now show that n T   in norm.   

For each 0 ( )f C X with 1
u

f  , for n, m ≥ N.   

             ( ) ( )n m n m n mu
f f f           . 

Letting m  ∞, we get ( ) ( )n f T f     for 1
u

f  .  It follows that n T    .  

This is because for any linear functional, :H V  ℂ , on a normed linear space 

 ,V  ,    ( )
sup : 0 sup : 0 sup : 1

H x x
H x H x H x x

x x

       
                

 . 

Therefore, n T   in norm.  Thus, any Cauchy sequence in  0 ( ) *C X converges 

in norm and so  0 ( ) *C X is a Banach space. 

This completes the proof of Theorem 20.   

 

 We now state the real measure version of theorem 20. 

Theorem 22.  Riesz Representation Theorem - The Real Version 

Let X be a locally compact Hausdorff topological space, 0 ( , )C X ℝ be the space of 

continuous real valued functions on X vanishing at infinity and 0: ( , )C X ℝ ℝ  



60 

 

a continuous real linear functional on 0 ( , )C X ℝ  with the uniform sup norm.  

Then there exists a unique regular real Borel measure   such that  

                        ( )
X

f f d   . 

Moreover, ( )X  .  That is to say, the dual space or conjugate space of  

0 ( , )C X ℝ ,  0 ( , ) * ( , )C X M Xℝ ℝ , where ( , )M X ℝ is the collection of all regular 

Borel real measures with norm given by ( )X   and " "  here means 

isometric isomorphism preserving norm. 

Proof.   The proof is similar to that for Theorem 20.  We use the corresponding 

results for real measure and real linear functional. 

Uniqueness. 

Suppose 1 and 2 are two regular real Borel measures satisfying the conclusion 

of the theorem. Then 

               
1 20 ( ) ( )

X X X
f f f d f d f d          , where 2 2    . 

By Proposition 21,  2 2     is also a regular Borel measure.   

By a real version of Theorem 10 (the proof of which is exactly the same via 

replacing open disks by open intervals), there exists a measurable real valued 

function :h X  ℝ such that  1 ,h L X  , 1h   and d h d  . That is, for any E 

M,  

                                      ( )
E

E h d     

and for any 0 ( , )f C X ℝ , 
X X

f d f h d   . 

We shall show that ( ) 0X  .  Then since for all E M, ( ) ( ) ( ) 0E E X     , 

( ) 0E  . It follows that for all E M, ( ) 0E   and so 1 = 2. 

Now,     

( )
X X X X

X d hhd hhd f d            
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X X X

hh d f hd h h f d         

          
X

h f d   ,  ------------------------------  (*)               

for any 0 ( , )f C X ℝ . 

Since ( , )cC X ℝ is dense in  1 ,L X  , the space of all real valued  -integrable 

functions  (see the real version of Theorem 23, Convex Functions, Lp Spaces, 

Space of Continuous Functions, Lusin’s Theorem), when ( , )cC X ℝ is endowed 

with the  1 ,L X  norm and since  1 ,h L X  , we can take a sequence of 

functions  nf  in ( , )cC X ℝ  such that 
nf h  in  1 ,L X   so that 

                   0n
X

h f d    as n ∞ . 

It follows then from (*) that ( ) 0X  . 

Note that given a bounded linear functional   on 0 ( , )C X ℝ , if 0  , we may 

normalise it by taking 
1



 so that its norm is unity.  If 0  , we can just 

take the trivial Borel measure.  So now we assume that 0   and normalise it 

by considering 
1



.  We shall thus assume without lost of generality that 

1  . 

As in the proof of Theorem 20, the key to the proof is to use the positive 

measure version of the Riesz Representation Theorem (Theorem 1, Positive 

Borel Measure and Riesz Representation Theorem). 

Assume that we can construct a positive real linear functional  on ( , )cC X ℝ

such that 

                                ( )
u

f f f    .           --------------------------   (1) 

Then we can apply the positive measure version of Riesz Representation 

Theorem (Theorem 1, Positive Borel Measure and Riesz Representation 

Theorem) to  to give a positive Borel measure, , which is outer regular and 

inner regular with respect to open set and sets of finite measure, such that  
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               ( )
X

f f d   , for all ( , )cf C X ℝ . 

Note that    ( ) sup ( ) : ( , ), sup ( ) : ( , ),0 1c cX f f C X f X f f C X f        ℝ ≺ ℝ . 

It follows from (1) that for ( , )cf C X ℝ  

                    ( )
X

f f d f     

                            1
u

f  , if 0 1f   . 

Hence ( ) 1X     and so by Theorem 1 of Positive Borel Measure and Riesz 

Representation Theorem,  is inner and outer regular for all measurable sets in 

M  ,  i.e., a finite regular Borel measure. 

By (1),   
1,

( )
X

f f f d f


      for all ( , )cf C X ℝ . 

Therefore,  1,
: ( , ),cC X


  ℝ ℝ  is a bounded real linear functional of norm 

1
  less than or equal to 1.  Therefore, we can extend   by continuity to 

1( , )L X  , since  1,
( , ),cC X


ℝ  is dense in 1( , )L X  (see Theorem 23, Convex 

Functions, Lp Spaces, Space of Continuous Functions, Lusin’s Theorem).  Let 

the extension be denoted by �  1

1,
: ( , ),L X


  ℝ .  Then �  is a bounded real 

linear functional on 1( , )L X  .         

                                                    

                        1,
( , ),cC X


ℝ                        ℝ   

                                                              

                         1

1,
( , ),L X


   

Therefore, by Theorem 16 (real version), as  is a finite positive measure, there 

exists a unique g in ( , )L X   such that  

                               �( )
X

f f gd   ,  ----------------------------   (2) 

for all 1( , )f L X  .  Moreover, �
, 11

1g

     .  It follows that 1g   

almost everywhere with respect to  . 

�   
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(2) is of course valid for  1,
: ( , ),cC X


  ℝ ℝ .  

Note that  : ( , ),c u
C X  ℝ ℝ  is a bounded real linear functional and 

                 ( )
X

f f gd    for all ( , )cf C X ℝ .  -------------------  (3) 

Observe that the left-hand side of (3) is the restriction to ( , )cC X ℝ of our original 

bounded (continuous) linear functional   on 0 ( , )C X ℝ  with the uniform sup 

norm.  The right-hand side of (3), 
X

f gd , is also a bounded linear functional 

on 0 ( , )C X ℝ  with the uniform norm.  Since  ( , ),c u
C X ℝ is dense in 

 0 ( , ),
u

C X ℝ , (3) holds for all 0 ( , )f C X ℝ . 

Extend (3) to the completion of ( , )cC X ℝ in the uniform norm, 0 ( , )C X ℝ .  

Therefore, we can write for all 0 ( , )f C X ℝ , 

                              ( )
X

f f d   , where d g d  . 

More precisely, for any E  M  , ( )
E

E g d   .  It can be easily check that  is a 

real measure.  

From (3), for all 0 ( , )f C X ℝ , ( )
uX X X

f f gd f g d g d         if 1
u

f  .  

Thus, 

      0 0

( )
sup : ( , ), 0 sup ( ) : ( , ), 1

u X
u

f
f C X f f f C X f g d

f


  
         

  
ℝ ℝ . 

Since 1  , we have 1 ( )
X X

g d d X         since 1g   almost 

everywhere with respect to  .  We have previously shown that ( ) 1X   and so 

it follows that ( ) 1X   and 1g   almost everywhere with respect to  .  Since 

d g d   and 1( , )g L X  ,  by  Proposition 12, d g d d    .   Therefore, 

               ( ) ( ) 1X X     . 

As  is a regular measure, i.e., it is inner and outer regular for all measurable 

sets in M  , it follows that || is regular and so  is a regular real Borel measure. 
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It now remains to construct the positive real linear functional  on ( , )cC X ℝ with 

the required property (1). 

Let ( , )cC X ℝ  denote the set of non-negative real-valued functions in ( , )cC X ℝ

and define for ( , )cf C X ℝ , 

             ( ) sup ( ) : ( , ) and cf h h C X h f    ℝ . 

Then plainly, ( f ) ≥ 0 for all ( , )cf C X ℝ  and  satisfies 

                ( )f f    for all  ( , )cf C X ℝ . 

This is because ( , )cf C X ℝ  and  ( ) sup ( ) : ( , ) and cf h h C X h f    ℝ . 

Now, for any ( , )ch C X ℝ , ( )
u u

h h h    , since 1  .  If h f , 

u u
h f . It follows that for all ( , )cf C X ℝ , 

                         ( ) sup ( ) : ( , ) and c u
f h h C X h f f     ℝ . 

We have thus shown that (1) holds.  It remains to show that  can be extended 

to ( , )cC X ℝ . 

Now, : ( , )cC X ℝ ℝ  is non-negative and by definition, if 1 2, ( , )cf f C X ℝ , 

1 2 1 2( ) ( )f f f f     .  Obviously, for any real number c ≥ 0,  ( ) ( )c f c f    for 

any ( , )cf C X ℝ .  We need to show that  1 2 1 2( ) ( )f f f f      for 

1 2, ( , )cf f C X ℝ . 

We show that  1 2 1 2( ) ( )f f f f     .  By definition of ( )if , i = 1, 2, given  

> 0, there exists ( , )i ch C X ℝ such that i ih f  and  

                                ( ) ( )i if h      for i = 1, 2. 

