
Chapter Six. Series

We have seen sequences in chapter 2.  Starting from a sequence we can form a new

sequence by taking its partial sums.  Such a sequence is called a series and series are

important enough to gain a special place of interest.  We shall study series of real

numbers and investigate criterion or tests for convergence or divergence.  If a series

increases extremely slowly, some of the tests will fail to determine its convergence or

divergence and refined tests are required.  We shall give some refined tests and other

special tests in a later chapter.

6.1 Definition and Convergence

Definition 1.  Suppose (an ) is a sequence.  We can form the series  

                                                        a1 + a2 + a3 +   …
More specifically, an (infinite) series consists of

(1)   a sequence (an ),

(2)   the sequence (sn ) of partial sums, where  .sn = �
k=1

n

ak

The term an  is called the n-th term of the series and sn the n-th partial sum of the

series.

If (sn ) converges to a real number S, then we say the series converges to S and we

write

.� an = S or �
n=1

∞

an = S or a1 + a2 +£ = S

If (sn ) is divergent, then we say the series is divergent.  If (sn ) is divergent and sn

tends to ± ∞ , then we say the series is properly divergent.  

We usually write  ∑ an  or a1 + a2 + a3 +   …   for the series.

Example 2.   The series  c + c + c +   …  converges if and only if  c = 0.

The series c + c + c +   … is of course given by ∑ an with an = c for all integers n in P.

Therefore, the n-th partial sum  .  If  c ≠ 0, then ( sn ) is divergent.  Wesn = �
k=1

n

ak = nc

shall explain this below.  If c > 0 and  sn → a, we shall then deduce a contradiction.

Since sn = nc ≥ c > 0, a > 0.  If sn → a, then by definition given any ε > 0, there exists

positive integer N such that for all n in P,  

n ≥ N ⇒ |sn − a| = |nc − a| <  ε.  

Take ε = c > 0.   Then by the above argument, there is an integer N such that for all n

in P,  

                                        n ≥ N ⇒ |sn − a| = |nc − a| <  c.                 ----------------   (1)

Now by the Archimedean property of R, there exists an integer N0  such that             N0

c > a + c.

Take any integer n ≥ max(N, N0).  Then nc ≥ N0 c > a + c.  Hence |sn − a| = |nc − a| =

nc − a > c.  
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But since n ≥ N, by (1), we have that |sn − a| = |nc − a| <  c and this contradicts |sn − a|

> c.  This means (sn) is divergent.  If  c < 0, then as shown above (−sn) = (n(−c)) is

divergent.  Hence (sn) is divergent.  We have thus shown that (sn) is divergent if c ≠ 0.

Plainly, when c = 0, (sn) is convergent since each sn is equal to 0.

The above argument is trivial.   It is more instructive to use the fact that any

convergent sequence is bounded.  (Reference: Theorem 11 of Chapter 2 Sequences.).

Let this result work for you.  Note that if c ≠ 0,  then the n-th partial sums {sn : n ∈ P}

is not bounded.  This is deduced by invoking the Archimedean property of R.   Take

any real number K > 0.  Then by the Archimedean property of R, there exists a

positive integer N such that |sN| =|Nc| = N|c| > K.  Hence {sn : n ∈ P} is not bounded.

It follows that if c ≠0, then ( sn ) cannot be convergent for otherwise {sn : n ∈ P} will

be bounded.

Example 3.  The series   .�
n=1

∞
1

n(n + 1)
Here  .   Thus the n-th partial sum,an = 1

n(n + 1) = 1
n − 1

n + 1

          sn =   a1 + a2 + a3 + … + an 

             .= ( 1
1

− 1
2

) + ( 1
2

− 1
3

) +£ + ( 1
n − 1

n + 1
) = 1 − 1

n + 1
d 1 − 0 = 1

Therefore, .�
n=1

∞
1

n(n + 1) = 1

Remark.   "=" sign here has meaning different from the usual equality as in " 2 + 2 =

4".  It means the limit of the series is 1.   Here is an example of a different use of the

equality sign.

Example 4.  Geometric Series.   

�
n=0

∞

an = 1 + a + a2 +£

converges to   if  |a| < 1.1
1 − a

Here we deviate from the previous indexing convention, where the terms are indexed

starting from the number 1.  We define here for a sequence ( an ) indexed by

non-negative integers, starting with a0, the n-th partial sum sn to be 

.  This change in the starting or beginning of the index will�
k=0

n−1

ak = a0 + a1 +£an−1

not alter the theory at all.  We can in effect transform this series to the usual form by

letting bk = ak-1  for k =1,2, … .  Then  .�
k=0

n−1

ak = �
k=1

n

bk

We begin by letting ck = ak  and sn = co + c1 + … + cn-1  .

Then  ,  if  a ≠ 1sn = 1 + a + a2 +£ + an−1 =
(1 + a + a2 +£ + an−1)(1 − a)

1 − a

                if  |a| < 1.= 1 − an

1 − a
= 1

1 − a
− an

1 − a
= 1

1 − a
−

cn

1 − a
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Now if  |a| < 1, then the sequence (  cn ) = ( an) is convergent and cn = a n →0.

Therefore, if  |a| < 1, .   Thus, we conclude thatsn = 1
1 − a

−
cn

1 − a
d 1

1 − a
− 0 = 1

1 − a

if  |a| < 1, the geometric series  is convergent and converges to .  �
n=0

∞

an 1
1 − a

If  |a| > 1, then the sequence (  cn ) = ( an ) is divergent as it is unbounded.  Therefore,  

 is also divergent.  Hence if  |a| > 1, the geometric series (sn) = 1
1 − a

−
cn

1 − a �
n=0

∞

an

is divergent. If  a = 1, then  sn = n  and so the sequence ( sn ) is divergent as again it is

unbounded.  Consequently,   is divergent when a =1.  �
n=0

∞

an

If a = −1,  then and ( sn ) is divergent.   It is easily seen that    (sn =
 

 
 

0, n even, n m 2

1, n odd, n m 1

sn ) is not Cauchy.  (For instance, for any positive integer N, just take any even n > N

and odd m > N, then  |sn −sm| = 1 > 1/2. This shows that it is not Cauchy.)  Therefore,

by Cauchy Principle of Convergence, ( sn ) is divergent.  Thus, the geometric series 

 is convergent if and only if |a| < 1.�
n=0

∞

an

Remark 5.   Series can start from any term of a sequence ( an ).  For example,

         a0 + a1 + …        ( Start with  a0 .)

         a1 + a2 + …         (Start with a1. )

         a2 + a3 + …         (Start with a2. )

are three series with terms from the same sequence but starting with different terms.

We can write the above series in the summation notation,   ,  , .  It�
n=0

∞

an �
n=1

∞

an �
n=2

∞

an

does not matter the series begins with which term of the sequence, it does not alter the

theory in anyway.  We can make some convention by requiring that sn denotes the

partial sum of n terms only.   Hence, the n-th partial sum for the above three series

will be given by

              sn = a0 + a1 + …+ an-1 ,

              sn = a1 + a2 + …+ an ,

and         sn = a2 + a3 + …+ an+1.

If the series begins with the k-th term ak , then sn = ak + ak+1 + …+ ak+n-1.   Plainly,  if  k

and j are  integers such that k < j, then  converges ⇔  converges.�
n=k

∞

an �
n=j

∞

an

Note that   .    Thus, if sn  is the n-th partial sum for  and tn  �
n=k

∞

an = �
n=k

j−1

an +�
n=j

∞

an �
n=k

∞

an

is the n-th partial sum for , for  n > j − k,�
n=j

∞

an

                   sn = ak + ak+1 + …+ ak+n-1 =    �
q=k

k+n−1

aq = �
q=k

j−1

aq + �
q=j

j+(k+n−j−1)

aq

                        .   --------------  (1)= �
q=k

j−1

aq + a j + a j+1 +¢ + a j+(n−(j−k))−1 = �
q=k

j−1

aq + tn−(j−k)

Note that the sequence ( sn ) converges ⇔ ( sn+j-k ) converges. But by (1)  

 , and so ( sn+j-k ) converges ⇔ ( tn ) converges.  Therefore,  ( sn )sn+j−k = �
q=k

j

aq + tn

converges ⇔ ( tn ) converges.   Thus, the behaviour regarding convergence does not

depend on the beginning term of the series.

Chapter 6. Series.
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Since series can be regarded as a sequence, more specifically, its n-th partial sums

form a sequence, properties for sequences can now be translated into properties for

series .

Properties 7.

(1)  If ∑ an converges then its sum is unique.

(2)  If ∑ an = a  and  ∑ bn = b, then ∑ (an + bn ) = a + b.

