
Chapter 8.  Uniform Convergence and Differentiation.

This chapter continues the study of the consequence of uniform convergence of a
series of function.  In Chapter 7 we have observed that the uniform limit of a
sequence of continuous function is continuous (Theorem 14 Chapter 7).  We shall
now investigate whether the uniform limit of a differentiable function is
differentiable.   Convergence is most effectively treated in the setting of metric spaces
which allow for generalization to the space of bounded functions, whose codomain is
a complete metric space.  But we shall not introduce this setting here, preferring to
use the equivalent technique not phrased in that setting.  Some observation as
extension to "complete metric space"  is apparent.  We shall confine strictly to real
valued functions on subset of the real numbers.

8.1 The Weierstrass M Test

The first test for uniform convergence of a series of function is a form of comparison
test.  

Theorem 1 (Weierstrass M Test).  Suppose  (  f k : E → R , k = 1, 2,  …) is a
sequence of  functions.   Suppose  ( Mk ) is a sequence of non-negative real numbers
for which   is convergent and that for each integer k ≥ 1,  the function  f k is

k=1

∞

Mk

bounded by Mk , i.e.,    for all x in E.   Then the series    f k(x) [Mk
k=1

∞

f k(x)

converges uniformly on E.

Proof.  Since for each x in E,   and since  is convergent , f k(x) [Mk
k=1

∞

Mk
k=1

∞

f k(x)

is convergent for each x in E,  by the Comparison Test (Proposition 12 Chapter 2
Series).   It follows by Proposition 14 of Chapter 3 that  is convergent for

k=1

∞

f k(x)

each x in E.    Hence  is pointwise convergent.  Uniform convergence of  
k=1

∞

f k(x)

 is a consequence of   is uniformly convergent (since it is independent
k=1

∞

f k(x)
k=1

∞

Mk

of x).  Here is how we deduce this.
 is a Cauchy series, since it is convergent.   Hence given any ε >  0,  there exists

k=1

∞

Mk

a positive integer N such that for all n ≥ N and for any p in P, 

                                                  .
k=n+1

n+p

Mk < 2
Thus, it follows that for all n ≥ N , for any p in P and for any x in E, 

                                        ------------------- (1)
k=n+1

n+p
f k(x) [

k=n+1

n+p
f k(x) [

k=n+1

n+p
Mk < 2

Therefore, for all n ≥ N and for all x in E,

                                                   .
k=n+1

∞

f k(x) [ 2 <

Hence, for any integer n ≥ N and for all x in E,
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                                     .
k=1

n
f k(x) −

k=1

∞

f k(x) =
k=n+1

∞

f k(x) <

Therefore, this says that  converges uniformly to   .
k=1

n
f k(x) f (x) =

k=1

∞

f k(x)

Remark.   Condition (1) above defines a notion which we shall call "uniformly
Cauchy".   We may formulate a criterion for uniform convergence in terms of
inequality (1) or being uniformly Cauchy, but it is the M-test that is more readily
applicable, easy to apply. 

8.2 A criterion for Uniform Convergence: Uniformly Cauchy

Definition 2.  A sequence of functions (  f k : E → R ) is said to be uniformly Cauchy
if given any ε > 0, there exists an integer N such  that for all n > m ≥ N and for all x ∈
E .
                                                              .fn(x) − fm(x) <

Theorem 3.  The sequence of functions (  f k : E → R ) converges uniformly if and
only if (  f k : E → R ) is uniformly Cauchy.
                          
Proof.  If the sequence (  f k ) converges uniformly to  f  , then given any ε > 0, there
exists an integer N such  that for all n  ≥ N and for all x ∈ E ,
                                                        fn(x) − f (x) < 2
Therefore, for all integers n, m such that n > m ≥ N and for all x ∈ E ,
                fn(x) − fm(x) = fn(x) − f (x) + f (x) − fm(x)
                                        ,[ fn(x) − f (x) + f m(x) − f (x) < 2 + 2 =
Thus, by Definition 2, (  f k ) is uniformly Cauchy.
Conversely now suppose (  f k ) is uniformly Cauchy.  Then given any ε > 0, there
exists an integer N such  that for all m > n ≥ N and for all x ∈ E .
                                                        .          -----------------------    (1)fn(x) − fm(x) < 2
Hence for each x, ( f k (x) ) is a Cauchy sequence and so (by Cauchy Principle of
Convergence), (  f k (x) ) converges to a function f (x) pointwise.  Thus for any x in E, 
                               ------------- (2)fn(x) − f (x) = fn(x) −

kd∞
lim fk(x) =

kd∞
lim fn(x) − fk(x)

Now by (1), for any k > n ≥ N and for all x ∈ E .
                                                             .fn(x) − fk(x) < 2
Therefore, for all x in E,   .

kd∞
lim fn(x) − fk(x) [ 2 <

It follows, then from (2), that for all  n ≥ N and for all x ∈ E , .  Thatfn(x) − f (x) <
is to say,   f n → f  uniformly on E.

Example 4.
The following three statements are consequence of the Weierstrass M Test.

(1)      is uniformly convergent on the closed and bounded interval [−1,1].   
n=1

∞ xn

n2

Since for all x in [−1,1] and for all positive integers n,   and  isxn

n2 [ 1
n2

n=1

∞ 1
n2

convergent, by Weierstrass M Test (Theorem 1), the series is uniformly convergent.
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(2)     is uniformly convergent on R by Weierstrass M Test since for each
n=1

∞ 1
n2 + x2

positive integer n and for all x in R,  and  is convergent.     1
n2 + x2 [ 1

n2
n=1

∞ 1
n2

(3)   is uniformly convergent on the closed and bounded interval [−a, a],
n=1

∞ x
n2 + x2

where  a > 0.  Since for each positive integer n and for all x in [−a, a]. ,  
and  is convergent, by the Weierstrass M Test, the series  x

n2 + x2 [ a
n2 n=1

∞ a
n2

 is uniformly convergent on the  [−a, a].
n=1

∞ x
n2 + x2

                      
Example 5.
We can have a sequence of functions converging non-uniformly to a constant
function.        
For example the sequence of functions (  f n )  where for each positive integer n, f n :R
→ R is defined by   , is such a sequence.f n(x) = nx

1 + n2x2

For each x in R,  f n (x) → 0.   We deduce this as follows.
For each  x ≠ 0 in R,    as  n → ∞ .  For  x = 0,  for eachf n(x) =

x
n

1
n2 + x2

d 0
0 + x2 = 0

positive integer n,  f n (0) = 0.   Hence f n (0) → 0.   Thus the pointwise limit of the
sequence (  f n )  is the zero constant function, i.e., f n  → f  pointwise, where f (x) = 0
for all x.  
To see that the convergence is not uniform, we examine what it means for a
convergence not to be uniform.   We start with the negation of the definition of
uniform convergence in Definition 11 Chapter 7.   The sequence (  f n ) does not
converge uniformly to f  means there exists an ε > 0 such that for any positive integer
N,  there exists an integer n ≥ N and an element xn in the domain of  f n  such that 

.f n(xn) − f (xn) m
So we shall proceed to find this ε by examining the values  that   canf n(x) − f (x)
take.   Recall that f (x) = 0 for all x.  Hence for all positive integer n and for all x in R,  
         
                             .  f n(x) − f (x) = f n(x) = nx

1 + n2x2 = n x
1 + n2x2 [ 1

Thus the set   is bounded above by 1 for all positive integer n.{ f n(x) − f (x) : x cR}
Therefore, sup{ | f n (x) −  f (x) | : x ∈ R} exists for each positive integer n.   Now by
quick inspection of the function rule for f n , we see that   for each positivef n( 1

n ) = 1
2

integer n.  Consequently, sup{ | f n (x) −  f (x) | : x ∈ R} ≥  for all positivef n( 1
n ) = 1

2
integer n.  We can thus take ε = 1/2.  Thus for each positive integer N in P, choose n =
N and  then we havexN = 1

N
                                       .f n(xn) − f (xn) = f N(xN) = 1

2 m
This means the convergence is not uniform.

We may also show that the sequence (  f n ) is not uniformly Cauchy so that by
Theorem 3 the convergence is not uniform.  Observe that for any positive integers n
and m,
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                      f n(x) − f m(x) = nx
1 + n2x2 − mx

1 + m2x2 =
(n − m)x + mn(m − n)x3

(1 + n2x2 )(1 + m2x2 )

                                            .  =
(n − m)x + mn(m − n)x3

(1 + n2x2 )(1 + m2x2 )

Thus,               .  ---------------------------  (1)f n( 1
n ) − f m( 1

n ) =
(1 − m

n ) + m
n ( m

n − 1)
2 1 + m2

n2

For each positive integer N, choose any n ≥ N, choose m = 3n and take   ThenxN = 1
n .

we have using (1),  .   So taking , wef n( 1
n ) − f m( 1

n ) =
(1 − 3) + 3(2)

2(10) = 1
5 = 1

5
have shown that, for each positive integer N,  we can find integers n and m ≥ N and an
element xN in the domain R, such that   .   Thus, byf n(xN) − f m(xN) m = 1

5
Definition 2,(  f n ) is not uniformly Cauchy.

8.3 Uniform Convergence and Differentiation

Theorem 14 of Chapter 7 says that continuity behaves well under uniform
convergence, i.e., the uniform limit of a sequence of continuous functions is
continuous.  But differentiability is less well behaved and even less well behaved than
integrability.