We can write ( ) ( )i i ih h   for some number i  with  1i    for i = 1, 2.  Then 

      1 2 1 2 1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) 2 ( ) ( ) 2 ( ) 2f f h h h h h h                      . 

Hence, 1 2 1 1 2 2( ) ( ) ( ) 2f f h h        . 



65 

 

Since 1 1 2 2 1 2 1 2h h h h f f      , 1 1 2 2 1 2( ) ( )h h f f      .  It follows that  

                  1 2 1 2( ) ( ) ( ) 2f f f f       . 

Since  is arbitrary, 1 2 1 2( ) ( ) ( )f f f f     . 

Now, we show that 1 2 1 2( ) ( ) ( )f f f f     . 

Take ( , )ch C X ℝ  with 1 2h f f   .  Let  1 2: ( ) ( ) 0V x X f x f x    .   Then V is 

open in X.  For i = 1, 2, let  

                  1 2

( ) ( )
,

( ) ( )( )

0,

i

i

c

f x h x
x V

f x f xh x

x V

   
 

 . 

Then ( ) ( )i ih x f x  for i = 1,2, since 
1 2

( )
1

( ) ( )

h x

f x f x



 for x V . 

Note that ( ) 0 ( ) 0ih x h x   for x in V.  Therefore, support ih   support h , 

which is compact.  We claim that ih  is continuous for i =1 , 2.  Plainly, ih  is 

continuous on V for i =1 , 2.  For c
a V , 1( ) 0h a   but since 1 2h f f  , ( ) 0h a  . 

As 1h h   and h is continuous at a with ( ) 0h a  , 1h  is continuous at a. Hence, 

h1 is continuous on c
V  and so is continuous on X.   Similarly, we deduce that h2 

is continuous on X .  Hence, 1 2, ( , )ch h C X ℝ .  Observe that 1 2h h h  . 

Therefore, 

          1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )h h h h h f f           . 

Since this holds for all ( , )ch C X ℝ  with 1 2h f f  , 1 2 1 2( ) ( ) ( )f f f f     .  

Therefore, 1 2 1 2( ) ( ) ( )f f f f     .  We can now extend   to ( , )cC X ℝ  as 

follows.  For ( , )cf C X ℝ , write f  as f f f   , where  1

2
f f f    and 

 1

2
f f f   .  Then , ( , )cf f C X   ℝ .   Define 

                       ( )f f f     . 

It is easy to check that we have thus defined a real linear functional on ( , )cC X ℝ .   
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Now for c > 0,          ( )c f c f c f cf cf cf             . 

Suppose c < 0.  Then for any ( , )cf C X ℝ ,     

                   1 1 1

2 2 2
cf cf cf c f f c f f cf

             and 

                      1 1 1

2 2 2
cf cf cf c f f c f f cf

           . 

Therefore,   

                         cf cf cf c f c f
             

                            ( )c f c f c f        . 

Now suppose 1 2, ( , )cf f C X ℝ .  We note that 

                   1 2 1 2 1 2 1 2 1 2f f f f f f f f f f
              .    

Therefore, 

                   1 2 1 2 1 2 1 2 0f f f f f f f f
             and so 

                           1 2 1 2 1 2 1 2f f f f f f f f
             .   

  It follows that  

                       1 2 1 2 1 1 2 2f f f f f f f f
              . 

Hence,      1 2 1 2f f f f     . 

It follows that   is a real linear functional on ( , )cC X ℝ .   

Let ( , )M X ℝ be the collection of all regular real Borel measures with norm given 

by ( )X  .  Note that if 1 2 and    are regular Borel real measures, then 

1 2   is also a regular real Borel measure, by Proposition 21.  Obviously, for 

any real number c, and ( , )M X ℝ , c is a regular real Borel measure.  Thus, 
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( , )M X ℝ is a real linear space. Define a norm on ( , )M X ℝ , by ( )X  for 

( , )M X ℝ .   As in the proof of Theorem 20, it is easy to check that this is 

indeed a norm. Thus, ( , )M X ℝ is a normed real linear space.  The Riesz 

Representation Theorem says that ( , )M X ℝ is a Banach space as explained 

below.  Let  0 ( , ) *C X ℝ  be the set of all bounded real linear functionals on 

0 ( , )C X ℝ with the uniform sup norm.  By the Riesz Representation Theorem, to 

each bounded real linear functional , there corresponds a unique real regular 

measure  such that ( )
X

f f d    for all 0 ( , )f C X ℝ . 

Let  0: ( , ) * ( , )C X M X ℝ ℝ  be this correspondence.  That is,      .    is a 

norm preserving isometric isomorphism.  Since any conjugate space is a Banach 

space,  0 ( , ) *C X ℝ  is a Banach space and so ( , )M X ℝ is a Banach space. 

Remark. 

Now a locally compact Hausdorff topological space is completely regular and a 

normal Hausdorff topological space is also completely regular.  The proof of 

Theorem 20 uses indirectly Lusin’s Theorem by using the result that 

 1,
( ),cC X


  is dense in  1

1,
( , ),L X


  , when X is locally compact and 

Hausdorff.   There is a form of Lusin’s Theorem for normal Hausdorff space X 

for normal measure  on the Borel -algebra, which is outer regular, finite on 

closed sets and inner regular with respect to closed sets so that for a -

measurable function :f X  ℂ  and any  > 0, there exists a bounded continuous 

function g such that   : ( ) ( )x X g x f x    .  Note that the measure  is 

special and is specified and not connected with any bounded positive linear 

functional on BC(X), the collection of all bounded continuous functions on X.   

For such a normal topological space, X, we use the following version of 

Urysohn’s Lemma: 

Suppose X is a normal Hausdorff space, U X  is open, K is closed with K U .  

Then there exists ( )f BC X  such that K f U≺ ≺ .    

However, if one starts with BC(X) and define the measure   associated with a 

positive complex linear functional, : ( )BC X  ℂ , as in the proof of Theorem 1 

in Positive Borel Measure and Riesz Represntation Theorem, but using closed 

subsets instead of compact subsets and pursue the argument there, we find that 
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we could not prove (1) (-subadditivity) there and hence we could not deduce 

countable additivity. 

However, a normal Hausdorff space need not be locally compact and a locally 

compact Hausdorff space need not be normal with the exception of compact 

Hausdorff space, which is always normal.  

For normal Hausdorff space X, and continuous real linear functional, it is 

possible to show that a continuous real linear functional, : ( , )BC X ℝ ℝ , 

where ( , )BC X ℝ is the space of bounded continuous real valued functions 

endowed with the sup norm, is represented by a normal finitely-additive 

measure  (i,e, : M   ℝ is finitely additive, || is outer regular with respect to 

open sets in M   and also inner regular with respect to closed sets in M    and M    

is the algebra generated by the open sets in X ) with bounded variation, as 

                      ( )
X X X

f f d f d f d          for all ( , )f BC X ℝ , 

with ( )X  .  

Riesz Representation Theorem for normal Hausdorff space. 

For normal Hausdorff space and positive complex linear functional on the 

vector space of bounded continuous complex function on X, without additional 

condition on X, we can only associate a finitely-additive measure on the algebra 

generated by the open sets of X.  Thus, we shall discuss integration over a 

finitely-additive measure or charge.   

Suppose A is an algebra of subsets of X.  A set function : [0, ]A    is said to be 

a finitely-additive measure or a charge if for any collection of finite number of 

pair-wise disjoint sets in A,  
1i i n

E
 

, then 
1 1

( )
nn

i i
i i

E E 
 

   
 

∪ .  It is easy to see that 

for an additive measure , ( ) 0    and  is monotonic, that is, if B, C  A and 

B  C, ( ) ( )B C  . We shall use the terms, finitely additive measure and 

charge, interchangeably. A finitely-additive measure  is said to be finite if 

 E   for all E in A.  A simple -measurable function, s, is a linear 

combination of characteristic functions of sets in A of finite -measure, i.e.,  

1
i

n

i E

i

s c 


 , where  or ic ℝ ℂ ,  
iE     for 1  i  n.  The integral of a simple 
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function  
1

i

n

i E

i

s c 


 is defined as usual to be given by  
1

n

i i
X

i

sd c E 


 .  It is 

easy to show that this integral is independent of the representation as simple 

function.  Then by linearity, this definition of the integral is a linear functional 

on the collection of simple -measurable functions.  In particular, this integral is 

a positive linear functional, that is, for a simple function  , 0 0
X

d     .  

Let S(X) be the space of simple functions on X. 

We now assume that  is a finite charge, i.e., ( )X   . 

For a bounded real valued function  f on X, we define the lower Lebesgue 

integral of  f  with respect to  to be    

                          sup : , ( )
X X

f d d f S X          

and the upper Lebesgue integral of  f  to be    inf : , ( )
X X

f d d f S X        . 

Since f is bounded and ( )X   ,   

                                  
X X

f d f d       . 

We say a real valued function  f  is -integrable or simply integrable if the 

lower and upper Lebesgue integrals are the same and we denote the common 

value by 
X

f d .  A bounded complex valued function is -integrable if Re f  

and Im f are -integrable and 

                            Re Im
X X X

f d f d i f d      . 

It is easy to prove the following regarding integration over a finitely-additive 

measure. 