(3)  If ∑ an = a, then   ∑ λan = λa.

(4)  For a complex series, ∑ an converges ⇔ ∑ Re an  and ∑  Im an converges.

       (Here for a complex number z, z = Re z + i Im z.)

       If ∑ an = a, then ∑ Re an = Re a  and ∑  Im an = Im a.

(1) is just an assertion about uniqueness of limit.

(2) follows from (1) of Properties 7 page 4 Chapter 2 Sequences.

(3) follows from (2) of Properties 7 page 4 Chapter 2 Sequences.

(4) follows from the remark after the Squeeze Theorem for sequences , Theorem 13 of

Chapter 2 Sequences, page 6.

6.2 Cauchy Series.

We shall translate Cauchy principle of convergence for sequences to a principle of

convergence for series.

Definition 8.  ∑ an  is a Cauchy series if the partial sum ( sn ) is a Cauchy sequence.

I.e., if given ε > 0, there exists an integer N such that

m>n ≥ N  ⇒  |sn − sm | < ε  ,e �
k=n+1

m

ak < �

This is equivalent to saying that there exists an integer N such that for all n ≥ N  and

for all positive integer p, �
n+1

n+p

ak < �

Then we have the principle of convergence for series.

Theorem 9.   ∑ an is convergent if and only if  ∑ an is Cauchy.

Proof.  This theorem is just a restatement of the Cauchy principle of convergence for

the n-th partial sum sequence.  This is also true of complex series, indeed for any

complete normed space such as Rn.  The theorem for the real case follows from

Theorem 20 of Chapter 2.  For the complex case, just observe that by Property 7 (4),  

∑ an is convergent if and only if its real and imaginary parts are convergent if and only

if its real and imaginary parts are Cauchy if and only if ∑ an is Cauchy.

Remark.   We use this theorem to prove most of the results about series.  In practice,

we rarely know what the sum of the series is.  

Chapter 6. Series.
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The next result is a useful means of deciding when a series does not converge,

specifically it gives a necessary condition for convergence in terms of the terms of the

series.

Proposition 10.   If  ∑ an  converges, then an → 0.

Proof.   If  ∑ an  converges, then ∑ an is Cauchy.  Then by definition 8, given ε > 0,

there exists an integer N such that for all n ≥ N  and for all positive integer p,

.  Taking p =1, we have then that for all n ≥ N,  |an+1| < ε . This means that�
n+1

n+p

ak < �

an → 0.

Remark.  Thus  if ( an ) does not converge to 0, then ∑ an diverges.

Example 

∑ an  is divergent if  |a| ≥1 since (an ) does not converge to 0.

Remark.

1.  By proposition 10, if ( an ) does not converge to 0, then ∑ an diverges

2.  The converse of Proposition 10 is false. 

     That is to say that if an → 0, it need not follow that ∑ an  is convergent.

The following is a counterexample, 

   is divergent even though .�
n=1

∞
1
n

1
n d 0

The n-th partial sum  is obviously an increasing sequence.  Wesn = 1 + 1
2

+¢ + 1
n

shall show that it is unbounded and so it is divergent.  This is because if ( sn ) is

convergent, then it is bounded (reference: Theorem 11 of Chapter 2 Sequences).

We shall look at a subsequence of ( sn ) form by successively doubling the number

of terms.  The first few terms of this subsequence are:

 

       s1 = 1, s2 = 1+ 1/2 , s4 = 1 + 1/2 + ( 1/3+1/4) > 1 + 1/2 + 1/2

       s8 =  1 + 1/2 + ( 1/3+1/4) + (1/5+1/6+1/7+1/8) > 1 + 1/2 + 1/2 + 1/2

       ....................

This subsequence is    is obtained from  by adding the next 2n terms.(s2n ). s2n+1 (s2n )

Therefore,

                    s2n+1 = s2n + 1
2n + 1

+ 1
2n + 2

+£ + 1
2n + 2n

                            .         m s2n + 1
2n+1 + 1

2n+1 +£ + 1
2n+1 = s2n + 2n $

1
2n+1 = s2n + 1

2
Thus we have for each integer n ≥ 0, 

.s2n+1 m s2n + 1
2

Repeated use of this inequality yields,

    s2n+1 m s2n + 1
2

            .m s2n−1 + 1
2

+ 1
2
m£ m s2 + (n − 1) 1

2
+ 1

2
= 1 + 1

2
+ n

2
= 1 + (n + 1) 1

2

Chapter 6. Series.
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Hence, for any positive integer n,  .   Take any real number K > 0 .  Bys2n m 1 + 1
2

n

the Archimedean property of R, there exists a positive integer N such that  

.  Therefore,  .   Hence taking M = 2N ,  n > M ⇒ N $
1
2

> K s2N m 1 + 1
2

N > K

.   Thus, ( sn ) is unbounded.   Consequently, the series   sn > sM m 1 + 1
2

N > K �
n=1

∞
1
n

is divergent.

6.3 Series of Non-Negative Terms

Now we shall investigate a few tests for convergence.  

We next state two results about series of non-negative terms.  For such series, the n-th

partial sums ( sn ) is an increasing sequence.  The first result is a consequence of the

Monotone Convergence Theorem (Theorem 15 Chapter 2. Sequences).

Proposition 11.  Suppose ∑ an is a series of real non-negative terms.  Then ∑ an is

convergent if and only if (sn ) is bounded.

Proof.  Since for each integer n ≥ 1, an ≥ 0,sn+1 =  a1 + a2 + …+ an +an+1 ≥a1 + a2 + …+

an = sn for each positive integer n.  Therefore, ( sn ) is an increasing sequence.   

Therefore, by the Bounded Monotone Convergence Theorem (Theorem 15, Chapter 2.

Sequences), if ( sn ) is bounded, ( sn ) is convergent and so the series ∑ an is

convergent.  Conversely, if  ( sn ) is convergent, then ( sn ) is bounded (by Theorem 11

Chapter 2 Sequences) .

Proposition 12 (Comparison Test)

Let ∑ an  and  ∑ bn be two series of real non-negative terms such that 

an  ≤ λ bn,

for all positive integer n and for some positive real number λ.

(1) If ∑ bn is convergent, then ∑ an  converges. 

(2) If ∑ an is divergent, then ∑ bn diverges.

Proof.  

(1)  By proposition 11,  ∑ bn converges if and only if its n-th partial sums ( sn ) is

bounded.  Thus if ∑ bn is convergent, then its n-th partial sums ( sn ) is bounded, say

by K > 0.  I.e., sn ≤ K.

Now, for each positive integer n,    , since an  ≤ λ bn .  Therefore,�
k=1

n

ak [ ��
k=1

n

ak = � sn

if we let tn =  a1 + a2 + …+ an =  be the n-th partial sum for the series ∑ an, �
k=1

n

ak

  for all positive integer n.  That means ( tn ) is bounded and sotn = �
k=1

n

ak [ � sn [ �K

by Proposition 11,  ∑ an is convergent.

(2)  If  ∑ an is divergent, then by Proposition 11, ( tn ) is unbounded.    Note that,  for

each positive integer n,  .   Thus since ( tn ) is unbounded, given any L > 0,  sn m
1
�

tn

there exists an integer N such that n ≥ N ⇒ tn > λ L .   Hence, .n m Nu sn m
1
�

tn > L

Thus ( sn ) is unbounded and so by Proposition 11, the series ∑ bn is divergent.

Chapter 6. Series.
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Example 13.     is convergent.� 1
n2

Since   and   is convergent (see Example 3), so by the
1

(n + 1)2 [
1

n(n + 1) � 1
n(n + 1)

Comparison Test,    is convergent .  Therefore,  is�
n=1

∞
1

(n + 1)2 �
n=1

∞
1
n2 = 1 +�

n=1

∞
1

(n + 1)2

convergent.

Proposition 14.  Suppose  ∑ |an| is convergent.  Then  ∑ an  converges.

Proof.  We shall use Cauchy Convergence Principle for Series.  

Proof is just simply observing that if ∑ |an| is Cauchy, then so is   ∑ an.   If ∑ |an| is

convergent, then ∑ |an| is Cauchy by Theorem 9.  That means given any ε > 0, there

exists an integer N, such that for all n ≥ N  and for all positive integer p, .   �
n+1

n+p

ak < �

Therefore, since , by the triangle inequality, for all n ≥ N  and for all�
n+1

n+p

ak [ �
n+1

n+p

|ak|

positive integer p,   Hence ∑ an is Cauchy.  Therefore, by�
n+1

n+p

ak [ �
n+1

n+p

|ak| < �.

