
Chapter 3 Continuous Functions

Continuity is a very important concept in analysis.  The tool that we shall use to study

continuity will be sequences.  There are important results concerning the subsets of

the real numbers and the continuity of the function: the Extreme Value Theorem and

the Intermediate Value Theorem.  The next equally important and useful result is the

uniform continuity of continuous function on a closed and bounded interval.  We shall

study also the properties of monotone functions.  We shall assume the familiarity with

the definition of a function, its domain, range and codomain and definition of

injectivity, surjetivity and bijectivity of a function.

3.1 Continuity

Definition 1.  Let D be a subset of R.  A function  f : D → R is said to be continuous

at a in D if for any ε > 0, there exists δ > 0 such that for all x in D,

|x − a| < δ ⇒ | f (x) − f (a) | < ε.

We say  f  is continuous if f is continuous at every point in D.

Remark.  Usually continuity of  f  at a point x is defined via limit.  The function  f  is

said to be continuous at a in D if   Notice that this definition is
xda
lim f (x) = f (a).

equivalent to Definition 1 when a is a limit point of D.  

We shall be using sequences to study continuity and so the following equivalent

definition of continuity is particularly useful.

Definition 2.   A function  f : D → R is said to be continuous at a in D if for any

sequence (an ) such that an → a,  we have that the sequence ( f (an)) is convergent and

converges to  f ( a), i.e., f (an) → f ( a).

Definitions 1 and 2 are equivalent.  Usually it is easier to use a sequence to investigate

continuity and Definition 2 is in the form that may be used readily.  However, as in

the proof of the Intermediate Value Theorem, Definition 1 is a better choice for

effective use.   We shall prove the equivalence of these two definitions later (see

Theorem 12). 

Example 3. 

1. The Dirichlet function  f : R → R is defined by

                   .f (x) =
 

 
 

1, if x is rational

0, if x is irrational

Then  f  is discontinuous everywhere, i.e., at every  point in R. 

This is because, by the density of the rational numbers, at every point x in R, there is a

 sequence of rational numbers (an ) such that an → x.   We can produce this sequence

as follows.  For each n in P,  by the density of the rational numbers (Corollary 4.4.7,

Chapter 1), there exists a rational number an in R such that x − 1/n < an < x + 1/n.    

Plainly, an → x.  Then obviously  f (an) = 1 for each n in P and so  f (an) → 1.  Also by
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the density of the irrational numbers (Corollary 4.4.7 and Corollary 4.4.8, Chapter 1),

there exists an irrational number bn in R such that x − 1/n < bn  < x + 1/n.  Then  bn →
x and f (bn) = 0 for each n in P.  Plainly, f (bn) → 0.   Thus, we have two sequences   

(an ) and (bn) both converging to x but  ( f (an) ) and  ( f (bn) ) do not converge to the

same value.  Therefore, by Definition 2, f  is not continuous at x, for any x.  Hence,  f

is discontinuous everywhere.

2.  Any polynomial function is continuous.  Here is a different proof using sequences.

We will just show an example.  The function f (x) = x2 + 3x +1 is continuous.   Take

any a in R.  We shall show that  f  is continuous at a.  Take any sequence (an )

converging to a.  Then  f ( an ) = an
2 + 3 an +1 → a2 + 3a +1 by properties of

convergent sequences (Properties 7 Chapter 2).  Hence, f  is continuous at a.  Plainly,

the proof for the general polynomial function is similar.

The properties of convergent sequences translate to the following:

Theorem 4.  Suppose f : D → R and  g : D → R are  two functions, continuous at a in

D.  Then

(1) the sum  f  + g: D → R is continuous at a , 

(2) the product  f ⋅ g: D → R is continuous at a ,

(3)  if g(a) ≠ 0, then the quotient  is continuous at a, 
f
g

(4)  for any real number λ ,  λ f is continuous at a.

Proof.  Theorem 4 follows from Definition 2 and Properties 7 of Chapter 2.