The uniform limit of differentiable functions need not be differentiable.  There are
various possibilities.   Each  f n  of the sequence (  f n ) may be differentiable but the
sequence of the derivatives (  f n ' ) may not be convergent and when (  f n ' ) is
convergent, the convergence need not be uniform.  Thus, if we were to formulate a
result using the uniform convergence of derivatives, the uniform convergence of the
sequence of derivatives will have to be assumed.  In this way by using the good
behaviour of integration under uniform convergence, we use the Fundamental
Theorem of Calculus to deduce result about the derivatives of the limiting function of
the sequence (  f n ) and the uniform convergence of (  f n ) if the uniform convergence
of the derivatives (  f n ' ) is assumed and that the derivatives   f n '  are all continuous.

Example 6.  A sequence (  f n ) converging uniformly to a function   f   but (  f n ')  
does not converge to  f ' . 
Let  (  f n )  be a sequence of function defined on R by  for x in R.f n(x) = x

1 + nx2

Then  f n  →  f  pointwise, where f  is the zero constant function.  The convergence is
uniform.  We deduce this as follows.

 for x ≠ 0  and .  Now note that f n(x) − f (x) = x
1 + nx2 = 1

1
|x| + n x

f n(0) − f (0) = 0

  achieves its minimum in (0, ∞) at .  Hence the maximum of the1
x + nx x = 1

n
reciprocal is .  As  given any  sup{ f n(x) − f (x) : x c R} = f ( 1

n ) = 1
2 n

1
2 n d 0,

  ε > 0, there exists a positive integer N such that .   Hence for all xn m N u 1
2 n <

in R,
                 .n m N u f n(x) − f (x) [ sup{ f n(y) − f (y) : y c R} = 1

2 n <

This means by Definition 13 Chapter 7,  f n  → f   uniformly.
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Now for each positive integer n,  f n  is differentiable and   .f n
∏ (x) = 1 − nx2

(1 + nx2 )2

For x ≠ 0,   as  n → ∞.  Plainly  f n' (0) = 1 →1 as n → ∞.f n
∏ (x) =

1
n2 − x2

n

( 1
n + x2 )2 d 0

x4 = 0

Therefore, f n'  → g pointwise, where .  Plainly g ≠ f ' = 0.  g(x) =
⎧ 

⎩ 
⎨ 

0, x ! 0
1, x = 0

We note that each  f n is continuously differentiable, i.e., f n'  is continuos.  Therefore,
since g is not continuous at 0,  ( f n' ) does not converge uniformly.

8.4.  Uniform Convergence and Integration

It is not unreasonable in the light of Example 6, to make the requirement that ( f n' ) be
uniformly convergent and that each f n'  be continuous.   Perhaps then we may be able
to deduce   f ' =  .   With the condition that each f n'  is continuous and thend∞lim f n

∏

sequence ( f n' ) is uniformly convergent, by Theorem 14 Chapter 7,   isg =nd∞lim f n
∏

continuous and hence Riemann integrable on any bounded interval.  If we have
Riemann integrability how can we then show that g =  f ' ?  The next question is then
when does the following equation
                                                         --------------------------   (*)¶a

x
g(t)dt =nd∞lim ¶a

x
f n
∏ (t)dt

hold?
That is, dose integrating each f n'  and finding its limit the same as integrating g ?  The
right hand side of (*) by the Fundamental Theorem of Calculus (Theorem 43 Chapter
5) is just 
                        nd∞lim ¶a

x
f n
∏ (t)dt =nd∞lim (f n(x) − f n(a)) = f (x) − f (a)

assuming  f n  → f  pointwise.  So if we assume (*), then we have  
.  It will then follow by the Fundamental Theorem of Calculus¶a

x
g(t)dt = f (x) − f (a)

(Theorem 45 Chapter 5) that g(x) =  f ' (x) for each x since g is continuous.  Hence g =
 f ' .  Thus f n' → f ' uniformly.

In this fashion, information about integration can tell us information about
differentiation.  What we require is a simple result regarding the convergence of
Riemann integrals.  So we state the result below.

Theorem 7.  Suppose ( gn :[a, b] → R ) is a sequence of continuous function
converging uniformly to g:[a, b] → R.  Then g is continuous on [a, b],  

  and   .nd∞lim ¶a

b
gn(t) − g(t) dt = 0 ¶a

b
g(t)dt =nd∞lim ¶a

b
gn(t)dt

Proof.   For each positive integer n,  gn is continuous on [a, b] and so gn is integrable
on [a, b] (see e.g., Theorem 23 Chapter 5).  Since gn → g uniformly, by Theorem 9
Chapter 7, g is continuous on [a, b] and hence integrable on [a, b].  Therefore, gn − g
is Riemann integrable on [a, b].  
Now for each positive integer n,
                       ---  (1)¶a

b
gn(x) − ¶a

b
g(x)dx = ¶a

b(gn(x) − g(x))dx [ ¶a

b
gn(x) − g(x) dx

by Theorem 53 Chapter 5 Integration.
Since gn → g uniformly, given any ε > 0 there exists a positive integer N such that for
all integer n,
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                                  for all x in [a, b].n m N u gn(x) − g(x) < 2(b − a)
Thus,  
                         .  --------------  (2)  n m N u¶a

b
gn(x) − g(x) dx [ ¶a

b

2(b − a) dx = 2 <

Therefore, .nd∞lim ¶a

n
gn(t) − g(t) dt = 0

Now, 
                            n m N u ¶a

b
gn(x) − ¶a

b
g(x)dx [ ¶a

b
gn(x) − g(x) dx

                                                                                                                               by (1)
                                                                    < ε  
by (2).
This means .  This completes the proof.¶a

b
gn(x) d ¶a

b
g(x)dx

8.5 Differentiating A Sequence 

Now we formulate our theorem about differentiation.

Theorem 8.  Let  I be a non-empty interval (bounded or unbounded).  Suppose we
have a sequence of continuously differentiable functions ( f n : I → R ).  That is, for
each positive integer n,  f n is differentiable and the derived function f n ' : I → R is
continuous.
Suppose the following two conditions are satisfied:
               (1)  (  f n : I → R)  converges pointwise to a function  f  : I → R ;
               (2)  (  f n ' : I → R) converges uniformly to a function g : I → R.
Then  f  : I → R is differentiable,  g : I → R  is continuous  f '  =  g and  f n → f  
uniformly on any closed and bounded interval [a, b] ⊆ I.

Proof.   Fix a point a in I.  We shall proceed to use Theorem 7.   For each positive
integer n, since  f n  : I → R is continuous, by the Fundamental Theorem of Calculus
(Theorem 43 Chapter 5) 
                                               .             --------------------   (1)¶a

x
f n
∏ (t)dt = f n(x) − f n(a)

By Theorem 7, since f n' → g  uniformly as given by condition (2), 
                                                  ¶a

x
f n
∏ (t)dt d ¶a

x
g(t)dt

for each x in I.   
Therefore, for each x in I by (1),   
                      -------- (2)¶a

x
g(t)dt =nd∞lim ¶a

x
f n
∏ (t)dt =nd∞lim f n(x) − nd∞lim f n(a) = f (x) − f (a)

by condition (1).
Note that g is continuous on I  by Theorem 14 Chapter 7.  Thus by the Fundamental
theorem of Calculus (Theorem 45 Chapter 5), the function G: I → R defined by   

 is differentiable and G'(x) = g(x) for each x in I.   Therefore, itG(x) = ¶a

x
g(t)dt

follows from (2) that for each x in I ,
                                                  g(x) =  f ' (x)
since G(x) =  f (x) − f (a).  Hence we have proved the first two assertions. 
Observe that since f n' → g uniformly, the sequence of functions ( F n :I → R ), where
for each positive integer n, Fn is defined by  for x in I, alsoFn(x) = ¶a

x
f n
∏ (t)dt
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converges uniformly to   on any closed interval [a, b] in I.  This isG(x) = ¶a

x
g(t)dt

easily deduced as follows.
Since f n' → g uniformly, for any ε > 0, there exists a positive integer N such that for
all integer n,
                                  for all x in [a, b].n m N u f n

∏ (x) − g(x) < 2(b − a)
Hence     n m N u Fn(x) − G(x) = ¶a

x
f n
∏ (t)dt − ¶a

x
g(t)dt

                                                    [ ¶a
x

f n
∏ (t) − g(t) dt [ ¶a

x

2(b − a) =
(x − a)
2(b − a) <

for all x in [a, b].   
Thus  Fn → G uniformly on [a, b]. 
Since for each positive integer n,  Fn (x) =  f n (x) − f n (a) for all x in I (by (1)) and
since Fn → G uniformly on [a, b],  f n (x) − f n (a) converges uniformly to f  (x) − f (a)
uniformly on [a, b] and so since f n (a) → f (a) uniformly,  f n → f  uniformly on [a, b].
This proves the last assertion and thus completes the proof.