Theorem 9, ∑ an is convergent.

Remark. 

1.  An useful equivalent statement for Proposition 14 is:

                               If  ∑ an  diverges, then ∑ |an| is divergent.

2.  The converse of Proposition 14 is not true (see Example 16 below).

Definition 15.  We say the series ∑ an  converges absolutely if ∑ |an| is convergent.

Example 16.   is convergent but not absolutely.  (We�
n=1

∞ (−1)n+1

n = 1 − 1
2 + 1

3 − 1
4 +£

shall show later that it converges by Alternating Series Test.)

Remark.  Most tests are tests for absolute convergence.  Plainly any test for

non-negative series gives a test for ∑ |an| .  The next result illustrates this point.

Proposition 17.  Suppose  (an ) is a bounded sequence.  Then   converges.�
n=1

∞ an

n2

Proof.  The sequence (an ) is bounded implies that there exists a real number M > 0

such that  |an|≤ M  for all positive integer n.  Thus, we have for all positive integer n, 

.  Therefore, since  is convergent (see Example 13), by the0 [
an

n2 [
M
n2 �

n=1

∞
1
n2

Comparison Test (Proposition 12),  converges.  It follows then by Proposition�
n=1

∞ an

n2

14 that  is convergent.�
n=1

∞ an

n2

Example 18.     is absolutely convergent (and therefore convergent) for any�
n=1

∞ sin(nx)
n2

x by Proposition 17.

Chapter 6. Series.
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Definition 19.  If the series ∑ an is such that ∑ an is convergent but ∑ |an| is divergent,

we say the series  ∑ an is conditionally convergent.

Hence the series in Example 16   is conditionally�
n=1

∞ (−1)n+1

n = 1 − 1
2 + 1

3 − 1
4 +£

convergent since   is divergent.�
n=1

∞ (−1)n+1

n = �
n=1

∞
1
n

6.4  Alternating Series Test

Now we come to the alternating series test which can be apply to the series �
n=1

∞ (−1)n+1

n

.

Theorem 20 (Alternating Series Test, Leibnitz's Test)

If (an ) is a monotone decreasing, non-negative sequence and an → 0, then ∑ (−1)n+1an

is convergent.

Proof.   We shall show that ∑ (−1)n+1an is Cauchy.

There is also a proof making use of the fact that s2n = s2n-1 − a2n , both (s2n ) and (s2n-1)

are bounded and monotone and so are convergent and that a2n → 0.

Suppose m and n are positive integers such that m > n.

�
k=n

m

(−1)k+1ak = |(−1)n+1an + (−1)n+2an+1 +£ + (−1)m+1am|

      = |an − an+1 +£ ! am |

      [
 

 
 

|an − an+1| + |an+2 − an+3| +£ + |am−1 − am | if m − n is odd

|an − an+1| + |an+2 − an+3| +£ + |am−2 − am−1| + |am | if m − n is even

      [
 

 
 

(an − an+1) + (an+2 − an+3) +£ + (am−1 − am) if m − n is odd

(an − an+1) + (an+2 − an+3) +£ + (am−2 − am−1) + am if m − n is even

      =
 

 
 

an − (an+1 − an+2) − (an+3 − an+4) −£ − (am−2 − am−1) − am if m − n is odd

an − (an+1 − an+2) − (an+3 − an+4) −£ − (am−1 − am) if m − n is even

      ,                                     ----------------------------------------------------------  (1)[ an

since (an) is a monotone decreasing and non-negative sequence.

Now since an → 0, given ε > 0 there exists integer  N in P such that  n ≥ N ⇒ |an| = an

< ε .   Therefore, by (1), for n ≥ N and any m > n ,

.�
k=n

m

(−1)k+1ak [ an < �

Thus the series ∑ (−1)n+1an is Cauchy and so is convergent by Theorem 9 (Cauchy

Principle of Convergence for Series).  This completes the proof.

Alternatively, we may use the following technique: if the subsequence formed by the

terms of the sequence indexed by even integers is convergent and the subsequence

formed by the terms indexed by the odd integers is also convergent and both

subsequences converge to the same limit, then the sequence is convergent.  

Chapter 6. Series.
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Let sn denote the n-th partial sum of the series.  So we shall look at the following

subsequences ( s2n ) and ( s2n-1).  Now for each integer n ≥ 1,

s2n+1 − s2n-1 = −a2n+a2n+1 ≤ 0.

Therefore, ( s2n-1) is a decreasing sequence.  Observe that for each integer n ≥ 1,

                     s2n-1 = a1− a2 + a3 − … −a2n-2 +a2n-1

                             = (a1− a2) + (a3 − a4)+ … (a2n-3 − a2n-2) +a2n-1

                             ≥ a2n-1 ≥ 0,

since each of the bracketed terms are greater or equal to 0.  

Hence ( s2n-1) is a decreasing sequence bounded below by 0.  Therefore, by the

Monotone Convergence Theorem (Theorem 15, Chapter 2 Sequences), ( s2n-1) is

convergent.  Similarly, for each integer n ≥ 1,

s2n+2 − s2n = a2n+1 − a2n+2  ≥ 0.

Thus, ( s2n ) is an increasing sequence.  Next we shall show that it is bounded above.

Note that

                        s2n = a1− a2 + a3 − … −a2n-2 +a2n-1 − a2n

                             = a1− (a2 − a3) − (a4 − a5) −  …−(a2n-2 −a2n-1)− a2n

                             ≤ a1 , 

since each of the bracketed terms are greater or equal to 0.  Therefore, ( s2n ) is an

increasing sequence bounded above by a1.  Hence by the Monotone Convergence

Theorem (Theorem 15, Chapter 2 Sequences), ( s2n) is convergent.

Now     

                                                s2n = s2n-1 − a2n.

Therefore,   , since .
nd∞
lim s2n =

nd∞
lim s2n−1 −

nd∞
lim a2n =

nd∞
lim s2n−1 − 0 =

nd∞
lim s2n−1 nd∞

lim an = 0

(If  an → 0, then all subsequence of (an ) also converges to 0.   This can be proved

easily. See Proposition 19 of Chapter 3.)  Hence, both ( s2n ) and ( s2n-1) converge to the

same limit and so ( sn ) is convergent and that means the series ∑ (−1)n+1an is

convergent.

6.5 The Ratio Test

The next test we shall give is one of the most important test for series.  D'Alembert

gave the absolute convergence part of the ratio test in 1768 in Opuscules

mathématiques, 5.  But it was Edward Waring (1734-98) who gave in 1776 the now

well known ratio test for convergence and attributed to Cauchy.  We shall give first a

simplified version.

Theorem 21 (Ratio Test, D'Alembert's Test)

Let ∑ an be a series.. 
Then (i) If  = α < 1, then ∑ an is absolutely convergent (hence convergent).

nd∞
lim

an+1

an

         (ii)  If = α > 1 or , then ∑ an is divergent.
nd∞
lim

an+1

an nd∞
lim

an+1

an
= ∞

        (iii)  If =α = 1, then ∑ an may converge or diverge.  No inference can
nd∞
lim

an+1

an

be made.  The convergence may be investigated by other methods.

Proof.

(i)  Suppose α < 1.  Choose a real number c such that  α < c < 1.  Let   ε = c − α .   

Since  , there exists a positive integer N such that for all integer n, 
nd∞
lim

an+1

an
= �

Chapter 6. Series.
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                                               --------------------   (*)n m Nu � − � <
an+1

an
< � + � = c

Therefore, for all integer n ≥ N,          

                                                          |an+1| < |an| c.         -------------------------------  (1)

So let p be any positive integer.   It then follows from (1) that 

|aN+p| < c |aN+p-1| < c2 |aN+p-2| <… < c p |aN|.

Thus since  converges because 0 < c < 1 (Example 4, Geometric Series) , by the�
p=1

∞

cp

Comparison Test (Proposition 12),  converges.  Therefore,  is�
p=1

∞

aN+p �
n=1

∞

an

convergent.  It follows that ∑ an is absolutely convergent (Reference: Proposition 14).