 

Theorem 23.  The collection of all bounded -integrable functions on X with 

respect to a finite charge  on an algebra of subsets of X is a vector space. 

Moreover, the integral is a continuous positive linear functional on the vector 

space of bounded -integrable functions with the sup norm. 
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In order to describe an integral not just for bounded function but for measurable 

function, we state the following version of the integrability of bounded 

measurable function over bounded finite charge.   

 

Theorem 24.  Let X be a non-empty set.  Let AX be an algebra of subsets of X .  

Let Aℝ  be the algebra generated by the collection of half open intervals 

 [ , ) :a b a b .  A bounded real valued function, f , is said to be (A, Aℝ )-

measurable, if for any U in Aℝ , 1( )f U A  .  

Every bounded (A, Aℝ )-measurable real valued function  f  is integrable with 

respect to any finite charge  on A. 

Suppose f is a bounded complex function on X such that both Re f and Im  f  are 

(AX , Aℝ )-measurable, then  f  is integrable and Re Im
X X X

f d f d i f d      . 

Proof. 

Let  :f X  ℝ  be a bounded (AX, Aℝ )-measurable function.  Therefore, there 

exists M > 0 satisfying ( )M f x M    for each x  X .  Let ε >0.  

Given  > 0, partition [ , ]M M  as follows 

      0 1 2 nM y y y y M      ⋯   with 1i iy y    for 1  i  n . 

Let  1: ( )i i iE x X y f x y     for 1  i  n.  That is,  1

1[ , )i i iE f y y
 .  Since f is 

(AX, Aℝ )-measurable, each Ei   AX.  Moreover,  iE are pairwise disjoint and 

( ) ( )iE X    .  The simple -measurable functions, 
1

i

n

i E

i

y 


  and 

1

1
i

n

i E

i

y 


 satisfy  f   .  Then  

                    1

1 1

( ) ( )
n n

i i i i
X

i i

d y y E E X      
 

      . 

It follows by the usual characterization of integrability that  f  is integrable. 
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Theorem 25.  If X is a topological space and µ: AX  →[0,∞) is a finite charge on 

the algebra AX generated by the open sets of X, then ( , )BC X ℝ  the real vector 

space of bounded continuous real valued functions on X, is a partially ordered 

real vector space of all bounded µ-integrable real functions on X.  The ordering 

is the usual ordering: , ( , )f g BC X ℝ , ( ) ( )f g f x g x   for all x in X. 

Proof: If  :f X  ℝ  is continuous, then it is (AX, Aℝ )-measurable, since  

                  1 1 1([ , )) ( , ) ( , )
c

f a b f b f a        AX ,     

The conclusion then follows from Theorem 23. 

Proposition 26.   Suppose Y is a normal Hausdorff topological space.  Suppose 

U is open in Y and K is a closed subset such that K U .  Then there is an open 

neighbourhood of K, i.e., an open set V such that K V V U   . 

Proof.  

Note that K and Uc  are disjoint closed set.  Therefore, by normality there exist 

open sets V  and W such that K  V, Uc  W and V W  .  Hence cV W U  .  

Since cW is closed,  cV W U  . 

Lemma 27.  Urysohn’s Lemma for normal Hausdorff space 

Suppose X is a normal Hausdorff space, U X  is open, K is closed with K U .  

Then there exists ( )f BC X  such that K f U≺ ≺ .    

Proof.      

We shall make use of the rational number in [0, 1] to construct the Urysohn 

function  f . Take an enumeration : [0,1]r ℕ  of the rational numbers, i.e., a 

bijective function of ℕ  onto [0, 1] such that 1 (1) 0r r   and  2 (2) 1r r  .  We 

denote the image ( )r k  by kr .   

Suppose K is closed, K U and U is open.   

Let 
1 0rU U  be the open neighbourhood of K  as given by Proposition 26, such 

that 

                                            0 0K U U U    ------------------   (1). 



72 

 

Since 0K U , let 
2 1rU U  be the open neighbourhood of K as given by 

Proposition 26 such that 

                                             1 1 0K U U U    ------------------- (2). 

We shall inductively define the open set 
kr

U . 

Suppose 
1 2
, , ,

nr r rU U U⋯  have been chosen so that if i jr r  , j n  , then 

j j ir r rU U U  .  Then arrange 1 2, , , nr r r⋯  in increasing order.  Suppose in this 

sequence 1i n jr r r  .  Then using  
j ir rU U , by Proposition 26 choose open 

1nr
U


 

such that  

                                       
1 1j n n ir r r rU U U U
 

   .   -----------------------------  (3) 

In this way we obtain a collection of open sets  :  rational [0,1] rU r   satisfying 

s rU U  whenever s > r, 1K U  and  0U U . 

Define a collection of functions  :  rational [0,1]rf r   by defining : [0,1]rf X    

by 

                    
 ,  if  

( )
0  ,  otherwise

r

r

r x U
f x


 


   

and a collection  :  rational [0,1]sg s   by defining : [0,1]sg X    by 

                    
1 ,  if  

( )
  ,  otherwise

s
s

x U
g x

s

 
 


  . 

Note that 
rr Uf r  .  Since rU  is open for each rational [0,1]r  , rf  is lower 

semi-continuous for each rational [0,1]r .  Observe that  : ( )sx g x X   if  > 

1,    : ( )
c

s sx g x U  if  1s    and  : ( )sx g x    if s  .  Thus sg  is 

upper semi-continuous for each rational [0,1]s . 

Therefore, by Proposition 21, Convex Function, Lp Spaces, Space of Continuous 

Functions, Lusin’s Theorem,  sup :  rational [0,1]r
r

f f r  is lower semi-

continuous and  inf :  rational [0,1]r
r

g g r   is upper semi-continuous. 
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We shall next show that f = g and thus deduce that f is both lower and upper 

semi-continuous and so f is continuous. 

Firstly, we show that  f g  . 

Suppose on the contrary, there exists x in X such that ( ) ( )f x g x . Then by the 

definition of supremum, there exists r in [0,1]ℚ  such that ( ) ( )rf x g x . Next by 

the definition of infimum, there exists s in [0,1]ℚ  such that ( ) ( )r sf x g x .  This 

can only happen if sx U ,  rx U   and r > s.    But r > s implies that 

r r s sU U U U    and so  sx U  and we have a contradiction.  This proves that 

f g . 

Next, we show that f g . 

Suppose on the contrary, there exists x in X such that ( ) ( )f x g x . Then by the 

density of the rational numbers we can find rational numbers r and s such that 

( ) ( )f x s r g x   . 

Since ( )f x s , sx U   and since ( )g x r , rx U  .   As s < r, r r s sU U U U    

and so sx U  and we arrived at a contradiction and so we have f g .  Hence,     

f  = g. 

Plainly 0 ≤  f  ≤ 1.  Now observe that 0rU U  for all r in [0,1]ℚ .  Therefore, 

0( ) 0f x x U     and it follows that support f =   0: ( ) 0x f x U U   and so the 

support of  f  is in U.  Hence f U≺  .  As rK U  for all r in [0,1]ℚ , ( ) 1f x   for 

all x in K.  Therefore,  K f≺  .  It follows that K f U≺ ≺ . 

Our next technical lemma is a partition of unity for normal topological spaces. 

 

Theorem 28.  Partition of unity for normal Hausdorff space 

Suppose  X  is a normal Hausdorff topological space.  Then any closed subspace 

F of X is a normal space. 

Suppose  1 2, , , nU U U⋯  is an open covering of the closed set F, i.e., iU  is open in 

X for 1  i  n  and 
1

n

i
i

F U


 ∪ .  Then there exists ( , )ih BC X ℝ , a continuous 
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bounded real valued function on X , such that i ih U≺  for 1  i  n  and  

1 2 1nh h h   ⋯  on F.  That is to say, 0 1ih   and 0ih   on  ciU  for 1  i  n. 

The collection of continuous functions,  1 2, , , nh h h⋯ , is called a partition of 

unity on F subordinate to the covering  1 2, , , nU U U⋯ of F. 

Proof. 

Our first task is to shrink the covering  1 2, , , nU U U⋯  to another covering 

 1 2, , , nV V V⋯ of F such that i iV U  for 1  i  n. 

We shall proceed to this by induction.  Let  
2

n

i
i

B F U


  ∪ .  Then B is closed in X  

and  

           1
2 2 2

c c c
n n n n

i i i i
i i i i i

B F U F U F U U U
   

                     
       
∪ ∪ ∪ ∪ . 

Therefore, by Proposition 25, there exists open set V1 such that 1 1 1B V V U   . 

Then   1 2, , , nV U U⋯  covers F.  Next consider now 1
3

n

i
i

B F V U


   ∪ .  Then B is 

closed in X and 2B U .  Again, by Proposition 26, there exists open set V2 such 

that 2 2 2B V V U   .  Then  1 2 3, , , , nV V U U⋯ covers F.  In general, suppose 

 1 2 1, , , , , ,k k nV V V U U⋯ ⋯ covers F with 1 k < n, with i i iV V U   for 1  i  k.  

Then let 
1 2

k n

i i
i i k

B F V U
  

  ∪ ∪ if k  n2. It follows that B is closed in X and 

1kB U  .  Applying Proposition 26 again to give open set 1kV    such that 

1 1 1k k kB V V U     .  Proceeding in this way we get  1 2 1, , , ,n nV V V U⋯ covers F.    