Remark.
1.  If  I is a closed and bounded interval, say [a, b], then the conclusion of Theorem 8
will give uniform convergence of ( f n ).
2.  Since by Theorem 3,  ( f n ' ) converges uniformly is equivalent to ( f n ' ) being
uniformly Cauchy, we may replace condition (2) of Theorem 8 by requiring that ( f n '
) be uniformly Cauchy.
3.  Condition (1) of Theorem (8) may be replaced by a simpler looking condition (1)' :
            "There exists an element a in I such that the sequence ( f n (a) ) converges."  
Then condition (2) would imply pointwise convergence for ( f n ) on I.   We deduce
this as follows.  By (1) in the proof of Theorem 8,                   
                                              .        f n(x) = ¶a

x
f n
∏ (t)dt + f n(a)

By Theorem 7, since f n' → g   uniformly by condition (2), 
                                     converges pointwise to  .¶a

x
f n
∏ (t)dt ¶a

x
g(t)dt

Therefore, if ( f n (a) ) is convergent and converges to, say  f (a), then f n converges
pointwise to .¶a

x
g(t)dt + f (a)

4.  A stronger version of Theorem 8 is also true.   Under the hypothesis (1) that  each   
 f n  is differentiable on I (not necessarily continuously differentiable), (2) there exists
an element a in I such that the sequence ( f n (a) ) converges and (3) (  f n' : I → R)
converges uniformly to a function g : I → R, we can conclude that the sequence ( f  n )
converges to a function f such that  f '  = g.  The proof is more delicate since  f n'  may
not be integrable and we shall need to use only the consequence of differentiability.
We shall prove this below.

Theorem 8'.  Let  I be a non-empty interval (bounded or unbounded).  Suppose we
have a sequence of differentiable functions ( f n : I → R ).  
Suppose the following two conditions are satisfied:
               (1)  There exists a point x0 such that the sequence  (  f n (x0) ) is convergent  
               (2)  (  f n ' : I → R) converges uniformly to a function g : I → R.
Then  ( f n : I → R ) converges on I to a differentiable function  f  : I → R such that       
f '  =  g and  f n → f  uniformly on any closed and bounded interval [a, b] ⊆ I.
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Proof.   Take a closed and bounded interval [a, b] containing x0 in I.  We shall show
that ( f n : I → R ) is uniformly convergent on [a, b].
Since  (  f n ' : I → R) converges uniformly to a function g : I → R,  (  f n ' : I → R) is
uniformly Cauchy on [a, b].  This means given ε > 0,  there exists an integer N such
that for all x in I and 
                         n , m ≥ N   ⇒  | f  n' (x) − f m' (x) |  < ε/ (2L),    −−−−−−−−−−− (1)
where L = b − a is the length of a closed and bounded [a, b] in I.
Now  for any integer n, m > 0,
  | f  n(x) − f m(x) | = |( f n (x) −  f m(x) ) − ( f n (x0) − f m (x0)) +  ( f n (x0) −  f m (x0)) |
                            = |( f n '(c) −  f m' (c) )(x − x0) +  ( f n (x0) −  f m (x0)) |
                                          for some c between x and x0 by the Mean Value Theorem
                           ≤  |( f n '(c) −  f m' (c) )| |x − x0| +  | f n (x0) −  f m (x0)) |    ----------  (2)
                                            by the triangle inequality.
Since (  f n (x0) ) is convergent, it is Cauchy.  Hence there exists an integer M, such
that,
                        n , m ≥ M   ⇒  | f n (x0) −  f m (x0)|  <  ε / 2  ----------------------------- (3)   
   
Therefore, it follows from (2) and (3) that for all x in [a, b] ,
        n , m ≥  max (N, M) ⇒ | f  n (x) − f m (x) | < ε |x − x0| /(2L)+ ε / 2 < ε  .
This proves that ( f n ) is uniformly Cauchy on [a, b].  Therefore, by Theorem 3,  ( f n )
converges uniformly to a function, say  f  on [a, b].   For any x in I, there exists a
closed and bounded interval D containing both x and x0 .  Thus, by we have just
proved,  f n  converges uniformly to a function,  f  on D.   By uniqueness of limit, the
limiting function f  is unique.   Hence  f n  converges pointwise to a function,  f  on the
interval I.   In particular, by the above proceeding we can conclude that f n  converges
uniformly to a function on any closed and bounded interval D in I.
We shall now show that the limiting function  f  is differentiable and that  f '  =  g .
Take any c in I. We shall show that  f ' (c) = g(c).

Define  .  Then g n is continuous on I since  f n isgn(x) =
⎧ 

⎩ 
⎨ 
⎪ 

⎪ 

f n(x) − f n(c)
x − c , x ! c
f n
∏ (c) , x = c

differentiable at c  and g n (c) = f n '(c).  Observe that the sequence ( g n ) is pointwise
convergence on I − {c},  since ( f n ) is.   Because  the sequence ( ( f n '(c) ) is
convergent and converges to g(c), ( g n ) is pointwise convergent on I . 
We shall show that ( g n ) is uniformly convergent on I.
For any x ≠ c,
                gn(x) − gm(x) =

f n (x) − f n(c)
x − c −

f m (x) − f m (c)
x − c

                                        = f n
∏ (d) − f m

∏ (d)
                                             for some d between c and x by the Mean Value Theorem.
Since  (  f n ' : I → R) is uniformly Cauchy on I , for all x in I, there exists an integer
N0 such that
                            n , m ≥ N0    ⇒  | f  n' (x) − f m' (x) |  < ε.
It follows that for any x ≠ c,
                      .n, m m N0 u gn(x) − gm(x) = f n

∏ (d) − f m
∏ (d) <

Also, .  n, m m N0 u gn(c) − gm(c) = f n
∏ (c) − f m

∏ (c) <
Hence  ( g n ) is uniformly convergent on I.  
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 Note that  for x ≠ c,   and   Thus gn(x) d
f (x) − f (c)

x − c gn(c) = f n
∏ (c) d g(c).

.  Since each gn is continuous, the uniform limitgn(x) d G(x) =
⎧ 

⎩ 
⎨ 
⎪ 

⎪ 

f (x) − f (c)
x − c , x ! c
g(c) , x = c

G is continuous on I.  Therefore,
                   .x d cLim

f (x) − f (c)
x − c =x d cLim G(x) = G(c) = g(c)

This shows that  f  is differentiable at c and f ' (c) = g(c).
This completes the proof.

8.6 Differentiating Power Series

We shall apply Theorem 8 to power series.  First an example.

Example 9.   For each positive integer n, let     for xf n(x) = 1 + x + x2

2! + £ + xn−1

(n − 1)!
in R.  (This is the familiar truncated exponential expansion.)  f n (x) is the n-th partial
sum of the series 
                                               .

n=0

∞ xn

n!
Define  f 0(x) = 0 for all x in R.
By the Ratio Test (see e.g. Theorem 18 Chapter 7) the series converges for all x, as  

                                                  .  
1
n!
1

(n−1)!
= 1

n d 0 < 1

Thus, for each x in R,  the sequence ( f n (x)) converges to a value which we denote by
 f (x ).   In this way we define a function  f : R → R.  This is the well known
exponential function.  Note that  f n → f  pointwise on R.  Now fix a positive number
K and consider the closed interval [−K, K].
Then we claim that  f n → f  uniformly on [−K, K].  We now proceed to prove just this
fact.
Note that for each non-negative integer n, and for all x in [−K, K],
                                                   .xn

n! [ Kn

n!
Therefore, since  is convergent, by the Weierstrass M Test (Theorem 1) ,  

n=0

∞ Kn

n!

  converges uniformly on [−K, K].   That is to say  f n → f  uniformly on [−K, K].
n=0

∞ xn

n!
  
Now for each  positive integer n,  f n  is a polynomial function and so is continuous on
R and hence on [−K, K].  Therefore, by Theorem 14 Chapter 7,  f  is continuous on
[−K, K].  
For each positive integer n, the derived function is given by
                                         .f n

∏ (x) = 1 + x + x2

2! + £ + xn−2

(n − 2)! = fn−1(x)

Thus the sequence ( f n ') = ( f n-1 ) converges uniformly on [−K, K] to  f .  Hence, by
Theorem 8,  f  is differentiable and   for all x inf ∏(x) =nd∞lim f n

∏ (x) =nd∞lim f n−1(x) = f (x)
[−K, K].  Since this is true for all K > 0,  f ' (x) = f (x) for all x in R. 
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Remark.  We could have proved the uniform convergence of  f  on [−K, K] in
Example 9 by a Comparison Test just as in the proof of the Weierstrass M Test.  It is
really also a test for absolute convergence.  Hence the test is restricted in this way for
application.   Let us follow the argument of the proof.
For each non-negative integer k and for all x in [−K, K],
                                                         .xk

k! [ Kk

k!
Therefore, for any positive integer n,

                                                      ------------------  (1)
k=n+1

n+p xk

k! [
k=n+1

n+p xk

k! [
k=n+1

n+p Kk

k!
Since we know  is convergent, the series  is a Cauchy series.  Hence for

k=0

∞ Kk

k! k=0

∞ Kk

k!
any ε > 0, there exists a positive integer N such that for all n ≥ N and for all p in P,

                                                        .
k=n+1

n+p Kk

k! <

It then follows from (1) that for all n ≥ N and for all p in P,

                                        
k=n+1

n+p xk

k! [
k=n+1

n+p Kk

k! <

for all x in [−K, K].  Therefore, the series   is uniformly Cauchy on [−K, K] and
n=0

∞ xn

n!
so by Theorem 3 it converges uniformly on [−K, K].