(ii)  Suppose α > 1.  Choose a real number c such that  α > c > 1.  Then as before,

since  , taking ε = α − c , there exists a positive integer M such that for
nd∞
lim

an+1

an
= �

all integer n, 

                                           .   -------------------  (**)  n mMu c = � − � <
an+1

an
< � + �

It follows then that for all integer n ≥ M,          

                                                             |an+1| > c |an|     --------------------------------   (2)

Thus for all positive integer p, using (2) we get,

                                    |aM+p| > c |aM+p-1| > c2 |aM+p-2| >… > cp |aM|.      ----------------- (3)

Because c > 1, the sequence ( cp |aM| ) diverges since |aM| ≠ 0.   In particular, cp |aM|

→∞.  Therefore, by (3),  |aM+p|  → ∞ as p →∞.  Hence  as p →∞.  Therefore,aM+p \ 0

by Proposition 10,     diverges and it follows then that  is divergent. �
p=1

∞

aM+p �
n=1

∞

an

If , then by definition, take any c > 1, there exists a positive integer M
nd∞
lim

an+1

an
= ∞

such that for all integer n, .. .   We then proceedn mMu
an+1

an
> cu an+1 > c an

exactly as before using (2) to deduce that   is divergent. �
n=1

∞

an

(iii)  If α = 1, no inference can be made.  The example below will illustrate this point.

∑ 1/n is divergent and ∑ 1/n2  is convergent.  Ratio test for both series gives α as 1.

Remark.  We have actually proved a more refined version of the test since we only

use one side of the inequality (*) or (**).   

Note that .  (This is a special case
nb∞
lim

an+1

an
= �w

nd∞
lim sup

an+1

an
=

nd∞
lim inf

an+1

an
= �

of the result that .  This result is proved in the
nb∞
lim bn = �w

nd∞
lim sup bn =

nd∞
lim inf bn = �

proof for Theorem 20 (Cauchy Principle of Convergence) Chapter 2 Sequences.

We give the refined version of this test below.

Theorem 22 (Ratio Test, D'Alembert's Test, Refined Version)

Let  be a series.�
n=1

∞

an

(i) If  , then ∑ an is absolutely convergent.
nd∞

lim sup
an+1

an
< 1

(ii) If  , then ∑ an is divergent.
nd∞

lim inf
an+1

an
> 1

Proof. 

(i)     .  Let  xn = sup Sn .   Sn =
an+1

an
,

an+2

an+1,
,£ =

aj+1

a j
: j = n, n + 1,£

Chapter 6. Series.
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Then .    Thus    means .   
nd∞

lim sup
an+1

an
=

nb∞
lim xn

nd∞
lim sup

an+1

an
= � < 1

nb∞
lim xn = �

Hence, given any ε > 0, there exists a positive integer N such that for all integer n,

                                      n ≥ N⇒  α − ε < xn < α + ε.              ------------------------   (1)

As in the proof of Theorem 21,  take any c such that α < c < 1 and choose ε = c − α .   

Then for any integer n,             

                                              n ≥ N ⇒  xn < α + ε = c. 

Therefore,  .  It follows by the definition of xN thatxN = sup
aN+1

aN
,

aN+2

aN+1,
,£ < c

for any integer n ≥ N,      Hence,
an+1

an
[ sup

aN+1

aN
,

aN+2

aN+1,
,£ < c.

                                                 n ≥ N ⇒ |an+1| < |an| c      ------------------------------  (2)

Using this as in the proof of Theorem 21 part (i), we can show in exactly the same

way that ∑ an is absolutely convergent.

(ii) Let  yn = inf Sn .  Then .  Therefore, 
nd∞

lim inf
an+1

an
=

nb∞
lim yn nd∞

lim inf
an+1

an
= � > 1

means .  Hence, given any ε > 0, there exists a positive integer N such
nb∞
lim yn = � > 1

that for all integer n,

                                               n ≥ N⇒  β − ε < yn < β + ε.      ------------------------   (3)

Let c be any real number such that  β > c > 1.  Choose ε = β − c > 0.    It follows from

(3) that for any integer n, n ≥ N ⇒  yn > β − ε = c > 1.  Thus, 

yN = inf
aN+1

aN
,

aN+2

aN+1,
,£ > c.

Therefore, by the definition of infimum, for any integer n, 

                               n ≥ N ⇒    
an+1

an
m inf

aN+1

aN
,

aN+2

aN+1,
,£ > c.

Hence,                                       n ≥ N ⇒ |an+1| > |an| c             ------------------------  (4)

Then, using (4), in exactly the same way as in the proof of Theorem 21 part (ii), we

show that  ∑ an is divergent.

Ιf   then there exists a positive integer N such that for all integer n,
nd∞

lim inf
an+1

an
= ∞,

n ≥ N ⇒  yn >  c > 1.  We can now proceed in exactly the same way as above to show

that ∑ an is divergent.

Remark.   Theorem 22 is a refined form of Theorem 21 in the sense that we do not

need the limit of  to apply the test but just the  for absolute
an+1

an nd∞
lim sup

an+1

an

convergence and  for divergence.
nd∞

lim inf
an+1

an

Example 23.  

1.     is convergent.   Let .  Then�
n=1

∞
1
n!

an = 1
n!

.  
nd∞
lim

an+1

an
=

nd∞
lim

1/(n + 1)!
1/n!

= 1
n + 1

d 0 < 1

Therefore, by Theorem 21, the series is convergent.

2.     for x > 0.  Let an = n2xn . Then .�
n=1

∞

n2xn
nd∞
lim

an+1

an
=

nd∞
lim

(n + 1)2xn+1

n2xn = x

Thus by Theorem 21,   is convergent for 0< x < 1 and is divergent for        �
n=1

∞

n2xn

x > 1.  The series is divergent for x =1.

Example 24. Conditionally convergent series.

Chapter 6. Series.
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1. The series is convergent by Leibnitz's Alternating Series Test (Theorem�
n=1

∞ (−1)n+1

n

20).   We apply the test as follows.  Write the series as .  Then �
n=1

∞

(−1)n+1an an = 1
n

for each integer n ≥ 1.  Plainly the sequence is decreasing and an → 0.(an ) = 1
n

Thus by Theorem 20,  is convergent.  But   is�
n=1

∞

(−1)n+1an = �
n=1

∞ (−1)n+1

n �
n=1

∞
1
n

divergent and so  is conditionally convergent.   �
n=1

∞ (−1)n+1

n

2. The series   is convergent by Leibnitz's Alternating Series Test�
n=1

∞ (−1)n+1

2n − 1

(Theorem 20) as the sequence   is decreasing and an → 0.   Now  (an ) = 1
2n − 1

is divergent by the Comparison Test (Proposition 12) since �
n=1

∞
1

2n − 1
1

2n − 1
> 1

2n

and  is divergent.  Hence  converges conditionally.  Note that �
n=1

∞
1
2n �

n=1

∞ (−1)n+1

2n − 1

.�
n=1

∞ (−1)n+1

2n − 1
= �

4

Remark. 

1. The series  converges to ln(2).  This can be shown later by rewriting its�
n=1

∞ (−1)n+1

n

n-th partial sum, introducing an Eulerian sequence (that converges to the Euler

constant γ ).  

2. Both series and  can be computed by an argument in infinite�
n=1

∞ (−1)n+1

n �
n=1

∞ (−1)n+1

2n − 1

power series as expansion of ln(1+x) via integration term by term for  �
n=1

∞ (−1)n+1

n

and in the case of   expansion of tan-1(x) via integration term by term.    �
n=1

∞ (−1)n+1

2n − 1

( See Chapter 9 Power Series and Integration.)

6.6 The Integral Test

Our next test will make use of the Riemann integral.  The test is phrased in terms of

continuous function, which is always Riemann integrable on any closed and bounded

interval, or in terms of monotone decreasing function (and hence is Riemann

integrable on any closed and bounded interval).

Theorem 25. (The Integral Test).

Suppose  is a series.   Suppose the n-th term of the series an can be expressed as�
n=1

∞

an

an = f (n), where  f  is a function defined at least on the interval [1, ∞ ) such that

 1.  f  is non-negative  and

 2.  f  is monotone decreasing 

(hence (an) is non-negative and decreasing).  Then

Chapter 6. Series.
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(i)    converges if the sequence   tends to a finite limit L as n →∞ .  In�
n=1

∞

an ¶
1

n
f (x)dx

particular, the sum  lies between L and L + a1 .�
n=1

∞

an

(ii)    diverges if   as n →∞. �
n=1

∞

an ¶
1

n
f (x)dx d ∞

Remark.  The function  f  in Theorem 25 is usually continuous in pratice.

Note that f  is non-negative implies that the sequence  is monotonically¶
1

n
f (x)dx

increasing.  Hence  is convergent if and only if it is bounded (hence¶
1

n
f (x)dx

bounded above).  We could replace the condition in (i) by stating the equivalent

condition that  be bounded and (i) and (ii) may be stated simply as¶
1

n
f (x)dx

  converges ⇔  is bounded.�
n=1

∞

an ¶
1

n
f (x)dx

We have assumed that  f  is Riemann integrable on [1, n]  for each positive integer n.