Remark.  Theorem 4 may be proved directly from Definition 1 using ε - δ argument.  

An easy consequence of Theorem 4. is the following:

Corollary 5.  Any rational function is continuous on its domain of definition.

Proof.  A rational function is a function of the form   , where p and q are polynomial
p
q

functions.  By theorem 4 part (3)  is continuous at a where  q(a) ≠ 0.  Therefore, 
p
q

p
q

is continuous on its domain of definition, which is {x : q(x) ≠ 0 }.

The next question we ask is:  Is composition of continuous function continuous?

Theorem 6.  Suppose f : D → R and  g : A → R are  two functions such that  f (D) ⊆
A, i.e., range of  f  is contained in the domain of g.   Hence the composite function       

g ) f : D → R is defined.  If  f  is continuous at a and g is continuous at f (a) , then the

composite  g ) f   is continuous at a.

Proof.  We shall show that for any sequence (an ) such that an → a,  

g ) f (an) → g ) f (a).

Since  f  is continuous at a,   f (an) →  f (a).   This means the sequence ( f (an) ) is a

convergent sequence converging to f (a) .  Then, since g is continuous at f (a),             

g ( f (an)) → g ( f (a)).  Therefore, g ) f (an) = g ( f (an))→g ( f (a)) = g ) f (a).  Hence,  

g ) f   is continuous at a.
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3.2  Extreme Value Theorem and The Intermediate Value Theorem

The next result is an important result and is an important tool in analysis.  In its more

general situation it enunciated the following: any continuous function on a compact

topological space attains its maximum and minimum.  We shall use the result from

Chapter 2, particularly Theorem 39.  Chapter 2 gives criteria for completeness and

connection of completeness with compactness via the Bolzano Weierstrass Theorem.

One can give a proof using entirely the idea of (order) completeness.  One may say the

conclusion of the Extreme Value Theorem for closed and bounded interval is

equivalent to completeness for R.

First we shall consider the continuous image of sequentially compact subset of R.

Now since compactness is equivalent to sequential compactness, we shall state the

results in terms of sequentially compact subset.    However, the results are true with

the term 'sequential compact' replaced by 'compact'.

Theorem 7.    Suppose  f  : K  → R  is a continuous function.  Then, if  K is

sequentially compact the image  f (K) is also sequentially compact. 

Proof.   Suppose ( yn ) is a sequence in f (K).  Then for each yn , there exists an

element xn in K such that  f (xn ) = yn .   Thus, (xn ) is a sequence in K.  Since  K is

sequentially compact, (xn ) has a convergent subsequence   such that   for(xnk
) xnk

d x

some x in K.   Since  f  is continuous and hence continuous at x, (by Definition 2)  

.  Then  is a subsequence of ( yn ) which converges to      f (xnk
) d f (x) (f (xnk

)) = (ynk
)

f (x) in f (K).  Thus, we conclude that any sequence in f (K) has a convergent

subsequence that converges to a point in f (K).  Therefore, f (K) is sequentially

compact.

Theorem 8.  Extreme value Theorem.  Suppose  f  : K  → R  is a continuous

function and K is sequentially compact.  Then  f  attains its maximum and minimum,

i.e., there exists c, d in K such that f (c ) ≤ f (x) ≤ f (d) for all x in K.

Proof.  By Theorem 7,  f (K) is sequentially compact.  By Theorem 39 Chapter 2 f (K)

is closed and bounded.   Then, M = sup{ f (k): k ∈ K} exists in R, since f (K) is

bounded above.  We shall show that M ∈ f (K).  For each n in P, by the definition of

sup{ f (k): k ∈ K}, there exists an element an  in  f (K) such that M - 1/n < an  ≤  M.   

Then plainly, ( an ) converges to M.   But since f (K) is closed, by Proposition 33

Chapter 2, M is in f (K).  Therefore, there exists an element d in K such that  f (d) = M

and  f (x) ≤ f (d) for all x in K.  Similarly, since f (K) is bounded below, m= inf{ f (k): k

∈ K} exists in R.   We can find a sequence in f (K) which converges to m as follows.

