
Chapter 4 Differentiable Functions

Introduction.

Differentiation is usually associated with the rate of change of a quantity or process.
Suppose the process or quantity is depended on some variable x, usually this is time.   
We may consider it as a function  f (x).   Fix an x, called it x0..  Then suppose at some
other value of x, say xn ,  the value of the process or quantity is  f (xn) then we may say
the rate of change  is the quotient  

                                                       .              ------------------------    (1)
f (xn) − f (x0)

xn − x0

Usually this is the quantity we seek as in application in Revenue in Business, where it
is also known as average rate of change from x0 to xn.  Very often we require the so
called instantaneous rate of change at x0  as in marginal analysis in Business and
Economics and as in velocity in mechanics.  In practice, we normally calculate this
quantity for some value xn very close to x0.   Mathematically, this means we take a
sequence (xn)  which converges to x0 and consider the limit 
                                                          .                       ----------------  (2)n d∞lim

f (xn) − f (x0)
xn − x0

If this limit exists, it is a "derived number" of the function  f .   Equivalently the limit 
                                                , n d∞lim f (x0 + hn) − f (x0)

hn

where hn = xn − x0 , is a derived number of  f  .   For  sufficiently small value of hn  the
quotient
                                                                                   --------------- (3)   f (x0 + hn) − f (x0)

hn

is an approximation of the derived number of  f  at x0.   For meaningful application,
we assume that the limit (2) is unique for any sequence (xn) converging to x0 or
equivalently that the limit (3) is unique for any sequence (hn) converging to 0.
Without this assumption it is possible for different sequences giving rise to different
derived numbers.  This assumption expresses the property that  f  must have,
equivalently expressed by Definition 32 Chapter 3, that the limit 
                                                       

h d0
lim

f (x0 + h) − f (x0)
h

exists.  

4.1 Differentiability

A subset D of R is  a neighbourhood of a point x0 if D contains an open interval I  
such that x0 ∈ I ⊆ D.

Definition 1.   Suppose  f  : D → R is a function and D is a neighbourhood of x0.
(This means there exists an open interval  I  such that x0 ∈ I ⊆ D.)  Then we say   f  is
differentiable at x0 if the limit   exists and is finite.  This limit is

h d0
lim

f (x0 + h) − f (x0)
h

called the derivative of  f  at x0.   We denote this limit by  f '(x0).   Note that in its
equivalent form, .f ∏(x0) =x d x0

lim
f (x) − f (x0)

x − x0
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xx 0

y = f (x)

f (x   ) 0

tangent line at x0

L(x - x  ) 0
 

Remark.  Note that x0 is a limit point (or cluster point) of  I −{x0} and so is a limit
point of D.  Hence the limit above is given by Definition 32 of Chapter 3.
Suppose  f ' (x0) = L.  Then .    Thus, given any ε > 0,x dx0

lim
f (x) − f (x0) − L(x − x0)

x − x0 = 0
there exists δ > 0 such that for all x in I,  

|x − x0| < δ ⇒ | f (x) − f (x0) − L(x − x0) | ≤ |x − x0|ε.
Thus, if we write r(x) = f (x) − f (x0) − L(x − x0), then f (x) = f (x0) + L(x − x0) + r(x),
where  .  Thus, in a small neighbourhood of x0 ,  f (x) is approximated byx dx0

lim
r (x)

x − x0 = 0
the linear function  Lx + f (x0) − L x0  whose graph is the tangent line at x0 .
Note that if we let for x ≠ x0 and p(x0) = L.  Thenp(x) =

r(x) + L(x − x0)
x − x0 =

f (x) − f (x0)
x − x0

p is continuous at x0 and f (x) = f (x0) + p(x)(x − x0) for x in D.  Conversely if there
exists a function  p : D → R such that  p is continuous at x0 and  f (x) = f (x0) + p(x)(x
− x0) then f  is differentiable at x0 as   since p isx dx0

lim
f (x) − f (x0)

x − x0 =x dx0
lim p(x) = p(x0)

continuous at x0

Therefore,  f   is differentiable at x0 if and only if, there exists a function p : D → R
such that p is continuous at x0 and   f (x) = f (x0) + p(x)(x−x0).

If  D is open and hence is a neighbourhood of each of its points  and if f  : D → R is
differentiable at x for all x in D, then we say  f  is differentiable on D  and the function
 f ' : D → R  is called the derived function or the derivative of  f  .  If the limit 

exists, then we say  f  is twice differentiable at x0 and write xdx0
lim

f ∏(x) − f ∏(x0)
x − x0

.  This is called the second derivative of  f  at x0 .       f ∏∏(x0) =xdx0
lim

f ∏(x) − f ∏(x0)
x − x0

Example 2.

1.   Suppose the function  f  : R → R  is given by .  Take any  a in R. f (x) = x2

Then for any x ≠ a,  .
f (x) − f (a)

x − a = x2 − a2

x − a =
(x − a)(x + a)

x − a = (x + a)

Thus,   .  Therefore,  f '(a) = 2a.xdalim
f (x) − f (a)

x − a = xdalim (x + a) = 2a
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Note that in the above examples, we write the function  for x ≠ a ing(x) =
f (x) − f (a)

x − a
a form for which we can easily compute the limit.   It is a simple observation that if
g(x) = h(x) for x ≠ a, then  .xdalim g (x) = xdalim h(x)

2.   Let the function  f  : (0, ∞ ) → R be given by  .  Take any x0 in (0, ∞ ).f (x) = 1
x

Then

          f ∏(x0) =
hd0
lim f (x0 + h) − f (x0)

h =
hd0
lim

1
x0 + h − 1

x0

h =
hd0
lim

x0− (x0+ h)
( x0 + h) x0

h

                     .=
hd 0
lim −1

(x0 + h)x0
= − 1

x0
2

An immediate consequence of differentiability is continuity.

Theorem 3.  Suppose f  is defined on an open interval I containing a point a.  If  f  is
differentiable at a, then  f  is continuous at a.

Proof.  For  x ≠ a  let  .  Then                                      f (x) = f (a) +
f (x) − f (a)

x − a $ (x − a)

                                   .xdalim f (x) = f (a) + xdalim
f (x) − f (a)

x − a $ (x − a)

As a result that   f  is differentiable at a,  
.xdalim

f (x) − f (a)
x − a $ (x − a) = xdalim

f (x) − f (a)
x − a xdalim (x − a) = f ∏(a) $ 0 = 0

Thus  .  Therefore,  f  is continuous at a.xdalim f (x) = f (a) + 0 = f (a)

Example 4.

1.  The function f  : R → R defined by   is not differentiable at x =f (x) =
⎧ 

⎩ 
⎨ 

1 , x m 0
0 , x < 0

0 since  f  is not continuous at x = 0 (otherwise, by Theorem 3,  f  would be
continuous at x = 0).

2.   The function f  : R → R defined by  f (x) = |x| is not differentiable at x = 0 even
though f  is continuous at x = 0.  This is deduced as follows.  

 and  .
hd 0+
lim

f (0 + h) − f (0)
h =

hd 0+
lim h − 0

h = 1
hd 0−
lim

f (0 + h) − f (0)
h =

hd 0−
lim −h − 0

h = −1
Thus the right limit is not equal to the left limit.  And so the limit does not exist.  This
means |x| is not differentiable at 0.

                                                                             
x

y = |x| y

                                                                    The Graph of  y = |x|.
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3.   Let f  : R → R be defined by  .  Then  f  is differentiable on f (x) =
⎧ 

⎩ 
⎨ 

2x , x m 2
x2 , x < 2

 and on  .   f  is continuous at 2 but not differentiable at x = 2.  (Note(−∞, 2) (2,∞)
that because   and  , both left and right

xd2+
lim f (x) =

xd2+
lim 2x = 4

xd2−
lim f (x) =

xd2−
lim x2 = 4

limits are the same.  Hence,  .   Hence  f  is continuous at x = 2.)
xd2
lim f (x) = 4 = f (2)

For differentiability we look at the following left and right limits:  
       

hd 0+
lim

f (2 + h) − f (2)
h =

hd 0+
lim

2(h + 2) − 4
h =

hd 0+
lim 2h

h = 2
and 

      .
hd 0−
lim

f (2 + h) − f (2)
h =

hd 0−
lim

(h + 2)2 − 4
h =

hd 0−
lim 4h + h2

h =
hd 0−
lim (4 + h) = 4

Therefore, does not exist and so  f  is not differentiable at x = 2.
hd0
lim

f (2 + h) − f (2)
h

                                                                            

4

2

8

4 x

y = f(x)y

                                                                         

Now  .  Differentiating this we get  .f ∏(x) =
⎧ 

⎩ 
⎨ 

2, x > 2
2x, x < 2 f ∏∏(x) =

⎧ 

⎩ 
⎨ 

0, x > 2
2, x < 2

Obviously   does not exist.f ∏∏(2)

4.   .  Then  f  is differentiable on (−∞, 1)∪(1, ∞) .  Nowf (x) =
⎧ 

⎩ 
⎨ 

4x2 + 1, x m 1
3x2 + 2x, x < 1

                
hd 0+
lim

f (1 + h) − f (1)
h =

hd 0+
lim

4(1 + h)2 + 1 − 5
h =

hd 0+
lim 8h+h2

h = 8
and

                     
hd 0−
lim

f (1 + h) − f (1)
h =

hd 0−
lim

3(1 + h)2 + 2(1 + h) − 5
h =

hd 0−
lim 6h + h2 + 2h

h
                                               .            =

hd 0−
lim (8 + h) = 8

Hence,  f ' (1) = 8.  Thus .   Similarly we deduce as followsf ∏(x) =
⎧ 

⎩ 
⎨ 

8x, x m 1
6x + 2, x < 1

that .  f ∏∏(x) =
⎧ 

⎩ 
⎨ 

8, x > 1
6, x < 1

Now

                      
hd 0+
lim

f ∏(1 + h) − f ∏(1)
h =

hd 0+
lim

8(1 + h) − 8
h =

hd 0+
lim 8h

h = 8
and

                      .
hd 0−
lim

f ∏(1 + h) − f ∏(1)
h =

hd 0−
lim

6(h + 1) + 2 − 8
h =

hd 0−
lim 6h

h = 6
Thus the left and right limits are not the same.  Therefore, f '' (1) does not exist.

Hence   .f ∏∏(x) =
⎧ 

⎩ 
⎨ 

8 , x > 1
6 , x < 1
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Sums, Products and Quotients

Theorem 5.  Let  f  and g be defined on a neighbourhood D of x0 . L et λ and µ be any
real numbers.  Then if  f  and g are differentiable at x0 ,
1.  (λ f  + µ g)' (x0) = λ f '(x0) + µ g'(x9)  ,
2.  (Product rule) (f  g )' (x0) =  f '(x0) g(x0) +  f (x0)g'(x0) ,

3.  (Quotient rule)  , .if g (x0) ! 0 f
g

∏

(x0) =
f ∏(x0) $ g (x0) − f (x0) $ g ∏(x0)

(g (x0))2

Proof.

1.   
f (x0 + h) + g (x0 + h) − f (x0) + g (x0)

h
      =

f (x0 + h) − f (x0)
h +

g (x0 + h) − g (x0)
h d f ∏(x0) + g∏(x0) as h d 0.

      This proves part (1).

2.   
f (x0 + h) g (x0 + h) − f (x0) g (x0)

h
      =

f (x0 + h) g (x0 + h) − f (x0) g (x0 + h) + f (x0) g (x0 + h) − f (x0) g (x0)
h

      = g (x0 + h)
f (x0 + h) − f (x0)

h + f (x0)
g (x0 + h) − g (x0)

h
       since  f  and g are differentiable at x0 and g is  d g (x0) f ∏(x0) + f (x0)g∏(x0) as h d 0
      continuous at x0  by Theorem 3.  This proves part (2).

