
Chapter 7.  Series of Functions and Power Series

Introduction.   Taylor’s Theorem for the expansion of a function is the first step to

expanding a function as a power series.  Brooke Taylor derived the Theorem that

bears his name in his “Methodos Incrementorum Directa et Inversa (1715)”.  Basically

Taylor derived the well known formula from the Gregory-Newton formula.  The

expansion at the point x =0 is now known as Maclaurin’s theorem.  This was given in

Colin Maclaurin’s “Treatise of Fluxions (1742)”.  His proof uses his method of

undetermined coefficients.  However both men did not worry about convergence.  The

Lagrange form of the remainder for the Taylor’s series is named after him who said

that the series should not be used without taking into consideration of the remainder.

However, convergence was considered much later by Cauchy who stressed that to

obtain a convergent series, the remainder must tend to zero.  Cauchy gave in his

“Cours d’analyse”, the Cauchy principle of convergence and also gave us the root test.

 Cauchy considered the question of   is continuous if each un(x) is.  He also� un(x)
claimed that if  is convergent, then one may integrate the series term by term.� un(x)
He overlooked the need for uniform convergence.  Karl Weierstrass had the idea of

uniform convergence as early as 1842.  He used the notion of uniform convergence to

give conditions for the integration of a series term by term.  His approximation of

continuous function on a closed and bounded interval by polynomial is now a

powerful method in numerical mathematics.

We shall investigate many of these ideas from power series to power series functions:

differentiation and integration of power series functions, uniform convergence of a

sequence of  functions.  We shall revisit Taylor’s Theorem, investigate its

convergence statement and the Weierstrass Approximation Theorem.

7.1 Power series

Definition 1.  A power series is a series of the form   .�
n=0

∞

anxn

It is a real power series if x, an are in R for all n and a complex power series if  x, an ∈
C  for all n.

Most of the results about power series apply equally well to complex series.

Example 2.

(1)   Exp(x) =    .  Here , x can be real or complex.1 + x + x2

2!
+£ + xn

n!
+£ an = 1

n!

(2)   .  Here, , a0 =1 andcos(x) = 1 − x2

2!
+ x4

4!
+£ + (−1)n xn

(2n)! +£ a2n =
(−1)n

(2n)! , n m 1

a2n-1 = 0 for n ≥ 1.            

(3)   .  Here, ,  sin(x) = x − x3
3!

+ x5

5!
+£ + (−1)n+1 x2n−1

(2n − 1)! +£ a2n−1 =
(−1)n+1

(2n − 1)! , n m 1

   a0 =0 and a2n = 0 for n ≥ 1.        

Definition 3.  If we define  on the understanding only for x for whichf (x) = �
n=0

∞

anxn

the series   converges, then  f  is a function defined on some subset of  R (or C�
n=0

∞

anxn
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as appropriate).  That is,  f : D → R (or C)  is a function with domain D = {x ∈∈∈∈ R

(respectively C):  is convergent.}.  The function f  may be continuous,�
n=0

∞

anxn

differentiable, integrable, etc.  Thus in our Example 2 above, we have defined the

exponential function exp, cosine and sine functions for complex argument as well.

First we have a theorem about what the domain can be.

Theorem 4.  Let   be a power series.  There are three possibilities.�
n=0

∞

anxn

(1)    converges only when x = 0 and diverges everywhere else.�
n=0

∞

anxn

(2)    converges (absolutely) for all x,  or  �
n=0

∞

anxn

(3)  There exists a real number r > 0 such that  converges absolutely for |x| < r  �
n=0

∞

anxn

and diverges for |x| > r.  The power series   may converge or diverge when |x| =�
n=0

∞

anxn

r.

Our proof will make use of the Comparison Test for series.  Let D = {x ∈∈∈∈ R

(respectively C):  converges absolutely.}.  First we shall show that if D�
n=0

∞

anxn

contains a point different from 0, then D contains an open disk with 0 as its centre.

The proof is for both real and complex series.  By a disk with centre x0 and radius r >

0,  we mean the generic term for the set {x : |x − x0| < r} in R or C.  For the complex

case, it is the usual meaning of the 2-dimensional disk but for the real case, it is just

the interval (x0 − r, x0 + r).  We shall use this terminology for both real and complex

series unless otherwise specified.  Before we proceed, we prove the following useful  

observation.

Proposition 5.  If the power series    is convergent at some point x0 ≠ 0,  then �
n=0

∞

anxn

 is absolutely convergent for all x such that |x| < |x0|.  �
n=0

∞

anxn

Proof.  Suppose x0 ≠ 0 and   is convergent.  Then by Proposition 10 of Chapter�
n=0

∞

anx0
n

6,  .  Hence the sequence  is convergent and so the sequence  isanx0
n d 0 (anx0

n ) (anx0
n )

bounded (see Theorem 11 Chapter 2 Sequences).  That means there exists a real

number M > 0 such that 

                                              for all integer n ≥ 0.    --------------------    (1)anx0
n [ M

Now for any x such that |x| < |x0|,

                                                          .        -------------------------------  (2)
x
x0

= � < 1

Therefore,

                               by  (1)  and (2).anxn = anx0
n x

x0

n

[ M�n

Now since β < 1,   is convergent as  is a convergent geometric�
n=0

∞

M�n = M �
n=0

∞

�n �
n=0

∞

�n

series.  (See Example 4 of Chapter 6.).  Therefore, by the Comparison Test for Series   
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    (Proposition 12 Chapter 6 Sequences),   is convergent.  Hence,  is�
n=0

∞

anxn �
n=0

∞

anxn

absolutely convergent for all x such that |x| < |x0|.

Now we return to the proof of Theorem 4.

Proof of Theorem 4.  Observe that  always converge when x =0.  Recall  D =�
n=0

∞

anxn

{x :  converges absolutely.}.  Hence 0 ∈ D and D ≠ ∅.  If D = {0}, then for�
n=0

∞

anxn

any x ≠ 0,  is divergent.  This is because if for some x0 ≠ 0,  is�
n=0

∞

anxn �
n=0

∞

anx0
n

convergent, then by Proposition 5,  is absolutely convergent for all x such that�
n=0

∞

anxn

|x| < |x0|.  This would contradict that D = {0}. Thus if D = {0},   converges�
n=0

∞

anxn

only when x =0 and diverges everywhere else. This gives conclusion (1) of Theorem

4.

Now suppose D ≠ {0}.  This means there exists x0 ≠ 0 such that  converges�
n=0

∞

anx0
n

absolutely.  Then by Proposition 5, for all x such that |x| < |x0|,,  converges�
n=0

∞

anxn

absolutely.  Hence we have

                                                         { x : |x| < |x0| } ⊆ D .    --------------------------    (3)

We now investigate the diameter of D.