For each n in P, by the definition of inf{f (k): k ∈ K}, there exists an element bn  in      

f (K) such that m ≤ bn  ≤  m + 1/n.  We deduce in the same way for supremum, that m

∈ f (K).  Hence, there exists an element c in K such that  f (c) = inf{ f (k): k ∈ K} ≤      

f (x) for all x in K

Corollary 9.  Let [a, b] be a closed and bounded interval.  Then any continuous

function  f  : [a, b] → R attains its maximum and minimum.
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Definition 10.  Suppose  f  : A  → R  is a function.  A maximizer for the function  f   is

an element d in A such that f (x) ≤ f (d) for all x in A.  A minimizer for the function  f  

is an element c in A such that f (c) ≤ f (x) for all x in A.

Thus Theorem 8 says that if K is sequentially compact and if f  : K  → R  is a

continuous function, then  f  has a maximizer and a minimizer.

The next property that we will be investigating is the so called intermediate value

property for a continuous function defined on an interval.  Topologically, this is just

the same as saying the continuous image of a 'connected' set is 'connected' .  We will

not bring in this notion but instead we will use a characterization of an interval.

Definition 11.  A subset I of  R is an interval, if whenever a, b are in I and a < b, then

the set [a, b] = {x ∈ R: a ≤ x ≤ b} ⊆ I.

Remark.  

1. We have previously called [a, b], a closed interval.   Plainly, it is an interval in the

sense of Definition 11.  Obviously, it is also closed since its limit points are in [a, b].

(See Definition 32 Chapter 2).  Note that all of the following are intervals in the sense

of Definition 11: [a, b], (a, b],  [a, b), (a, b), [a, + ∞ ), (a, + ∞ ), (−∞,  b], (−∞,  b ),

(−∞, + ∞) = R.   Thus, what we called an interval to be any one of the above type

coincides with this definition.

2.  If  I  is an interval, then it must be one of the above types depending first of all

whether the interval is bounded above or bounded below or unbounded and then on

the existence of supremum or infimum and whether they reside in I or not.  It is an

easy exercise to show this.

3.  The notion of connected set is a more general notion that applies to metric spaces

and topological spaces and of course to R, since R is a metric space.  The only

connected subsets of R are the intervals.  For the proof of this statement, see for

instance Theorem 17.7  K. G. Binmore Foundation of Analysis: A straightforward

Introduction Book 2 Topological Ideas.

4.  Note that by definition for each a in R, [a] = {a} is an interval called the trivial

interval.

We shall next use definition 1 for continuity instead of the sequence definition.   

Below we furnish a proof that Definitions 1 and 2 are equivalent.

Theorem 12.  Let D be a non-empty subset of R and a a point in D.   Let  f : D → R  

be a function defined on D.   The following two statements are equivalent.

(A) For any ε > 0, there exists δ > 0 such that for all x in D,

|x − a| < δ ⇒ | f (x) − f (a) | < ε.

(B) For any sequence (an ) in D such that an → a,  f (an) → f ( a).

Proof. 

(A) ⇒(B).  Assume (A).  Then suppose  (an ) is a sequence in D  such that an → a.

We shall show that f (an) → f ( a).  Given any ε > 0, then by (A) there exists δ > 0

such that for all x in D,
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                                          |x − a| < δ ⇒ | f (x) − f (a) | < ε.         --------------------    (1)

Since an → a,  there exists a positive integer N such that n ≥ N implies that |an− a| < δ.

 Therefore, by (1),  n ≥ N ⇒ | f (an) − f (a) | < ε.  Hence,  f (an) → f ( a).

(B) ⇒(A).  Assume (B).  Suppose on the contrary that (A) does not hold.  Then there

exists an ε > 0 such that for each positive integer n, there exists an element an in D

such that  |an − a| < 1/n but | |f (an) − f (a) | ≥ ε.   Plainly, an → a.   Since |f (an) − f (a) |

≥ ε for all n in P,  the sequence (f (an)) does not converge to  f ( a).  But by assumption

(B) (f (an)) converges to f ( a).  This contradiction shows that (A) holds.