3.   1
h

f (x0 + h)
g (x0 + h) −

f (x0)
g (x0) = 1

h
g (x0) f (x0 + h) − f (x0)g (x0 + h)

g (x0 + h)g (x0)

      = 1
h

g (x0) f (x0 + h) − g (x0) f (x0) + g (x0) f (x0) − f (x0)g (x0 + h)
g (x0 + h)g (x0)

       

      =
g (x0) f (x0+h)− f (x0)

h − f (x0) g (x0+h)−g (x0)
h

g (x0 + h)g (x0) d
g (x0) f ∏(x0) − f (x0)g∏(x0)

(g (x0))2 as h d 0

since f  and g are differentiable at x0 and g is continuous at x0 by Theorem 3 and
non-zero at x0.

Example 6.
1.   If n is a natural number, let  f (x) = xn .  Then  f  is differentiable on R and  f ' (x) =
n xn -1

 .   Let a be a point in R.   For all x ≠ a,

      
f (x) − f (a)

x − a = xn − xa

x − a =
(x − a)(xn−1 + xn−2a + xn−3a2 +£ + xan−2 + an−1)

(x − a)
                            .    -----------------------   (1)= xn−1 + xn−2a + xn−3a2 +£+ xan−2 + an−1

Therefore, 
           xdalim

f (x) − f (a)
x − a = xdalim xn−1 + xn−2a + xn−3a2 +£ + xan−2 + an−1 = nan−1

since there are n terms on the right side of (1) and each term has the same limit an-1 .

2.  If , then    for x ≠ 0.f (x) = 1
x f ∏(x) = 0 $ x − 1 $ 1

x2 = − 1
x2
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Theorem 7.  Any polynomial function is differentiable on R.  Any rational function is
differentiable on its domain of definition.

Proof.  Any polynomial function is differentiable follows from Theorem 5 part (1)
and (2). Since a rational function is a quotient of one polynomial function p(x) by
another polynomial function q(x), by Theorem 5 part (3), p/q is differentiable on its
domain of definition. Thus, a rational function is differentiable on its domain of
definition.

The Chain Rule

Theorem 5 is a very useful tool for determining derivative but is of little use when it
comes to composition of functions unless we can express composition in terms of
sums of products or quotients of known differentiable functions.  Indeed, composition
of differentiable functions is differentiable and there is a simple formula, known as
Chain Rule, giving the derivative of the composition.

Theorem 8 (Chain Rule).  Let f  : I → R be a function defined on a neighbourhood  I
of  x0 .  Suppose  f (I)  ⊆ J  and J is an open interval.  Suppose g: J → R  is a function
defined on J.  Then we have the composite g) f : I → R  defined by g) f (x) = g( f (x)).
 If  f  is differentiable at x0 and g is differentiable at  f (x0), then the composite g) f  is
differentiable at x0 and (g) f )'(x0) = g'( f (x0)) f '(x0).

Proof.
We have to examine the quotient

.
g ( f (x0 + h)) − g ( f (x0))

h
Let  k = f (x0 + h) − f (x0) . Thus  k is a function of h.  Since  f  is differentiable at  x0,  f
 is continuous there by Theorem 3 and so k→ 0 as h → 0 and k is  continuous at 0.
Suppose  k ≠ 0.  Then we have  
    

g ( f (x0 + h)) − g ( f (x0))
h =

g ( f (x0 + h)) − g ( f (x0))
f (x0 + h) − f (x0) $

f (x0 + h) − f (x0)
h

                                              .=
g (k + f (x0)) − g ( f (x0))

k $
f (x0 + h) − f (x0)

h
Since it is possible that k could be zero and that the above equality is only true for k ≠
0, to obtain a similar expression we consider the following device to get round this
difficulty.

Define the function , where y0 =  f (x0).  Then G isG(k) =
⎧ 

⎩ 
⎨ 

g (k+y0)−g ( y0)
k , if k ! 0

g∏( y0) , if k = 0
continuous at 0 since g is differentiable at y0 so that 
                          .          

kd0
lim G(k) =

kd0
lim

g (k + y0) − g ( y0)
k = g ∏( y0) = G(0)

Thus if k ≠ 0,
                         .

g( f (x0 + h)) − g( f (x0))
h = G(k) $

f (x0 + h) − f (x0)
h

Also if  k = 0, i.e.,  f (x0 + h) = f (x0), then the above equation, being equal to zero on
both sides, is also true.  Thus,  
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g( f (x0 + h)) − g( f (x0))

h

         = G(k(h)) $
f (x0 + h) − f (x0)

h d G(0) $ f ∏(x0) = g ∏( y0) f ∏(x0)
as h → 0.  Note that   by Theorem 34 part (B) Chapter 3 or by

hd0
lim G(k(h)) = G(0)

observing that G ) k  is continuous at 0 since G is continuous at k(0) = 0 and k is
continuous at 0.  Hence, (g) f )'(x0) = g'( f (x0)) f '(x0).  This proves theorem 8. 

Example 9.  Let  f (x) = √ (x +1) for x > −1.  Then  f (x) = g ) h(x) , where h(x) = x+1
and g(y) = √y .  Now  h'(x) = 1 and g' (y) = 1/(2√y) for y > 0.   Therefore,  f  '(x) = (g )
h)'(x) = g'(h(x)) h'(x) = g'(x +1)$ 1 = 1/(2√(x+1))

4.2 Mean Value Theorem.

We shall now consider one of the often used theorems in Calculus, the Mean Value
Theorem.  

First we introduce some local definitions.

Definition 10.  Let D be a neighbourhood of  x0 , i.e., there exists an open interval (a,
b) such that x0 ∈ (a, b) ⊆ D.  Suppose  f  is a function defined on D.  We say  f  has a
relative maximum ( local maximum) at x0  if   f (x) ≤ f (x0)  for all x in some open
interval containing x0 ,i.e., there exists δ > 0 such that for all x in D, 

|x − x0| < δ ⇒  f (x) ≤  f (x0).
We call such a point  x0 a local maximizer for  f.

                                                                       
x x

0

y Rel Max

Rel Min

y = f (x)

( δ δ )

                                                             
Similarly we say  f  has a relative minimum (local minimum) at x0 if f (x) ≥  f (x0) for
all x in some open interval containing x0 ,i.e., there exists δ > 0 such that for all x in D,
|x − x0| < δ ⇒  f (x) ≥  f (x0).  We call x0 a local minimizer for  f. 

If the function  f  has either a relative maximum or a relative minimum at x0 , then we
say  f  has a relative extremum (local extremum) at x0 .

Theorem 11.  Let  f  : I → R be a function defined on a neighbourhood  I of  x0 .
Suppose  f  is differentiable at x0 and has a relative extremum at x0 . Then f '(x0 ) = 0.

Chapter 4 Differentiable Functions

7
©Ng Tze Beng 2008



Proof.  Suppose that x0 is a local maximizer.  Then since  f  is differentiable at x0 ,
                          .f ∏(x0) =xdx0+

lim
f (x) − f (x0)

x − x0 = xdx0−
lim

f (x) − f (x0)
x − x0

By definition of a local maximizer, there exists an open interval (a, b) such that x0 ∈
(a, b) ⊆ I  and for all x in (a, b)  f (x) ≤  f (x0).  Therefore, for all x in (a, b)  x > x0⇒ 

.  Hence   .  We also have that for all x
f (x) − f (x0)

x − x0 [ 0 xdx0+
lim

f (x) − f (x0)
x − x0 = f ∏(x0) [ 0

in (a, b)  x < x0⇒ .  Thus, .   Therefore,
f (x) − f (x0)

x − x0 m 0 xdx0−
lim f (x) − f (x0)

x − x0 = f ∏(x0) m 0
 f '(x0 ) = 0.
If  x0 is a local minimizer for f , then x0 is a local maximizer for  −f.   Therefore, by
what we just proved  − f '(x0 ) = 0 and so f '(x0 ) = 0.

Remark.  The converse of Theorem 11 is not true in general.  One can find function  f
 and point x0 such that the derivative f '(x0 ) = 0 but  f  does not have a relative
extremum at x0 . (See the next example.)

Example 12.
1.   Let  f  : R → R be defined by  f (x) = x3 .   Then  f '(x) = 3x2 and so f ' (0) = 0.

                                            

x

yf(x) = x 3

0

                                                          
But  f  does not have a relative extremum at 0.

2.   Let  f  : R → R be defined by .  Then  f  does not have af (x) =
⎧ 

⎩ 
⎨ 

x2 sin( 1
x ), x ! 0

0, x = 0
relative extremum at x = 0.   f  is differentiable at x = 0 and

           f ∏(0) =
hd 0
lim

f (0 + h) − f (0)
h =

hd 0
lim

h2 sin( 1
h ) − 0

h =
hd 0
lim h sin( 1

h ) = 0

by the Squeeze Theorem.  ( For . )    h ! 0, − h [ sin( 1
h ) [ h

      

                      

x

y

Chapter 4 Differentiable Functions

8
©Ng Tze Beng 2008



Theorem 13 (Rolle's Theorem).  Suppose 
1. f :[a, b] → R is continuous on [a, b], 
2.  f  is differentiable on (a, b) and
3.  f (a) =  f (b).  
Then there exists a point c in (a, b) such that   f '(c) = 0.                        

                                                                              a bc

y = f (x)

Proof.   By Corollary 9 to the Extreme Value Theorem Chapter 3, since  f  is
continuous on the closed interval [a, b], which is compact,  f  attains its maximum and
minimum.   Then we have the following possibilities.  

1.  There exists c in (a,b) such that f (c) is the maximum value
2.  There exists c in (a,b) such that  f (c) is the minimum value or 
3.   f (a) and f (b) are both the absolute maximum and minimum value of   f     
since they are equal.

Cases 1 and 2 imply that there exists a point c in (a, b) such that f (c) is a relative
extremum. Therefore, since  f  is differentiable on (a, b), by Theorem 11,  f '(c) = 0.
For case 3, since  f (a) = f (b) the maximum value and the minimum value of  f  are the
same,  f  must be a constant function and so  f ' (c) = 0 for all c in (a, b).  For this case
take any value c in (a, b).  This completes the proof.

Example 14.  Let f :[0, 3] → R be given by  f (x) = x(x − 3).  Then  f (0) = f (3) = 0.
Thus, since  f  is continuous on [0, 3] and differentiable on (0, 3), by Rolle's Theorem
there exists a point c in (0, 3) such that  f '(c) = 0.

Rolle's Theorem is a special case of the Mean Value Theorem.  Indeed they are
equivalent theorems.

Theorem 15 (Mean Value Theorem).  Let  a < b.   Suppose  f :[a, b] → R is
continuous on [a, b] and   f  is differentiable on (a, b).   Then there exists c in (a, b)
such that  .f ∏(c) =

f (b) − f (a)
b − a

Proof.  (Tilt the graph and use Rolle's Theorem.)    
Define  g :[a, b] → R  by  .  Then g(x) = f (x) −

f (b) − f (a)
b − a (x − a)

          1.  g is continuous on [a, b] since  f  is continuous on [a, b],
          2.  g is differentiable on (a, b) since  f  and (x − a) are differentiable on (a, b)
and
          3.  g (a) = g (b) (=  f (a)).
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Therefore, by Rolle's Theorem, there exists c in (a, b) such that g'(c) = 0.  But               
                                         .         g ∏(x) = f ∏(x) −

f (b) − f (a)
b − a on (a, b)

Therefore, .  Thus .   This completesg ∏(c) = f ∏(c) −
f (b) − f (a)

b − a = 0 f ∏(c) =
f (b) − f (a)

b − a
the proof.

The following is a consequence of the Mean Value Theorem.

Theorem 16.   Let  I  be an open interval.  Suppose the function  f : I → R is
differentiable.  Then  f  is a constant function if and only if the derivative  f '(x) = 0 for
all x in  I.