Then 
1

1

n

i
i

B F V



  ∪  is closed in X and nB U .  One more application of 

Proposition 26 gives an open set  nV  with n n nB V V U   .  Hence,  1 2, , , nV V V⋯

covers F. 

Then by Lemma 27 (Urysohn’s Lemma), there exists bounded continuous 

function gi on X such that  

i i iV g U≺ ≺  for 1  i  n.   
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Let 1 1h g ,  2 1 2(1 )h g g  ,  … , 1 2 1(1 )(1 ) (1 )n n nh g g g g   ⋯ . Since i ig U≺ , 

i ih U≺  for 1  i  n.   Now take any x F .  Since  1 2, , , nV V V⋯  covers F, jx V

for some 1  j  n and it follows that ( ) 1.jg x   Now 

                 1 2 1 21 (1 )(1 ) (1 )n nh h h g g g       ⋯ ⋯ .  -----------------------  (*) 

We can show this by induction.  (*) is plainly true for n=1 and for n=2.  If (*) is 

true for n1, then  

     1 2 1 1 2 1 1 2 11 (1 )(1 ) (1 ) (1 )(1 ) (1 )n n n n nh h h h g g g g g g g              ⋯ ⋯ ⋯           

                                  1 2 11 (1 )(1 )(1 ) (1 )n ng g g g      ⋯ . 

For any x F , 1 2(1 ( ))(1 ( )) (1 ( )) 0ng x g x g x   ⋯  and so 1 2 1nh h h   ⋯  on F. 

 

We are now ready to explore a Riesz type representation theorem for positive 

linear functional on the space BC(X) with the uniform norm for normal 

Hausdorff space. 

 

Theorem 29. (Riesz Representation Theorem For Normal Hausdorff Space) 

Let X be a normal Hausdorff topological space. Let 

 ( ) : ;   is continuous and boundedBC X f X f ℂ .  Let : ( )BC X  ℂ  be a positive 

complex linear functional on ( )BC X , i.e., whenever ( )f BC X  and f is real 

valued with f  ≥ 0, then ( ) 0f  .  Then we have the following: 

(a) There exists an algebra M   on X, generated by the open sets of X and a 

unique finite finitely-additive measure  , on M  , i.e.,   : M   ℝ  is a finitely 

additive set function, such that 

                              ( )
X

f f d    for all ( )f BC X .  

(b) For all E  M, ( )E   .   

(c) For all E  M,  ( ) inf ( ) :  and  is openE V V E V   .  (Outer regularity) 

(d) For all E  M,  
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          ( ) sup ( ) :  and  is closed in E F F E F X   .  (Inner regularity) 

(e) M   is -complete, i.e., for all N  M   such that ( ) 0,N   for E N , E  M .  

Moreover, ( )X  , when BC(X) is endowed with the sup norm.  

 

Remark. 

Assertion (d) is called inner regular only for finitely additive measure and is 

different from assertion (d) in the complex version of the Riesz representation 

theorem, where it means approximation from below by compact subsets and is 

sometimes refer to as tight measure. These two similarly named notions 

coincide when X is compact and Hausdorff. 

A measure satisfying (c) and (d) in Theorem 29, is said to be normal. 

Proof. 

Firstly, we prove that the measure  is unique.  Then we show the existence of 

the measure  .  The remaining of the proof deals with the conclusions (b) (c) 

(d) and (e) of the theorem. 

Uniqueness of  . 

Suppose 1 2 and    are two finite finitely-additive measures on M    satisfying the 

conclusion of the theorem.  Note that the value of the additive measure,  , is 

entirely determined by the value of  on closed subsets of X by part (d).  Thus, 

it is sufficient to show that 1 2( ) ( )F F   for any closed subset F of X. 

Take any closed subset F of X.  Then F  M  .  Note that, 1 2( ), ( )F F    .  

Therefore, given any 0  , by part (c), there exists an open set V containing F 

such that   

                                     1 1( ) ( )V F    . 

Now we use Urysohn’s Lemma (Lemma 27).  Since X is a normal Hausdorff 

topological space, and F V , with F closed and V open, by Urysohn’s Lemma, 

there exists a continuous function ( )f BC X  such that F f V≺ ≺  .  This means 

that F Vf   .  Note that 



77 

 

       2 2 2 1 1 1 1( ) ( ) ( ) ( )F V
X X X X

F d f d f f d d V F                     .   

Since  is arbitrary, it follows that 2 1( ) ( )F F  . 

Similarly, by reversing the role of 1 2 and   , we can show that 1 2( ) ( )F F  .  

Hence 1 2( ) ( )F F   for any closed subset F of X.  Thus, the uniqueness of the 

measure  is established. 

Now we shall define   first on open set, then on any subset of X.  Subsequently 

we shall define the algebra M  . 

Let V be an open set of X.  Define ( )V by 

                ( ) sup ( ) : ( ) and V f f BC X f V    ≺ . 

For any subset E X , define 

                    *( ) inf ( ) :  and  is open in E V E V V X   . 

Let  M F =   * * *: ( )  and ( ) sup ( ) :  and  is closed in E X E E F F E F X         

and 

M  = { :E X E F  M F for all closed F  X }. 

Now suppose U and V are open subsets of X and V U , then ( ) ( )V U  .  This 

is because    : ( ) and : ( ) and f f BC X f V f f BC X f U  ≺ ≺  so that 

    ( ) sup ( ) : ( ) and sup ( ) : ( ) and ( )V f f BC X f V f f BC X f U U       ≺ ≺ . 

Therefore, if E is open, ( ) ( )E U   for all open U containing E.   Hence, 

 *( ) inf ( ) :  and  is open in ( )E U E U U X E     .  Thus, our definition of *( )E

for any subset E of X is consistent with the open sets in X. 

We shall prove in stages that * is finitely additive on M   and that M   is an 

algebra generated by the open sets in X.    

We note the following properties of the positive (real or complex) linear 

functional   and the function, *, which is define on all subsets of X.   
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(1)   is monotone, i.e., for  and ( )f g BC X  and f and g are real valued,  

( ) ( )f g f g    .  This is because by linearity, ( ) ( ) ( ) ( )g f g f f        

as ( ) 0g f   . 

(2)   * is monotone, i.e., for any subsets A and B of X, *( ) *( )A B A B    . 

If A B , then { :  and  is open in } { :  and  is open in }V B V V X V A V V X   .  

Therefore,    

             *( ) inf{ ( ) :  and  is open in }B V B V V X    

             inf{ ( ) :  and  is open in } *( )V A V V X A    . 

(b) 

Since  ( ) sup ( ) : ( ) and X f f BC X f X    ≺  and as 1 BC(X), ( ) (1)f    for 

0 1f   , we deduce that ( ) (1)X     .  Hence, for all subset E of X, *(E)  

*(X) = (X) < ∞. 

Trivially ( ) 0   . 

We can prove part (e) easily. 

Proof of part (e)  

Suppose *( ) 0E  . Plainly, by the monotonicity of  * , E  M F and that for  

any closed subset F of X, *( ) 0E F    so that E F   M F .  It follows that E 

 M .  This means for any N E , E  M  .  Thus, we may take M    to be -

complete.   

Part (c) of the theorem plainly holds by the definition of  * . 

Therefore, we only need to prove parts (a) and (d).  That is, we need to prove 

that the restriction of * to M  , also denoted by , is a positive charge or a 

finitely-additive positive measure on M  , M   is an algebra, ( )
X

f f d   for all 

( )f BC X and  satisfies part (d). 

Note that * is defined on all subsets of X.  We need to show that * is finitely 

additive on M  .  We have the following consequence of the definition of * on 

all subsets of X, which will contribute to part of the proof of the finite additivity 

of * on M  .   
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(1)  For any finite family  
1i i n

E
 

 of subsets of X,  
1 1

* *( )
nn

i i
i i

E E 
 

   
 

∪ . 

To prove (1), we begin by considering open sets in X.  If 1 2 and V V  are two open 

sets in X, then  1 2 1 2( ) ( )V V V V     .  We shall prove this as follows.  Recall 

that  1 2 1 2( ) sup ( ) : ( ) and  V V g g BC X g V V     ≺ .   Suppose ( )g BC X  and  

1 2g V V≺ .  Then support g  1 2V V . Since support g is closed and plainly,  

 1 2,V V is an open cover for support g, by Theorem 28, we can take a partition of 

unity  1 2,h h  on support g subordinate to the covering  1 2,V V , such that 

( )ih BC X , 0 1ih  , i ih V≺ ,    0
c

i ih V  , i = 1, 2   and 1 2 1h h   on support g.   

Note that support ih Vi  , i = 1, 2.  Hence, we get i ih g V≺  for  i = 1, 2 and 

1 2h g h g g  .  Therefore, 

1 2 1 2( ) ( ) ( ) ( ) ( )g h g h g V V       .  This is true for any ( )g BC X  with  

1 2g V V≺ .  Hence, 

                   1 2 1 2 1 2sup ( ) :  and ( )V V g g V V g BC X V V        ≺ . 

It then follows by induction that for a finite family of open sets,  
1i i n

V
 

,

1 1

( )
nn

i i
i i

V V 
 

   
 

∪ .  With this proven, we shall apply this to arbitrary family of 

subsets  
1i i n

E
 

.  We shall show that 
1 1

* *( )
nn

i i
i i

E E 
 

   
 

∪ . 