We shall use either Definition 1 or 2 depending on which ever is more efficient.

Theorem 13.  Intermediate Value Theorem.

Suppose  f : [a, b] → R  is continuous.  If  γ is an intermediate value between   f (a)

and  f (b), i.e. either f (a) ≤ γ ≤  f (b) or f (b) ≤ γ ≤  f (a), then there exists  c in [a, b]

such that  f (c) = γ .

Proof.  If a = b, we have nothing to prove.  Assume a < b.  Without loss of generality

we may assume that  f (a) <  f (b).  If  γ =  f (a) or  f (b), we have nothing to prove.

Now take any  γ  such that f (a) < γ <  f (b).  Then define  g : [a, b] → R  by 

g(x) =  f (x) − γ  for x in [a, b].

Then g is a continuous function,  g(a) < 0 and g(b) > 0.  We are going to find a point κ
in [a, b] such that g(κ) = 0.  We do this by using the completeness property of the real

numbers R.  Let F =  { x ∈ [a, b]: g(x) < 0}.  Then F ≠ ∅ since a ∈ F because

g(a) < 0.   Obviously F is bounded above by  b.  Hence by the completeness property

of R,  supremum of F exists.   Let κ = sup F. 

Since g is continuous at a and g(a) < 0, there exists δ > 0 such that 

for all x with a ≤ x < a + δ < b , g(x) < 0.

( Take ε =  − g(a)/2.  By continuity of  g at a, there exists δ1 > 0 such that for all x in

[a, b] with a ≤ x < a + δ1 , |g(x) − g(a)| < − g(a)/2 or  3g(a)/2 < g(x) <  g(a)/2 < 0.

Take δ = min(δ1 , (b −−−−a)/2). )

This means κ ≥ a + δ ' > a for any  δ '  with 0 < δ ' < δ since g(a + δ') < 0.  Therefore,  

κ > a.  Thus  a < κ ≤ b.  Now by the continuity of g at b and the fact that g(b) > 0,

there exists δ2 > 0 such that  for all x with a < b − δ2 < x ≤ b , g(x) > 0.  This means for

any q in F, q ≤  b − δ2  because for any  k with b − δ2 < k ≤ b,  k ∉ F and consequently

b − δ2  is an upper bound for F . Thus  κ = sup F ≤ b − δ2 < b.  Hence a < κ < b.

We now claim that g(κ) = 0.  That is  f (κ) = γ.   
Suppose g(κ) < 0.  Then by the continuity of g at κ, there exists δ3 > 0 such that [κ −
δ3 , κ + δ3] is a proper subset of  [a, b] and 

for any x with a < κ − δ3 ≤ x ≤ κ + δ3 < b,  we have g(x) < 0.

This means κ + δ3  ∈ F .  Thus κ + δ3 ≤ sup F = κ, and δ3 ≤ 0 contradicting δ3 > 0.

Hence g(κ) ≥ 0.   Similarly if g(κ) > 0, then by the continuity of g at κ, there exists δ4

> 0 such that 

for any x with a < κ − δ4 ≤ x ≤ κ + δ4 < b,  we have g(x) > 0.

Note that for any x in [a, b], x > κ implies that g(x) ≥ 0.  Then if x is in [a, b] and g(x)

< 0, then x < κ − δ4.  Thus κ − δ4 is an upper bound for F and hence κ ≤ κ − δ4 giving

δ4 ≤ 0 contradicting δ4 > 0.  Hence g(κ) = 0.  We now take c = κ and f (c) = γ.
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If  f (a) >  f (b), then multiply by −1, we get  − f (a) <  − f (b).  Replace  f  above by − f  

, γ  by  − γ and the proof proceed exactly the same manner as above to obtain a c in   

[a, b] such that   − f (c) =  − γ and that is the same as f (c) = γ .   This completes the

proof.