Proof.  Obviously, if  f  is a constant function, then f '(x) = 0 for all x in  I.
Suppose now that f '(x) = 0 for all x in  I.  Fix a point x0  in I.   Take any x in I.   
Suppose x > x0.  Let x in (a, b) be such that   x > x0 .  Since  f  is continuous on I,  f  is
continuous on [x0, x].  Since  f  is differentiable on I,  f  is differentiable on (x0 , x).
Thus, by the Mean Value Theorem (Theorem 15), there exists c in (x0 , x) such that 

.  But  f '(c) = 0 and so  f (x ) =  f (x0 ).  Similarly, if x < x0 we canf ∏(c) =
f (x) − f (x0)

x − x0
use the Mean Value Theorem on the restriction of  f  to [x, x0] to conclude that f (x ) =  
f (x0).  Hence, f (x ) =  f (x0) for all x in I and so f  is a constant function.
  
Corollary 17.  If  f :[a, b] → R  is continuous on [a, b] and differentiable on (a, b)
and  f '(x) = 0 for all x in (a, b), then  f  is a constant function.

Proof.  By Theorem 16,  f  is constant on (a, b), say K, i.e.,  f (x) = K for all x in (a, b).
By the continuity at a, .  Also by the continuity at b,  f (b)  f (a) =

xd a+lim f (x) =
xd a+lim K = K

.  Therefore,  f   is a constant function on [a, b].=
xd b−
lim f (x) =

xd b−
lim K = K

Example 18.
1.   Let  f (x) = √x  on (0, ∞).  Then  .  By the Mean Valuef ∏(x) = 1

2 x on (0,∞)

Theorem there exists a point c in (98,100) such that .100 − 98
100 − 98 = f ∏(c) = 1

2 c
But 98 < c < 100 implies that .1

2 100
< 1

2 c < 1
2 98

Hence , i.e., . And so 1
2 100

<
10 − 98

2 < 1
2 98

1
10 < 10 − 98 < 1

98 < 1
9

.10 − 1
9 < 98 < 10 − 1

10

2.   The sine function is continuous and differentiable on R.  Take x > 0.  Then by the
Mean Value Theorem, there exists a point c in (0, x) such that 

 .  Therefore, .  Similarly, if we
sin(x) − sin(0)

x − 0 =
sin(x)

x = cos(c)
sin(x)

x = cos(c) [ 1
take x < 0, by the Mean Value Theorem, there exists a point d in (x, 0) such that 

. Thus . Hence, for x ≠ 0, 
sin(x) − sin(0)

x − 0 =
sin(x)

x = cos(d)
sin(x)

x = cos(d) [ 1

 .sin(x) [ x and so − x [ sin(x) [ x
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4. 3 Monotone Functions, Relative Extrema and Tests for Relative      
Extrema

We shall now investigate some criteria for function to be monotone.  

Suppose A is a subset of R.  The interior of A is the set  Int A = {x ∈A : there exists an
open interval (a, b) such that x ∈ (a, b) ⊆ Α}.  Thus,  Int [a, b]  is (a, b).

Theorem 19.  Let I  be an interval.  Suppose  f : I → R is a continuous function and
that the restriction of  f  to the interior of I , Int I, is differentiable.  
1.  If  f '(x) > 0 for all x in  Int I, then  f   is strictly increasing;
     if  f '(x) ≥ 0 for all x in  Int I, then  f   is increasing.
2.  If  f '(x) < 0 for all x in  Int I, then  f  is strictly decreasing;
     if  f '(x) ≤ 0 for all x in  Int I, then  f  is decreasing.

Proof.  (1) Suppose  f '(x) > 0 for all x in  Int I.  Let the points c , d  in the interval I  
be such that c < d.  Then  f  is continuous on [c, d] and differentiable on (c, d ) ⊆ Int I.
Therefore, the Mean Value Theorem says that there is a point η in (c, d) such that 

.   Since d − c > 0,  f (d ) −  f (c) > 0.  Thus  f (d ) >  f (c).
f (d) − f (c)

d − c = f ∏( ) > 0
Therefore,  f  is strictly increasing.  
(2) Suppose  f '(x) < 0 for all x in  Int I.  Let g =  −f .  Then g'(x) = − f '(x) > 0 for all x
in I.  By part (1) g  = − f   is strictly increasing.  Therefore,  f  is strictly decreasing.
The cases when  f '(x) ≥ 0 for all x in  Int I and when  f '(x) ≤ 0 for all x in  Int I  are
proved in exactly the same way.

Remark.  
1. Notice that in the proof of Theorem 19 part (1), if I  is open it is enough to use the
inequality .   It is true such a point η exists in [c, d ] with this

f (d) − f (c)
d − c m f ∏( )

inequality.   This is one reason why we may consider the Mean Value Theorem is
over rated.  Indeed under the condition of the Mean Value Theorem, there exist points
η and γ  in [c, d ] such that 
                                              .f ∏( ) m

f (d) − f (c)
d − c m f ∏( )

(Ref:  Theorem 2 and Theorem 3, in 'Do we need Mean Value Theorem to prove  f
'(x) = 0 on (a, b) implies that  f  is constant on (a, b)?' )
This can only prove that  f  is strictly increasing on Int I  if f '(x) > 0 for all x in  Int I.
Extend to all of I by continuity. Indeed we may use this result instead of the Mean
Value Theorem, whenever its application uses inequality.

2.  The property of  f  being strictly increasing or strictly decreasing is a global
property.  Thus a local information like  f '(x0) > 0, does not necessarily imply that f  is
strictly increasing in a neighbourhood containing x0.   

For instance take the function  .   Then f ’(0)  =1 > 0f (x) =
⎧ 

⎩ 
⎨ 

x + 4x2 cos( 1
x ), x ! 0

0, x = 0
but   f  is neither increasing nor decreasing on any interval containing 0.  This is
because for any integer n > 0,  1/(2nπ+π) >1/(2nπ+2π) but  f (1/(2nπ+π)) =1/(2nπ+π)-
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4/(2nπ+π)2 <  1/(2nπ+2π) +4/(2nπ+2π)2 = f (1/(2nπ+2π)) and that when 1/(2nπ+π/2)
>1/(2nπ+3π/2),   f (1/(2nπ+π/2)) = 1/(2nπ+π/2) > 1/(2nπ+3π/2)= f (1/(2nπ+3π/2)). 
The same can be said of the property of  f  being increasing or decreasing.   

Example 20.
1.   Let  f : R→ R be given by .  Then  f  is differentiable on R and isf (x) = x(1 + x

2 )
therefore continuous on R.  Its derivative   f '(x) = 1+ x.  Hence,  f '(x) > 0 for x > −1
and  f '(x) < 0 for x < −1.  Since  f  is continuous on [−1, ∞) and differentiable on (−1,
∞),  f  is increasing on [−1, ∞) by Theorem 19.  Similarly, since  f  is continuous on
(−∞, −1],  f  is decreasing on (−∞, −1], Therefore,    f (−1) is the (absolute) minimum
of   f .

2.   Let  f : (0, ∞) → R  be the function defined by .  Then  f  isf (x) = 1
x

differentiable on (0, ∞) and .  Thus  f   is decreasing onf ∏(x) = − 1
x2 < 0 for all x > 0

(0, ∞).     
(Incidentally one can deduce this directly by using property of inequality.)

Note that the point where a function changes from being increasing before it to
decreasing after it or from being decreasing before it to increasing after it must be a
point where the function has a relative extremum.  Thus we can formulate the
following test for relative extrema.

Theorem 21 (First Derivative Test for Relative Extrema).  Suppose  f   is
continuous on the open interval I  containing x0 and that   f   is differentiable at all
points of  I  except possibly at x0 .
1.  If  there exists δ > 0 such that for all x in I with x0 − δ < x < x0 ,  f '( x) ≥ 0 and that
for all x with x0 <  x <  x0 + δ,  f '( x) ≤ 0 , then  f  has a relative maximum value at x0 ,
i.e., x0 is a local maximizer of  f .

2.  If  there exists δ > 0 such that for all x in I  with x0 − δ < x < x0 ,  f '( x) ≤ 0 and that
for all x with x0 <  x <  x0 + δ,  f '( x) ≥ 0 , then  f  has a relative minimum value at x0 ,
i.e., x0 is a local minimizer of  f .
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y

relative maximum y = f (x)

f ' (x) > 0 f ' (x) < 0

x0−δ x0 x0 +δ



Proof.  Part (1).  
Since I is open there exists a δ' > 0 such that (x0 − δ ' ,  x0 + δ') ⊆ I.  By taking the
intersection of (x0 − δ ' ,  x0 + δ') and (x0 − δ,  x0 + δ) if need be, and renaming if
necessary, we may assume that (x0 − δ,  x0 + δ) ⊆ I.  By Theorem 19,  f   is increasing
on  (x0− δ, x0] because  f '(x) ≥ 0 on (x0− δ, x0).   By Theorem 19,   f   is decreasing on  
[x0, x0 + δ) because f '(x) ≤ 0 on (x0, x0 + δ).  For any x in (x0− δ, x0 + δ),  x ≤  x0 or  x ≥  
x0.  If  x ≤  x0, then  f (x) ≤  f (x0) because  f  is increasing on (x0− δ, x0].  If x ≥  x0, then  
f (x) ≤  f (x0) because  f  is decreasing on [x0, x0 + δ) .  Therefore, for all x in (x0− δ, x0 +
δ), f (x) ≤  f (x0).  Thus  f (x0) is a relative maximum and  x0 is a local maximizer of  f .
The proof of part (2) is similar.  We may observe that by Part (1),  x0 is a local
maximizer of  - f . Therefore, x0 is a local minimizer of   f .

Examples 22.

1.   Let  f (x) = x3 − 6x2 + 9x +1.  Then  
f '(x) = 3x2  − 12x + 9  = 3(x2  − 4x + 3) = 3(x − 3)(x −1).  

Thus  f '(x) = 0 if and only if x = 1 or 3.  For x < 1, x − 1 < 0 and  x − 3 < 0  so that       
f '(x) > 0.  For 1 < x < 3,  x − 1 > 0 and x − 3 < 0 so that  f '(x) < 0.  For x > 3, x − 1 > 0
and x − 3 > 0  so that  f '(x) > 0.   Thus at x = 1, we have a relative maximum and the
value is  f (1) = 5.  At x = 3, we have a relative minimum which is   f (3) = 1.

2.   Let .  Then .  f (x) =
⎧ 

⎩ 
⎨ 

2 − x3, x < 1
x2, x m 1 f ∏(x) =

⎧ 

⎩ 
⎨ 

−3x2, x < 1
2x, x > 1

 f  is not differentiable at 1 and  f ' (x) = 0 only if x = 0.  For 0 < x < 1,  f ' (x) < 0 and
for x > 1,  f ' (x) > 0  and so by the first derivative test,  f (1) = 1 is a relative
minimum.  Now for x < 0,  f ' (x) < 0.  Although  f ' (0) = 0,  f (0) is not a relative
extremum.  Indeed  f  is decreasing on (−∞, 1] because it is decreasing on (−∞, 0] and
on [0, 1].

Remark.  Note that we do not require that the function f  be differentiable at x0 in the
First Derivative Test (Theorem 21).

We next describe a weaker test for finding local maximizers and local minimizers.
Suppose  f  : D → R is a function.  A stationary point of  f   is a point x in D where D
is a neighbourhood of  x and  f  is differentiable there with  f '(x) = 0.  A critical point
of  f  is a point x, where either  f  is not differentiable or x is a stationary point.

Theorem 23 (Second Derivative Test for Relative Extremum).  Let  f : D → R  be
a function, where D is a neighbourhood of  x0 .  Suppose  f   is differentiable on an
open interval I with I ⊆ D.  Suppose  x0 is a stationary point of   f,  i.e.,  f '( x0) = 0.
Suppose  f ''(x0) exists.
1.   If  f ''(x0) < 0, then  f  has a relative maximum value at  x0 .
2.   If  f ''(x0) > 0, then  f  has a relative minimum value at  x0 .