Let  D+ = {|x| : x ∈ D }.  Obviously 0 ∈ D+ since 0 ∈ D.  Since D ≠ {0}, by (3), [0, |x0|)

⊆ D+.  Since, x0 ∈ D,  [0, |x0|] ⊆ D+. Now if m < n and m, n ∈D+ , then by what we

have just shown, [0, n] ⊆ D+.  Therefore, [m, n] ⊆ D+.  This means D+ is an interval

containing 0. Clearly D+ is nontrivial as D ≠ {0}.  Therefore, either D+ is an

unbounded interval or a bounded non trivial interval. Now we shall deduce the second

conclusion as follows.

If D+ is an unbounded interval, then since D+ ⊆ [0, ∞ ) and 0 ∈ D+ , D+ =[0, ∞ ). Then

we claim that  converges absolutely for all x.  This is deduced as follows.�
n=0

∞

anxn

Since D+ =[0, ∞ ), for any x, there exists a real number K such that |x| < K.  Since K ∈

D+ =[0, ∞ ), there exists x0 such that K = |x0| and x0 ∈ D. Therefore,   converges�
n=0

∞

anx0
n

(absolutely) and so by Proposition 5,  is absolutely convergent. Therefore, �
n=0

∞

anxn

 converges absolutely for all x.�
n=0

∞

anxn

If D+ is bounded, then there exists y0 ∉ D such that diverges.  Then for any y�
n=0

∞

any0
n

with |y| > |y0|,  is divergent.  This is because if  is convergent, then by�
n=0

∞

anyn �
n=0

∞

anyn

Proposition 5,  is convergent since |y| > |y0|.  This  contradicts that  is�
n=0

∞

any0
n �

n=0

∞

any0
n

divergent.  Thus, for any y with |y| > |y0|,  is divergent and so is�
n=0

∞

anyn �
n=0

∞

anyn

divergent.  Therefore, D+ is bounded above by |y0|.  (More easily, since D+ is by
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definition bounded below by 0 and non trivial, it is also bounded above as it is

bounded.)   Now let 

                              .r = sup D+ = sup{ x : �
n=0

∞

anxn is absolutely convergent.}

Note that since D ≠ {0}, D+ is a nontrivial interval, bounded above by |y0| > 0.  Hence,

r > 0.  Let x be such that |x| < r.  Then |x| is not an upper bound for D+.  Hence, there

exists x0 in D such that |x0| ∈D+ and

                                                                |x| < |x0| ≤ r.

Now,  is convergent since x0 is in D.  It follows by Proposition 5 that �
n=0

∞

anx0
n �

n=0

∞

anxn

converges absolutely.  This proves the first assertion of part (3).  Now take any y such

that |y| > r.  Then |y| is an upper bound of D+ but not the least upper bound of D+ .

Then  must diverge.  This is because if  is convergent, then by�
n=0

∞

anyn �
n=0

∞

anyn

Proposition 5,  converges absolutely for all x such that |x| < |y|. Then pick any�
n=0

∞

anxn

x0 such that  r < |x0| < |y|.  For instance, we can take x0 such that  . (  |x0||x0| = 1
2 (r + |y|)

is the mid point of the interval [r, |y0|] and so r < |x0| < |y|.) Then  is absolutely�
n=0

∞

anx0
n

convergent and so  x0 ∈D and |x0| ∈D+. Hence  |x0| ≤ r contradicting  r < |x0|.

Therefore,   is divergent.  This proves the second assertion of part (3).  If |x| =�
n=0

∞

anyn

r, we have no information about whether  is convergent or divergent.  Indeed it�
n=0

∞

anxn

may do either, as the following example will show.   

Example 6.  (The  Logarithmic series)                           

The logarithmic series is given by �
n=1

∞

anxn = �
n=1

∞ (−1)n+1

n xn = x − x2

2
+ x3

3
+£

Now  .   Therefore, by the Ratio Test (Theorem
an+1xn+1

anxn = xn
n + 1

= |x|
n

n + 1
d |x|

21, Chapter 6 Series),

       is absolutely convergent if |x| < 1,�
n=1

∞

anxn = �
n=1

∞ (−1)n+1

n xn

and        is divergent for |x| >1.�
n=1

∞

anxn = �
n=1

∞ (−1)n+1

n xn

But for x =1,    is convergent by the Leibnitz's�
n=1

∞

anxn = �
n=1

∞ (−1)n+1

n = 1 − 1
2

+ 1
3

+£

Alternating Series Test (Theorem 20 Chapter 6 Series), while for x = −1,

 �
n=1

∞

anxn = �
n=1

∞ (−1)n+1(−1)n

n = −1 − 1
2

− 1
3

−£

is divergent.

Definition 7.  The number r in Theorem 4 is called the radius of convergence of the

power series   .  The set is called the disc of convergence.   �
n=0

∞

anxn D(0, r) = {x : |x| < r}

For a complex power series, this fits in with the geometric image of a disc.  For a real

power series D(0, r) = (−r, r) is just the interval of convergence.  Note that we shall
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also refer to the interval of convergence as the disc of convergence for the real poweer

series as a generic disk of one dimension.

Remark. 

We can almost always find the radius of convergence r by using the d'Alembert's

Ratio Test. We  shall give a formula later.

If   converges for all x, we may by convention, say the radius of convergence is�
n=0

∞

anxn

+∞ .  Hence in this case D(0,∞) = R for real power series and D(0,∞) = C for complex

power series.

 

Example 8. 

(1)  The power series   .�
n=0

∞

anxn = �
n=0

∞

xn

For x ≠ 0,   as n →∞ .  Therefore, by d'Alembert's Ratio Test,  
xn+1

xn = |x| d |x|

 �
n=0

∞

xn

converges absolutely if |x| < 1 and diverges if |x| > 1.   Hence the radius of

convergence is 1.

If |x| =1, then |x|n →1≠ 0 as  n →∞ and so   diverges by Proposition 10�
n=0

∞

anxn

Chapter 6 Series.

(2)   .�
n=0

∞

anxn = �
n=0

∞
xn

n!
= Exp(x)

For x ≠ 0,   as n →∞ .  Hence, by d'Alembert's Ratio Test,  

xn+1

(n+1)!
xn

n!

= |
x

n + 1
| d 0

 converges absolutely for all x.�
n=0

∞
xn

n!

(3)   .�
n=0

∞

anxn = �
n=0

∞

nxn

For x ≠ 0,   as n →∞ .  Therefore, by d'Alembert's
(n + 1)xn+1

nxn = n + 1
n |x| d |x|

Ratio Test,  converges absolutely if |x| < 1 and diverges if |x| > 1.   Hence�
n=0

∞

xn

the radius of convergence is 1.