Note that  if  f  is monotone on [1, n], then f  is Riemann integrable on [1, n]. (See

Theorem 22 Chapter 5 Integration.)   Thus we do not really require f  to be continuous.

However, in practice it is useful to know that f is continuous so that the integral 

  may be computed readily by using any anti-derivative of  f  since the¶
1

n
f (x)dx

Fundamental Theorem of Calculus can be applied.

Proof of Theorem 25.  Since f : [1, ∞) → R is non-negative and decreasing, f  is

bounded and Riemann integrable by Theorem 22 of Chapter 5 Integration.   It follows

that  f  is Riemann integrable on [1, n] for each integer n ≥ 1.  Moreover for any

integer k ≥ 1 and for any  x in [k, k+1],

                                         ak = f (k) ≥  f (x) ≥  f (k+1) = ak+1 .  

Hence, for any integer k ≥ 1,  f (k+1) = ak+1 = infimum { f (x) : x ∈ [k, k+1]}.

Therefore,

�
k=2

n+1

ak = �
k=2

n+1

f (k) = �
k=2

n+1

f (k)[k − (k − 1)]

is a lower Darboux sum for the interval [1, n+1], with respect to the partition 

P :  1 < 2 < 3 < … < n < n+1 .   Thus, since f  is Riemann integrable on [1, n+1], by

the definition of the Riemann integral (more specifically Darboux integral, see

Theorem 21 of Chapter 5),

                                                       .             -----------------------------  (1)�
k=2

n+1

ak [ ¶1
n+1

f

Note that for any integer k ≥ 1,  f (k) = ak = supremum{ f (x) : x ∈ [k, k+1]}.  Hence,

�
k=1

n

ak = �
k=1

n

f (k) = �
k=1

n

f (k)[(k + 1) − k]

is an upper Darboux sum for the interval [1, n+1], with respect to the partition P.  By

the definition of the Riemann integral (more specifically Darboux integral),

                                                       .       ---------------------------------  (2)¶
1

n+1
f [ �

k=1

n

ak

Now since  f  is non-negative, the sequence   is a monotonically increasing¶
1

n+1
f

sequence.  Therefore, by the Monotone Convergence Theorem (Theorem 15 Chapter 2

Sequences),    is convergent if and only if it is bounded above.         ¶
1

n+1
f

Chapter 6. Series.
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(i)  If    is convergent and   , then   is bounded above by¶
1

n+1
f

nd∞
lim ¶

1

n+1
f = L ¶

1

n+1
f

L.   By the inequality (1), for each integer n ≥ 1,    and so �
k=1

n+1

ak [ ¶1
n+1

f + a1

.    Hence the partial sum { sn+1 :  n ∈ P } is bounded above�
k=1

n+1

ak [ ¶1
n+1

f + a1 [ L + a1

by L + a1 .   Therefore by Proposition 11 or Monotone Convergence Theorem

(Theorem 15 Chapter 2 Sequences),     is convergent and�
k=1

∞

ak

.�
k=1

∞

ak [ L + a1

Since  is convergent, it follows from (2), that�
k=1

∞

ak

.
nd∞
lim ¶

1

n+1
f = L [ �

k=1

∞

ak

Hence,  .L [ �
k=1

∞

ak [ L + a1

(ii)    is divergent if and only if it is not bounded above.  Hence if    is¶
1

n+1
f ¶

1

n+1
f

not bounded above, then since the sequence is increasing,  .   It follows
nd∞
lim ¶

1

n+1
f = ∞

by (2) that the sequence of n-th partial sums ( sn ) is not  bounded above.  This may be

deduced as follows.  Since   is not bounded above, for any real number K ,¶
1

n+1
f

there exists an integer N such that   .  Therefore, by (2),  n m Nu ¶
1

n+1
f > K

  and so ( sn ) is not bounded above and hence notn m Nu sn = �
k=1

n

ak m ¶1
n+1

f > K

bounded.  Therefore,  is divergent and indeed  .�
k=1

∞

ak �
k=1

∞

ak = ∞

Example 26.

(1)   The series   is convergent.  We may show that it is convergent by using�
n=1

∞
1
n2

Theorem 25.

Let  .  Then   and  f   is non-negative and decreasing.   f (x) = 1
x2 f (n) = 1

n2

Moreover,  .  Therefore, by Theorem 25 (i), ¶
1

n 1
x2 dx = − 1

x 1

n

= 1 − 1
n d 1 �

n=1

∞
1
n2

is convergent and  .  Actually Euler showed that 1 [ �
n=1

∞
1
n2 [ 1 + 1

12 = 2

 in 1748 and the problem of the evaluation of this series is known as�
n=1

∞
1
n2 = �

2

6

the Basel problem.  There are now numerous ways of showing this, from complex

variable theory, Fourier series method, double integral and elementary method

using trigonometric series, integration by parts to "purely" arithmetical method.  

(2)  The series   is divergent.   Here we give another proof of this fact.  Let �
n=1

∞
1
n

.  then  f  is non-negative and decreasing on [1,  ∞).  The integral f (x) = 1
x

 .  Hence by Theorem 25 (ii),   is divergent and¶
1

n 1
x dx = [ln(x)]1

n = ln(n) d ∞ �
n=1

∞
1
n

 .�
n=1

∞
1
n = ∞

(3)  More generally, the series   (s > 0) converges if s > 1 and diverges if  s ≤ 1.�
n=1

∞
1
ns

Chapter 6. Series.
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The series converges if  s > 1, diverges if s ≤ 1.
Let   for x in [1, ∞).  If s =1 we know from example (2) above that thef (x) = 1

xs

series  is divergent.  We now assume that 0 < s < 1 or s > 1.  Then the�
n=1

∞
1
n

integral 

                             .  ----------------  (1)¶
1

n 1
xs dx = 1

−s + 1
x−s+1

1

n

= 1
1 − s

[n1−s − 1]

Note that the anti-derivative of   for 0 < s < 1 or s > 1 for x > 0 is    
1
xs

1
1 − s

x1−s

even for irrational s.  (This can be easily verified by using the definition of power  

ax = exp(x ln(a)) for positive a.)

If  s > 1, then 1−s < 0 and so   as n →∞.  Thus, by (1)    .n1−s d 0 ¶
1

n 1
xs dx d 1

s − 1
Note that the function  f  is plainly non-negative.   Observe that

 f (x) = 1
xs = e−s ln(x) = 1

es ln(x)

is decreasing since  is increasing on [1, ∞)  for s > 0.  Therefore, byes ln(x)

Theorem 25 (i),    is convergent for s > 1 and .�
n=1

∞
1
ns

1
s − 1

[ �
n=1

∞
1
ns [

1
s − 1

+ 1

If  0 < s < 1, then 1−s > 0 and so   as n →∞ .  It follows from (1) that then1−s d ∞

sequence   is divergent and .  Hence by Theorem 25 (ii) ¶
1

n 1
xs dx ¶

1

n 1
xs dx d ∞

  is divergent and .�
n=1

∞
1
ns �

n=1

∞
1
ns = ∞

Example 27.        is convergent .�
n=1

∞
n
en

This is because  for n > 0 ,  en > 1+ n + n2 /2 + n3 / 6 > n3 / 6  and so

.
n
en < 6

n2

Therefore, by the Comparison Test (Proposition 12),  is convergent because �
n=1

∞
n
en

  is convergent by Example 26 (3) above.�
n=1

∞
6
n2

6.7 The Cauchy Root Test

The next test is called the root test for obvious reason.  It is also a consequence of the

Comparison Test.

We shall state two versions, a simpler looking version and a slightly weaker version

involving lim sup.

Theorem 28 (Cauchy Root Test)

Let   be a series.  �
n=1

∞

an

(i)  Suppose there is a umber r with 0 ≤ r < 1 and there exists an integer N such that

                                                      .n m Nu an

1
n [ r

      Then the series  is absolutely convergent.�
n=1

∞

an

Chapter 6. Series.
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(ii)  If there exists an integer N such that    or  there exists infiniten m Nu an

1
n m 1

number of n for which , then the series is divergent. an

1
n m 1

Proof.   The proof is similar to that of the D'Alembert  Ratio Test.

(i)  By assumption, .  Since,  0 ≤ r < 1,   isn m Nu an

1
n [ ru an < rn �

n=1

∞

rn

convergent and so by the Comparison Test (Proposition 12),   is convergent and�
n=1

∞

an

so   is absolutely convergent.�
n=1

∞

an

(ii)  If there exists an integer N such that   , thenn m Nu an

1
n m 1 n m Nu an m 1

and so , which means .  It follows then by Proposition 10 that   isan \ 0 an \ 0 �
n=1

∞

an

divergent.  Similarly if there exists infinite number of n for which , thenan

1
n m 1

there are infinite number of n, for which .  Therefore,  andan m 1 an \ 0

consequently .  We then deduce similarly that  is divergent.   an \ 0 �
n=1

∞

an

We state next a slightly weaker version of Theorem 28.