Proof .   
Part (1)
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                              0 > f ''(x0) =xdx0
lim

f ∏(x) − f ∏(x0)
x − x0 =xdx0

lim
f ∏(x)
x − x0

because  f '( x0) = 0.  Therefore, by the definition of limit there exists δ > 0 such that
(x0 − δ,  x0 + δ) ⊆ Ι  and for all x ≠ x0 in (x0 − δ,  x0 + δ) 

                                                            .                                                       
f ∏(x)
x − x0 < 0

Therefore, for x in (x0 − δ, x0),  x − x0 < 0,  f '(x) > 0.  Also for x in (x0 , x0 + δ),   f '(x)
< 0.  Thus, by the First Derivative Test (Theorem 21), we have a relative maximum
value at x0.
Part (2).  A similar argument as above applies to give part (2).  We may also note that
if  f ''(x0) > 0, then (−f )''(x0) = − f ''(x0)  < 0.  Therefore, by Part (1), x0 is a local
maximizer for − f and hence is a local minimizer for  f .

Remark.  
1. Note that Theorem 23 has additional condition of twice differentiability of  f at  x0

imposed, whereas the first derivative test do not need differentiability of  f  at x0 but
just continuity at x0.   Thus Theorem 23 is a weaker theorem.

2. If  f '( x0) = f ''(x0) = 0, then Theorem 23 gives no information whether f ( x0) is a
relative extremum.   For instance,  if  f (x) = x4 ,  then f ''(0) = 0 and  f (0) is a relative
minimum.   If  f (x) = x3 ,  then f ''(0) = 0 but f (0) is not a relative extremum.

4.4 Concavity

We shall now consider the notion of concavity.  There are different definitions,
especially a local definition and a global definition.  We shall consider the local
definition.

Definition 24.    Suppose  f : I → R is a continuous function defined on an interval I.   
 Suppose a is a point in the interior of I.  Then the graph of  f  is concave upward
(respectively concave downward) at x = a if there exists a small neighbourhood N of a
such that in this small neighbourhood the graph of  f  lies above (respectively below)
the tangent line to the graph of  f  at (a,  f (a)) except for the point of tangency.  That
is to say, the graph of  f  is concave upward (respectively concave downward) at x = a
if there exists a δ > 0 such that for all  x not equal to a in (a−δ, a+δ), 
      f (x) > f (a) + f ’ (a)(x − a) ( respectively  f (x) < f (a) + f ’ (a)(x − a)).  
We say the graph of  f  is concave upward (respectively concave downward) on an
open interval  I  if the graph of  f  is concave upward (respectively concave
downward) at x for all x in I.
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Concave 

xaa

y = f(x) Neither concave up
nor concave down

Concave up

down

                                                                 
Remark.  There are other refined definitions of concavity but this one is more
intuitive.  Note that in the above definition no use is made of the second derivative.
The next theorem gives a criterion for determining whether the graph is concave
upward or downward when the second derivative does exist. 

Theorem 25.  Let  f  be a function differentiable on an open interval D containing x0.
Then
       1.  if  f ''(x0) > 0, the graph of  f  is concave upward at (x0, f (x0)),
       2.  if  f ''(x0) < 0, the graph of  f  is concave downward at (x0, f (x0)).

Proof .  We shall prove only part (1).  Part (2) is similarly proved. 

Since  f ''(x0 ) > 0, .  Therefore, by the definition ofxdx0
lim

f ∏(x) − f ∏(x0)
x − x0 = f ∏∏(x0) > 0

limit, there is an open interval I = (x0 − δ,  x0 + δ) ⊆ D such that for all  x ≠ x0 in I,

                                           .   ---------------------------        (1)g (x) =
f ∏(x) − f ∏(x0)

x − x0 > 0

The tangent line to the graph of  f  at (x0,  f (x0)) is given by , i.e.,       
y − f (x0)

x − x0 = f ∏(x0)
                                                  y =  f (x0) +   f '(x0 )(x −  x0 )  .
We want to show that, x ≠ x0 in I,  f (x) > y =  f (x0) +   f '(x0 )(x −  x0 ), i.e.,
                                               f (x) − f (x0) >  f '(x0 )(x −  x0 ).                                            
Now for x in (x0 , x0+ δ), x > x0 and so by (1), 
                                                       f '(x) >  f '(x0.).     --------------------------------     (2)
By the Mean Value Theorem, there exists a  x' in (x0,  x)  such that                                 
                                               

f (x) − f (x0)
x − x0 = f ∏(x∏) > f ∏(x0)

 by (2).
Therefore, for x in (x0, x0+ δ), f (x) − f (x0) >  f '(x0 )(x −  x0 ), which is what is required
to prove.  Similarly,  for x in (x0 − δ, x0), 
                                                       f ' (x) <  f '(x0)   ----------------------------------    (3)
by (1).  Now the Mean Value Theorem applies to give x' in (x, x0)  such that                  
                                               

f (x) − f (x0)
x − x0 = f ∏(x∏) < f ∏(x0)

by (3).
Since x < x0, we have (by multiplying the above by (x − x0) < 0) for x in (x0- δ, x0),        
                                                f (x) − f (x0) >  f '(x0 )(x −  x0 ).
Thus we have shown that for any x ≠ x0 in I,   f (x) − f (x0) >  f '(x0 )(x −  x0 ), which is
what is required.  
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Definition 26.  A point (c,  f (c)) is a point of inflection of the graph of the function  f   
if   f  is continuous at c and there is an open interval containing c such that the graph
of   f   changes from concave upward before c to concave downward after c or from
concave downward before c to concave upward after c .

Note.  Our definition does not require that the function be differentiable at a point of
inflection.  There are other more refined definitions of a point of inflection but ours is
the simplest.

Example 27.
1.   Let  f (x) = x(x2 − 1) = x3 − x.  Then  f '(x) = 3x2 − 1 and  f ''(x) = 6x.  Thus  f ''(x)  >
0 for x > 0.  Therefore, the graph of   f  is concave upward on the interval (0, ∞).  Also
 f ''(x) < 0 for x < 0.  Thus the graph of  f  is concave downward on the interval (−∞,
0).  The point (0, 0) is a point of inflection.

2.   Let .  Then   and f (x) =
⎧ 

⎩ 
⎨ 

3x2 + 1, x m 0
2x3 + 1, x < 0 f ∏(x) =

⎧ 

⎩ 
⎨ 

6x , x m 0
6x2 , x < 0

.f ∏∏(x) =
⎧ 

⎩ 
⎨ 

6 , x > 0
12x , x < 0

 f ''(0) does not exist.  Obviously  f ''(x) > 0 for x > 0 and  f ''(x) < 0 for x < 0.  Thus
there is a point of inflection at x = 0.  The graph of f  is concave upward on the
interval (0, ∞) and is concave downward on the interval  (−∞, 0).

Theorem 28.   Suppose the graph of a function  f  is either concave upward or
concave downward on an open interval  I.   Then any tangent line to the graph of  f  
can only intersect the graph of  f at the point of tangency.

Proof.   We shall prove the theorem for the case  f  is concave upward on the open
interval  I.  Note that since the graph of  f  is concave upward on I, the function  f  is
differentiable on I.    
Suppose there exists a point k in I such that the tangent line at (k,  f (k)) meets the
graph again at  the point (p, f (p)).   We may assume that k < p.    Then the equation of
the tangent line at x = k is given by 
                                                 y = f (k) + f ’(k)(x − k).  
We now proceed by “tilting the graph”.   Let g :[k, p] → R be defined by 
                                         g(x) =  f (x) −  f (k) − f ’(k)(x − k).
Then since  f  is differentiable on [k, p], g is also differentiable on (k, p) and
continuous on [k, p].  By the Extreme Value Theorem, there exists a maximum of g
on [k, p].  Note that g(k) = 0 and g(p) = 0 since  f (p) lies on the tangent line to the
graph of  f  at x = k  so that  f (p) = f (k) + f ’(k)(p − k).  Since the graph of  f  is
concave upward at x = k,  there exists δ > 0 such that for all x in (k, k + δ),  f (x) >  f
(k) +  f ’(k)(x − k) and so g(x) > 0.  Hence the maximum of g can only occur in the
interior of  [k, p].  Suppose that it occurs at x = d in the interior of  [k, p].  Then for all
x in [k, p] ,
               g(x) =  f (x) −  f (k) − f ’(k)(x − k) ≤ g(d) = f (d) −  f (k) − f ’(k)(d − k).   
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In particular  f ‘(d)  =  f ‘(k).  This is because since g(d) is a relative maximum,  g’(d)
= 0 and so since g’(x) = f ‘(x) - f ‘(k) for x in (k, p), g’(d) = 0 implies that f ‘(d) = f
‘(k).
Therefore, we have that for all x in [k, p],  
                                            f (x) ≤  f (d) + f ‘(d)(x − d), 
which is derived from g(x) ≤ g(d).  But since the equation of the tangent line to f at the
point x = d is given by y =  f (d) + f ‘(d)(x − d), we therefore conclude that  there
exists a δ > 0 such that (d − δ, d + δ) ⊆ [k, p]  and  
                                            f (x) > f (d) +   f ‘(d)(x − d)
for x ≠ d in (d − δ, d + δ).  But we have just shown that for x ≠ d  in (d − δ, d + δ),  f
(x) ≤ f (d) + f ‘(d)(x − d).  This contradiction shows that the tangent line at any point k
cannot meet the graph of f  at (p, f (p)).  If p < k, we can show similarly, that the
tangent line cannot meet the graph of  f at (p, f (p)) too.  Hence any tangent line to the
graph of  f at any point (x,  f (x)) cannot intersect the graph of  f  other than the point
of  tangency (x,  f (x)).
(This argument also applies to the case when the graph of   f  is concave downward on
the open interval I. ) This completes the proof.

Theorem 29. (1) If   the function  f  is concave upward on an open interval  I,  then  
the derived function  f ’  is strictly increasing  on I.
(2) If  the function  f  is concave downward on an open interval  I,  then  the derived
function  f ‘  is strictly decreasing  on I.

Proof.  Part (1) Take any two points c < d in I.  By Theorem 28,  since the tangent
line at any point on the graph can only meet the graph exactly once, and since the
graph of  f  is concave upward on I,  for any point k in I,
                                      f (x) > f (k) + f ‘ (k)(x − k)  for x ≠ k.
Thus we have 
                                 f (x) > f (c) + f ‘ (c)(x − c)  for x ≠ c in I             ---------------   (1)
And 
                                 f (x) > f (d) + f ‘(d)(x − d)  for x ≠ d in I        --------------------  (2) 
Hence, from (1), putting x = d,  f (d) > f (c) + f ‘(c)(d − c) so that  .

f (d) − f (c)
d − c > f ∏(c)

We also have by setting x = c in (2), f (c) > f (d) + f ‘(d)(c − d) so that  
.  Therefore,    .  This shows that  f ‘  is

f (d) − f (c)
d − c < f ∏(d) f ∏(c) <

f (d) − f (c)
d − c < f ∏(d)

strictly increasing.
Similar argument applies to part (2).

Theorem 30.  Suppose  f  is differentiable on some open interval containing c and       
 (c, f (c)) is a point of inflection of the graph of  f .  If  f ''(c) exists, then  f ''(c) = 0.