If |x| =1, then |nxn| →∞ as  n →∞ and so   diverges by Proposition 10�
n=0

∞

nxn

Chapter 6 Series.

(4)   .�
n=0

∞

anxn = �
n=0

∞

n!xn

For x ≠ 0,   as n →∞ .  Therefore, by d'Alembert's
(n + 1)!xn+1

n!xn = (n + 1)|x| d ∞

Ratio Test,  diverges if x ≠ 0 and converges only for x = 0.�
n=0

∞

n!xn
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(5)  .cos(x) = �
n=0

∞ (−1)n

(2n)! x2n

For x ≠ 0,   as n →∞ .  Therefore, by

(−1)n+1x2n+2

(2n+2)!
(−1)nx2n

(2n)!

= x2

(2n + 2)(2n + 1) d 0

d'Alembert's Ratio Test, cos(x) converges absolutely for all x.

(6)  .sin(x) = �
n=1

∞ (−1)n+1

(2n − 1)! x2n−1

For x ≠ 0,   as n →∞ .  Therefore, by d'Alembert's

(−1)n+2x2n+1

(2n+1)!
(−1)n+1x2n−1

(2n−1)!

= x2

(2n + 1)(2n) d 0

Ratio Test, sin(x) converges absolutely for all x.

For Example (5) and (6) above as well as (2), r = +∞.  These examples also give us

the question:  if these power series are considered as a function, are they continuous?

7.2 Continuity of Power Series Functions

Definition 9.  By Theorem 4, each power series  , if it is not just only� anxn

convergent at x = 0, has radius of convergence r > 0, r may be finite or infinite.   

 thus defines a function� anxn

 f  : D(0, r)→ R (or C)

called a power series function.

Theorem 10.  If  f  : Dr → R (or C) is defined by a power series with the open disc Dr

= {x : |x| < r} as its disc of convergence, then f is continuous.  That is,  f  is continuous

at each point of Dr .

Remark.

Note that Dr is open.  If  0 < r < ∞ , the power series may be convergent at some point

on the boundary of Dr .  If it does, then for real power series, if we extend the domain

to include either one or two of the end points at which the power series is convergent,

then the power series function is also continuous at these points. The proof is of

course much harder.

Proof of Theorem 10.   We shall show that for any x0 in Dr , given any ε > 0, there

exists δ > 0 such that for all x ∈ Dr,

                                        |x − x0| < δ ⇒ | f (x) −  f (x0)| < ε.

Take any point x0 in Dr , then |x0| < r.  Choose a fixed point c such that |x0| < c < r.  Let

Dc = D(0, c), the disc of radius c centred at 0.  We shall show that the restriction of f to

Dc , i.e,

f xDc : Dc dR(C)
is continuous at x0.  A consequence of this is that  f  is continuous at x0.  

Note that since 0 < c < r , the series  is convergent and so it is Cauchy.�
n=0

∞

ancn

Therefore, there exists an integer N0 such that for all  n > m ≥ N0,  

                                                             .              --------------------   (1)�
k = m

n

akc
k < �

3
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Now we return to examine the values of f (x) for x in Dc , i.e., for |x| < c, or more

precisely, the tail end of the power series expansion of f (x) by using (1).  

For all x in Dc  (hence |x| < c ) and for all n > m ≥ N0,

                          �
k = m

n

akx
k [ �

k = m

n

akx
k = �

k = m

n

akc
k xk

ck
= �

k = m

n

akc
k x

c
k

                                              since [ �
k = m

n

akc
k $ 1 x

c < 1

                                                                              ------------------------------    (2)< �
3

by (1).                            

Therefore, for x in Dc ,

               f (x) − �
k =0

N0

akx
k =

nd∞
lim �

k =0

n

akx
k − �

k =0

N0

akx
k =

nd∞
lim �

k = N0+1

n

akx
k

                                                              ---------------------   (3)    [
nd∞
lim �

k = N0+1

n

akx
k [
�
3

by (2).

The next thing to note is that is a polynomial function in x and so is�
k =0

N0

akx
k

continuous everywhere and in particular, continuous at x = x0 .  Now let  

.  Then  is continuous at x for all x.  By the continuity of SNo(x) = �
k =0

N0

akx
k SNo(x) SNo(x)

at x0, given any ε > 0, there exists a δ > 0 such that for all x in Dc ,

                                          . -------------------   (4)|x − x0| < �u |SNo (x) − SNo (x0)| < �
3

Therefore, for all x in Dc ,

        |x − x0| < �u f (x) − f (x0) = f (x) − SNo(x) + SNo (x) − SNo(x0) + SNo (x0) − f (x0)
                                                   

[ f (x) − SNo(x) + SNo(x) − SNo(x0) + SNo (x0) − f (x0)
                                                      [

�
3

+ SNo (x) − SNo (x0) + �
3

                                                                                                                           by (3)

                                                          [
�
3

+ �
3

+ �
3

= �

by (4).

Therefore,   is continuous at x0 and so  f  is continuous at x0 .  Itf xDc : Dc dR(C)
follows that f  : Dr → R (or C) is continuous at x0  for any x0  in  Dr  and so is

continuous.

Remark.

(1) Proof is exactly the same for complex power series functions.

(2)  If  has radius of convergence r with 0 < r < ∞.  It may happen that  �
n=0

∞

anxn

 is convergent at some point x on the boundary of the disc of convergence�
n=0

∞

anxn

with |x| = r, the radius of convergence.  For complex power series, it need not follow

that  is continuous at a boundary point if it is convergent there.  However, for�
n=0

∞

anxn

real power series , by using the notion of compactness and uniform convergence

(Abel's Theorem) it is true that convergence at the end point of the interval of

convergence implies continuity there.

(3) The proof of Theorem 10 actually uses the notion of uniform convergence of a

sequence of functions.
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7.3 Pointwise Convergence and Uniform Convergence of a Sequence

of Functions

Note that a power series   is convergent if and only if the n-th partial sum �
n=0

∞

anxn

 is convergent.  If we let   , then  is convergent if and�
k=0

n

akx
k fn(x) = �

k=0

n

akx
k �

n=0

∞

anxn

only if the sequence      ( f n(x) ) is convergent.

Now each f n(x) is a function, obviously well defined by a polynomial function.  The

convergence of ( f n(x) ) for a fixed x is an example of the notion of pointwise

convergence. 