Theorem 29 (Cauchy Root Test, lim sup version.)

Let   be a series.�
n=1

∞

an

(i)  Suppose  .  Then   is absolutely convergent.
nd∞

lim sup an

1
n < 1 �

n=1

∞

an

(ii)  If  , then  is divergent. 
nd∞

lim sup an

1
n > 1 �

n=1

∞

an

(iii)   If  , then the test gives no information.     may converge
nd∞

lim sup an

1
n = 1 �

n=1

∞

an

or diverge. 

Proof.  

(i)  If  , then taking  ε = (1−r)/2,  there exists an integer N such
nd∞

lim sup an

1
n = r < 1

that 

                                 ,n m Nu r − � < xn < r + � = 1 + r
2

< 1

where .  Therefore,  for all n ≥ N, xn = sup{ an

1
n , an+1

1
n+1 ,£} = sup{ a j

1
j : j m n}

.   It then follows by Theorem 28 (i),  is absolutelyan

1
n [ xN < R = 1 + r

2
< 1 �

n=1

∞

an

convergent.  (Note that the condition in Theorem 28 (i) states that there is a umber r

with 0 ≤ r < 1 and that there exists an integer N such that   impliesn m Nu an

1
n [ r

that .   Hence Theorem 28 (i) and Theorem 29 (i) are equivalent.)
nd∞

lim sup an

1
n [ r < 1

(ii)  If , then take ε = (r−1)/2. Since ( xn ) is decreasing, xn ≥ r.
nd∞

lim sup an

1
n = r > 1

Since  , by the definition of  xn = sup{ an

1
n , an+1

1
n+1 ,£} = sup{ a j

1
j : j m n}

supremum, for each positive integer n, there exists an integer kn ≥ n such that  

.  Hence there are infinite number of n such that akn

1
kn > xn − � m r − � = 1 + r

2
> 1
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 since {kn : n ≥ 1 } is infinite.  Therefore, by Theorem 28 (ii),   isan

1
n > 1 �

n=1

∞

an

divergent.   Alternatively just observe that for each integer n ≥ 1, there exists kn ≥ n

such that , i.e., .  Therefore,   and consequently .akn

1
kn > 1 akn > 1 an \ 0 an \ 0

Hence, by Proposition 10,  is divergent.�
n=1

∞

an

If , then each  xn = ∞. This means   is
nd∞

lim sup an

1
n = ∞ Sn = { an

1
n , an+1

1
n+1 ,£}

unbounded and so, there exists kn ≥ n such that , i.e., .  We thenakn

1
kn > 1 akn > 1

proceed in exactly the same way to show that  is divergent. �
n=1

∞

an

(iii)  If  , then  because .  We know   is�
n=1

∞

an = �
n=1

∞
1
n

nd∞
lim sup an

1
n = 1 n

1
n d 1 �

n=1

∞
1
n

divergent.  If  , then .  But   is convergent.  (See�
n=1

∞

an = �
n=1

∞
1
n2

nd∞
lim sup an

1
n = 1 �

n=1

∞
1
n2

Example 26 (3).)  Thus the test gives no information when .
nd∞

lim sup an

1
n = 1

Remark.  

1. Theorem 29 is a slightly weaker form of  Theorem 28.  In terms of  ,
nd∞

lim sup an

1
n

it allows the technique of finding limit to be readily used.  For instance if 

 exists, then .  Indeed, we may state another
nd∞
lim an

1
n

nd∞
lim sup an

1
n =

nd∞
lim an

1
n

weaker form of Theorem 29 with  replaced by .  Observe
nd∞

lim sup an

1
n

nd∞
lim an

1
n

that if there exists infinite number of n for which , then an

1
n m 1

 for each positive integer n,xn = sup{ an

1
n , an+1

1
n+1 ,£} = sup{ aj

1
j : j m n} m 1

if  any one of xn exists.  Thus need not necessary be strictly greater
nd∞

lim sup an

1
n

than 1.  So in this respect Theorem 28 (ii) is a little stronger than Theorem 29 (ii).

If xn does not exist, then the sequence is unbounded and an

1
n

nd∞
lim sup an

1
n = ∞

.  

2. Neither the Ratio Test nor the Cauchy Root Test says anything about the

convergence or divergence of series like  and .  Thus we need more�
n=1

∞
1
n �

n=1

∞
1
n2

delicate test for this kind of series.   We shall deal with this in Chapter 13.  

Example 30. 

 (1)  The series   .  �
n=1

∞
n

n + 1

n2

For each integer n ≥ 1, let  .  Thenan = n
n + 1

n2

.   an

1
n = n

n + 1

n

= 1

1 + 1
n

n

= 1
(1 + 1

n )n d
1
e < 1

This uses knowledge of               

.   Thus,   
nd∞
lim (1 + 1

n )n = e
nd∞

lim sup an

1
n =

nd∞
lim an

1
n = 1

e < 1.

Therefore, by Theorem 29 (i),   is absolutely convergent.   Actually,�
n=1

∞
n

n + 1

n2

Theorem 28 (i) may be used.   But we use an estimate of  .   By a binomialan

1
n

expansion of    , we deduce easily that  for any integer n ≥ 1.(1 + 1
n )n (1 + 1

n )n
m 2
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Therefore, for any integer n ≥ 1,    and so by Theoreman

1
n = 1

(1 + 1
n )n [

1
2

< 1

28 (i),  is absolutely convergent.   �
n=1

∞
n

n + 1

n2

We can use the ratio test too but it involves some manipulation such as seen

below:

an+1

an
= n + 1

n + 2

(n+1)2

n + 1
n

n2

            =
(n + 1)2n2

(n + 2)n2+2n+1

(n + 1)2n+1

nn2 =
((n + 1)2 )n2

((n + 2)n)n2

(n + 1)2n+1

(n + 2)2n+1

            =
(n2 + 2n + 1)n2

(n2 + 2n)n2

(n + 1)2n+1

(n + 2)2n+1

            =
(n2 + 2n + 1)n2+2n

(n2 + 2n)n2+2n

(n2 + 2n)2n

(n2 + 2n + 1)2n

(n + 1)2n+1

(n + 2)2n+1

            =
(n2 + 2n + 1)n2+2n

(n2 + 2n)n2+2n

n2n

(n + 1)2n

(n + 1)
(n + 2)

            = 1 + 1
(n2 + 2n)

n2+2n
1

(1 + 1
n )2n

(n + 1)
(n + 2) d e $

1
e2 $ 1 = 1

e < 1

(2)   Let   be series where the term an is defined by�
n=0

∞

an

                            for k ≥ 1 and  .   a2k−1 = ( 1
2

)2k−1
a2k = ( 1

4
)2k

Then for each integer n ≥ 1, 

 .
an+1

an
=

 

 

 
 

 

1
4

n+1

1
2

n if n is odd

1
2

n+1

1
4

n if n is even

=
 

 
 

1
4
( 1

2
)n

if n is odd
1
2
(2)n

if n is even

Plainly, for each integer n ≥ 1,

                         and  inf{
an+1

an
,

an+2

an+1
,¢} = 0 sup{

an+1

an
,

an+2

an+1
,¢} = ∞

and so   

                           and  .  
nd∞

lim sup
an+1

an
= ∞

nd∞
lim inf

an+1

an
= 0

Thus  does not exist.  We cannot apply the two ratio tests  (Theorem 21
nd∞
lim

an+1

an

and Theorem 22).  However,  .  Thus (an )
1
n =

 

 
 

1
2 if n is odd

1
4 if n is even

.  Therefore, .  Hence bysup{(an )
1
n , (an+1 )

1
n+1 ,¢} = 1

2 nd∞
lim sup (an )

1
n = 1

2
< 1

Theorem 29, the series is absolutely convergent.

           

(3)   The series   .  �
n=2

∞
n + 1

n3 ln(n)
For each integer n ≥ 2, let   .  Then it can be shown that an = n + 1

n3 ln(n)
  and  .  

nd∞
lim

an+1

an
= 1

nd∞
lim an

1
n = 1

Hence we cannot infer anything from both the Ratio test and Cauchy Root Test.    