Proof.  Since (c,  f (c)) is a point of inflection of the graph of  f , there exists a δ  > 0
such that  f  is concave downward (or concave upward) on (c − δ, c) and concave
upward (or concave downward) on (c, c + δ).  We shall assume without loss of
generality that  f  is concave downward before c and concave upward after c.  Thus  f '
 is strictly decreasing on (c − δ, c) by Theorem 29.  Also by Theorem 29, since the
graph of  f  is concave upward on (c, c + δ),  f ' is strictly increasing on (c, c + δ).
Thus, since  f ' is continuous at c,  f '(c) is a relative minimum.  This can be deduced
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as follows.  For any  x <  c in (c − δ, c)  f ' ( j ) > f ' (y) for all y  with x < y < c.   Thus
by the continuity of  f  at  c ,  .  Likewise for any x  >  c in     f ∏(c) =ydc−lim f ∏(y) [ f ∏(x)
(c, c + δ),   f ' ( x) > f ' (y) for all y  with x > y > c.  Again by the continuity of  f  at      
x = c ,  .  Hence f ' (x) ≥ f '(c) for all x in (c − δ, c + δ) and so    f ∏(x) m

ydc+lim f ∏(y) = f ∏(c)

 f ' (c) is a relative minimum.  Therefore, by Theorem 11, since f ' is differentiable at
c,  f ''(c) = 0.

Examples 31.
1.   Let  f (x) = x3 − x,  then  f '(x) = 3x2 − 1 and   f ''(x) = 6x.  Thus f ''(0) = 0 and           
 (0,  f (0)) = (0, 0) is a point of inflection.
2.   The converse of Theorem 30 is false.  Take f (x) = x4 ,  f '(x) =4x3 ,  f ''(x) =12x2.

Then  f ''(0) = 0 but (0, 0) is not a point of inflection.  The graph of  f  is in fact

concave upward at (0, 0), since it is above the tangent line there.  So we can only use

Theorem 30 to confirm a point of inflection.

The converse of Theorem 29 is also true.

Theorem 32.  Let I be an open interval.  Suppose  f : I → R is differentiable.
(1) If the derived function  f ’  is strictly increasing  on I , then the graph of the
function  f   is concave upward on  I.
(2) If the derived function  f ’  is strictly decreasing  on I , then the graph of the
function  f   is concave downward on I.

Proof.   
Part(1).  The proof makes use of a similar construct as in the proof of Theorem 28.   
Take any point c in I.   Define g(x) =  f (x) −  f (c) − f ’(c)(x − c) for any x in I.  Then g
is differentiable on  I  and  g’(x)  =  f ‘(x) − f ‘(c) for any x in I.    Now for  x > c in I ,  
f ‘(x) >  f ‘(c).  Therefore, x > c in I implies that g’(x)  =  f ‘(x) − f ‘(c) > 0.    
Therefore,  g is strictly increasing on the interval [c,  ∞) ∩ I .  Now note that g(c) = 0.
 Hence we can conclude that x > c in I implies that g(x) > g(c) = 0.  This means

  f (x) −  f (c) − f ’(c)(x − c) > 0 for any  x > c in I.
Hence, for any x > c in I, we have 
                                                 f (x) >  f (c) + f ’(c)(x − c).
Similarly for any x < c in I,  f ‘(x) <  f ‘(c).  Therefore, for any x < c in I, 

g’(x)  =  f ‘(x) − f ‘(c) < 0.
We can now conclude that g is strictly decreasing on (−∞, c]∩ I .  Therefore, for any   
x < c in I,  g(x) > g(c) = 0.   Hence for any x < c in I ,  f (x) −  f (c) − f ’(c)(x − c) > 0.
We then have for any x < c in I,

f (x) >  f (c) + f ’(c)(x − c).
In this way we have shown that for all x ≠ c in I,  f (x) >  f (c) + f ’(c)(x − c).
Therefore, by Definition 24,  the graph of  f  is concave upward at x = c.  Since this is
so for any c in I, the graph of  f  is concave upward on I.   We have proved much
more.  For any x > c in I,   and for any  x < c in I,  

f (x) − f (c)
x − c > f ∏(c)

.   The case of part (2) when the derived function  f ‘  is strictly
f (x) − f (c)

x − c < f ∏(c)
decreasing is proven similarly.
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Remark.
Theorem 29 and 32 says that concavity of  f on an open interval  is equivalent to the
strict monotonicity of derived function f ' .  This is where the monotonicity of the
derived function may be defined as the  concavity of the graph of the function.  It is
possible for a function whose graph is concave upward at a point to have its derived
function not increasing in any neighbourhood of the point (see the next example).

Example 33.    Let  .   Then  f  is differentiablef (x) =
⎧ 

⎩ 
⎨ 

x2 + 10000x4 sin(1/x), x ! 0
0, x = 0

on R, the derivative at x = 0, f '(0) is equal to 0 by the Squeeze Theorem.   The
derived function is given by 

                    f ∏(x) =
⎧ 

⎩ 
⎨ 

2x + 40000x3 sin(1/x) − 10000x2 cos(1/x), x ! 0
0, x = 0

and the second derived function is

   .f ∏∏(x) =
⎧ 

⎩ 
⎨ 

2 + 120000x2 sin(1/x) − 60000x cos(1/x) − 10000 sin(1/x), x ! 0
2, x = 0

The large constant is given here for a help to plot the graph of this function to observe
the perpectual small oscillation.   Note that when x =1/((2k+1)π/2),   sin(1/x) = 1
when k is even and −1 when k is odd.  Thus for any δ > 0 choose integer k such that
1/((2k+1)π/2) < min(δ, 1/100).  Let xδ to be 1/((2k+1)π/2).  Then obviously, for even k
, .  Since f ''  is continuous at xδ,  f ∏∏(x ) = 2 + 120000x2 − 10000 < 14 − 10000 < 0
there exists a small open neighbourhood Nδ of  xδ  in (0, δ) such that f ''(x) < 0 for all x
in this neighbourhood.  Therefore  f '  is strictly decreasing in Nδ.  This means for any
δ > 0, we can find a neighbourhood (an interval) Nδ  such that  f '  is strictly
decreasing in Nδ.   Note that f ''(0) =2 > 0.  Therefore, the graph of  f  is concave
upward at the point x = 0.   But by the above remark f '  cannot be increasing in any
neighbourhood containing x = 0.   The derived function  f '  fails to be strictly
increasing in any open interval containing x = 0 simply because we can always find a
subinterval on which f ' is decreasing.   Because we can always find arbitrarily small  
xδ such that f ''(xδ) < 0, we can thus find arbitrary small xδ such that the graph of  f  is
concave downward at x = xδ .  For this function, there is no open interval containing 0
on which the function f  is concave upward.  Below is a sketch of the function.    

                 

4.5 Derivative of inverse function.
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Suppose  I  is an interval and  f : I → R is a function.  If  x is in the interior of  I, then
we have defined what it means for  f  to be differentiable at x.   If  I is not open, then
we can define the derivative of  f  at the end point to be the appropriate left or right
limit.  For instance if  I = [a, b], then if the right limit   exists, f  is

x d a+
lim

f (x) − f (a)
x − a

said to be differentiable at a and we write .  If the left limit f ∏(a) =
x d a+
lim

f (x) − f (a)
x − a

exists, then we say  f  is differentiable at b and we write 
x d b−
lim

f (x) − f (b)
x − b

.  Thus  f  is said to be differentiable at the end point of  I  if  thef ∏(b) =
x d b−
lim

f (x) − f (b)
x − b

appropriate left or right limit exists.  In this way we extend the definition of derivative
to the end points of an interval.  Thus  f  is said to be differentiable if  f  is
differentiable at every x in I.   

Theorem 34.  Suppose  I  is an interval and  f : I → R is a strictly monotone
continuous function.  Suppose  f  is differentiable.  Let  x0 be in I and  y0 =  f (x0).
Suppose  f ' (x0) ≠ 0.  Then the inverse function of  f ,  f −1  is differentiable at
y0 =  f (x0) and  .( f −1) ∏(y0) = 1

f ∏( f −1(y0) = 1
f ∏(x0)

Proof.
By Theorem 23 Chapter 3, since  f  is continuous and strictly monotone on  I,  f -1  is
continuous and also strictly monotone on the range of  f ,  J  = f (I ).  If  f '(x0) ≠ 0 , we
shall show that f -1 is differentiable at y0 = f (x0).  Note that by Theorem 15 Chapter 3,  
f  maps the interior of I onto the interior of J.  Suppose x0 is in Int I,  then y0 = f (x0).
is in the Int J.  Then for this fix  y0 , there exists an open interval (c, d) ⊆ J such that y0

∈  (c, d).  For each y in  (c, d), let 
                                                   g(y) =  f -1(y ) − f -1(y0).
Since f -1 is continuous, g is a continuous function with domain (c, d).  We note here
that    since f -1  is continuousy d y0

lim g(y) =
hd0
lim f −1(y) − f −1(y0) = f −1(y0) − f −1(y0) = 0

at y0.   Now if we write k for g(y), then  f -1(y ) =  f -1(y0) + k = x0 + k.   So applying  f ,
we get  y =  f (x0 +  k).  Since  f -1 is strictly monotone and therefore injective, g is
injective and so k = g(y) ≠ 0 unless y = y0 .  Thus we can write for y ≠ y0 ,  

                                   .
f −1( y) − f −1( y0)

y − y0 = k
f (x0 + k) − f (x0)

In this way we can consider    as a function of k which in turn is a
f −1( y) − f −1( y0)

y − y0

function of  y. That means   ,  where
f −1( y) − f −1( y0)

y − y0 = F ) g(y)

  .  F(t) = t
f (x0 + t) − f (x0)

Since it is given that f '(x0) ≠ 0 .  Note that
td0
lim F(t) =

td0
lim t

f (x0 + t) − f (x0) = 1
f ∏(x0)

g is continuous at y0  and  .  Therefore, by Theorem 34 part (B) Chaptery d y0
lim g(y) = 0

3,

                    .y d y0
lim

f −1( y) − f −1( y0)
y − y0 =y d y0

lim F ) g(y) =
td0
lim F(t) = 1

f ∏(x0)
This proves that f −1 is differentiable at y0 = f (x0) and     
                        when  x0 is in Int I. ( f −1) ∏( y0) = 1

f ∏(x0) = 1
f ∏( f −1(y0))

If  x0 is an  end point of I,  then y0 = f (x0) is also an end point of  J.   If  y0 is a left end
point of  J , then there exists a half open interval [y0, d) such that [y0, d) ⊆ J.  Then the
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argument above applies with (c, d) replaced by [y0, d).  Similarly if  y0 is a right end
point of  J , then there exists a half open interval (c, y0 ] such that (c, y0 ] ⊆ J .  Then
the above argument applies with (c, d) replaced by  (c, y0 ] to give the same
conclusion but with the appropriate one sided  limit.  This completes the proof of
Theorem 34.

Example 35
Let  f : (0, ∞ ) → (0, ∞ ) be defined by   .  Then  f  is the inverse function to   f (y) = y

1
n

g : (0, ∞ ) → (0, ∞ ) defined by  g(x) = x n .  g  is differentiable and g'(x) = nx n − 1 > 0
for all x > 0.  Therefore g is strictly monotone on (0, ∞ ).  Thus   f  = g −1   is
differentiable and  
         . f ∏(y) = (g−1) ∏(y) = 1

g ∏(g−1(y)) = 1
g ∏( f (y)) = 1

g ∏(y 1
n )

= 1
n(y 1

n )n−1
= 1

n y
1
n −1

Then using this and the chain rule we can easily obtained a similar formula for the
differentiation of rational power.  The reader is urged to carry out this simple
exercise.

4.6 Cauchy Mean Value Theorem, L' Hôpital's Rule

We have seen application of the Mean Value Theorem.  It is a very useful tool in
analysis.  There is a generalization of the Mean Value Theorem that may be applied to
a wider context.  This is called the Cauchy Mean Value Theorem.  Mean Value
Theorem and Rolle's Theorem may be viewed as a special case of the Cauchy Mean
Value Theorem. 