Let    Then defining  f : D →R  by   weD = {x : �
n=0

∞

anxn is convergent}. f (x) = �
n=0

∞

anxn

obtain a function and obviously for each x in D,  f n (x) → f (x).  Observe that each  f n

(x) is defined on D too.  Therefore,  f 1 , f 2 ,  … , f n , …   is a sequence of functions

defined on D such that for each x in D,  f n (x) → f (x).   We say  f n  → f  pointwise on

D. The emphasis is : for each x, ( f n(x) ) is a sequence and that this sequence is

convergent and converges to  f (x).  

We now make the following formal definition.

Definition 11.  Let  f 1 , f 2 ,  … , f n , …  : E → R (C) and  f : E → R (C) be functions

defined on a non-empty set E ⊆ R (C) .  We say f n  → f  pointwise on E if  f n (x)

converges to f (x) at each point x of E.  We also say f n  converges pointwise to f on E.

That is to say,  for each x ∈ E, given any ε > 0, there exists an integer N0 (x)  

(depending on x and ε and may be different for different x) such that 

n  ≥ N0 (x)  ⇒ | f n (x) − f (x) | < ε.

Example 12.

(1)  Let ,  n = 1, 2, 3… .fn(x) = 1
n2 + x2

Then for each x,   and so by the Squeeze Theorem (Theorem 130 [ 1
n2 + x2 [

1
n2

Chapter 2 Sequences), since  ,  f n (x) → 0 for each x.  Therefore,  f n  → 0,
1
n2 d 0

the 0 constant function pointwise.

(2)   Let ,  n = 1, 2, 3… .fn(x) =
cos(x)

n

For any x,   and so for each x,  by the Comparison0 [
cos(x)

n [ 1
n nd∞

lim f n(x) = 0

Test (Proposition 8 Chapter 2 Sequences).  Hence f n  → 0, the 0 constant

function pointwise.

(3)   ,  n = 1, 2, 3… .fn(x) = 1
1 + n2x2

For each x ≠ 0,  x2 > 0 and so .  Therefore, for x ≠ 0,  by the0 [ 1
1 + n2x2 [

1
n2x2

Squeeze Theorem,    since .  Hence, for x ≠ 0,   f n (x) → 0 .
1

1 + n2x2 d 0
1

n2x2 d 0
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Now for x = 0,  f n (x) = f n (0) = 1 for all n.   It follows that  f n (0) → 1.

Therefore,      f n  → f  pointwise , where   .f (x) =
 

 
 

0, x ! 0

1, x = 0

(4)   Let  fn : [0,1] →R be defined by  f n (x) = xn, n = 1, 2, 3… .

For each 0 ≤ x < 1, xn → 0 and so for each 0 ≤ x < 1,  f n (x) → 0.

For each integer n ≥ 1, f n(1) = 1 and so f n (1) → 1.  Therefore,  f n  → f  

pointwise,  where   .f (x) =
 

 
 

0, 0 [ x < 1

1, x = 1

(5)   Let  fn : [0,∞) →R be defined by   for n = 1, 2, 3… .fn(x) = xn − 1
xn + 1

For each x such that 0 ≤ x < 1, xn → 0 and so .  For xfn(x) = xn − 1
xn + 1

d
0 − 1
0 + 1

= −1

=1,    for each n.  Therefore, f n (1) → 0.   Now for x > 1,fn(x) = 1n − 1
1n + 1

= 0

                              as n → ∞ .fn(x) = xn − 1
xn + 1

=
1 − 1

xn

1 + 1
xn

d
1 − 0
1 + 0

= 1

Hence,  f n  → f  pointwise, where .f (x) =

 

 

 
 

 

−1, 0 [ x < 1

0, x = 1

1, x > 1

If we remove the dependence of the integer N0 in Definition 11 on the point x, we then

get the notion of uniform convergence The examples above are examples of pointwise

convergence.  One will need some criterion to decide if the convergence is also

uniform.

Definition 13.   Let  f 1 , f 2 ,  … , f n , …  : E → R (C) and  f : E → R (C) be functions

defined on a non-empty set E ⊆ R (C) .  

We say f n  → f  uniformly on E  or  f n  converges uniformly to  f  if given any ε > 0,

there exists an integer N0 (depending only on ε) such that

                      for all n  ≥ N0  and for all x ∈ E,   | f n (x) − f (x) | < ε.

Our proof of Theorem 10 actually uses the ideas of the following:

Theorem 14.  Suppose  f 1 , f 2 ,  … , f n , …  : E → R (C) and  f : E → R (C) are

functions defined on a non-empty set E ⊆ R (C) .  If  f n  → f  uniformly on E and if

each    f n is continuous on E, then  f  is continuous on E.

Proof.  The proof is a careful handling of the notion of uniform convergence.

Let x0 ∈ E.  We shall show that  f  is continuous at x0 .  Now  f n  → f  uniformly on E  

means there exists an integer N0 such that 

                       for all x ∈ E,  n ≥ N0 ⇒ | f n (x) − f (x)| < ε /3 .       --------------------  (1)

Let us examine what we need to show:

Given ε > 0, there exists a δ > 0 such that for all x in E,

                                     |x - x0| < δ ⇒ | f (x) − f (x 0)| < ε.         -----------------    (*)

Now using the triangle inequality,

                   | f (x) − f (x 0)| = | f (x) − fn (x) + fn (x) − fn (x0) + fn (x0) − f (x 0)|

                                          ≤  | f (x) − fn (x)| + | fn (x) − fn (x0)| + | fn (x0) − f (x 0)|. ---  (2)
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The good thing about this inequality is that it is true for any n we care to choose.

Therefore, taking n = N0 , which is given by (1), using (2) we get 

         | f (x) − f (x 0)| ≤ f (x) − fN0 (x) + fN0 (x) − fN0 (x0) + fN0(x0) − f (x0)
                                <   =    ------  (3)

�
3

+ fN0(x) − fN0 (x0) + �
3

fN0(x) − fN0(x0) + 2�
3

by (1).

Now we make use of the continuity of  .  Since  is continuous at x0 , there existsfN0 fN0

    δ > 0 such that for all x in E,

                                           .  --------------------  (4)|x − x0| < �u fN0(x) − fN0 (x0) < �
3

Therefore, it follows from (3) and (4) that for all x in E,

                 .|x − x0| < �u f (x) − f (x0) < fN0(x) − fN0 (x0) + 2�
3

< �
3

+ 2�
3

= �

Thus,  f  is continuous at x0 .   Since  f  is continuous at any x0 ∈ E,  f  is continuous on

E.  This completes the proof.

We can give a proof of Theorem 10 using Theorem 14.  All we need to show is

uniform convergence.  We shall, in the proof of uniform convergence, use a criterion

that is named after Weierstrass.

Another Proof of Theorem 10.