Our next result is about the disk of convergence of the power series.

Lemma 10.  The power series   and 
n=0

∞

anxn,
n=1

∞

nanxn−1,
n=2

∞

n(n − 1)anxn−2

 all have the same radius of convergence.
n=0

∞ an
n + 1 xn+1

Proof.  It is sufficient to show that  have the same radius of
n=0

∞

anxn and
n=1

∞

nanxn−1

convergence.  Let r be the radius of convergence of  and r ' the radius of
n=0

∞

anxn

convergence of .  Let x be such that |x| < r '.   Then  is
n=1

∞

nanxn−1
n=1

∞

nanxn−1

convergent.  Since for each integer n ≥ 1,  , by the Comparisonanxn−1 [ nanxn−1

Test for Series (Proposition 12 Chapter 6),  is convergent (for |x| < r ' ).
n=1

∞

anxn−1

Therefore,   is convergent for |x| < r '.  Thus,  |x| ≤ r.    Hence  |x|
n=1

∞

anxn−1 =
n=1

∞

anxn

r ' ≤ r.   (This is because if  r ' > r, then we can choose a x0 such that r < |x0| < r '.
Then by the above argument we can show that   is convergent and

n=0

∞

anx0
n

consequently contradicting that  is divergent since |x0| > r. )
n=0

∞

anx0
n

Now we shall show that r  ≤ r '.   Suppose  |x| < r.   Choose a real number c such that
|x| < c <  r.  Then both series converge.  It follows that an cn  → 0

n=0

∞

anxn and
n=0

∞

ancn

(see Proposition 10 Chapter 6).   Therefore, given any ε > 0, there exists a positive
integer N such that for all integer n ≥ N, | an cn | < ε.   Now take ε = c > 0.   It then
follows that for all integer n,
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                                                  n ≥ N  ⇒ | an cn−1 | < 1.
Therefore, for all integer  n ≥ N,
                                  ------------------    (1)

k=N

n
kakxk−1 =

k=N

n
akck−1 k x

c
k−1

<
k=N

n
k x

c
k−1

Now notice that  is convergent by the Ratio Test (Theorem 21 Chapter 6)
k=N

∞

k x
c

k−1

because for x ≠ 0 ,   and it is plainly convergent
(n + 1) x

c
n

n x
c

n−1 = (1 + 1
n ) x

c d x
c < 1

for x = 0.   Therefore, using (1), by the Comparison Test (Proposition 12 Chapter 6), 
 is convergent.   It follows that ,  is convergent.  Therefore,  |x|

k=N

∞

kakxk−1
k=1

∞

kakxk−1

≤ r '.   It then follows that r ≤ r '.   ( This is because if r > r' then choose x such that r
> |x| > r '.  But we have shown that |x| ≤ r ' and this contradicts  |x| > r '. ).  Therefore,
r = r '.   So   have the same radius of convergence.  For each

n=0

∞

anxn and
n=1

∞

nanxn−1

positive integer, n let bn = (n+1)an+1.   Then   and 
n=1

∞

nanxn−1 =
n=0

∞

bnxn

.    
n=2

∞

n(n − 1)anxn−2 =
n=2

∞

(n − 1)bn−1xn−2 =
n=1

∞

nbnxn−1

Therefore, by what we have just shown,  have the same radius
n=0

∞

bnxn and
n=1

∞

nbnxn−1

of convergence.  It follows that  have the same radius
n=1

∞

nanxn−1 and
n=2

∞

n(n − 1)anxn−2

of convergence.   Now if we let c0 = 0 and for each integer n ≥ 1, let .  Thencn = an−1
n

  
n=0

∞ an
n + 1 xn+1 =

n=0

∞

cn+1xn+1 =
n=0

∞

cnxn

and 
.  

n=0

∞

anxn =
n=0

∞

(n + 1)cn+1xn =
n=1

∞

ncnxn−1

Thus again by what we have proved have the same radius of
n=0

∞

cnxn and
n=1

∞

ncnxn−1

convergence and so  have the same radius of convergence.
n=0

∞ an
n + 1 xn+1 and

n=0

∞

anxn

We deduce from Lemma 10 that the power series obtained from one by differentiating
term by term have the same radius of convergence.   We shall now show that we can
indeed obtain the derivative of the function represented by the power series by term
by term differentiation within the radius of convergence.

Theorem 11.   If    is a real power series with radius of convergence rf (x) =
n=0

∞

anxn

and Dr = {x: |x| < r} is the disc of convergence, then the function f : Dr → R is
differentiable and  for each x in Dr .  Moreover, both f (x) and  f ' (x)f ∏(x) =

n=1

∞

nanxn−1

as power series converge uniformly (and absolutely) on any closed interval [−c, c] ⊆
Dr .

Proof.   We show that for any power series with disc of convergence Dr , the power
series converges uniformly on any closed and bounded interval [−c, c] in Dr = (−r, r). 
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Let   0 < c < r.   Take a fixed real number K such that c < K < r.    Then 
n=0

∞

anKn

converges absolutely (Theorem 4 Chapter 7).  Now since 0 < c < K,  for all x in [−c,
c],    |x| < K.  Therefore, for any integer n ≥ 0,  and for all  x in [−c, c],
                                                  | anxn | ≤ |an Kn| .
Hence, by the Weierstrass M Test (Theorem 1)  is uniformly convergent on

n=0

∞

anxn

the interval [−c, c].
Thus, if we write f (x) for  for each x in [−c, c], then the n-th partial sum 

n=0

∞

anxn

 uniformly on [−c, c].  Similarly, since by Lemma 10 sn(x) =
k=0

n
akxk d f (x)

n=0

∞

anxn

and have the same radius of convergence and hence the same disc of
n=1

∞

nanxn−1

convergence, converges uniformly on [−c, c].  Therefore, bysn
∏ (x) =

k=1

n
kakxk−1

Theorem 8,  f  is differentiable on [−c, c],  sn'  converges uniformly to f '  on [−c, c].   
That is
                                                  f ∏(x) =

n=1

∞

nanxn−1

on [−c, c].  Since this is true for any c with 0 < c < r ,  f  is differentiable on Dr = (−r,
r) and     for each x in Dr .   This completes the proof.f ∏(x) =

n=1

∞

nanxn−1

Remark.

1. Theorem 11 says that we can differentiate a power series term by term in its disc
of convergence.  This is a very important property of power series function.

2. It is Taylor's Theorem that links power series with other theory of functions.
3. Thus a real power series represents an infinitely differentiable function  f  on its

interval of convergence and all the derivatives can be obtained by term wise
differentiation (Theorem 11).  We can thus express the coefficient an  in terms of
the derivatives of  f .

4. We may prove Theorem 11 directly without using Theorem 8 as follows:
Take x with |x| < r  and  T, S such that |x| < T < S < r.  .
For real x, and h such that 0 < |h| ≤ T − |x|, we have
                   1

h ((x + h)n − xn ) = (x + h)n−1 + (x + h)n−2x + £ + x

Hence                        ,1
h ( f (x + h) − f (x)) =

n=1

∞

gn(h)

where  for h ≠ 0.gn(h) = an((x + h)n−1 + (x + h)n−2x +£+ x)
Define     Then gn is continuous for all h in R.   In particulargn(0) = nanxn−1.
                             for  |h| ≤ T − |x|  -------------------  (1)gn(h) [ n|an|Tn−1

Now   because 0 < T/S < 1  Therefore, for all sufficiently large n wen( T
S )n d 0

have
                                   or           n( T

S )n [ T nTn−1 [ Sn
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Since   is convergent, it follows by the Comparison Test that 
n=0

∞

|an|Sn

 is convergent.   Then by the Weierstrass M Test (Theorem 1), it
n=0

∞

n|an|Tn−1

follows from (1) that   converges uniformly on {h: |h| ≤ T − |x|}.
n=1

∞

gn(h)

Therefore, its sum, i.e., its limiting function is continuous at 0 by Theorem 13
Chapter 7.   This means
                 as h → 0.1

h ( f (x + h) − f (x)) =
n=1

∞

gn(h) d
n=1

∞

gn(0) =
n=1

∞

nanxn−1

Hence    f ∏(x) =
n=1

∞

nanxn−1.

Thus by Lemma 10, both f (x) and  f ' (x) have the same radius of convergence
and so converge uniformly (and absolutely) on any closed interval [−c, c] ⊆
Dr .

            5.  Putting x = 0 we can deduce from Theorem 11 that f '(0) = a1  and  f (n) (0) = n!an .
This shows that one can deduce the coefficient an from the sum function, that is
the limiting function  f .