Note that *( )iE   for all integer 1  i  n.   By the definition of *( )iE , given 

 > 0, there exists open set iV  such that i iE V   

                               ( ) *( )i iV E
n


    . 

Let 
1

n

i
i

V V

 ∪  .  Then V is an open subset of X.  Take any ( )f BC X  such that 

f V≺ .  Since support f  is closed and support f   V,  
1i i n

V
 

covers support  f.   

Hence, 

                  
1 1 1 1 1

( ) * *
n n n nn

i i i i
i i i i i

f V V E E
n


    

    

        
 

   ∪ . 
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It follows that    
1

*
n

i

i

V E  


  .  Since 
1

n

i
i

E V

∪ ,     

                           
1 1

* * ( ) *
nn

i i
i i

E V V E    
 

      
 

∪ . 

 As  is arbitrary,  
1 1

* *
nn

i i
i i

E E 
 

   
 

∪ . 

(2) Every closed subset of X belongs to M F . 

Take any closed subset F of X.  Then *( )F   . Plainly, by the monotonicity of 

* on subsets of X,  sup *( ) :  and  is closed *( )L L F L F    and so F is in M F . 

(3) Every open subset V of X belongs to M F . 

Take any open subset V of X with  V   .  By definition of   on open subset, 

given  > 0, there exists a bounded continuous function  f  such that f V≺  and 

( ) ( ) ( )V f V      .  Let F = support  f.  Then F V  and so *( ) ( ).F V    

Suppose now W is any open set containing F.  Then f W≺ .  By the definition of 

 W , ( ) ( )f W  .  Therefore, ( )f  is a lower bound for 

 ( ) :  and  is open in V F V V X   and so 

            ( ) *( ) inf ( ) :  and  is open in f F V F V V X     . 

It follows that ( ) ( ) *( ) *( ) ( )V f F V V          .   This means 

 ( ) sup *( ) :  and  is closed in V F F V F X   .  Hence, V  M F . 

(4) * is finitely additive on M F . That is, suppose E1, E2, ….., En are in M F and 

are pairwise disjoint, then  
1 1

* *
nn

i i
i i

E E 
 

   
 

∪ .   Moreover 
1

n

i
i

E

∪   M F . 

We shall prove this in stages, firstly, on closed subsets since closed subsets are 

contained in M F  by (2). 

Suppose 1 2,K K  are disjoint closed subsets of X.  We shall show that 

     1 2 1 2* * *K K K K     .  Since X is normal and Hausdorff, there exists 

open sets, 1 1V K  and 
2 2V K  such that 1 2V V  .   As 1 2K K  is closed, by (2)
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1 2K K  is in M F .  As    1 2 1 2* inf ( ) :  and  is open in K K V K K V V X     , 

given  > 0, there exists open set 1 2W K K   such that 

                        1 2 1 2* ( ) *K K W K K        . 

Note that 1 2 and  W V W V  are open in X and are disjoint.  As, 

 ( )iW V W      for i = 1, 2, by the definition of   on open set, there exists 

( )if BC X  such that i if W V≺   and  ( )i if W V      for i = 1, 2. 

Note that support if   WVi , for i = 1, 2, and so since 1 2, 0f f  , 1 2f f W ≺ . 

Now, 1 1 1 2*( ) *( ) ( ) ( )K K W V W V         as 1 1 2 2 and K W V K W V    , 

                              1 2 1 2( ) ( ) ( ) 2f f f f             

                               ( ) 2W    ,   by definition of ( )W , 

                                 1 2* 3K K    . 

Since  is arbitrary,      1 2 1 2* * *K K K K     .  We have already proved as 

in (1) that      1 2 1 2* * *K K K K      and so      1 2 1 2* * *K K K K     .  

By a simple mathematical induction, if K1, K2, ….., Kn  are closed subsets of X 

and are pairwise disjoint, then  
1 1

* *
nn

i i
i i

K K 
 

   
 

∪  

Now suppose E1, E2, ….., En  are in M F and are pairwise disjoint.   Let 
1

n

i
i

E E

 ∪  .  

Then it follows by the inequality in part (1), 
1 1

*( ) * *( )
nn

i i
i i

E E E  
 

     
 

∪ .  

Since each Ei   M F ,  *( ) sup *( ) :  and  is closed in i iE K K E K X   .  Given  > 

0, there exists closed subset i iK E  such that  

                                *( ) *( ) *( )i i iE K E
n


      . 

Let 
1

n

i
i

H K


 ∪ .   Then  
1

n

i
i

H E E


 ∪ .  Therefore, 

            
1 1

* * * *
nn

i i
i i

E H K K   
 

    
 

∪ ,  
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                                 since K1, K2, …, Kn are pairwise disjoint closed sets,  

                 
1 1 1

1
*( ) *( )

n n n

i i

i i i

E E
n

   
  

      . 

It follows that 
1

*( ) *( )
n

i

i

E E  


  .  Since  is arbitrary, 
1

*( ) *( )
n

i

i

E E 


 .  

Hence this together with part (1) gives 
1

*( ) *( )
n

i

i

E E 


 .  We now show that E  

 M F . 

Since H  is closed, H E  and   
1

* *( ) *( )
n

i

i

H E E    


     It follows that 

  *( ) sup * :  and  is closedE K K E K   .  Therefore, E   M F . 

(5) For all E   M F , given  > 0, there exists closed subset K of X and open 

subset V with K E V  such that *( ) ( )V K V K      . 

For E   M F ,   *( ) sup * :  and  is closedE K K E K   .  Hence given  > 0, 

there exists closed subset K E  such that 

                        *( ) *( ) *( )
2

E K E


     . 

Since  *( ) inf ( ) :  and  is open in E V E V V X   , there exists open set V such 

that E V  and  

                               ( ) *( )
2

V E


   . 

Hence, ( ) *( ) *( )
2 2

V E K
 

      .   By part (4), since K and V  K  M F, 

*( ) *( ) *( )V K V K      and so *( ) *( ) *( )V K V K       . 

(6)  If A1 , A2  M F, then A1  A2 , A1  A2 and A1  A2   M F . 

By (5), given  > 0, there exist closed Ki , open Vi such that Ki  Ai  Vi and 

( )i iV K   for i = 1, 2.  

Then  1 2 1 2 1 1 1 2 2 2( ) ( )A A V K V K K V V K         .  Therefore, 
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                1 2 1 1 1 2 2 2* * * ( ) *( )A A V K K V V K           

                               1 2 12 *( ) 2 *( )K V K        . 

Note that 1 2K V  is closed, 1 2 1 2K V A A    and 1 2 1 2*( ) *( ) 2K V A A      .   

This shows that given any  > 0, there exists a closed set L such that 1 2L A A   

and 1 2 1 2*( ) *( ) ( )A A L A A        .  Hence, 

                     1 2 1 2*( ) sup * :  and  is closedA A L L A A L     . 

Therefore, A1  A2  M F . 

Now,  1 2 1 2 2A A A A A     and as A1  A2, A2  M F  and A1  A2, A2 are disjoint 

and so by part (4),  1 2 1 2 2A A A A A     M F . 

Next,   1 2 1 1 2A A A A A      M F , since A1  A2 and A1  M F . 

(7)  M   is an algebra generated by open sets of X. 

Recall that A  M   if  AK  M F for all closed K of X.  Take A  M  .  We 

shall show that the complement Ac  M .  Now cA K K A K      M F by part 

(6) since K and AK  M F .  Hence, Ac  M .   If  
1

n

i i
A


 is a finite collection of 

sets in M , then by part (6) for any closed K, 
1 1

n n

i i
i i

A K A K
 

    
 
∪ ∪  M F and so 

1

n

i
i

A

∪  M  . 

Next we shall show that if C X  is closed in X, then C  M  .  In particular, X  

M  .   

If C is closed, then C  M F by part (2).   Then CK is closed for any closed 

subset K of X and so CK  M F.   Thus C  M  .  Hence, X  M   and M   is an 

algebra containing all closed subsets of X, hence all open subsets of X.   

(8) M F = M  . 

Suppose E  M F. Then by (6), since by (2) any closed K  M F , EK  M F .  

Hence, E M.  That is, M F  M  . 
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Conversely, suppose E  M  .  Take any open V in X such that E V .  Since V 

is open, by (3), V  M F .  Hence,   ( ) sup * :  and  is closed in V K K V K X   .  

Therefore, given any  > 0, there exists a closed set K  V such that 

 * ( )K V    so that  V K   .  Since by definition of M,  EK  M F, 

there exists closed H E K   such that   * *( )H E K     .   Since 

   E E K V K    , 

                 *( ) * * *( ) 2E E K V K H          .  

As H is closed and H E , this shows that  

               *( ) sup * :  and  is closed in E H H E H X   . 

Therefore, E  M F.  Hence, M    M F .  Thus, M  = M F .   

(9) * is finitely additive on M . 

We have proved that * is finitely additive on M F and since M  = M F , * is 

finitely additive on M .   

(11) For all ( )f BC X ,  ( )
X

f f d   . 