Recall f  : Dr → R (or C) is defined by  .  Let .  Thenf (x) = �
n=0

∞

anxn sn(x) = �
k=0

n

akx
k

since Dr is the disc of convergence, sn → f  pointwise on Dr .  Take x0 ∈ Dr .  Then |x0|

< r.    Let c be a number such that  |x0| < c < r.  Then we shall show that sn → f  

uniformly on the closure of the disc Dc , .  It follows then that since Dc = {x : |x| [ c}
 , f  is continuous at x0 since each sn is continuous on  by Theorem 14.x0 c Dc Dc ` Dr

 Now we proceed to show uniform convergence of (sn ) on .  Since c < r, thereDc

exists y0 ∈Dr such that c < |y0| and   is convergent.  Hence the sequence �
n=0

∞

any0
n (any0

n )

is bounded and thus for all integer n ≥ 0,

                                                   ,any0
n [ M

for some real number M > 0.  Now c < |y0| and so .  Therefore, for all x in � = c
|y0|

< 1

 and for all n ≥ 0,                 Dc

                                       ----------------  (1)anxn = any0
n x

y0

n

[ any0
n c

y0

n

[ M�n

Thus, for all m > n and for all x such that |x| ≤ c,

                             �
k=n

m

akx
k [M �

k=n

m

�k = M�n(1 + � + �2 +£ + �m−n) = M�n
1 − �m−n+1

1 − �
   

                                      .                                         -----------------------   (2)[ M
�n

1 − �
Since β n → 0 as n →∞ (because  |β| <1), given ε > 0 there exists an integer N such

that 

                                              .        -----------------------   (3)n m Nu �n < �
2M

(1 − �)

Hence by (2) and (3), for any n, m ≥ N with m > n ≥ N and for any x such that |x| ≤ c,

                                           ----------   (4)�
k=n

m

akx
k [M

�n

1 − � < M
1 − �

�
2M

(1 − �) = �
2

So we now examine the "distance"  for any x in  .  | f (x) − sn(x)| Dc
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For any x in   and for any n ≥ N,Dc

                | f (x) − sn(x)| = | f (x) −�
k=0

n

akx
k| = |

md∞
lim sm(x) −�

k=0

n

akx
k|

                                    

                                 =
md∞
lim sm(x) −�

k=0

n

akx
k =

md∞
lim �

k=n+1

m

akx
k

                                 =
md∞
lim �

k=n+1

m

akx
k

                                        [
�
2

< �

by (4).

This means sn → f  uniformly on  .  (This argument is usually summarized asDc

Weierstrass M-Test.)  Therefore, by Theorem 14,  f  is continuous on   .SimilarlyDc

for any d such that c < d < r, sn → f  uniformly on   and  .  Therefore, byDd Dc ` Dd

Theorem 14,  f is also continuous on  .  Since ,  f  isDd Dr = 4{Dc : 0 [ c < r}
continuous on Dr .  This is deduced as follows.  Take any x in Dr.  Then x ∈ Dc for

some c such that 0 < c < r.   Since  f  is continuous on  ,  f  is continuous on DcDc

which is open.  Therefore,  f  is continuous at x.

Example 15.

(1) Let ,  n = 1, 2, 3… .  f n  → f , the 0 constant function uniformly.fn(x) = 1
n2 + x2

Why?

Observe that   for all x.fn(x) − f (x) = 1
n2 + x2 − 0 [ 1

n2

Now since , given ε > 0, there exists an integer N0 such that
1
n2 d 0

                                         .n m N0 u
1
n2 < �

Hence, for all integer n ≥ N0 and for all x,

                                            .fn(x) − f (x) [ 1
n2 < �

Thus,  f n  → f  uniformly on R.  This is the function of  Example (1) in Example

12.

(2)  Similarly the sequence of functions in Example (2) of Example 12 is uniformly

convergent on R to the 0 constant function.

(3)  The sequence of functions in Example (3) of Example 12 ,  converges  pointwise

on R to  f ,  where   .   This function  f  is obviously notf (x) =
 

 
 

0, x ! 0

1, x = 0

continuous at x = 0.  Note that each term  fn  of the sequence is continuous on R,  

and so by Theorem 14,  ( fn ) does not converge uniformly on R to  f  (for if it

did,  f  would be continuous on R) . 

We can also deduce the non-uniform convergence of  f n  to  f  by examining the

difference | f n(x) − f (x)| for all possible values of x.  The idea is to introduce a

kind of distance function for functions, introducing the technique of metric

spaces.

Now                            .fn(x) − f (x) =
 

 
 
 

 

1
1 + n2x2 , x ! 0

0, x = 0

Therefore,  sup {| f n (x) − f (x)| : x ∈R} = 1  for each n,  since  as x
1

1 + n2x2 d 1

→0 and
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                                                      0 [ 1
1 + n2x2 [ 1.

Now we shall show non-uniform convergence as follows.

Take ε = 1/2.   Then for each integer N, since ε < sup {| f N (x) − f (x)| : x ∈R} =

1, there exists a point xN  (depending on N) such that

                ε = 1/2 < | f N (xN ) − f (xN )| ≤ sup {| f N (x) − f (x)| : x ∈R} = 1

by the definition of supremum or least upper bound.

Therefore,  ( fn ) cannot converge uniformly on R to  f

(4)  The sequences of functions in (4) and (5) of Example 12 do not converge

uniformly since the limiting functions are not continuous functions.  This

conclusion is again an application  of Theorem 14.  We make some observation

here regarding the examples in Example 12.  Note that all the functions are

bounded functions defined on their respective domains and the pointwise limits

are also bounded functions.  Therefore, the above use of the supremum sup {| f

n(x) − f (x)| : x ∈Ε}, where E is the respective domain gives rise to the notion of

convergence in metric.  The distance or metric between two bounded functions  f

and g on E is defined to be d(f , g) = sup {| f (x) − g (x)| : x ∈Ε}.  Indeed with this

metric f n  → f  uniformly on E  is equivalent to d( f n , f ) →0.   The proof above

uses this idea to show non-convergence.  Let us now apply this to (4) and (5) of

Example 12.