8.7 Using Taylor's Theorem

Example 12.  Use of Taylor's Theorem.
Suppose we have the following differential equation:
                           f '   =  f   with   initial condition f (0) =1.
Suppose we have proved that sufficiently well behaved differential equations have
unique solutions.  Then suppose this equation has a solution  f  on the interval [−K,
K].  Then  f  is differentiable and so it is continuous and hence bounded on [−K, K].    
Thus
                                          | f (x) | ≤ M  for all x ∈ [−K, K].
Since  f '  = f ,   | f ' (x) | ≤ M for all x ∈ [−K, K].  Now Apply Taylor's Theorem
(Theorem 44 Chapter 4) with expansion around x0  = 0.  Then we have for each n ≥ 2,  

         ,f (x) = f (0) + x f ∏(0) + £ + 1
k! xkf (k)(0)£ + 1

n! xnf (n)(0) + xn+1 f (n+1)( x,n)
(n + 1)!

where θ x, n  is some point between 0 and x.  Now by the initial condition f '(0) =  f (0)
=1.  It follows that f (n) (0) = f (0) = 1 for any positive integer n.   Thus the Taylor
expansion becomes

                                  .f (x) = 1 + x + £ + 1
k! xk£ + 1

n! xn + xn+1 f ( x,n)
(n + 1)!

Now we know that the series ( see Example 9)
                                                .1 + x + £ + 1

k! xk£ + 1
n! xn +£

converges uniformly on [−K, K].  In particular, the modulus of the Lagrange form of

the remainder   .  Since  as n → ∞,  xn+1 f ( x,n)
(n + 1)! [ Kn+1 M

(n + 1)! Kn+1 M
(n + 1)! d 0

 as n → ∞  by the Comparison Test for sequences.    Hence for eachxn+1 f ( x,n)
(n + 1)! d 0

x in [−K, K],     as n → ∞ .   Therefore, by thef (x) −
k=0

n 1
k! xk = xn+1 f ( x,n)

(n + 1)! d 0
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Comparison Test for sequences (Proposition 8 Chapter 2),   for any xf (x) =
n=0

∞ 1
n! xn

in [−K, K].   Since this is true for any  K > 0,   for all x in R.   Thus,f (x) =
n=0

∞ 1
n! xn

the vanishing of the Lagrange remainder  plays a critical roleRn(x) = xn+1 f (n+1)( x,n)
(n + 1)!

in showing that the solution of the differential equation is given by the infinite Taylor
series  .

k=0

n 1
k! xk

Example 13.  A function that does not admit an infinite Taylor series expansion.

Let  f : R → R be defined by .  f (x) =
⎧ 

⎩ 
⎨ 

e− 1
x2 , x ! 0

0, x = 0
Then since the exponential function is differentiable,  f  is thus a composition of two
differentiable functions on x ≠ 0 and so is differentiable at x ≠ 0.   Now

          
xd0+
lim

f (x) − f (0)
x − 0 =

xd0+
lim e− 1

x2

x =
xd0+
lim 1/x

e1/x2 =
xd0+
lim −1/x2

e1/x2 (− 2
x3 )

=
xd0+
lim x

2e1/x2 = 0

by L'Hôpital's Rule and that    We can show in exactly the same manner
xd0+
lim 1

e1/x2 = 0.
that 
 .  Hence,   and so .
xd0−
lim

f (x) − f (0)
x − 0 = 0

xd0
lim

f (x) − f (0)
x − 0 = 0 f ∏(0) =

xd0
lim

f (x) − f (0)
x − 0 = 0

( We can also use the fact that for x ≠0,  so that .  Thus  for x ≠ 0,  e
1

x2 m 1
x2

1
e1/x2 [ x2

 and so by the Comparison Test,   .   It follows that    0 < 1/x
e1/x2 [ x

xd0
lim 1/x

e1/x2 = 0

 . ).f ∏(0) =
xd0
lim

f (x) − f (0)
x − 0 =

xd0
lim 1/x

e1/x2 = 0

For x ≠ 0,    ,  where  is a polynomial in f ∏(x) = e− 1
x2 2

x3 = 2
x3e1/x2 = p1( 1

x )e− 1
x2 p1( 1

x )

,   p1 (y) = 2y 3 .  1
x
We now examine the limit of the first derivative.  
       

xd0+
lim f ∏(x) =

xd0+
lim p1( 1

x )e− 1
x2 =

td∞
lim p1(t)e−t2 =

td∞
lim

p1(t)
et2 =

td∞
lim 6t2

2tet2 =
td∞
lim 3t

et2 =
td∞
lim 3

2tet2 = 0

by L'Hôpital's Rule and that  because .    In exactly the same
td∞
lim 1

tet2 = 0
td∞
lim tet2 = ∞

way we show that  .  Hence 
xd0−
lim f ∏(x) = 0

                                                             .
xd0
lim f ∏(x) = 0

Note that  f  is continuous at x = 0, since .  Therefore,  the
xd0
lim f (x) = 0 = f (0)

existence of  implies that f  is differentiable at x = 0 and that 
xd0
lim f ∏(x)

.  This means that   f ' is continuous at x = 0.  f ∏(0) =
xd0
lim f ∏(x) = 0

We shall show that for each positive integer n,   and consequently, 
xd0
lim f (n)(x) = 0

.f (n)(x) = 0
First we claim that for each positive integer n,   
                                                         ------------------------------   (1)f (n)(x) = pn( 1

x )e− 1
x2

where  is a polynomial in .pn( 1
x ) 1

x
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We shall prove this statement by induction.  Note that (1) is true for n =1, as we have
observed.  Now assume that (1) is true for n, i.e.,  .f (n)(x) = pn( 1

x )e− 1
x2

Differentiating we have,
                        f (n+1)(x) = pn

∏ ( 1
x )(− 1

x2 )e− 1
x2 + pn( 1

x )( 2
x3 )e− 1

x2

                                       .= − 1
x2 pn

∏ ( 1
x ) + 2

x3 pn( 1
x ) e− 1

x2

But is a polynomial in .  Therefore, letting − 1
x2 pn

∏ ( 1
x ) + 2

x3 pn( 1
x ) 1

x
, we see that  .    Thus (1) ispn+1( 1

x ) = − 1
x2 pn

∏ ( 1
x ) + 2

x3 pn( 1
x ) f (n+1)(x) = pn+1( 1

x )e− 1
x2

true for n+1 and so by mathematical induction, (1) is true for all positive integers.  
We next examine the limit   We shall now show that for all positive integer

xd0
lim f (n)(x).

n,
                                               .

xd0
lim f (n)(x) = 0

Now note  by a  repeated use
xd0+
lim f (n)(x) =

xd0+
lim pn( 1

x )e− 1
x2 =

td∞
lim pn(t)e−t2 =

td∞
lim

pn(t)
et2 = 0

of the L'Hôpital's Rule.
[We can first compute the limit
                  

td∞
lim t2k+1

et2 =
td∞
lim

(2k + 1)
2

t2k−1

et2 =
td∞
lim

(2k + 1)!!
2k

t
et2 =

td∞
lim

(2k + 1)!!
2k+1

1
tet2 = 0

by a repeated use of the L'Hôpital's Rule. ]  
Similarly,  .  

xd0−
lim f (n)(x) =

xd0−
lim pn( 1

x )e− 1
x2 =

td −∞
lim pn(t)e−t2 =

td −∞
lim

pn(t)
et2 = 0

Therefore, .    Note that ,  and f (n-1)  is continuous at x = 0
xd0
lim f (n)(x) = 0

xd0
lim f (n)(x) = 0

implies that and consequently f (n) is continuous at 0 since it isf (n)(0) =
xd0
lim f (n)(x) = 0

differentiable there.  
[We can use L'Hôpital's Rule, for this deduction.  

          by L'Hôpital'sf (n)(0) =
xd0
lim

f (n−1)(x) − f (n−1)(0)
x − 0 =

xd0
lim

f (n−1)(x)
x =

xd0
lim

f (n)(x)
1 = 0

Rule, since  exists and equals 0.]
xd0
lim f (n)(x)

We thus have for integer n ≥ 1,

                                      .f (n)(x) =
⎧ 

⎩ 
⎨ 
⎪ 

⎪ 
pn( 1

x )e− 1
x2 , x ! 0

0, x = 0
Therefore, the n-th degree Taylor expansion of  f  about x = 0 gives,

        f (x) = f (0) + x f ∏(0) + £ + 1
k! xkf (k)(0)£ + 1

n! xnf (n)(0) + xn+1 f (n+1)( x,n)
(n + 1)!

                  = 0 + x $ 0 + 0
2! $ x

2 +£ + 1
k! xk $ 0£ + 1

n! xn $ 0 + xn+1 f (n+1)( x,n)
(n + 1)!

                  = xn+1 f (n+1)( x,n)
(n + 1)!

for some θ x, n  between 0 and x.