Theorem 36 (Cauchy Mean Value Theorem).   Suppose  f and g are functions
continuous on [a, b], differentiable on (a, b) and suppose that  g'(x) ≠ 0 for all x in    

(a, b).  Then there exists a point c in (a, b) such that   
f ∏(c)
g ∏(c) =

f (b) − f (a)
g(b) − g(a) .

Proof.   First note that g'(x) ≠ 0 for all x in (a, b) implies that g(b) ≠ g(a) (otherwise if
g(b) = g(a), by Rolle's Theorem (Theorem 13),  there would be a point k in (a, b) with
g'(k) = 0, contradicting g'(x) ≠ 0 for all x in (a, b)).  Define  F : [a, b] → R by              
                                     . F(x) = f (x) −

f (b) − f (a)
g(b) − g(a) (g(x) − g(a))

Then F is continuous on [a, b], and is differentiable on (a, b) since f and g are
continuous on [a, b] and differentiable on (a, b).  Observe that  F(a) = f (a) and          
            .  F(b) = f (b) −

f (b) − f (a)
g(b) − g(a) (g(b) − g(a)) = f (b) − (f (b) − f (a)) = f (a)

Therefore, F(a) = F(b) and so by  Rolle's Theorem, there exists c in (a, b) such that
F'(c) = 0. Thus,  . Therefore, since g'(x) ≠ 0,  F∏(c) = f ∏(c) −

f (b) − f (a)
g(b) − g(a) $ g

∏(c) = 0
f ∏(c)
g ∏(c) =

f (b) − f (a)
g(b) − g(a) .

Remark.
1.  If  g  is the identity function,  then Theorem 36 is just the Mean Value Theorem
and if further  f (a) = f (b), then we get the Rolle's Theorem.
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2.  As in the case of Mean Value Theorem, most application of Theorem 36 is to
differentiable functions defined on closed and bounded interval and involves
inequality.  Then the following result may be used in its place. Suppose  f and g are
functions continuous and differentiable on [a, b] and suppose that  g'(x) ≠ 0 for all x in
[a, b].   Then there are points p and q in [a, b] such that

                                       
f ∏(p)
g ∏(p) m

f (b) − f (a)
g(b) − g(a) m

f ∏(q)
g ∏(q) .

(Reference: "L' Hôpital's Rule and A generalized Version" on my Calculus Web)
For instance, we may use this result to prove Theorem 37.

There are many applications of the Cauchy Mean Value Theorem.  Among the more
spectacular ones are to the various form of L' Hôpital's Rule.   We can use it also to
prove the Taylor's expansion of a function with the Lagrange form of the remainder.

Theorem 37 (L' Hôpital's Rule).  
(A)  Suppose f and g are functions differentiable on (a, b) and g'(x) ≠ 0 for all x in    
(a, b).

(1)  Suppose .  Then  if the second limit
xd a+lim f (x) =

xd a+lim g(x) = 0 xda+lim f (x)
g(x) =

xd a+lim f ∏(x)
g∏(x)

(on the right) exists. 

(2)  Suppose .  Then  if the second limit
xd b−
lim f (x) =

xd b−
lim g(x) = 0

xdb−
lim f (x)

g(x) =
xd b−
lim f ∏(x)

g∏(x)
(on the right) exists.
(B)  Suppose f and g are functions differentiable for all x > K for some real number    
K > 0 and that for all x > K.  Suppose  Then g∏(x) ! 0 xd+∞lim f (x) =xd+∞lim g(x) = 0 .

xd+∞lim f (x)
g(x) =xd+∞lim f ∏(x)

g∏(x)
if the second limit (on the right) exists.    
(C)  Suppose f and g are functions differentiable for all x < L for some real number      
L < 0 and that for all x < L.  Suppose  Theng∏(x) ! 0 xd−∞lim f (x) =xd−∞lim g(x) = 0 .

xd−∞lim f (x)
g(x) =xd−∞lim f ∏(x)

g∏(x)
if the second limit (on the right) exists.    

Proof .  We shall prove only part (A) part (1) and (B).  (A) part (2)  and (C) is proved  
similarly.

(A) Suppose   Then by the definition of right limit, given ε > 0, there
xda+lim f ∏(x)

g∏(x) = l .

exists  δ > 0 such that      

                                              --------------------------  (1)a < x < a + e
f ∏(x)
g∏(x) − l <

Extend the function f and g to [a, b) by defining f (a) = 0 and g(a) = 0.  By
supposition,  and so both the extended functions f and g are

xd a+lim f (x) =
xd a+lim g(x) = 0

continuous at x = a.
But by applying Cauchy Mean Value Theorem (Theorem 36) to  f, g on the interval   
[a, x],  we have for any x such that a < x < a + δ ,  there is a point c in the interval   
(a, x) such that 
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f ∏(c)
g∏(c) =

f (x) − f (a)
g(x) − g(a) =

f (x)
g(x)

since  f (a) = g(a) = 0.

Hence,   by (1) since a < c < x < a + δ .  Therefore,   
f (x)
g(x) − l =

f ∏(c)
g ∏(c) − l <

 
xd a+lim

f (x)
g(x) = l .

This completes the proof of part (1).
Similar argument applies to part (2).

(B)  We may assume  f and g are functions differentiable for all x ≥ K for some real
number K > 0 and that  for all x > K.  (Just replaced K by K' > K and renamedg∏(x) ! 0
K' as K.)   Let the following transformation H: [K, ∞) → (0, 1/K] be defined by H(t) =
1/t for t in [K, ∞).  This devise would transform our problem to one of the type of (A)
part (1).  

Define Q : (0, 1/K) → R by for x in.   Note that  . .  Then byQ(x) =
f ( 1

x )
g( 1

x ) td∞
lim H(t) = 0

Theorem 54 Chapter 3 if  exist (as a finite number ), then 
xd0+
lim Q(x) =

xd0+
lim

f ( 1
x )

g( 1
x )

.  But  .  That means if 
td∞
lim Q(H(t)) =

xd0+
lim Q(x) =

xd0+
lim

f ( 1
x )

g( 1
x ) td∞

lim Q(H(t)) =
td∞
lim

f (t)
g(t)

 exists, then  exists and the two limits are the same.  Conversely, if 
xd0+
lim

f ( 1
x )

g( 1
x ) td∞

lim
f (t)
g(t)

 exists, then .  Now by Theorem 53 part (1),  
td∞
lim

f (t)
g(t) xd0+

lim
f ( 1

x )
g( 1

x )
=

td∞
lim

f (t)
g(t)

 and .   Therefore, by (A) part (1), 
xd0+
lim f ( 1

x ) =xd∞lim f (x) = 0
xd0+
lim g( 1

x ) =xd∞lim g(x) = 0

 exists if the limit  exists.  But by a similar
xd0+
lim

f ( 1
x )

g( 1
x ) xd0+

lim
f ∏( 1

x )(− 1
x2 )

g∏( 1
x )(− 1

x2 )
=

xd0+
lim

f ∏( 1
x )

g∏( 1
x )

argument  exists if and only if exists and the two limits are the
xd0+
lim

f ∏( 1
x )

g ∏( 1
x ) xd∞lim f ∏(x)

g∏(x)

same.   It then follows that if  exists, then .xd∞lim f ∏(x)
g∏(x) xd+∞lim f (x)

g(x) =xd+∞lim f ∏(x)
g∏(x)

                  

Corollary 38 (L' Hôpital's Rule).   Suppose f and g are continuous on [a, b] with x0

in (a, b).  Suppose  f  and g are differentiable on (a, b) except possibly at x0 and that  

g'(x) ≠ 0 for all x in (a, b)−{x0}.  If   f (x0) = g(x0) = 0, then   ,  xdx0
lim f (x)

g(x) =xdx0
lim f ∏(x)

g∏(x)
provided the second limit exists.

Proof.  Just put Theorem 37 (A) part(1) and part(2) together.

Example 39.

(1)   by applying L'Hôpital's rule
xd0
lim

ex − 1 − x − 1
2 x2

x2 =
xd0
lim ex − 1 − x

2x =
xd 0
lim ex − 1

2 = 0
twice.
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(2)   by applying L'Hôpital's rule  
xd1
lim

ln(x) − x + 1
(x − 1)2 =

xd1
lim

1
x − 1

2(x − 1) =
xd1
lim

− 1
x2

2 = − 1
2

twice.

Remark.
There are other versions of  L' Hôpital's Rule , including the infinity/infinity  versions,
i.e., when the limit (  or  or  or 

xd a+lim f (x) or
xd a+lim g(x) xda−lim f (x) or xda−lim g (x)

xd!∞
lim f (x)

) is either + ∞  or −∞ and the infinity versions where the conclusion is the
xd!∞
lim g(x)
limit equals to either + ∞  or −∞.  For the various forms and generalization, see my
article, "L' Hôpital's Rule and A generalized Version" on my Calculus web.

Next we shall describe an analytic consequence of the Cauchy Mean Value Theorem.
Let I  be an open interval.  Let  f  : I → R  be a function.  Suppose  f  is differentiable
on I  and its derivative   f ' : I → R is again differentiable.  Then we say  f  is twice
differentiable or f  has two derivatives.  The second derivative is the derivative of f '  
and is denoted by f '' : I → R.  We now use the notation  f (1)  for the derivative and      
f (2)  for the second derivative.  Now we define inductively the meaning of k-th
derivative.  Suppose for a positive integer k,  the  k-th derivative of  f  is defined and
denoted by  f (k)  : I → R.  If  f (k)  : I → R  is differentiable, then we say  f  has k+1
derivatives or is k+1 times differentiable and we define f (k+1)  : I → R to be the
derivative of   f (k) .   We denote  f  : I → R also by  f (0) .

Theorem 40.  Let I  be an open interval and let n be a positive integer.   
Suppose  f  : I → R has n derivatives.  Let x0 be a point in I.  Suppose that 

f (k)(x0) = 0 for 0 ≤ k ≤ n−1.
Then for each point x ≠ x0 , there exists a point ξ strictly between x and x0 ,  such that

.f (x) =
f (n)( )

n! (x − x0)n

Proof.   Let g : I → R be defined by g(x)=(x − x0)n  for x in I.  Then, for each 1 ≤ k ≤
n,
g(k)(x) = n(n−1)…(n−k+1)(x − x0)n-k .   Thus. 
                                             g(k)(x0) = 0 for 0 ≤ k ≤ n−1         -------------------------- (1)
and g(n)(x) = n!  for any x in I.
We shall now apply the Cauchy Mean Value Theorem repeatedly.
Take any x a point in I  not equal to x0.   We may assume that x > x0. Then

f (x)
g(x) =

f (x) − f (0)(x0)
g(x) − g(0)(x0)

since f (0)(x0) = g(0)(x0) = 0.  Observe that f and g are both continuous and differentiable
on [x0, x] and g(1)(x) ≠ 0 for x in (x0, x).  Therefore, applying the Cauchy Mean Value
Theorem to the functions f and g restricted to [x0, x], we conclude that there exists x1

in (x0, x) such that

.
f (x)
g(x) =

f (x) − f (0)(x0)
g(x) − g(0)(x0) =

f (1)(x1)
g(1)(x1)

If  n =1, then we are done (and this is just the Mean Value Theorem).  If n > 1, then     
f (1)(x0) = g(1)(x0) = 0 and we can apply the Cauchy Mean Value Theorem to the
functions f (1) and g(1) restricted to [x0, x1],  to give a point x2 in (x0, x1) such that

.
f (1)(x1)
g(1)(x1) =

f (1)(x1) − f (1)(x0)
g(1)(x1) − g(1)(x0) =

f (2)(x2)
g(2)(x2)
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By (1),  f (k)(x0) = g(k)(x0) = 0 for 0 ≤ k ≤ n−1.  We can then apply the Cauchy Mean
Value Theorem repeatedly as above n-1 times, to get  xn-1 in (x0, xn-2) such that 

 .
f (n−2)(xn−2)
g(n−2)(xn−2) =

f (n−2)(xn−2) − f (n−2)(x0)
g(n−2)(xn−2) − g(n−2)(x0) =

f (n−1)(xn−1)
g(n−1)(xn−1)

Then since  f (n-1)(x0) = g(n-1)(x0) = 0, we can apply the Cauchy Mean Value Theorem to
the functions f (n-1) and g(n-1) restricted to [x0, xn-1], to give a point xn in (x0, xn-1) such
that

.
f (n−1)(xn−1)
g(n−1)(xn−1) =

f (n−1)(xn−1) − f (n−1)(x0)
g(n−1)(xn−1) − g(n−1)(x0) =

f (n)(xn)
g(n)(xn) =

f (n)(xn)
n!