 

For (4) of Example 12, recall that  f n (x) = xn  for x in [0, 1] and   f n  → f  

pointwise ,  where   .  Then f (x) =
 

 
 

0, 0 [ x < 1

1, x = 1

.  fn (x) − f (x) =
 

 
 

xn, 0 [ x < 1

0, x = 1

Hence for each n   = 1,2, 3, … ,  sup {| f n(x) − f (x)| : x ∈[0, 1]}=1,  because           

    0 ≤ {| f n(x) − f (x)|≤ 1 and .  Thus  .  So we can conclude
xd1
lim xn = 1 d( f n, f) \ 0

that      f n  cannot converge uniformly to  f .  To explain this further, we proceed

as in (3) above.  Take ε = 1/2.  Then for each integer N, since ε < sup {| f N (x) − f

(x)| : x ∈[0,1]} = 1, there exists a point xN such that

                ε = 1/2 < | f N (xN ) − f (xN )| ≤ sup {| f N (x) − f (x)| : x ∈[0,1]} = 1              

by the definition of supremum or least upper bound.  So by definition,  ( fn )

cannot converge uniformly on [0, 1] to  f .  

For Example (5) of Example 12, ,   and so     fn (x) − f (x) =

 

 

 
 

 

 

 

2xn

xn + 1
, 0 [ x < 1

0, x = 1
2

xn + 1
, x > 1

    sup {| f n (x) − f (x)| : x ∈[0,∞ )} = 1.  By exactly the same argument as above

we can show that the convergence is not uniform.
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Remark 16.       

(1)  We have proved the following:

If Dr is the disc of convergence for the power series,   and r its radius of�
n=0

∞

anxn

convergence, then   converges uniformly on  , the closed disc ofsn(x) = �
k=0

n

akx
k Dc

radius 0 < c < r .  Therefore, by Theorem 14, the power series function 

 is continuous on   , for any 0 < c < r.  f (x) = �
n=0

∞

anxn Dc

(2)  It is awkward to say anything about the continuity of   at the boundary�
n=0

∞

anxn

point of the disc of convergence for complex power series.  However, for real

power series function, convergence at the end point of the interval of convergence

implies continuity there.  This fact is usually referred to as Abel's Theorem.  The

proof is somewhat subtle and uses a technique due to Abel involving Abel's

summation formula and we shall give a proof in the next chapter when we deal

with uniform convergence and differentiability.

17.  Commutation of two different kinds of limiting processes.

We now give a re-interpretation of Theorem 14 in the light of power series function.

Suppose ( fn :E → R ) is a sequence of continuous function.  Then the n-th partial sum

   is also a continuous function.  Then if  sn converges to f  uniformly on E,  sn = �
k=1

n

f k

f  is also continuous on E by Theorem 14.  Now look at this statement from the point

of view of limiting process.  The function  f  is continuous at x0 in E means

x d x0
lim f (x) = f (x0).

That is,

x d x0
lim �

k=1

∞

f k(x) = �
k=1

∞

f k(x0) = �
k=1

∞

x d x0
lim f k(x0)

or

.
x d x0
lim ((

n d ∞
lim �

k=1

n

f k)(x)) =
n d ∞
lim (�

k=1

n

x d x0
lim f k(x0)) =

n d ∞
lim (

x d x0
lim �

k=1

n

f k(x0))

This is an example of two kinds of limit operations commuting.

The question we can ask is this:  Is taking the limit of the function  given by�
k=1

∞

f k

taking the limit term by term?  Theorem 14 says if  f  is the uniform limit of   and�
k=1

n

f k

each  f k is continuous, then the answer is "yes".   We can ask other kind of question.

Presently we are looking at the case of each  f k(x) = ak x
k , which is always continuous

and differentiable.  Then we have new questions. 

(1)  If each  f k is differentiable on E, and  converges uniformly to f on E, is  sn = �
k=1

n

f k

f differentiable?

(2)  If  f  in (1) is differentiable, then is   for x in E?f ∏(x) = �
k=1

∞

f k
∏ (x)

(3)  If   converges uniformly to  f  on E, and each f k is Riemann integrablesn = �
k=1

n

f k

on [a, b] ⊆ E, is  f  Riemann integrable on [a, b]?

Chapter 7 Series of Functions and Power Series

13

 Ng Tze Beng



(4)  If  f  in (3) is Riemann integrable on [a, b] ⊆ E, is  ?¶
a

b
f (x) = �

k=1

∞

¶
a

b
f k

We shall in the next two chapters answer some, if not all of the above questions.

We close this chapter with the following criteria for determining the radius of

convergence of a power series. 

7.4  Formula for Radius of Convergence, The Cauchy-Hadamard

Formula

The first is an application of the Ratio Test for series.

Theorem 18.  Suppose  is a power series.  �
n=0

∞

anxn

Suppose  > 0.  Then the radius of convergence for the power series is .  
an+1

an
d q

1
q

If  , then  converges absolutely for all x and so the radius of
an+1

an
d 0 �

n=0

∞

anxn

convergence is  ∞.

If  ,  then  diverges for all x except at x =0, where it is convergent
an+1

an
d ∞ �

n=0

∞

anxn

and so the radius of convergence is zero.

Proof.  This is a simple direct application of the Ratio Test.  

If  > 0, for  x ≠ 0,  the hypothesis of the theorem means that
an+1

an
d q

 .
an+1xn+1

anxn =
an+1

an
|x| d q|x|

Therefore, by the Ratio Test for Series (Theorem 21 Chapter 6 Series), the series is

absolutely convergent for q |x| < 1, i.e.,  and is divergent if q |x| > 1, i.e., .|x| < 1
q |x| > 1

q

 Plainly, the series converges at x = 0.  Hence the radius of convergence of the power

series is .
1
q

If  , for  x ≠ 0,  then     .   Therefore, by the Ratio
an+1

an
d 0

an+1xn+1

anxn =
an+1

an
|x| d 0

Test for Series (Theorem 21 Chapter 6), the series is absolutely convergent for all  x ≠
0.  Since the series is convergent at x = 0, it is absolutely convergent for all x.  Hence

the radius of convergence is ∞.

If  ,  then for  x ≠ 0,  .  Therefore, by the Ratio
an+1

an
d ∞

an+1xn+1

anxn =
an+1

an
|x| d ∞

Test for Series (Theorem 21 Chapter 6), the series is divergent for all  x ≠ 0.  Hence it

converges only for x = 0.  Thus the radius of convergence is 0.

We can actually give a slightly better formula for the radius of convergence in that

when the above ratio test is inapplicable in the sense that the limit does not
nd∞
lim

an+1

an

exist but we can employ another limit which gives us the radius of convergence.  This

Chapter 7 Series of Functions and Power Series

14

 Ng Tze Beng



formula, which is sharper than the above formula of Theorem 8 may be more difficult

to compute.  This formula is known as the Cauchy-Hadamard formula.