Hence the remainder,   cannot converge to 0 as n tends to ∞ forxn+1 f (n+1)( x,n)
(n + 1)!

otherwise   f  would be identically the zero constant function and thus giving a
contradiction as f  is not a constant zero function.  Therefore, we cannot write  f (x) as
an infinite Taylor series.  In particular the sequence cannot be bounded.(f (n+1)( x,n))

8.8 Convergence of Taylor Polynomials.

We now state Taylor's Theorem with Lagrange form of the remainder without proof.
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Theorem 14. Taylor's Theorem (with Lagrange form of the remainder).  
Let I  be an open interval containing the point x0 and n be a non-negative integer.
Suppose   f  : I → R has n+1 derivatives.  Then for any x in I,
  

f (x) = f (x0) + 1
1! (x − x0) f ∏(x0) + £ + 1

k! (x − x0)kf (k)(x0)£ + 1
n! (x − x0)nf (n)(x0) + Rn(x)

 ,
where the term Rn(x) is the Lagrange form of the remainder and is given by
                                      Rn(x) = 1

(n + 1)! (x − x0)n+1f (n+1)( )

for some η between x and x0. 

(Reference: Theorem 44 Chapter 4.)

As we have seen in Example 12 and 13, in order to write  f  as a Taylor series we need
to show that the remainder Rn(x) converges to 0 as n → ∞ for all x.  One advantage of
having the series representation of a function is to consider differentiating the
function by simply differentiating the terms of the series within the disk of
convergence or to consider integrating the function term by term within the disk of
convergence.  

Now if  f  is a function defined on an open interval I having derivatives of all order,
i.e.,  f  is a smooth function,  then Theorem 14 says that for all integer n ≥  1,  f  has a
Taylor polynomial 
                                              pn(x) =

k=0

n 1
k! (x − x0)kf (k)(x0)

about the point x0 in I  and  f (x) = pn(x) + Rn(x).  If  pn(x) → f (x) for x in I, then a
Taylor series expansion of the function  f : I → R about the point x0 is the series 
                                                      .

k=0

∞ 1
k! (x − x0)kf (k)(x0)

In particular, at each point x in I,
                                                      nd∞lim pn(x) − f (x) = 0
which is equivalent to .  Thus  f  admits a Taylor series expansion ifnd∞lim Rn(x) = 0
and only if it has derivatives of all order and .nd∞lim Rn(x) = 0

We shall now investigate the convergence of pn(x) to f (x).  We do this via the
Lagrange form of the remainder Rn(x).

The next result makes use of a criterion of the convergence of Rn(x) to 0.

Theorem 15.  Suppose f  : I → R is a function defined on the open interval I, having
derivatives of all order.  Let x0 be a point in I.  Suppose there exists a closed interval    
  [x0 −r, x0 +r] in I such that for every integer n ≥ 1 and for all x in [x0 −r, x0 +r], there
exists M ≥ 0 such that
                                                         .            f (n)(x) [Mn

Then  if  |x − x0 | ≤ r.f (x) =
k=0

∞ 1
k! (x − x0)kf (k)(x0)

Proof.    By Theorem 14, for all x in [x0 −r, x0 +r],
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     for some η between x and x0 pn(x) − f (x) [ 1
(n + 1)! (x − x0)n+1f (n+1)( )

                            [ 1
(n + 1)! rn+1M n+1

                                                 since    for all x such that |x − x0 | ≤ r ,f (n+1)(x) [Mn+1

                          .[
(Mr )n+1

(n + 1)!

Since  as n → ∞ , by the Comparison Test, pn → f  uniformly on               
(Mr )n+1

(n + 1)! d 0

  [x0 −r, x0 +r].   Hence,   if  |x − x0 | ≤ r.f (x) =
k=0

∞ 1
k! (x − x0)kf (k)(x0)

Theorem 15 can be applied to functions with easily observed bounded derivatives of
all order.  Thus sine and cosine are such functions.

Example 16.
   sin(x) =

n=0

∞ (−1)n

(2n + 1)! x2n+1 = x − x3
3! + x5

5! + £ + (−1)n+1 x2n−1

(2n − 1)! + £

for all x in R.

Let  f (x) = sin(x).  We  only need to know that sin' (x) = cos(x) and cos' (x) = −sin(x).
Hence f ' (x) = cos(x),  f (2)(x) = −sin(x),  f (3)(x) = −cos(x),  f (4)(x) = sin(x),  f (5)(x) =
−cos(x),  and in general,  f (2n+1)(x) = (−1)n cos(x),  f (2n)(x) = (−1)n sin(x) for integer n ≥
0.   Therefore,  f (2n+1)(0) = (−1)n  and  f (2n)(0) = 0.   Thus the Taylor polynomial about
x = 0 has only odd powers of x.

For integer n ≥ 0 ,   and p2n+2(x) =p2n+1(x) =
k=0

n f (2k+1)(0)
(2k + 1)! x2k+1 ==

k=0

n (−1)k

(2k + 1)! x2k+1

p2n+1(x).
For all integer n ≥ 0,  | f (n) (x) | ≤ 1, assuming that |sin(x)| , |cos(x) | ≤ 1.  We denote
here f (x) by     f (0)(x) .  Therefore, by Theorem 15,  pn → f  uniformly on [ −K, K], for
any K > 0.  Hence pn (x) → f (x) = sin(x) for all x in R.  

The following is an application of Taylor's series.

Proposition 17.  The Euler constant e is irrational.

Proof.   By Taylor's Theorem (Theorem 14), for each integer n ≥ 0,
   ex = 1 + x + £ + 1

k! xk£ + 1
n! xn + xn+1

(n + 1)! e n

for some θn between 0 and x.   Hence for x in [0, 1],
   .ex − 1 + x + £ + 1

k! xk£ + 1
n! xn = xn+1

(n + 1)! e n

Hence taking x =1,
                         .0 < e − 1 + 1 + 1

2! £ + 1
k!£ + 1

n! = 1
(n + 1)! e n [ 1

(n + 1)! e

This means for any integer n ≥ 0,
                                 --------------  (1)0 < e − 1 + 1 + 1

2! £ + 1
k!£ + 1

n! [ 1
(n + 1)! e

We have shown in Chapter 6 in the section on Euler constant γ , that

.
k=1

n−1 1
k + 1 < ¶1

n 1
t dt = ln(n) <

k=1

n−1 1
k
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Hence we have     and consequently taking exponentiation weln(4) > 1
2 + 1

3 + 1
4 > 1

get    e < 4.  Thus from (1) we get
                                    -------------- (2) 0 < e − 1 + 1 + 1

2! £ + 1
k!£ + 1

n! [ 4
(n + 1)!

for any integer n ≥ 0.  Thus if e is rational, say  in its lowest terms, then from (2)e =
p
q

we get for any inter n ≥ 0 
                                   -------------- (3)0 <

p
q − 1 + 1 + 1

2! £ + 1
k!£ + 1

n! [ 4
(n + 1)!

Let n = max(4, q).    Multiply (3) by n! we get
                              .   --------- (4)0 <

n!p
q − 2n! + n!

2! + £ + n!
k!£ + 1 [ 4

n + 1 [
4
5

But the term  is an integer since every term in the
n!p
q − 2n! + n!

2! + £ + n!
k!£+ 1

expression is an integer.  (4) then says it is an integer in (0, 4/5], contradicting that
there is no integer in (0, 4/5].  Hence e is irrational.

8.9  Continuity of Power Series, Abel's Theorem

Now we go back to the question of continuity of a power series function at the
boundary of the disc of convergence, if the power series is convergent there.   For real
power series, if the series is convergent at the boundary of the disc of convergence,
then it is also continuous there, a result attributed to Abel.  Even if we do not have
convergence at the boundary, for instance if R is the radius of convergence and if 

 exists, though  is divergent, then one has a definition of "sum"
xdR−
lim

n=0

∞

anxn
n=0

∞

anRn

for the divergent series to take on this limit.  This means that it is possible to define
the sum of a series in entirely new ways that give finite sum to series that are
divergent in Cauchy's sense.  For series that are convergent in Cauchy's sense and if it
is also convergent in these new ways of summing the series, then we call this a
regularity or consistency result.  The notions of Abel summability and Cesaro
summability are regular ones.  The results called Tauberian theorems that give
condition so that given the summability in whatever new way of a series, it will also
be convergent in Cauchy's sense.  For example, Alfred Tauber (1886-1942) proved
that if   is Abel summable to the value A and if nan → 0 as n →∞, then 

n=0

∞

an
n=0

∞

an

converges to A in the sense of Cauchy.  We shall prove Abel's regularity theorem.

Theorem 18 (Abel's Theorem, Abel, Niels Henrik, 1802-29)
Suppose the real power series  has radius of convergence R > 0.  If it

n=0

∞

anxn

converges at x = R, then it converges uniformly in [0, R].  Similarly, if it converges at
−R, then it converges uniformly in [−R, 0].