We note that it is sufficient to prove this for real f.   For complex f we may write 

Re Imf f i f  .  Then the real part of  f, Re f , and the imaginary part of  f, Im f , 

are continuous bounded real valued functions.  Then, 

          ( ) Re Im Re Im Re Im
X X X

f f i f f i f f d i f d f d               . 

Let f be a bounded continuous real valued function in ( )BC X .  Let K = support f 

and so K is closed.  Since f is bounded, ( )f X  is contained in a bounded subset 

on the real line.  Thus, we may assume that ( ) [ , )f X a b .  Given  > 0, partition 

[ , ]a b  as follows 

      0 1 2 ny a y y y b     ⋯   with 1i iy y    for 1  i  n . 

Let  1: ( )i i iE x X y f x y     for 1  i  n.   That is,  1

1[ , )i i iE f y y
 .  Since f is 

continuous and so is (M , Aℝ )-measurable, it follows that each Ei is a Borel set in 

the algebra generated by the open and closed sets and is in M .  Moreover  iE

are pairwise disjoint and covers K.  We assume that each iE   .  
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*( ) *( )iE X     and 
1

n

i
i

E X

∪ .  Note that Ei  M F for 1  i  n.  By the 

definition of *( )iE , given  > 0, there exists open set i iW E  such that 

( ) *( )i iW E
n


   .  Note that this holds even if iE  .  Let 1( , )i i iD y y  .  

Then  1

i iU f D  is open and if 
iU  is non-empty, 1 ( )i iy f x y    for all x in iU

. Then i iU E . Let  i i iV W U   and we have ( ) ( ) *( )i i iV W E
n


      and

1 ( )i iy f x y     for all x in Vi  when iV   .  Note that 
1 1

n n

i i
i i

V E X
 
 ∪ ∪ . Take a 

partition of unity  
1i i n

h
 

 on X subordinate to the covering  
1i i n

V
 

 such that, for 

1  i  n, 0 1ih  , i ih V≺  and 1 1nh h  ⋯  on X.  Note that if  iV  , then  

0ih  . Then we have 

           
1

n

i

i

h f f


  since 
1

1
n

i

i

h


  on X, and for 1  i  n, 

            ( ) ( ) ( )i i ih x f x h x y  since i ih V≺  and ( ) if x y  for all x in Vi when iV   , 

and 

            1 1( )i i iy f x y y        for all x in Ei , when iE    

By linearity,  
1

( )
n

i

i

f h f


   .  As  is a positive linear functional and  

 i i ih f h y ,    ( ) ( )i i i i ih f y h y h      for 1  i  n.  Therefore,  

                           
1 1

( )
n n

i i i

i i

f h f y h
 

      . 

Since  i ih V≺  for 1  i  n, by definition of  iV , ( ) ( )i ih V   for 1  i  n.   For 

1  i  n, ia y b   so that 1 0iy a   .  Therefore,  

          1 1

1 1 1

n n n

i i i i i

i i i

y h y a h a h  
  

           

                                1

1 1

n n

i i i

i i

y a h a h
 

 
      

 
   

                               1

1 1

( )
n n

i i i

i i

y a V a h 
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                                    1 1

1 1 1

*
n n n

i i i i

i i i

y a E y a a h
n


   

  

 
        

 
     

                                   1 1

1 1 1 1

* *
n n n n

i i i i i

i i i i

y E a E y a a h
n


    

   

 
        

 
     

                                     1

1 1

* *
n n

i i i

i i

y E a X b a a h    
 

 
        

 
   

                                    
1 1

* *
i

n n

i
E

i i

f d X b a a X a h    
 

 
        

 
      

                                  
1

* *
n

i
X

i

f d X b a a X a h    


 
        

 
 . 

We already knew that  
1

* (1)
n

i

i

X h


 
    

 
 .   Hence,   

         
1

( ) * *
n

i
X

i

f f d X b a a X a h    


 
         

 
  

                 *
X

f d X b a        . 

Since  is arbitrary, ( )
X

f f d   .    

As    is linear,  ( ) ( )
X X

f f f d f d           and so ( )
X

f f d   ,  

Thus, ( )
X

f f d   . 

Now for any f  BC(X), ( ) ( ) ( )
uX X

f f d f d f X X          for 1
u

f  , 

where  sup ( ) :
u

f f x x X   is the uniform sup norm on BC(X).  Therefore,  

                   sup ( ) : ( ) and 1 ( ) (1)
u

f f BC X f X        . 

Hence, ( ) (1)X    . 

Note that the algebra generated by the open sets of X is a subalgebra of M  .  We 

now denote this subalgebra of open sets also by the symbol M   and called it the 

Borel algebra and sets in M   the Borel sets.  Denote  to be the restriction of * 

to the Borel algebra.  Then   is a finite finitely-additive measure or finite 
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charge satisfying (c) and (d) and ( )
X

f f d    for all f in BC(X).  Thus  is 

outer regular and inner regular. 

We say a positive charge or finitely-additive measure  on an algebra 

containing all the open sets is normal, if the conclusion (c) and (d) holds for any 

set E in the algebra without any condition.   

Hence, the finite positive charge or the finite finitely-additive measure  on M   

given in the last theorem is a finite normal charge.  

If need be we may choose the algebra M   to be complete by part (e) . 

This completes the proof of Theorem 29.   

 

Now we consider bounded real linear functional on ( , )BC X ℝ  the space of 

bounded continuous real valued functions on X.  For such a bounded linear 

functional, since 1 ( , )BC X ℝ , we can decompose the bounded real linear 

functional as the difference of two positive real linear functionals. 

 

Proposition 30.  Suppose X is a Hausdorff topological space and 

 ( , ) : ;  is continuous and boundedBC X f X f ℝ ℝ .  Suppose : ( , )BC X ℝ ℝ   is a 

bounded real linear functional.  Then we can decompose  as       such 

that  and 
    are positive real linear functionals and 

(1) (1)          . 

Proof.   

Let ( , )BC X ℝ  denote the set of non-negative functions in ( , )BC X ℝ . 

Define for  f  in ( , )BC X ℝ ,   

                    ( ) sup ( ) : ( , ) and 0f h h BC X h f     ℝ   

                        sup ( ) : ( , ) and 0h h BC X h f    ℝ .                         

This is well defined since  is bounded so that the supremum above exists.  
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Since (0) 0  , ( ) 0f   for all ( , )BC X ℝ .  Plainly, ( ) ( )f f    for all 

( , )f BC X ℝ .  Obviously, for k > 0, ( ) ( )k f k f    . 

We need to show that 1 2 1 2( ) ( ) ( )f f f f       for 1 2, ( , )f f BC X
 ℝ .   

By definition of  ( )if
 , given  > 0, there exists ( , )ih BC X

 ℝ such that 

0 i ih f   and ( ) ( )i if h   for i = 1, 2.  Then we have, as 1 2 1 20 h h f f    , 

           1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) 2 ( ) 2 ( ) 2f f h h h h f f                 . 

Since  is arbitrary, 1 2 1 2( ) ( ) ( )f f f f
       . 

Take ( , )h BC X ℝ  with 1 20 h f f   .  Let  1 2: ( ) ( ) 0V x f x f x   .  Then V is 

open in X.   

Let 1 2

( ) ( )
 , 

( ) ( )( )

0,  

i

i

c

f x h x
x V

f x f xh x

x V

   
 

  .   

We claim that ih  is non-negative, continuous and bounded, 0 i ih f    for i = 1, 

2. 

Plainly, ( ) 0ih x  for all x X , ( ) ( )i ih x f x  for x V  and ( ) ( ) 0i ih x f x  for cx V  

for i=1, 2.     

Since 
1 2

( )

( ) ( )

if x

f x f x
 and h(x) is continuous on the open set V, 

1 2

( ) ( )

( ) ( )

if x h x

f x f x
 is 

continuous on V so that ih  is continuous on V for i = 1, 2.  Now we show that 1h  

is continuous at any point 0

c
x V . For such a 0

c
x V , 1 0( ) 0h x   and also 0( ) 0h x  .   

Since h is continuous at 0x , given any open interval ( , )I    , 0  , containing 

0( ) 0h x  , there exists an open set U containing 0

c
x V  such that ( )h U I .  Now 

for x  U, 1( ) ( )h x h x    implies that 1( )h x I  and so 1( )h U I .  Hence, 1h  is 

continuous at x0.   Therefore, 1h  is continuous on X.  Similarly, we can show that 

2h  is continuous on X.   Note that ( ) 0 ( ) 0ih x h x    and x V .  Therefore, 

support hi  support h and so ( , )ih BC X
 ℝ for i = 1,2.  Then 

1 2( ) ( ) ( )h x h x h x   for all x in X and 1 2 1 2( ) ( ) ( ) ( ) ( )h h h f f
       . 
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This means that for all ( , )h BC X ℝ  with 1 20 h f f   , 1 2( ) ( ) ( )h f f
    .  

Therefore, 1 2 1 2( ) ( ) ( )f f f f
       .  Thus, 1 2 1 2( ) ( ) ( )f f f f

      . 

We now extend this definition of   to all of ( , )f BC X ℝ .  For ( , )f BC X ℝ , 

( )f x  is bounded above, say by a positive constant, N.  Then 0f N  . We 

define ( ) ( ) ( )f f N N      .  This is well defined.  For suppose 0f M  ,  

then  ( ) ( ) ( ) ( ) ( )f N M f N M f M N               so that  

               ( ) ( ) ( ) ( )f N N f M M          . 