Theorem 19 (Cauchy- Hadamard Formula)   For any power series  , the�
n=0

∞

anxn

radius of convergence r is given by

(i)  r = 0  if   ,lim sup an

1
n = +∞

(ii)  r = ∞ if    , andlim sup an

1
n = 0

(iii)   if   .r = 1

lim sup an

1
n

0 < lim sup an

1
n < ∞

[ r = 0 corresponds to the case when   converges only for x = 0 and no where�
n=0

∞

anxn

else.  r = ∞ corresponds to the case when  converges absolutely for all x. ]�
n=0

∞

anxn

Proof.   We test the series by using the Cauchy root test.  Note that the sequence 

 is either bounded or unbounded.  It is obviously bounded below by 0.   If it isan

1
n

unbounded, then it is not bounded above and so for each n,

  sup{ an

1
n , an+1

1
n+1 ,£} = ∞.

If   is bounded, then for each n,   exists by thean

1
n yn = sup{ an

1
n , an+1

1
n+1 ,£}

completeness property of R and the sequence  isyn = sup{ an

1
n , an+1

1
n+1 ,£}

decreasing and bounded below by 0 and hence it is convergent by the Monotone

Convergence Theorem.   The limit of the sequence ( yn ) is defined to be

 .
nd∞

lim sup an

1
n =

nd∞
lim yn

We shall apply the refined Cauchy Root Test to .  Now observe that �
n=0

∞

anxn

.anxn
1
n = |x| an

1
n

Therefore, for x ≠ 0 .
nd∞

lim sup anxn
1
n =

nd∞
lim sup |x| an

1
n = |x|

nd∞
lim sup an

1
n

We thus proceed according to whether the limit is 0, finite or infinite.
nd∞

lim sup an

1
n

Case (i).  .  
nd∞

lim sup an

1
n = ∞

If x ≠ 0 , then .  It follows by Theorem 29 (ii) (Root test) of
nd∞

lim sup anxn
1
n = ∞

Chapter 6 , that  is divergent.  Hence  is divergent for all x except x =�
n=0

∞

anxn �
n=0

∞

anxn

0.  Therefore. the radius of convergence r is 0.

Case (ii).  .
nd∞

lim sup an

1
n = 0

Then .  Therefore, by
nd∞

lim sup anxn
1
n =

nd∞
lim sup |x| an

1
n = |x|

nd∞
lim sup an

1
n = 0 < 1

Theorem 29 (Root test) Chapter 6 Series,  is absolutely convergent for any x.�
n=0

∞

anxn

Hence, by convention, the radius of convergence  r = ∞.

Case (iii).   .0 <
nd∞

lim sup an

1
n = q < ∞

Then .
nd∞

lim sup anxn
1
n =

nd∞
lim sup |x| an

1
n = |x|q
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Therefore, by the refined Cauchy root test (Theorem 29 Chapter 6 Series), |x| q < 1

implies that  is absolutely convergent.   That is,  |x| < 1/q implies that �
n=0

∞

anxn

 is absolutely convergent.  Also by the refined Cauchy root test, |x| q > 1�
n=0

∞

anxn

implies that  is divergent.  That means |x| > 1/q implies that  is�
n=0

∞

anxn �
n=0

∞

anxn

divergent.  Hence, the radius of convergence is 1/q.  This completes the proof.

We next present a reason why the Cauchy Hadamard formula is a sharper test then the

ratio test.  

Proposition 20.  Suppose ( an ) is a positive sequence, i.e., a sequence of positive

terms.  Then

                    .  ------  (A)
nd∞

lim inf
an+1

an
[

nd∞
lim inf (an )

1
n [

nd∞
lim sup (an )

1
n [

nd∞
lim sup

an+1

an

Proof.   Note that and so we need only prove the
nd∞

lim inf (an )
1
n [

nd∞
lim sup (an )

1
n

remaining two inequalities,

.
nd∞

lim inf
an+1

an
[

nd∞
lim inf (an )

1
n and

nd∞
lim sup (an )

1
n [

nd∞
lim sup

an+1

an

Consider the set  .  Sn =
an+1

an
,

an+2

an+1,
,£ =

aj+1

a j
: j = n, n + 1,£

If   is not bounded above, then Sn is notS1 =
a2

a1
,

a3

a2,
,£ =

a j+1

a j
: j = 1, 2,£

bounded above for all integer n ≥ 1.  Hence sup Sn does not exist for each integer n ≥
1.  By definition,  .  Plainly we have   

nd∞
lim sup

an+1

an
= ∞

 .
nd∞

lim sup (an )
1
n [

nd∞
lim sup

an+1

an
= ∞

If S1 is bounded above, then Sn is bounded above for all integer n ≥ 1.   Thus, by the

completeness property of R, sup Sn exists for all integer n ≥ 1.  In this case we let xn =

sup Sn .   Since Sn ⊇ Sn+1 , xn = sup Sn ≥ sup Sn+1= xn+1 for each integer n ≥ 1.  Therefore,

( xn ) is a decreasing sequence, which is obviously bounded below by 0.  It follows by

the Monotone Convergence Theorem, that ( xn ) is convergent and converges to inf

{x1, x2, … }.   This limit is defined to be  .   That is 
nd∞

lim sup
an+1

an

 .  Then k ≥ 0.  So given any ε > 0, there exists an integer N
nd∞
lim xn =

nd∞
lim sup

an+1

an
= k

in P, such that  for any integer n,   n ≥ N ⇒ |xn − k|< ε.  I.e.,   xn < k + ε for all n ≥ N.    

Therefore, for all n ≥ N , 

 .
an+1

an
[ sup Sn = xn < k + �

This means an+1 ≤ (k + ε)an  for integer n ≥ N.   Iterated application of this inequality

gives

an [ (k + �)n−NaN

for all integer n ≥ N.  It then follows that for all integer n ≥ N.

 .(an )
1
n [ (k + �)1− N

n (aN )
1
n

Note that both and  are bounded since the terms(aN )
1
j : j c P (k + �)1− N

j : j c P

form two convergent sequences.  Thus, for all integer n ≥ N, 

                              .sup{(an )
1
n , (an+1 )

1
n+1 ,¢} [

jmn
sup (k + �)1− N

j (aN )
1
j
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Therefore,

           ,  ---  (1)
nd∞

lim sup (an )
1
n [

jd∞
lim sup (k + �)1− N

j (aN )
1
j =

jd∞
lim (k + �)1− N

j (aN )
1
j = k + �

since   as aN > 0 and  as  j →∞ .(aN )
1
j d 1 as j d ∞ (k + �)1− N

j d (k + �)1

Since (1) is true for any ε > 0, we have then

 .
nd∞

lim sup (an )
1
n [ k =

nd∞
lim sup

an+1

an

Now we turn our attention to the remaining inequality.  Plainly Sn is bounded below.   