Proof.   We may assume that the radius of convergence is 1.  This makes the proof
easier and more elegant.   We may use the change of variable x = Ry to change the
power series if need be to one with radius of convergence 1.  With this change of
variable,

,
n=0

∞

anxn =
n=0

∞

anRnyn =
n=0

∞

bnyn
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where bn = an Rn .  Thus converges absolutely for |y| < 1 and diverges when |y|
n=0

∞

bnyn

> 1.
Now we assume the radius of convergence is 1.  Suppose at the boundary x = 1,  

 is convergent.  We may assume that .  
n=0

∞

anxn =
n=0

∞

an
n=0

∞

an =nd∞lim
k=0

n
ak = 0

(If need be, we may redefine the new a0 to be the old .   Suppose a0(old)-nd∞lim
k=0

n
ak

.  Then we let ck = ak for integer k > 0, c0 =a0 −L.  Then  and  nd∞lim
k=0

n
ak = L

n=0

∞

cn = 0

 is convergent if and only if   is convergent.  Plainly   is uniformly
n=0

∞

an
n=0

∞

cn
n=0

∞

anxn

convergent on [0, 1] if and only if   is uniformly convergent on [0, 1] because
n=0

∞

cnxn

the constant term a0 and c0 do not affect the Cauchy condition.)
Thus we may assume that
(i) the radius of convergence of  is 1;

n=0

∞

anxn

(ii)  is convergent and
n=0

∞

an

(iii) .
n=0

∞

an = 0

For each integer n ≥ 0, let .   Then (iii) says sn → 0.   Plainly, an = sn − sn-1sn =
k=0

n
ak

for integer n ≥ 1 and a0 = s0.  We shall rewrite the partial sums of   in a more
n=0

∞

anxn

useful form.  For each integer n ≥ 0,
                  .   --------------------   (1)

k=0

n
akxk = a0 +

k=1

n
(sk − sk−1)xk = s0 +

k=1

n
(sk − sk−1)xk

We shall show that  is uniformly Cauchy on [0, 1].
n=0

∞

anxn

(We can actually use (1) to deduce that the power series is continuous at x = 1.  We
shall pursue this later.)
For any integer N ≥ 1 and for any integer p ≥ 1,

               
k=N+1

N+p
akxk =

k=N+1

N+p
(sk − sk−1)xk =

k=N+1

N+p
skxk −

k=N+1

N+p
sk−1xk

                              =
k=N+1

N+p
skxk −

k=N

N+p−1
skxk+1 =

k=N+1

N+p
skxk − x

k=N

N+p−1
skxk

                              = (1 − x)
k=N+1

N+p−1
skxk + sN+pxN+p − sNxN+1

                               .        ------------------------  (2)= (1 − x)
k=N

N+p−1
skxk + sN+pxN+p − sNxN

Therefore, it follows from (2) and triangle inequality that for any integer N ≥ 1, any
integer p ≥ 1 and for x ∈ [0, 1],

k=N+1

N+p
akxk [ (1 − x)

k=N

N+p−1
sk xk + sN+p xN+p + sN xN

                                                 

                                                  . ------------------  (3)[ (1 − x)
k=N

N+p−1
sk xk + sN+p + sN
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Now since sn →0, |sn| → 0.   For each integer n ≥ 0, let  
                Mn = sup {|sn| , |sn+1|, …}= sup {|sj | :  j is an integer and j ≥ n}.
Then for each integer n ≥ 0, Mn ≥ 0 and   since .nd∞lim Mn =

nd∞
lim sup sn = 0 nd∞lim sn = 0

From (3) we have that for any integer N ≥ 1, any integer p ≥ 1 and for x ∈ [0, 1],

                 
k=N+1

N+p
akxk [ (1 − x)

k=N

N+p−1
MNxk + 2MN = MN

k=N

N+p−1
xk(1 − x) + 2MN

                                     [ MN
k=N

N+p−1
xk −

k=N

N+p−1
xk+1 + 2MN

                                     [MN(xN − xN+p) + 2MN = MNxN(1 − xp) + 2MN
                                     .            ------------------------------------- (4)[MN + 2MN = 3MN
Now since Mn → 0 as n → ∞ ,  given any ε > 0, there exists a positive integer N0 such
that for any integer n,  n ≥ N0 ⇒ Mn < ε /3.  Thus it follows from (4) that for any
integer         N ≥ N0, any integer p ≥ 1 and for any x ∈ [0, 1],

.
k=N+1

N+p

akxk [ 3MN <

Therefore,   is uniformly Cauchy on [0, 1].   Thus, by Theorem 3, 
k=0

∞

akxk
k=0

∞

akxk

converges uniformly on [0,1].
The case that  is convergent at the other end point -1 and  is

k=0

∞

akxk
k=0

∞

ak(−1)k = 0

similar.  Just note that for any integer N ≥ 1, for any integer p ≥ 1 and for x in [−1,0],

                ,
k=N+1

N+p
akxk =

k=N+1

N+p
(−1)kak x k

k=N+1

N+p
(sk − sk−1) x k =

k=N+1

N+p
skxk −

k=N+1

N+p
sk−1xk

 where .  We can then deduce (3) and (4) with the same notation butsn =
k=0

n
(−1)kak

with |x| in place of x and deduce in like manner the uniform convergence of  
k=0

∞

akxk

on [−1,0].

Corollary 19.  Suppose the real power series  has radius of convergence R >
n=0

∞

anxn

0.   If it converges at x = R to a value L, then .  That is to say the
xd R−
lim

n=0

∞

anxn = L

power series function  is continuous at x = R.   If the series converges at x = −
n=0

∞

anxn

R to a value L' , then , hence the power series function  is
xd −R+
lim

n=0

∞

anxn = L∏

n=0

∞

anxn

continuous at x = − R.

Proof.   By Theorem 18, if  is convergent at R, then  is uniformly
n=0

∞

anxn
n=0

∞

anxn

convergent on [0, R].  Therefore, by Theorem 14 Chapter 7,   is continuous on  
n=0

∞

anxn

   [0, R] because for each integer n ≥ 1, the n-th partial sum  is asn(x) =
k=0

n−1
akxk

continuous polynomial function and (sn ) converges uniformly on [0, R].  Thus  
 .   Similarly if  is convergent at −R, then  is

xd R−
lim

n=0

∞

anxn =
n=0

∞

anRn = L
n=0

∞

anxn
n=0

∞

anxn
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uniformly convergent on [−R, 0] by Theorem 18.   Again by Theorem 14 of Chapter
7, the consequence of uniform convergence is continuity at x  = −R.   The conclusion
about the right limit at −R then follows.

Example 20.  
We shall illustrate the technique of using Abel's formula in the proof of Theorem 18
to deduce continuity at an end point of the interval of convergence.
Suppose the radius of convergence of  is 1 and .  Then  

n=0

∞

anxn
n=0

∞

an = 0

 .
xd 1−
lim

n=0

∞

anxn = 0

Proof.   
For each integer n ≥ 0,
                            ,   ------------   (1)

k=0

n
akxk = a0 +

k=1

n
(sk − sk−1)xk = s0 +

k=1

n
(sk − sk−1)xk

where .   sn =
k=0

n
ak

Then following (1) for all x in [0, 1], 

            
k=0

n
akxk = s0 +

k=1

n
skxk −

k=1

n
sk−1xk =

k=1

n
skxk −

k=0

n−1
skxk+1 + s0

                          =
k=1

n
skxk − x

k=0

n−1
skxk + s0 = (1 − x)

k=1

n−1
skxk + snxn − s0x + s0

                          .= (1 − x)
k = 0

n−1
skxk + snxn

Suppose N is a positive integer.  Then for n > N+1,  for all x in [0, 1],

.
k=0

n
akxk = (1 − x)

k = 0

N
skxk + (1 − x)

k =N+1

n−1
skxk + snxn

Thus, for n > N+1,  for all x in [0, 1],

                   by triangle
k=0

n
akxk [ (1 − x)

k = 0

N
sk xk + (1 − x)

k =N+1

n−1
sk xk + sn xn

inequality

                            ,         ----------------   (2)[ (1 − x)
k = 0

N
sk xk + (1 − x)

k =N+1

n−1
sk xk + sn

since 0 ≤ x ≤ 1.
Note that sn →0, |sn| → 0.   For each integer n ≥ 0, let  
                Mn = sup {|sn| , |sn+1|, …}= sup {|sj | :  j is an integer and j ≥ n}.
Then Mn ≥ 0 for all positive integer n and   since .nd∞lim Mn =

nd∞
lim sup sn = 0 nd∞lim sn = 0

So if n ≥ N+1,  |sn| ≤ MN .  It then follows from (2) that for n > N+1 and for all x in [0,
1],
                      

                    
k=0

n
akxk [ (1 − x)

k = 0

N
sk xk + (1 − x)

k =N+1

n−1
MNxk + MN

                                        [ (1 − x)
k = 0

N
sk xk + MN + MN

                                                                                                      since 

(1 − x)
k =N+1

n−1
xk [ 1
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                                   .                          ------------------------  (3)[ (1 − x)
k = 0

N
sk + 2MN

Since Mn → 0, there exists a positive integer L such that for all integer n,
.n m L u Mn < 4