It is clear that  is linear on ( , )BC X ℝ . Suppose 1 2, ( , )f f BC X ℝ  and 

1 20, 0f N f M    .  Then 1 2 1 2( ) ( ) ( )f f f f M N M N
            

              1 2( ) ( ) ( ) ( )f N f M M N
           

              1 2( ) ( )f f
    . 

Plainly, (0) 0   and for c ≥ 0, ( ) ( )c f c f     for all , ( )cf C X ℝ . 

In particular, for ( , )f BC X ℝ ,         0 0f f f f              so that 

   f f     .  Thus,  is a linear functional on ( , )BC X ℝ .  Since ( ) 0f   

for 0f  ,  is a positive linear functional on ( , )BC X ℝ .  Note that by definition 

of    for 0f  , ( ) ( )f f  .  Define ( ) ( ) ( )f f f      for ( , )f BC X ℝ . 

Then for 0f  , ( ) ( ) ( ) 0f f f      , it follows that   is also a positive 

linear functional on ( , )BC X ℝ  and      . 

Note that 

             ( ) ( ) ( ) ( ) ( )f f f f f            

                       u u u
f f f           . 

Therefore,       .  Note that for positive linear functionals,  and 
   ,

(1)    and (1)   .  (If   is a positive linear functional, then for any f  

in ( , )BC X ℝ ,  ( ), ( )f f f     .  Thus, if  1f  ,   ( ) (1)f f     as 

1 ( , )BC X ℝ  and since  sup ( ) : 1 and  ( , )
u

f f f BC X     ℝ ,  (1)   .) 
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Recall that  (1) sup ( ) : ( , ) and 0 1h h BC X h     ℝ . 

Take any ( , ) with 0 1h BC X h  ℝ .  Then 1 2 1 1h     .   Therefore, by 

definition of  ,  (2 1) 2 1
u

h h         so that 

(2 1) (2 1 2 1
u

h h h          .  This means,  2 ( ) (1) (2 1)h h        

for all ( , )h BC X ℝ such that 0 1h  . Therefore, by definition of (1) , 

2 (1) (1)    , that is to say, 

(1) (1) 2 (1) (1)         .  Consequently, (1) (1)     . 

This completes the proof of Proposition 30. 

 

Total variation measure for a finitely additive measure 

For a real additive measure,  , on an algebra of A of subsets of X, the variation 

measure of  , is defined to be  :  A    ℝ   given by  

                           
 All finite partitions  of 

( ) sup ( )
i

i
E E i

E E    . 

Note that for any E in A,   ( )E E  .  

It is easy to see that if U  V, then ( ) ( )U V  .  

Note that if   is finite, that is, ( )X    ,   is a finite finitely-additive 

measure.   

Proposition 31.  Suppose : A  ℝ  is a signed finitely-additive measure or real 

finitely-additive measure on the algebra A of subsets of a non-empty set X.  If 

  is bounded or finite, i.e., when ( )X   , then   is a finite finitely-additive 

positive measure.   

The proof of this fact is similar to the proof when  is a complex measure.  It is 

easier as we shall deal only with finite partitions of E in the algebra.  (See 

Theorem 1.) 
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Proof of Proposition 31. 

Plainly,   0   .  We shall show that   is finitely-additive.  Take E  A . 

Suppose  
1

n

i i
F


 is a finite partition of E by disjoint sets in A .  We shall show that  

                             
1

( )
n

i

i

E F 


 . 

We show that  
1

( )
n

i

i

F E 


 as follows. 

For each integer i ,  choose  0 i it F   if    0iF   otherwise set 0it  .  Then 

by definition of  iF , for   0iF  , there exists a partition  , 1

in

i j j
G


 of  iF   such 

that 

                       ,

1

in

i i j

j

t G


   (  ( )iF  ).   --------------------------  (1) 

If   0iF  , then take the trivial partition    ,1i iF G  for iF . 

Then   , ,i j i j
G  is a finite partition of E.   Now,  ,

,

i j

i j

G  is a finite sum. 

Therefore, 

                       ,

,

( ) i j

i j

E G     by definition of ( )E , 

                               ,i j

i j

G     

                              i

i

t  . 

It follows that  
1

( )
n

i

i

E F 


 . 

Next, we show that  ( ) i

i

E F  . 

Let  
1

m

j j
H


 be any other partition of E.  Then for each j,  

1

n

i j i
F H


 is a partition 

of Hj and  
1

m

i j j
F H


 is a partition of iF  .   It follows that 
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1 1 1 1 1 1 1

m m n m n n m

j i j i j i j

j j i j i i j

H F H F H F H   
      

          

                            
1

n

i

i

F


 . 

This holds for any finite partition  
1

m

j j
H


 of E.  Therefore,  

1

( )
n

i

i

E F 


 .  It 

follows that  
1

( )
n

i

i

E F 


  and so   is finitely-additive on A  and is therefore 

a finitely-additive positive measure on A . 

Proposition 32. 

Suppose 1 2     , where 1 2 and    are finite positive charge on A, which is an 

algebra of subset of a non-empty set X.  Then  has finite variation and so || is 

a finite finitely-additive positive measure. Moreover, 1 2( ) ( ) ( )E E E    for all 

E in A. 

Proof. 

Suppose E is in A and  
1

n

i i
E


 is a partition of E by pairwise disjoints sets in A.  

Then  

             
1 2

1 1

( ) ( ) ( )
n n

i i i

i i

E E E  
 

     

               1 2 1 2 1 2

1 1 1

( ) ( ) ( ) ( ) ( ) ( )
n n n

i i i i

i i i

E E E E E E     
  

           

Hence 
 

1 2
All finite partitions  of 

( ) sup ( ) ( ) ( )
i

i
E E i

E E E E         .  Thus, the variation 

measure of   is  bounded and so by Proposition 30, is a finite finitely-additive 

positive measure. 

 

Suppose 1 2    , where  1 2 and   are finite finitely-additive positive 

measures.  Then  ( )E E   

For any finite partition  
1

n

i i
E


 of E by pairwise disjoints sets in A, 
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         1 2 1 2 1 2

1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
n n n

i i i i

i i i

E E E E E E E      
  

          

               
1 2

1

( ) ( )
n

i i

i

E E 


   

               ( )E . 

Similarly,  ( ) ( )E E   .  It follows that  ( )E E  . 

 

Proposition 33.  Suppose X is a topological space and M   is the algebra 

generated by the open sets of X, i.e., Borel algebra.  

Suppose 1 and 2 are two finite normal finitely-additive positive measures on 

M  , i.e., finite normal finitely-additive Borel measures.  Then the total variation 

1 2   is a finite normal finitely-additive Borel measure.  We say a signed 

finite finitely-additive measure, , is normal if its variation is normal.  Hence, 

1 2   is normal. 

Moreover, suppose 1 and 2 are two finite normal finitely-additive signed 

Borel measures on M  .  Then  1  2 is also a finite normal finitely-additive 

signed measure. 

Proof. 

Plainly, if 1 and 2 are two finite normal finitely-additive positive measures on 

M  , then by Proposition 32, 1 2  is a finite signed finitely-additive Borel and 

1 2   is a finite finitely-additive positive Borel measure. The measures 1 and 

2 are normal means that |1| and |2| are normal.   

We show that 1 2   is inner regular. 

1 is inner regular implies that for any E M  , given  > 0, there exists closed 

set K1  E such that 
1 1 1( ) ( )E K    .  That is to say, 

                     
1 1 1 1 1( ) ( ) ( )E K E K       .  -----------------------  (1) 



94 

 

Similarly, as 2 is inner regular, for any E M  , given  > 0, there exists closed 

set K2  E such that  

                       
2 2 2 2 2( ) ( ) ( )E K E K       . ---------------------- (2) 

Let 1 2K K K   and K is closed and K E .  Then by Proposition 32, 

                1 2 1 2( ) ( ) ( ) 2E K E K E K           . 

Hence,  1 2 1 2 1 2( ) 2 ( ) ( )E K E            .  This implies that 

        1 2 1 2( ) sup ( ),   closed and E K K K E       . 

Thus, for any E M  ,  1 2 1 2( ) sup ( ),   closed and E K K K E       .  It follows 

that 1 2   is inner regular. 

We now show that 1 2   is outer regular.   1 and 2 are both outer regular. 

This means for any E M  , given  > 0, there exists an open set V1   E such 

that 
1 1 1( ) ( )V E    .  Therefore, 

1 1( )V E   .  Similarly, there exists an open 

set V2   E such that 
2 2( )V E   .  Let 1 2V V V  .  Then V is open and V E .  

Therefore, by Proposition 32, 1 2 1 2( ) ( ) ( ) 2V E V E V E           .   Hence,  

1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) 2V V E E E                 . 

It follows that  1 2 1 2( ) inf ( ),   open and E V V V E       .  As this holds for 

any E M  , 1 2   is outer regular. 

Therefore, 1 2   is normal and so 1 2  is normal. 

Suppose now 1 and 2 are two finite normal finitely-additive signed Borel 

measures on M  .  That is to say, |1| and |2| are normal finitely-additive 

positive Borel measures. 

Plainly, 1 2  is a finite signed finitely-additive Borel measure. The measures 

1 and 2 are normal means that |1| and |2| are normal.   