Thus, by the completeness property of the real numbers, infimum of Sn exists.  Let  yn

= inf Sn , the infimum of Sn.  Observe that ( yn ) is an increasing sequence.  Note that

by definition,   . 
nd∞

lim inf
an+1

an
=

nd∞
lim yn

If the limit does not exist, then , and { yn : n ∈ P ) is unbounded, more
nd∞
lim yn = ∞

specifically not bounded above.   It follows that Sn is not bounded above for each

integer n in P.  Hence given any K > 0, there exists an integer M  such that  

 .  Therefore,  for n ≥  M, n mMu
an+1

an
m yn > K

.an m aMKn−M

Thus, for all j ≥ n ≥ M,    

.(a j )
1
j m (aM )

1
j (K)1− M

j m
jmn
inf (aM )

1
j (K)1− M

j

This means

.   inf{(an )
1
n , (an+1 )

1
n+1 ,¢} m inf{aM

1
n (K)1− M

n , (aM )
1

n+1 (K)1− M
n+1 ,¢}

Since,  > 0 , there exists
nd∞
lim inf{aM

1
n (K)1− M

n , (aM )
1

n+1 (K)1− M
n+1 ,¢} =

nd∞
lim aM

1
n (K)1− M

n = K

an integer N such that for  j ≥ N,  .   Itinf{aM

1
j (K)1− M

j , (aM )
1

j+1 (K)1− M
j+1 ,¢} > K/2

follows that, for  j ≥ N,     .inf{(a j )
1
j , (a j+1 )

1
j+1 ,¢} > K/2

Hence,   .
nd∞
lim inf{(an )

1
n , (an+1 )

1
n+1 ,¢} = ∞

Therefore,  .
nd∞

lim inf
an+1

an
=

nd∞
lim inf (an )

1
n =

nd∞
lim sup (an )

1
n =

nd∞
lim sup

an+1

an
= ∞

Suppose now that ( yn ) is convergent, or equivalently that it is bounded above, let 

.  Then q ≥ 0.  If  q = 0, we have nothing to prove.  Assume now q > 0.
nd∞
lim yn = q

Then for any ε > 0, there exists an integer N such that for all integer n in P, n ≥ N ⇒
|yn − q | < ε .  Thus for any ε > 0 such that 0 < ε < q/2 , n ≥ N ⇒q + ε > yn > q − ε >q/2

> 0.    Thus,

  .n m Nu
an+1

an
m inf{

an+1

an
,

an+2

an+1
,¢} = yn > q − �

Hence, .  Therefore, .  So takingn m Nu an+1 > (q − �)an n m Nu an m aN(q − �)n−N

n-th root we get

                                                 ------------------  (2)n m Nu (an )
1
n m (aN )

1
n (q − �)1− N

n .

From (2) we deduce that for  n ≥ N,

 j m nu (a j )
1
j m (aN )

1
j (q − �)1− N

j m inf{(aN )
1
n (q − �)1− N

n , (aN )
1

n+1 (q − �)1− N
n+1 ,¢}.

It follows that for n ≥ N, 

.  inf{(an )
1
n , (an+1 )

1
n+1 ,¢} m inf{(aN )

1
n (q − �)1− N

n , (aN )
1

n+1 (q − �)1− N
n+1 ,¢}

Therefore,

 
nd∞

lim inf (an )
1
n m

nd∞
lim inf (aN )

1
n (q − �)1− N

n = q − �

since   and  as n →∞.   Since this is true for(aN )
1
n d 1 as n d ∞ (q − �)1− N

n d q − �

arbitrary small ε > 0, .
nd∞

lim inf (an )
1
n m q
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Therefore, .  This completes the proof.
nd∞

lim inf
an+1

an
= q [

nd∞
lim inf (an )

1
n

This inequality shows that the Cauchy Hadamard formula is a sharper formula for the

computation of the radius of convergence.  It is possible that  exists
nd∞

lim sup ( an )
1
n

but or  does not exist, as the next example shows.
nd∞

lim sup
an+1

an nd∞
lim inf

an+1

an

Example 21.  Let   be a power series where the terms an is defined by �
n=0

∞

anxn

for k ≥ 1 and    .   Note that an > 0 for all integer n ≥ 0.a2k−1 = ( 1
2

)2k−1
a2k = ( 1

4
)2k

Then  .
an+1

an
=

 

 

 
 

 

1
4

n+1

1
2

n if n is odd

1
2

n+1

1
4

n if n is even

=
 

 
 

1
4
( 1

2
)n

if n is odd
1
2
(2)n

if n is even

Plainly,    and  and so doesinf{
an+1

an
,

an+2

an+1
,¢} = 0 sup{

an+1

an
,

an+2

an+1
,¢} = ∞

nd∞
lim

an+1

an

not exist.  However, .  Thus .(an )
1
n =

 

 
 

1
2 if n is odd

1
4 if n is even

sup{(an )
1
n , (an+1 )

1
n+1 ,¢} = 1

2

Therefore,  .  Hence the radius of convergence of
nd∞

lim sup ( an )
1
n =

nd∞
lim sup (an )

1
n = 1

2
the power series is 2 by the Cauchy Hadamard formula.   Observe that 

 and  so that Theorem 22 (Refined Ratio Test) of
nd∞

lim sup
an+1

an
= ∞

nd∞
lim inf

an+1

an
= 0

Chapter 6 cannot be applied to give any conclusion. 

Exercises 22.

1.   Find the radius of convergence of the following power series  , where an = �
n=1

∞

anxn

      (i)  n2 ; (ii)  1/n ;  (iii)  1/ n2 ; (iv) 2n ; (v) 2n /n ; (vi) 1/ 3 n ; (vii)  ;
n + 1
2n + n

      (viii) .
(2n)!
(n!)2

 2.   Use the Cauchy Hadamard formula to show that the three series

                           ,     and  �
n=1

∞

anxn �
n=1

∞

nanxn−1 �
n=1

∞

an
xn+1

n + 1

       have the same radius of convergence.

3.   Compare the regions of convergence of the three (real) power series (say if they

are the same and state the precise region of convergence).

         ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ x5

5
− x6

6
+£

          
1

1 + x
= 1 − x + x2 − x3 + x4 − x5 +£
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−1

(1 + x)2 = −1 + 2x − 3x2 + 4x3 − 5x4 +£

4.   (i)  Give an example of a power series    with radius of convergence 1,�
n=1

∞

anxn

which is divergent at each point on the circle of convergence (i.e., the boundary

of the disk of convergence)..

(ii)  Give an example of a power series    with radius of convergence 1,�
n=1

∞

anxn

which is divergent at some points on the circle of convergence and divergent at

other points.

(iii)  Give an example of a power series    with radius of convergence 1,�
n=1

∞

anxn

which is convergent at each point on the circle of convergence.
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