Therefore, taking ξ to be xn , which is obviously strictly between x and x0 such that

                                                  .
f (x)
g(x) =

f (n)( )
n!

Hence,  .   f (x) =
f (n)( )

n! g(x) =
f (n)( )

n! (x − x0)n

If x < x0 . the above argument applies similarly to give ξ strictly between x and x0 such
that

                                               .f (x) =
f (n)( )

n! (x − x0)n

This completes the proof.

Remark.  
The interval I in Theorem 40 need not be open.  Notice that the first application  of
the Cauchy Mean Value Theorem in the proof of  Theorem 40 requires only the
continuity of the end point x in the interval [x0, x], while x0 is in the interior of I.
Subsequently all the points xi , i = 1, … , n are in the interior of I.   Hence Theorem 40
is valid with the additional requirement that  f  be continuous at the end point or end
points of the interval I,  with x0 in the interior of I and that the restriction of  f  to the
interior of  I has n derivatives.  We may thus state Theorem 40 in the following form:  

Suppose  I  is an interval and  int I  denotes  it's interior.  Let n be a positive
integer.  Suppose  f  : I → R  is continuous and the restriction of  f   to the interior
of I ,    has n derivatives.  Let x0 be a point in int I.  Supposef x int I : int I dR
that 

f (k)(x0) = 0 for 0 ≤ k ≤ n−1.
Then for each point x in I and x ≠ x0 , there exists a point ξ strictly between x and
x0 ,  such that

.f (x) =
f (n)( )

n! (x − x0)n

4.7 Taylor Polynomials, Taylor's Theorem

One of the triumph of Calculus is the approximation of function by polynomials.  It
allows computation to be done efficiently.

We shall now use Theorem 40 to prove the Taylor's Theorem with remainder.

Order of Contact of Two Functions.
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Definition 41.  Let I  be an open interval containing the point x0.  
Two functions  f  : I → R and g : I → R  are said to have contact of order 0 at x0 if      
f (x0) = g(x0) .  For a positive integer n, the functions  f  and g are said to have contact
of order n at x0  provided  f  : I → R and g : I → R have n derivatives and
                                        f (k)(x0) = g(k)(x0) for 0 ≤ k ≤ n.

Example 42.
Let    and   for x in (0, √2).   Then  f (0)(1) = g(0)(1) = 1 and     f (x) = 2 − x2 g(x) = e1−x

 f (1)(1) = g(1)(1) = − 1 but  f (2)(1) = −2 ≠ g(2)(1) = 1.  Therefore,  f  : (0, √2)→ R and      
g : (0, √2)→ R have contact of order 1 at x = 1 but do not have contact of order 2 at 1.

Let I  be a neighborhood of the point x0 and  f  : I → R a function.  Let n be a
non-negative integer.  Suppose  f  has (n+1) derivatives.  Then the n-th degree
Taylor's polynomial of  f  at x0 and the function  f  : I → R have contact of order n at
x0.
Let us see how the Taylor polynomial can be assembled.  For a positive integer k, let
g(x) = (x − x0)k .  Then we have 
                                 g(j)(x) = k(k−1)…(k−j+1)(x − x0)k-j  for  1 ≤ j ≤ k.
In particular,  for all x,   g(k)(x) = k! and g(j)(x) = 0 for j > k and g(j)(x0) = 0 for 1 ≤ j < k.
Thus we may write this in the more familiar form

                               .     -----------------------   (D)dj

dxj [(x − x0)k] xx=x0 =
⎧ 

⎩ 
⎨ 

k! if j = k
0 if j ! k

Proposition 43.  Let I  be an open interval containing the point x0 and  f  : I → R a
function.   Let n be a non-negative integer.  Suppose  f  has n derivatives.  Then there
is a unique polynomial function of degree at most n that has contact of order n with
the function f  : I → R at x0.  This polynomial is defined by 
pn(x) = f (x0) + 1

1! (x − x0) f ∏(x0) +£ + 1
k! (x − x0)kf (k)(x0)

                 -----------------     (T)+£ + 1
(n − 1)! (x − x0)n−1f (n−1)(x0) + 1

n! (x − x0)nf (n)(x0)

Proof.    By (D)
                                   for 1 ≤ j ≤ n.         dj

dxj [pn(x)] xx=x0 = f ( j)(x0)

Obviously, pn(xo) =f (x0).   Therefore, pn : I → R and f  : I → R have contact of order n
at x0.
Now we shall show that the polynomial pn  is unique.
Write a general polynomial p:I → R  of degree n in terms of powers of  (x− x0) as
follows.  
            .p(x) = c0 + c1(x − x0) +£+ ck(x − x0)k£ + cn−1(x − x0)n−1 + cn(x − x0)n

As before by (D), we get 
                                       for 1 ≤ j ≤ n,dj

dxj [p(x)] xx=x0 = j! cj

and p(xo) = c0.  Then if  p and  f  have contact of order n at x0,
                        j! cj = f ( j )(x0)  for 1 ≤ j  ≤ n  and c0 =  f (x0).
Hence,   for 1 ≤ j ≤ n.   Therefore,  p = pncj = 1

j! f (j)(x0)
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The polynomial pn given by (T) is called the n-th degree Taylor polynomial of f at x0 .

How good is the Taylor polynomial for approximation?   The next theorem gives the
error as a remainder term and the error term may be used as a gauge for the
approximation. 

Theorem 44. Taylor's Theorem (with remainder).  Let I  be an open interval
containing the point x0 and n be a non-negative integer.  Suppose   f  : I → R has n+1
derivatives.  Then for any x in I,  
f (x) = f (x0) + 1

1! (x − x0) f ∏(x0) + £ + 1
k! (x − x0)kf (k)(x0)

                        -----------------------------------      (TR)+£ + 1
n! (x − x0)nf (n)(x0) + Rn(x)

where the error term Rn(x) satisfies     for some ηRn(x) = 1
(n+1)! (x − x0)n+1f (n+1)( )

between x and x0.  (14)  is known as the Taylor's expansion around x0 and Rn(x) is
called the Lagrange form of the remainder.

Proof.  Let  g: I → R be define by 
             g(x) = f (x) − f (x0) − 1

1! (x − x0) f ∏(x0)
                         .−£ − 1

k! (x − x0)kf (k)(x0)£ − 1
n! (x − x0)nf (n)(x0)

Then since  f  : I → R and  havef (x0) + 1
1! (x − x0) f ∏(x0) +£ + 1

n! (x − x0)nf (n)(x0)
contact of order n at x0 , by Proposition 43,  g(k)(x0) = 0 for 0 ≤ k ≤ n.  
Therefore, since g has n+1 derivatives, by Theorem 40, for any x ≠ x0 , there exists η
strictly between x and x0 such that

.g(x) =
g(n+1)( )
(n + 1)! (x − x0)n+1

But g(n+1)(x) = f (n-+1)(x) and so g(n+1)(η) = f (n+1)(η).  Consequently,

.g(x) =
f (n+1)( )
(n + 1)! (x − x0)n+1

Therefore, the remainder term .  Rn(x) = g(x) =
f(n+1)( )
(n + 1)! (x − x0)n+1

This completes the proof.

Remark .
(1)  There are other ways to make the same statement.  For example:  If  I =(a, b) and  
x, x + h are in the interval (a, b), then there exists a θ with 0 < θ < 1 such that 
       .f (x + h) = f (x) + h f ∏(x) + 1

2! h2f ∏∏(x) + £ + 1
n! hn f (n)(x) + 1

(n+1)! hn+1 f (n+1)(x + h)

(2)  The theorem says that the function can be considered as a real polynomial of
degree n upto a remainder term.  Thus to look upon  f  in this way the remainder term
Rn(x) counts.
We will not in general have that this remainder is small.  Here the remainder after        
 (n + 1) terms is 
  (i)  of order (x − x0)n+1,  which is very small if  x and x0 are close, and 
  (ii)  depends on  f (n+1) .
Thus if we know f (n+1) is bounded, say  , then the modulus of thef (n+1)(x) < M
remainder  .Rn(x) [ M

(n+1)! x − x0
n+1
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(3) We may modify the condition in Theorem 44 by replacing I with a general
interval.  I  , not necessarily open,   f  : I → R  is continuous and the restriction of  f   
to the interior of I ,    has n + 1 derivatives and x0 be a point in      f x int I : int I dR
int I.

Example 45.
Let   f (x) = ex .
Consider the expansion of  f (x) around x0 = 0.  The Taylor's expansion upto the power
xn is given by
      f (x) = f (0) + 1

1! (x − 0) f ∏(0) + 1
2! (x − 0)2 f ∏∏(0) +$ $ $ + 1

n! (x − 0)n f (n)(0) + Rn(x)
                = 1 + x

1! + 1
2! x2 + $ $ $ + 1

n! xn + Rn(x) ,
where  for some η  between 0 and x, since  f (j)(x) = ex so that f (j)(0)Rn(x) = 1

(n+1)! xn+1e
= e0 =1 for all non-negative integer j.
    
When x0 = 0, then the Taylor's polynomial of  f  at 0 becomes
                                     f (0) + x f ∏(0) +$ $ $ + 1

n! xn f (n)(0)
and is called the n-th degree Maclaurin polynomial.  

Example 46.
For −1 < x <1 , define .   We shall use this to compute ln(1.2).g(x) = ln 1 + x

1 − x
First note that  We shall obtain a MacLaurin polynomial of degree 4g( 1

11 ) = ln(1.2).
for g.  

Notice that ,  ,g(x) = ln(1 + x) − ln(1 − x) g∏(x) = (1 + x)−1 + (1 − x)−1

, ,  g∏∏(x) = −(1 + x)−2 + (1 − x)−2 g(3)(x) = 2(1 + x)−3 + 2(1 − x)−3

 , .  g(4)(x) = −6(1 + x)−4 + 6(1 − x)−4 g(5)(x) = 24(1 + x)−5 + 24(1 − x)−5

Hence, g(0) = 0, g'(0) = 2 , g''(0) = 0, g(3)(0) = 4 and g(4)(0)=0.  Thus the MacLaurin
polynomial of degree 4 is given by .  Now thep4(x) = g∏(0)x + 1

3! g(3)(0)x3 = 2x + 2
3 x3

remainder   for some ξ  between 0 and x.   Therefore for  , R4(x) =
g(5)( )

5! x5 x = 1
11

.
g(5)( )

5! = 1
5 [(1 + )−5 + (1 − )−5 ] < 1

5 1 + 1
10
11

5

Thus .  Therefore, toR4( 1
11 ) < 1

5 1 + 1
10
11

5 $ 1
11

5
= 1

5
1

(11)5 + 1
(10)5 < 0.000004

compute ln(1.2) upto to four decimal places, we can use the MacLaurin's polynomial
of degree 4.   Hence,   upto 4 decimalln(1.2) l p4( 1

11 ) = 2 $ 1
11 + 2

3 ( 1
11 )3 l 0.1823

places.

4.8 Intermediate Value Theorem for Derivative

We close this chapter with a property of the derived function of a differentiable
function  f :[a, b] → R ,namely the intermediate value property of  f '.  