We show that 1 2   is inner regular. 
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|1| is inner regular implies that for any E M  , given  > 0, there exists closed 

K1  E such that 1 1 1( ) ( )E K    .  That is to say, 

                     1 1 1 1 1( ) ( ) ( )E K E K       .  -----------------------  (1) 

Similarly, as |2| is inner regular, for any E M  , given  > 0, there exists closed 

K2  E such that  

                       2 2 2 2 2( ) ( ) ( )E K E K       . ---------------------- (2) 

Let 1 2K K K  .  Then K is closed and K E .  Now for any finite partition 
1

n

i i
E


 

of E by pairwise disjoints sets in M , 

   1 2 1 2 1 2 1 2

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )
n n n n

i i i i i

i i i i

E E E E E E E       
   

          . 

It follows that  1 2 1 2 1 2( ) ( ) ( ) ( )E E E X X            .   

Hence, by proposition 32, 1 2   is a finite finitely-additive positive Borel 

measure and from (1) and (2) we get, 

                1 2 1 2( ) ( ) ( ) 2E K E K E K           . 

Therefore,  1 2 1 2 1 2( ) 2 ( ) ( )E K E            .  This implies that 

        1 2 1 2( ) sup ( ),   closed and E K K K E       . 

Thus, for any E M  ,  1 2 1 2( ) sup ( ),   closed and E K K K E       .  It follows 

that 1 2   is inner regular. 

We now show that 1 2   is outer regular.  Now, |1| and |2| are both outer 

regular. This means for any E M  , given  > 0, there exists an open set V1   E 

such that 1 1 1( ) ( )V E    .  Therefore, 1 1( )V E   .  Similarly, there exists an 

open set V2   E such that 2 2( )V E   .  Let 1 2V V V  .  Then V is open and 

V E .  Therefore,  1 2 1 2( ) ( ) ( ) 2V E V E V E           .   Hence,  

1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) 2V V E E E                 . 
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It follows that  1 2 1 2( ) inf ( ),   open and E V V V E       .  As this holds for 

any E M  , 1 2   is outer regular. 

Therefore, 1 2   is normal and so 1 2  is normal. 

Theorem 34.  Suppose X is a normal Hausdorff topological space and 

 ( , ) : ;  is continuous and boundedBC X f X f ℝ ℝ .  Suppose : ( , )BC X ℝ ℝ  is a 

bounded real linear functional. Then there exists an algebra M   on X, containing 

all the open sets of X and a unique finite real finitely-additive measure (signed 

finitely-additive measure),  , on M  ,  expressible as the difference of two finite  

normal finitely-additive positive measures, such that ( )
X

f f d    and  

( )X  .  Let M be the collection of all finite normal real finitely-additive 

Borel measures or finite normal real Borel charge, expressible as the difference 

of two finite normal finitely-additive positive Borel measures or finite normal  

positive Borel charge, with a norm on M  given by ( )X   for  in M.  Then 

the association : ( , )*BC X M ℝ , where ( , )*BC X ℝ  is the real dual space of 

( , )BC X ℝ , given by ( )    , where ( )
X

f f d   , is a linear isometric 

isomorphism preserving norm.  

Proof.        

Suppose X is a normal Hausdorff topological space.  

Suppose : ( , )BC X ℝ ℝ  is a bounded real linear functional. Then by 

Proposition 8, we can decompose  as       such that   and 
    are 

positive real linear functional and (1) (1)          .  By the Riesz 

Representation Theorem (Theorem 29), there are unique finite normal finitely-

additive positive Borel measures, 1 and 2, on M   , the algebra generated by 

the open sets of X, such that 1( )
X

f f d    and 2( )
X

f f d   .  Thus, 

1 2 1 2( ) ( )
X X X

f f d f d f d          .  Let 1 2    . Then  is a finitely- 

additive real measure.  Moreover, by Proposition 33,  is normal and   is a 

normal finitely-additive finite positive measure.   

Then for all ( , )f BC X ℝ , 

              ( )
X

f f d    and 
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             1 2 1 2 1 2
( ) ( ) ( ) ( )

X X X
f f d f d f d                

                      
X X X X X

f d f d f d f d f d                 

                       ( )
u uX

f d f X   . 

Hence, ( )X  .  But  1 2( ) ( ) ( ) (1) (1)X X X            and so 

1 2( ) ( ) ( )X X X      .   

We shall now show that  is unique.   

Suppose there exist finite normal finitely-additive real Borel measures, 1 2 and    

such that 1 2( )
X X

f f d f d     .   Let 1 2     , then 0
X

f d  .  By 

Proposition 33,  is a finite normal finitely-additive real Borel measure.  We 

can write       , where  1
= +

2
    and   1

2
     are finite finitely-

additive positive Borel measures. 

As 0
X

f d   for all ( , )f BC X ℝ , 
X X

f d f d     for all ( , )f BC X ℝ  and 

both define the same positive real linear functional.  Therefore, by the 

uniqueness part of Theorem 29 (Riesz Representation Theorem),    , 

consequently 0   and so 1 2  . 

Hence, we conclude that the real dual space of ( , )BC X ℝ , that is, the space of all 

bounded real linear functional on ( , )BC X ℝ  is isometrically isomorphic (i.e., via 

a norm preserving map) with the space of all normal finitely-additive real 

(signed) Borel measures (i.e., with bounded variation), expressible as the 

difference of two finite normal finitely-additive positive measures, on the 

algebra M   on X, with norm given by ( )X  .    

Remark. The situation with bounded complex linear functional on ( , )BC X ℂ  

with the sup norm is somewhat unclear. 

Since both locally compact Hausdorff space and normal Hausdorff space are 

completely regular, it is natural to seek Riesz type representation theorem for 

positive or bounded linear functional on ( )BC X .   This is a many faceted 

problem.  If we extend to the representation of continuous linear functional on 

( )cC X , the algebra of complex continuous functions endowed with the “c” 
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topology of compact convergence, we have a nice formulation of the 

representation of continuous linear functionals by complex Borel measures with 

compact support, attributed to Brooks and Dietrich, Jr.   We describe this 

development as follows.   

Theorem 35.  Suppose X is a completely regular Hausdorff topological space. 

Let M(X) be the vector space of all regular complex Borel measures on the 

Borel -algebra of  X.  Let ( )cM X  be the subspace of M(X), consisting of all 

regular Borel measure, , which is concentrated on some compact set, i.e, the 

support of  is compact. Then there is an isomorphism of vector space, 

                                : ( ) ( )
c

cM X C X   , 

onto the topological dual of ( )cC X , the algebra of all continuous complex 

functions on X, under the topology T  c of compact convergence, where the 

topology T  c  is defined by the m-semi-norms |KK
f f  for every K K    = 

collection of all compact subspaces of X.  ( )cC X   is the space of continuous 

linear maps ( )cC X ℂ .   is given by ( )    , where ( )
X

f f d    , for all 

( )cf C X .  Moreover,  ( )X    and   is positive if and only if  is 

positive. 

For the details and proof see Chapter 6, Theorem 25.1 of Topological Algebras 

with Involution by Maria Fragoulopoulou. 

 

In another direction if we take the space BC(X) of bounded complex function on 

X, when X is a completely regular Hausdorff space, we can consider the 

topology, the strict topology T  st on BC(X), in between the topology of compact 

convergence T  c and the uniform topology T ∞ given by the sup norm.  For the 

definition of the strict topology see 2.10D Locally Convex Spaces, by Hans 

Jarchow. 

Theorem 36 .  Let X be a completely regular space, and let T   st , be the strict 

topology on BC(X), the space of bounded continuous complex functions.  For 

every T   st -continuous linear form  on BC(X), there is a unique regular 

complex measure ( )M X , the space of regular complex Borel measures on X , 

such that  
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               ( )
X

f f d    for all ( )f BC X . 

The map, ( ( ),BC X  T   st )  M(X), obtained in this way is an isomorphism. 

The three topologies we mentioned above satisfy the relation, T  c  T  st  T ∞ . 

For ( )BC X  with the uniform topology, i.e., with the sup norm, we have the 

following. 

Theorem 37.  Suppose  X is a completely regular Hausdorff topological space.  

Let ( ( ),BC X  T   ∞ ) be the topological dual of  BC(X) with the uniform topology 

T   ∞ .  Then for every  in  ( ( ),BC X  T   ∞ ), there exists �  a unique regular 

Borel measure of the Stone-Cech compactification X  of X such that  

                          � �( )
X

f f d


    ,  

for every f  BC(X), where �f   is the unique natural extension of  f  to X . 

(For the proof of Theorem 36 and Theorem 37, see Theorem 7.6.3 and 

Corollary 7.6.2 of Locally Convex Spaces, by Hans Jarchow.   Theorem 36 is 

Theorem 2.6 of the article, The -compact open topology and its relatives, by 

Denny Gulick, Math Scand 30 (1972) 159-178 and also Theorem 2 of A 

generalization of the strict topology, Math Scand 30 (1972) 313-323 by J. 

Hoffman-JØRGENSEN.) 

When X is a compact Hausdorff space and therefore, a completely regular 

Hausdorff space, Theorem 34, 35 and 36 coincide as C(X) = BC(X), ( )cC X =      

( ( ),BC X  T   ∞) =( ( ),BC X  T   st ), X X   and T  c = T  st = T ∞ . 