However, note that for n > 2, ln(n) > 1 and so for integer n  > 2, 
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                                   an = n + 1
n3 ln(n) < 1

n2 + 1
n3

Therefore, by the Comparison Test (Theorem 12), since we know   is�
n=2

∞
1
n2 + 1

n3

convergent, the series  is convergent.�
n=2

∞
n + 1

n3 ln(n)

6.8  The Euler Constant γγγγ .           

Though the series  is divergent, the difference of the n-th partial sum of the series�
n=1

∞
1
n

and ln(n) actually converges.  We shall use integral estimation to show the

convergence.  Firstly note that  and  are respectively the maximum and minimum
1
a

1
b

of the function  on the interval [a, b] for 1 ≤ a < b.f (t) = 1
t

Thus, for each integer n ≥ 1, 

           ¶
n

n+1
f = ¶

n

n+ 1
2

f + ¶
n+ 1

2

n+1
f m ¶

n

n+ 1
2 1

n + 1
2

+ ¶
n+ 1

2

n+1 1
n + 1

= 1
2

1

n + 1
2

+ 1
2

1
n + 1

                                    -----------------------------------   (*)    > 1
2

1
n + 1

+ 1
2

1
n + 1

= 1
n + 1

                          

and 

                ¶
n

n+1
f = ¶

n

n+ 1
2

f + ¶
n+ 1

2

n+1
f [ ¶

n

n+ 1
2 1

n + ¶
n+ 1

2

n+1 1

n + 1
2

= 1
2

1
n + 1

2
1

n + 1
2

                          .< 1
2

1
n + 1

2
1
n = 1

n

Hence, for each integer n ≥ 1,

                                                            ----------------------------  (1)
1

n + 1
< ¶

n

n+1
f < 1

n

Therefore, using (1) we get for integer n ≥ 2, 

.�
k=1

n−1
1

k + 1
< ¶

1

2
f + ¶

2

3
f +£ + ¶

n−1

n
f < �

k=1

n−1
1
k

Thus,                                 .  -------------------------- (2)   �
k=1

n−1
1

k + 1
< ¶

1

n
f = ln(n) < �

k=1

n−1
1
k

Now let  for integer n ≥ 1.  Then from (2) we obtain for integer n ≥ 2,sn = �
k=1

n
1
k

 sn − ln(n) = 1 +�
k=1

n−1
1

k + 1
− ln(n) < 1 + 0 = 1

and                             .sn − ln(n) = 1
n +�

k=1

n−1
1
k

− ln(n) > 1
n + 0 = 1

n

For integer n ≥ 1, let dn = sn − ln(n).   Then for integer n ≥ 2,

                                                      0 < 1
n < dn < 1

and  d1 = s1− ln(1) = 1 > 0.  Hence, we have that 0 <  dn ≤ 1 for all integer n ≥ 1.

Therefore, the sequence (dn ) is a bounded sequence.  We shall show that it is a

decreasing sequence.

For any integer n ≥ 1,

         dn+1 − dn =    sn+1 − ln(n+1) − (sn − ln(n)) =  sn+1 −  sn − (ln(n+1) − ln(n))         

                         < 0 by (*).= 1
n + 1

− ¶
n

n+1
f
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Hence dn+1 <   dn  for any integer n ≥ 1.  This means the sequence (dn ) is a decreasing

sequence bounded below by 0.  Therefore, by the Monotone Convergence Theorem

(Theorem 15 Chapter 2 Sequences ),  (dn )  is convergent and converges to the Euler

constant γ .

Example 31.

Now we shall use this constant to evaluate the series     .�
n=1

∞

(−1)n+1 1
n

Let  and  be the n-th partial sum of the series.an = (−1)n+1 1
n tn = �

k=1

n

ak = �
k=1

n

(−1)k+1 1
k

By Leibnitz's Alternating Series Test (Theorem 20), this series is convergent.  Hence  

( tn ) is a convergent sequence and so any subsequence of it should converge to the

same limit.    

Now        t2n = �
k=1

2n

(−1)k+1 1
k

= 1 − 1
2

+ 1
3

− 1
4

+£ + 1
2n − 1

− 1
2n

                     .= 1 + 1
2

+ 1
3

+ 1
4

+£ 1
2n

− 2
1
2

+ 1
4

+£ + 1
2n

Thus, for each integer n ≥ 1,

                              t2n = 1 + 1
2

+ 1
3

+ 1
4

+£ 1
2n

− 1
1

+ 1
2

+£ + 1
n

                           = s2n − sn = d2n + ln(2n) − (dn + ln(n))

                           = d2n − dn + ln(2n) − ln(n)
                           .= ln(2) + d2n − dn

Since (dn ) is convergent and converges to the Euler constant γ,  .
nd∞
lim d2n =

nd∞
lim dn = �

Hence,  t2n → ln(2) + γ − γ = ln(2).   Therefore, since ( tn ) is convergent, tn → ln(2).   

This means  .  We shall see in a later chapter another proof of this�
n=1

∞

(−1)n+1 1
n = ln(2)

using Abel's Theorem.

6.9  Dirichlet's Test

In order to deal with series such as trigonometric series we may use the following test

due to Dirichlet which is a specialization of the Dirichlet's Test for uniform

convergence of a series of functions.

Theorem 32 (Dirichlet's Test for Series).

Suppose ( an ) and ( bn ) are two sequences satisfying 

(1)  the n-th partial sums,   , are bounded. i.e., there exists some real numbersn = �
k=1

n

bk

K > 0  such that  | sn | ≤ K;

(2)  ( an ) is decreasing  and

(3)  an → 0.

Then the series   is convergent.�
n=1

∞

anbn

Proof.   We shall show that the series  is a Cauchy series.�
n=1

∞

anbn

Note that for each k ≥ 2,

                                                          bk = sk − sk−1

and b1 = s1 .

Hence we have for each integer n ≥ 1 and any integer p ≥ 1, 
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      �
k=n+1

n+p

akbk = �
k=n+1

n+p

ak(sk − sk−1 ) = �
k=n+1

n+p

aksk − �
k=n+1

n+p

aksk−1

                     = �
k=n+1

n+p

aksk − �
k=n

n+p−1

ak+1sk = �
k=n+1

n+p−1

aksk − �
k=n+1

n+p−1

ak+1sk + an+psn+p − an+1sn

                                   -------------------------  (1)= �
k=n+1

n+p−1

(ak − ak+1 )sk + an+psn+p − an+1sn

Then from (1) by the triangle inequality, for each integer n ≥ 1 and any integer p ≥ 1,

.�
k=n+1

n+p

akbk [ �
k=n+1

n+p−1

ak − ak+1 sk + an+p sn+p + an+1 sn

Thus, by condition (1),  for each integer n ≥ 1 and any integer p ≥ 1, 

                �
k=n+1

n+p

akbk [ �
k=n+1

n+p−1

ak − ak+1 K + ( an+p + an+1 )K

                                      ----------------------  (2)[ K �
k=n+1

n+p−1

(ak − ak+1 ) + ( an+p + an+1 )K

because (an) is decreasing by condition (2) of the theorem so that ak − ak+1 = ak − ak+1

for each k ≥ 1.

It then follows from (2) since  is a telescopic sum,�
k=n+1

n+p−1

(ak − ak+1 )

                                   -------------- (3)�
k=n+1

n+p

akbk [ K(an+1 − an+p ) + K( an+p + an+1 )

for each integer n ≥ 1 and any integer p ≥ 1.

Note that condition (2) and (3) of the theorem says that (an) is decreasing and an → 0.

Therefore, an ≥ 0.  (This is because if some integer j, aj < 0, then for all n > j,              

an ≤ aj <0 and so , contradicting an → 0.)an \ 0

Thus, we obtain from (3), that for each integer n ≥ 1 and any integer p ≥ 1.

                              ----------  (4)�
k=n+1

n+p

akbk [ K(an+1 − an+p ) + K(an+p + an+1 ) = 2Kan+1

Now, since an → 0, given any ε > 0, there exists a positive integer N such that for all n

in P,

                                          .   ---------------------------------  (5)n m Nu an = an < �
2K

Therefore, from (4) and (5), we have that for any integer p ≥ 1,

.n m Nu �
k=n+1

n+p

akbk [ 2Kan+1 < 2K
�

2K
= �

Hence,  is a Cauchy series and by Theorem 9,  is convergent.     �
n=1

∞

anbn �
n=1

∞

anbn

Example 33.