Thus, from (3), for all n ≥ L+2 and all x in [0,1],

 .
k=0

n
akxk [ (1 − x)

k = 0

L
sk + 2ML

Therefore,  .
k=0

∞

akxk [ (1 − x)
k = 0

L
sk + 2ML < (1 − x)

k = 0

L
sk + 2

If we let ,  then we have= /2

1 +
k = 0

L
sk

> 0

.1 − < x < 1 u
k=0

∞

akxk < (1 − x)
k = 0

L
sk + 2 < 2 + 2 =

This means  .  Hence  is continuous at x = 1.                 
xd 1=
lim

n=0

∞

anxn = 0 =
n=0

∞

an
n=0

∞

anxn

  

Example 21.
ln (1+ x)  has the following power series expansion for −1 < x ≤ 1.

    for  −1 < x ≤ 1.ln(1 + x) =
n=1

∞

(−1)n+1 xn

n
We shall start with the geometric series 

    for |x| < 1.1
1 + x = 1 − x + x2 − x3 +£ =

n=0

∞

(−1)nxn

This is a power series expansion for .  The radius of convergence plainly is 1.1
1 + x

Take any real number K such that 0< K < 1.  Then  converges uniformly on
n=0

∞

(−1)nxn

[−K, K] by Theorem 11.    It follows from Theorem 7 that we can integrate the
function term by term in [−K, K].  Thus

 for all x in [−K, K].¶0

x 1
1 + t dt =

n=0

∞

(−1)n xn+1

n + 1
But the left hand side is ln(1+x).   Hence for any real number K such that 0 < K <1,

  for all x in [−K, K].ln(1 + x) =
n=0

∞

(−1)n xn+1

n + 1

Therefore,    for all x in (−1, 1).  Now  for x =ln(1 + x) =
n=0

∞

(−1)n xn+1

n + 1 =
n=1

∞

(−1)n+1 xn

n

1, the series  is convergent by Leibnitz's Alternating series test.
n=1

∞

(−1)n+1 1
n

Therefore, by Abel's Theorem (Corollary 19), 
.   By the continuity of ln(1+x) at x = 1,

xd1−
lim

n=0

∞

(−1)n xn+1

n + 1 =
xd1−
lim ln(1 + x) =

n=1

∞

(−1)n+1 1
n

 we then have ln(2) = ln(1+1) .  Thus   for −1 <=
n=1

∞

(−1)n+1 1
n ln(1 + x) =

n=1

∞

(−1)n+1 xn

n
x ≤ 1.

Exercises 22.
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1.  Determine whether each of the following sequences (of functions) converge
uniformly on the given domain.

      (i)    on [0, 1] ;   (ii)    on [0, 1] ;  (iii)   on [0, 1] l
sin(nx)

n
1

3n − x
1

nx + 2

            (iv)   on [0, 1] ;  (v)  x - x n  on [0, 1]  ;  (vi)    on [a, b] , a < b.(x − 1
n )2 2n + x

n + 3
2.  Use the Weierstrass M-Test to prove that each of the following series is uniformly

convergent on the given domain.   

           (i) .   on R ;  (ii) .   on [−a, a], a > 0 ; 
n=1

∞ sin(nx)
2n

n=1

∞ x2 + n
x2 + n4

           (iii)  .   on [−a, a],  0 < a < 1 ;  (iv)    on [0, 1]  
n=1

∞

(n + 1)xn
n=1

∞ xn(1 − x)
n

                  (Hint: Find maximum value of x n(1−x) in [0, 1]) .

3.   Let  .  Discuss how you might prove that  f  is continuous on [0,f (x) =
n=1

∞ xn/2

n(n!)2.
1].

4.   (Realizing function as a power series.)  

(i) Prove that      for |x| < 1.1
1 + x = 1 − x + x2 + £ =

n=0

∞

(−1)nxn

Discuss how you might prove that 
 (ii)    for |x| < 1,ln(1 + x) = x − x2

2 + x3

3 +£ =
n=0

∞ (−1)n

n + 1 xn+1

and  (iii)   for |x| < 1.−1
(1 + x)2 = −1 + 2x − 3x2 + £ =

n=1

∞

(−1)nnxn−1

5.   Use the power series expansion of     for |x| < 1 to1
1 − x = 1 + x + x2 +£ =

n=0

∞

xn

prove that
       (a)  .   if  |x| < 1;

n=1

∞

nxn = x
(1 − x)2

       (b)  .   ;
n=0

∞ n
n + 1 xn =

⎧ 

⎩ 
⎨ 
⎪ 

⎪ 

x + (1 − x) ln(1 − x)
(1 − x)x if 0 < |x| < 1

0, if x = 0

       (c)   . .
n=1

∞ xn

n(n + 1) =
⎧ 

⎩ 
⎨ 
⎪ 

⎪ 
( 1

x − 1) ln(1 − x) + 1 if 0 < |x| < 1
0, if x = 0

       Give reasons for the steps you take.  

       (This question is an example of power series manipulation.)

6.   (Optional)  Determine the radius of convergence of the Bessel function of the first
kind of order zero   J 0(x) given by  .   Write out the first 4J0(x) =

n=0

∞ (−1)n

(n!)2
x
2

2n

terms of J 0(x).

Show that J 0(x) satisfies the differential equation  x
d2y
dx2 +

dy
dx + xy = 0

(Bessel’s differential equation of order zero).
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7.   Find all those x for which the following series converge.  

            (i)   ;   (ii)   ;    (iii)   .
n=1

∞ n2(n + 2)
(n + 5)3n xn

n=1

∞ 3 n

n xn
n=1

∞ 2n + 3n

n2 (2x + 1)n

            (Hint:  Use ratio test.)

8.    Use trigonometric formula to prove that  4 sin3 (x) = 3 sin(x) - sin(3x).    Use this
and the power series expansion for sin(x) to show that   

(i)    for all real x;  sin3(x) = 3
4 n=1

∞

(−1)n+1 32n − 1
(2n + 1)! x2n+1

(ii)  Use partial fraction and obvious series expansion of the resulting rational
functions, or otherwise, show that   .   for |x| < ½ .x

1 + x − 2x2 = 1
3 n=1

∞

[1 − (−2)n]xn

9.    Assuming that y’’ + y = 0,  y(0) = 0,  y’(0) =1 has a solution given by a power
series.  Find the power series and determine its radius of convergence.
(Hint:  Use the three conditions to obtain relation among the coefficients of the
power series and solving the relation.)      

10.  Find the radius of convergence of .  ,y(x) = a0(1 − x2) − a1
n=0

∞ x2n+1

(2n + 1)(2n − 1)
where a0 and a1 are arbitrary real numbers.

       Show that  y(x) satisfies the differential equation (1− x2 )y’’ = − 2 y on its interval
of convergence.

11.  Show that  f n (x) = (1 − x2)xn  converges uniformly on [−1, 1] and find its limiting

function g.  Hence conclude that .    ¶
0

1

f n(x)dx d 0

12.  Explain what results you would use to show that   is continuous on R.
n=1

∞ e−nx2

n2

13.  Show that any power series is the Taylor's series of its sum.

14.  For the following functions determine their Taylor series centred at the points
indicated and determine the radius of convergence in each case.
 (a)  sin - 1(x) , 0    (b) cos(x), π / 2   (c)  tan-1(x), 0  (d) cosh(x), 0  
 (e)  , 0  (f)  tan-1(x), 0  (g) ln(1+x), 0  (h) a x , −1 (a > 0)ln 1 + x

1 − x
 (i)    , 0      (j)   , 0  [Hint: cos(2x) = 1 − 2sin2(x) .]¶0

x
e−t2 dt ¶0

x sin2(x)
t2 dt

15.  Prove that for |x| < 1/2.
         .9x

(1 + 2x)(1 − x)2 =
n=1

∞

3n + 2 + (−1)n+12n+1 xn

16.  Prove that
       (i)     for |x| < 1,ln((1 + x)(1+x) ) + ln((1 − x)(1−x) ) = x2 + x4

2 $ 3 + x6

3 $ 5 + x8

4 $ 7 + £

      (ii)    for |x| > 1 ,2 ln(x) − ln(x + 1) − ln(x − 1) = 1
x2 + 1

2x4 + 1
3x6 + £
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     (iii)    for x > 0.1
2 ln(x) = x − 1

x + 1 + 1
3

x − 1
x + 1

3
+ 1

5
x − 1
x + 1

5
+ £

17.  For each β >1, prove that the series  converges pointwise on the
n = 1

∞

sin x
n

interval [0, ∞), to a continuous function, but the convergence is not uniform on [0, ∞),
 (Hint for non-uniform convergence: use the inequality for any x ≥ 0, sin(x) ≥ x −
x3/6.)

18.  For each β such that 0 ≤ β ≤ 1,   diverges for all x > 0.  Show that
n = 1

∞

sin x
n

whenever xβ is defined and not zero,  is divergent.  (Hint: use the hint
n = 1

∞

sin x
n

for question 17.)

19.  Prove that the series  converges uniformly to a differentiable
n = 1

∞ 1
n sin x

n

function on [− K , K] for any constant K > 0.  Hence deduce that 
n = 1

∞ 1
n sin x

n
converges pointwise to a differentiable function  f   on R such that 

                             .f ∏(x) =
n = 1

∞ 1
n n cos x

n

However, prove that  is not uniformly convergent on R.  (Hint: see
n = 1

∞ 1
n sin x

n
the hint for question 17.)
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