Theorem 47 (Darboux Theorem)  Let  I  be an interval and suppose  f : I → R is a
differentiable function.   Let  a, b be two points in I such that a < b.   Suppose f ' (a) ≠  
f ' (b).   Then for any value γ  strictly between  f ' (a) and f ' (b),  there is a point c  in
(a, b) such that  f ' (c) = γ.  
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Proof.   Let us define the following function g: I → R by g(x) = f (x) − γ x for x in I.
Then g is differentiable and g' (x) =  f ' (x) − γ .   If we can show that g has either a
relative maximum or a relative minimum at a point c in (a, b), then we are done.   
Consider the function h : [a, b] → R,  the restriction of g to the closed interval, [a, b].
Then since g is differentiable, g is also continuous on [a, b].  Therefore, by the
Extreme Value Theorem, the restriction of g, h attains both its maximum and
minimum in [a, b].  We shall show that at least one of the maximum or  minimum of  
h occurs in the interior of [a, b].  Suppose h(a) is the maximum and  h(b) is the
minimum.  Then for all  x in [a, b],  h(x) ≤ h(a)  and h(x) ≥ h(b).  Hence for all x in   
[a, b],  f (x) − γ x ≤  f (a) − γ a, that is,  f (x) −  f (a) ≤ γ x − γ a.   Therefore, for all x in
[a, b] and x ≠ a, ( f (x) −  f (a))/(x −  a) ≤ γ .   Since  f  is differentiable at a,

.  f ∏(a) =
x d a+lim

f (x) − f (a)
x − a [

Since for all x in [a, b], h(x) ≥ h(b),  f (x) − γ x ≥  f (b) − γ b for all x in [a, b], that is,     
f (b) −  f (x) ≤ γ b − γ x.   Consequently, for all x in [a, b),  ( f (b) −  f (x))/(b −  x) ≤ γ  
since  b − x >  for x < b.   Similarly since f  is differentiable at b,

.f ∏(b) =
x d b−
lim f (b) − f (x)

b − x [

Therefore, we can conclude that  f ' (a) and f ' (b) are both less than or equal to γ,
contradicting that γ is strictly between f ' (a) and  f ' (b).  Similarly, if h(a) is the
minimum and  h(b) is the maximum, we can show in like manner that  f ' (a) and         
f ' (b) are both greater than or equal to γ, giving a contradiction to that γ is strictly
between f '(a) and  f '(b).   We have thus shown that one of the maximum or minimum
of h must occur at a point c  in (a, b).  Since h(c) is also a relative extremum and h is
differentiable,  h ' (c) = f ' (c) − γ = 0 and so  f ' (c) = γ . (See  Theorem 11)  This
completes the proof.

Corollary 48.  Let  I  be an interval and suppose  f : I → R is a differentiable
function.   Then the image of the derived function of  f ,  f ' (I ) is also an interval.

Proof.   The proof is similar to the proof that the continuous image of an interval is an
interval.  Let  f ' (a) ≠ f ' (b) be in   f ' (I ).  We may assume that f ' (a) <  f ' (b).   
Theorem 47 says that for any γ  such that   f ' (a) < γ <  f ' (b) , γ ∈  f ' (I ).  Hence the
interval [ f ' (a),  f ' (b)] ⊆   f ' (I ).  Therefore, by the usual characterization of an
interval,  f ' (I ) is an interval.  

Here is a useful application:

Theorem 49.  Suppose  f  is differentiable on an interval I (not necessarily bounded).

If the derived function  f '  is non-zero on I, then  f '  is  of  constant sign, i.e.,  for all x

in I,  f '(x) > 0  or for all x in I,  f '(x) < 0.

Proof.   Suppose  f ' is not of constant sign.  Then there exist x and y  in I such that  f

'(x) > 0 and f '(y) < 0.  Thus 0 is an intermediate value between  f '(x) and f '(y).

Therefore, by Darboux's Theorem (Theorem 47), there exists a point c between x and
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y such that  f '(c) = 0.  This contradicts that f '  is non-zero on I and so  f '  must be of

constant sign.

Remark.
Theorem 49 is a useful tool.  Often we need to know that there are no sign changes in
a neighbourhood of a point where the derivative is not zero as in the proof of a
weaker form of the Cauchy Mean Value Theorem in my article " L' Hôpital's Rule
and A generalized Version" .  

Exercises 50.

1.   Suppose  f : R → R is a function such that  f ‘ (a) exists.  Determine which of the
following statements are true.  Justify your answer.

      (i)   ; (ii) f ∏(a) =
hda
lim

f (h) − f (a)
h − a f ∏(a) =

hd0
lim

f (a + 2h) − f (a)
h

      (iii) ) ; (iv)  f ∏(a) =
hd0
lim

f (a) − f (a − h)
h f ∏(a) =

hd0+
lim

f (a + h) − f (a − h)
2h

2.  Suppose that f : R → R is a function such that f (x + y) = f (x) f ( y) for all x and y
in R.   If  f (0) =1 and  f ‘ (0) exists, prove that f ’(x) = f ’(0) f (x)  for all x in R.

3.   Suppose  f  : R →R and  g : R →R are functions such that  f (x) = x g(x) for all x
in R.  Suppose g  is continuous at 0.  Prove that  f  is differentiable at 0 and find     
f ' (0) in terms of g..

4.   Suppose  g : R →R is a twice differentiable function with g(0) = g'(0) = 0 and

g''(0) =31.  Let  f  : R →R  be defined by .   Prove that  f  isf (x) =
⎧ 

⎩ 
⎨ 
⎪ 

⎪ 

g(x)
x , x ! 0
0, x = 0

differentiable at x = 0 and find  f '(0).  [Hint: Use L' Hôpital's Rule. ]

5.   Suppose  f : [a, b]→ R is continuous on [a, b] and differentiable on (a, b).   Prove
that  if  m ≤  f '(x) ≤ M for all x in (a, b), then   

                              m( b− a) +  f (a) ≤  f (b) ≤  f (a) + M(b − a).

6.   (i)  If   f (x) = x3  +1, find  ( f −1)'( y),  y ≠ 1.  

      (ii)    f (x) = (x−1)3  , find  ( f −1)'( y),  y ≠ 0.  

7.   A point x0 in D is said to be an isolated point of D provided that there is a δ > 0
such that the only point of D in the interval (x0 − δ, x0 + δ) is x0 itself.   Prove that
a point x0 is either an isolated point or a limit point of D.

8.   Show that if  f  : R →R is differentiable at x0 =1

      (a)    (b)    
td1
lim

f ( t ) − f (1)
t − 1

= f ∏(1)
xd1
lim

f (x2) − f (1)
x2 − 1 = f ∏(1)
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      (c)     (d) 
xd1
lim

f (x2) − f (1)
x − 1 = 2 f ∏(1)

xd1
lim

f (x3) − f (1)
x − 1 = 3 f ∏(1)

9.   Suppose that the function  f  : R → R is differentiable at a  in R.  Prove that  

                                         .xdalim
x f (a) − a f (x)

x − a = f (a) − a f ∏(a)

10.  Suppose that the function  f  : R → R is differentiable at 0.  Prove that

                                                .
xd0
lim

f (x2) − f (0)
x = 0

11.  Suppose I is a neighbourhood of  x0 .  Suppose  f  : I → R is a continuous, strictly
monotone function differentiable at x0 .  Assume that  f '( x0) = 0.  Use the
characteristic property of inverses,   f −1 ( f (x)) = x   for x in I  and the Chain Rule
to prove that the inverse function  f −1 :  f (I) → R is not differentiable at  f (x0).      
 Thus the assumption in Theorem 34 Chapter 4 is necessary.

12.  Suppose that the function  f : (−1,1) → R has n derivatives and that its nth
derivative f (n) : (−1,1)→ R    is bounded.   Assume also that 

                                       f (0) = f '(0) = … = f (n-1)(0) = 0.
       Prove that there is a positive constant K such that | f (x) | ≤ K |x|n  for all x in           

   (−1, 1).

13.   Determine if  the function  f defined below is differentiable at x = 0.  If it is, what
is  f ' (0)?

                                 .f (x) =
⎧ 

⎩ 
⎨ 

x3 sin( 1
x2 ), x ! 0

0, x = 0
Determine the derived function  f '.    Is   f '  continuous at x = 0 ?

14.   Compute the derivative of each of the following functions.
a.    f (x) = cot(x2) + sec(x).   b.   .    c.    f (x) = sin2(7x)cos3(x).f (x) =

cos(3x) + 1
cos(2x) − 1

d.   .     e.  f (x) = cos3(cos(5x)).    f.   .f (x) = 7x + 1
x2 + x + 1

4
f (x) = x + x + x

15.   Find the absolute extrema of the given function on the indicated interval.
        a.   .f (x) = x2 − 6

2x − 5 ; [0, 9
4 ]

        b.   .g (x) =
⎧ 

⎩ 
⎨ 

x3 − 3x + 5, 0 [ x [ 2
x2 − 5x + 13, 2 < x [ 3 ; [0, 3]

16.   Without computing   show that  .3 28 1
28 < 3 28 − 3 < 1

27
      (Hint :  Apply the Mean Value Theorem to   on [27,28].)f (x) = 3 x

17.  (a) Use Rolle's Theorem to prove that the equation  
  has at most  one root that lies in thex6

6 − x5

5 + x4

2 − 2x3

3 + x2

2 − x − 4 = 0
interval (3/2, 2). 

       (b)   Use Intermediate Value Theorem to show that the equation  
    has at least one root that lies in thex6

6 − x5

5 + x4

2 − 2x3

3 + x2

2 − x − 4 = 0
interval (3/2, 2).
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      (c)   Using  (a) and (b), deduce that the equation  
                                  x6

6 − x5

5 + x4

2 − 2x3

3 + x2

2 − x − 4 = 0
       has exactly one root that lies in the interval (3/2, 2).

18.   Is there a differentiable function  f  such that  f  ' (0) = 1, and  f ' (x) ≥ 2  for all
real numbers x > 0 ? 

19.   Let  f   be a function whose   f ' (x) = 4 for all real numbers  x, and   f (1) = 3.   
Use Mean Value Theorem to show that  f (x) = 4x −1.

20.  Evaluate, if  it exists, each of the following limits.   

       a.   .     b.   .           c.   .xdlim
sin2(2x)

1 + cos(5x) xd 0
lim

2x − ln(2x + 1)
1 − cos(3x) xd1

lim 1
ln(x) − 1

x − 1

      d.   .     e.   .            f.   . 
xd2
lim 1

x − 2 − 1
ex−2 − 1 xd0

lim
¶0

x sin(t2 + t)dt
tan(x2) xd0

lim
tan2(x2)

x3

      g.   .                        h.   .     
xd 0+
lim xsin(x3)

xd 0
lim (ex + 7x)

1
x

21.  Evaluate the following limits.

       a.   .     b.   .     c.   .     d.  .xd+∞lim x7

ex xd+∞lim
(ln(x))7

x xd 0+
lim tan(x3) ln(x)

xd 0+
lim (sin(x))x3

22.  Find   for the given  f  and  d. ( f −1)∏(d)
       a.      b.   f (x) = 10x + 1 , x m − 1

10 ; d = 1. f (x) = 1
2 sec(x) , 0 [ x < 2 ; d = 1

3 .
       c.   f (x) = x2 − 5x − 10 , x m 5

2 ; d = 4.

23.   Differentiate the following functions.
      a.   .f (x) = xtan(x); x c (0,∞)

      b.   .g (x) = ln ¶0
sin3(x) 1

1 + t2 + sin2(t + t2)
dt ; x c (0, 2 ]

      c.   .           d.   .h(x) = x(e(x2+x)); x > 0 u(x) = (ln(x + 1))ln(x+1); x > 1
      e.   .                   f.   .g(x) = (17x)7x k(x) = log5(log7(x + 2))
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