The series  and .�
n=1

∞

an sin(nx) �
n=1

∞

an cos(nx)

Note the following cosine formulae,

                            ------------------  (1)cos(kx − 1
2

x) = cos(kx) cos( 1
2

x) + sin(kx) sin( 1
2

x)

and                  .    ------------------  (2)cos(kx + 1
2

x) = cos(kx) cos( 1
2

x) − sin(kx) sin( 1
2

x)

Subtracting (2) from (1), we get for any integer n and any x, 

                 2 sin(kx) sin( 1
2

x) = cos(kx − 1
2

x) − cos(kx + 1
2

x)

                                           .  -------------------- (3)= cos (k − 1)x + 1
2

x − cos kx + 1
2

x

Similarly using the sine formulae,
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                           -------------------  (4)sin(kx − 1
2

x) = sin(kx) cos( 1
2

x) − cos(kx) sin( 1
2

x)

and              .       -------------------  (5)sin(kx + 1
2

x) = sin(kx) cos( 1
2

x) + cos(kx) sin( 1
2

x)

Then, subtracting (4) from (5), we get

                    2 cos(kx) sin( 1
2

x) = sin(kx + 1
2

x) − sin(kx − 1
2

x)

                                                .  ----------------- (6)= sin kx + 1
2

x − sin (k − 1)x + 1
2

x

Thus, for any integer n ≥ 1, using (6), we get

                                      2 sin( 1
2

x)�
k=1

n

sin(kx) = cos( 1
2

x) − cos(nx + 1
2

x)

and so                               �
k=1

n

sin(kx) =
cos( 1

2 x) − cos(nx + 1
2 x)

2 sin( 1
2 x)

if  x is not a multiple of 2π.

Hence    if  x is not a multiple of�
k=1

n

sin(kx) =
cos( 1

2 x) − cos(nx + 1
2 x)

2 sin( 1
2 x)

[
1

sin( 1
2 x)

2π.

Thus the partial sum   is bounded.   Therefore,  if ( an ) is decreasing  and   an�
k=1

n

sin(kx)

→ 0, then by the Dirichlet's Test,   is convergent for any x not a multiple�
n=1

∞

an sin(nx)

of 2π.

However, if x is a multiple of 2π, the series .  Therefore, �
n=1

∞

an sin(nx) = 0 �
n=1

∞

an sin(nx)

is convergent for any x which is a multiple of 2π, .

Now summing over (6), we obtain

                                       2 sin( 1
2

x)�
k=1

n

cos(kx) = sin(nx + 1
2

x) − sin( 1
2

x)

and if x is not a multiple of 2π, 

                                         �
k=1

n

cos(kx) =
sin(nx + 1

2 x) − sin(x 1
2 )

2 sin( 1
2 x)

and .   Therefore, if x is not a multiple of 2π, the n-th partial�
k=1

n

cos(kx) [ 1

sin( 1
2 x)

sum  is bounded.  Consequently, if ( an ) is a decreasing sequence tending to�
k=1

n

cos(kx)

0, then the series  is convergent.  If x is a multiple of 2π, then the series�
n=1

∞

an cos(nx)

becomes   and this may or may not converge.�
n=1

∞

an

Thus,  is always convergent and  converges only for x not a�
n=1

∞
1
n sin(nx) �

n=1

∞
1
n cos(nx)

multiple of 2π .  

Exercises 34.

1.    Suppose ∑ an  and  ∑ bn  are two series of positive terms.  Suppose  an / bn  → k

and  k > 0.  Prove that ∑ an  is convergent if and only ∑ bn is convergent.

       Suppose an / bn  → ∞ .   Prove that  if  ∑ bn is divergent, then ∑ an  is divergent.
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2.   Suppose ∑ an  and  ∑ bn are  absolutely convergent , then ∑ an bn is also absolutely

convergent.  Hence deduce that ∑ an converges absolutely implies that ∑ an
2  is

convergent.  Is the converse true?

3.    Using question 1 or otherwise, test the convergence of the following series:

         (i)     .             (ii)    .           (iii)     .  �
1

∞
1

1 + n2 �
1

∞
n + 1

n(n + 2) �
1

∞
1
n sin( 1

n )

       (iv)   .               (v)    .          (vi)    .�
1

∞
1

2n + 5 �
1

∞
n + 1
n2 + 1

3

�
1

∞ ln(n)

n + 1

4.    Test the following series for convergence.

       (i)   .  (ii)   . (iii)   .  (iv)   .  (v)  .5�
1

∞ (n!)2

(2n)! �
1

∞
n!
nn �

1

∞
n2

2n �
1

∞
2n

n! �
1

∞
1

n ln(n)

5.    Determine the convergence of the following series, say whether the convergence

is absolute or conditional.

       (i)  .  (ii)  .  (iii)  .�
1

∞

(−1)n+1 n + 3
n(n + 1) �

1

∞

(−1)n
ln(n)

n �
1

∞

(−1)n+1 n
2n

       (iv)   , any x.�
1

∞

(−1)n+1 x2n−1

(2n − 1)!

6.   Investigate the convergence of     for p > 0.�
1

∞ sin(nx)
np

7.   Test the following series for convergence.

      (i)   .  (ii)  .   (iii)  ,  p real  p > 0 .�
1

∞
2n + n
3n − n �

1

∞
e−n

n + 1
�
1

∞

sin
1
np

     (iv)  .  �
1

∞ ln(n + 1) − ln(n)
tan−1( 2

n )

8.   Determine the conditional convergence, absolute convergence or divergence of the

following series. 

       (i)  .  (ii)   .  (iii)   .   �
1

∞

(−1)ne−n2

�
1

∞ (−1)n

ln(cosh(n)) �
1

∞

(−1)n n2

2 + n2

9.    (i)  Prove that .   
nd∞
Lim �

k=1

n
n

n2 + k2 = �
4

      (ii)  Let Sn (n ≥ 1) be the n-th partial sum of the series   .1 − 1
2 + 1

3 − 1
4 + 1

5 − 1
6 +£

     Show by  induction that   Use integral calculus to deduce that     S2n = �
k=1

n
1

n + k
.

     �
1

∞

(−1)n+1 1
n = ln(2).

10.  Prove that if  ∑ an
2   and  ∑ bn

2  are  absolutely convergent , then ∑ an bn is also   

absolutely convergent.  [Hint:  | an bn | ≤ ( an
2 + bn

2 )/2 ].  Hence deduce that if  ∑

an
2 is absolutely convergent, then so is    . �

n=1

∞ an

n

11.   Given that  , show that (i)  and�
1

∞
1
n4 = �

4

90 �
1

∞
1

(2n − 1)4 = �
4

96
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        (ii) .�
1

∞

(−1)n 1
n4 = − 7�4

720

12.  Suppose ∑ an  is convergent.  Show that is  also convergent.  � n + 1
n an

13.  Prove that   and that .�
1

∞
1

n(2n − 1) = 2 ln(2) �
1

∞

(−1)n−1 2n + 1
n(n + 1) = 1

14.  Show that  .  Using this relation find the sum of thetan( x
2 ) = cot( x

2 ) − 2 cot(x)
series 

                                        .�
1

∞
1
2n tan

x
2n

15.  Suppose the series of positive terms   is divergent, i.e., its limit is ∞.�
n=1

∞

Bn

Suppose (an ) is a sequence such that an → A.  Show that   

.
n d ∞
lim

B1a1 + B2a2 +£ + Bnan

B1 + B2 +£ + Bn
= A

       Hence or otherwise, show that

       (i)    .
n d ∞
lim

sin(�) + sin
�
2

+£ + sin
�
n

1 + 1
2

+£ + 1
n

= �

       (ii)   .
1
n2 12 sin(�) + 22 sin

�
2

+£ + n2 sin
�
n d

�
2

16.  If a1= cos(θ),  0 < θ < 2π,   b1 = 1 and an+1 =(an + bn)/2, bn+1 = √ (an+1 bn) for

integers n ≥ 1, show that (an ) and (bn ) are both convergent and converges to the

common limit sin(θ)/θ .

17.  Follow the methods of  6.8,  prove that the sequence

                          , n ≥ 2,(�n ) = 1
2 ln(2) + 1

3 ln(3) +£ + 1
n ln(n) − ln(ln(n))

is convergent.  Hence, or otherwise, show that if p is a positive integer,

                            .
n d ∞
lim �

k = n

np

1
k ln(k) = ln( p)

18.  By using a partial fraction decomposition, or otherwise show that

                                .�
n = 1

∞
1

n(4n2 − 1) = 2 ln(2) − 1

19.   Let  .   Show that  .   Hence deduceSn = 1 + 1
2

+£ + 1
n 1 + n

2
[ S2 n [ n + 1

2

n

that 

        .(Sn )1/n
d 1

20.  Show that (i)    (ii)  .  
n d ∞
lim

n + 1

(n!)1/n
= e

n d ∞
lim

((n + 1)(n + 2)¢(n + n))1/n

n = 4
e
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