                              

                               

a b

f (a)

f (b)

γ 

c

Fig. 2

Theorem 13 is a very useful tool in analysis. It is used in the proof of the first and

second mean value theorems for integrals.

3.3 Continuity and intervals.

Some of the obvious questions we can ask is the following:

Is the continuous image of an interval, an interval?

Is a continuous and injective function defined on an interval, necessarily strictly

monotone?

We shall answer these two and other similar questions.

Theorem 14.  The continuous image of an interval is an interval.

Proof.   Suppose J is an interval and  f  is a continuous function defined on J.  We

shall show that the image  f (J ) is an interval by Definition 11.

Let  be in  f (J ).  Then there exist  in J such that y1 and y2 with y1 [ y2 x1 and x2

.  Since  f  is continuous on J,  f  is continuous on .f (x1) = y1 and f (x2) = y2 [x1, x2]
Thus by the Intermediate Value Theorem, for any y with , there exists any1 [ y [ y2

element x in  such that  f (x) = y, that is, y is in  f (J ).  Hence .[x1, x2] [y1, y2] ` f (J )
Therefore,  f (J ) is an interval.

We can say more about the image of the interval if the function is also injective.

Theorem 15.  If  I is an open interval and  f  is an injective continuous function

defined on I, then  f (I ) is also an open interval.

Proof.   By Theorem 14,  f (I ) is an interval.  Suppose that it is not open.  Then  f (I )

is of the form [a, b], [a, b), (a, b], [a, ∞), or (−∞, b].  Suppose  f (I ) = [a, b) or [a, b],

or [a, ∞).  Then since  f  is injective, there exists a unique x0 in I such that  f (x0) = a,

and for all  x in  I , x ≠ x0 ⇒  f (x) > f (x0).  Since I  is open, there exist elements c and

d in  I  such that c < x0
 < d and [c, d] ⊆ I.  Now by the Intermediate Value Theorem     
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f ( [c,  x0 ] ) ⊇ [a, f (c)] and f ([x0, d]) ⊇ [a, f (d)].  We may assume, without loss of

generality, that f (c) <  f (d). (Rename c and d if necessary.)  Then 

.  But  f  being injective impliesf ([c, x0]) 3 f ([x0, d ]) r [a, f (c)] r (a, f (c)) ! �
that .  This contradiction showsf ([c, x0]) 3 f ([x0, d ]) = { f (x0)} = {a} r/ (a, f (c))
that  f (I ) cannot be of the form [a, b) or [a, b] or [a, ∞ ) .  By a similar argument we

can show that  f (I ) cannot be of the form (a, b], or (−∞, b].  Thus f (I ) must be an

open interval.

The Intermediate Value Theorem is often used to demonstrate the existence of a root

of a polynomial equation and forms the basis of many algorithms to extract root.

Example. 

1. Here is a round about way to show the existence of square root.  For any positive

number C, there is a solution to the equation x2 = C.  The proof we shall give below is

some what different from the existence proof given in Lemma 6 of Chapter 5 in "Real

Numbers?"  

Let f  be defined on the interval [0, C+1] by  f (x) = x2 .   Then  f  is continuous on     

[0, C+1] and  f (C+1) = (C+1)2 = C2 +2C + 1 > C > 0 = f ( 0).  Thus by the

Intermediate Value Theorem, there exists an element k in (0, C+1) such that f (k) = k2

= C.

2.  Suppose  f  is continuous on  [a, b]  and suppose either  f (a) < 0 < f (b) or f (a) > 0

> f (b).  Then by the Intermediate Value Theorem, there exists an element c in [a, b]

such that f (c) = 0. This is the usual method to locate root.  An algorithm can be

devised to narrow the distance between a and b successively to obtain a nested

sequence of intervals.  For instance, suppose f (a) > 0 > f (b).  Let c = (a + b)/2.  If  f

(c) = 0, then we have found the root and we are done .  If f (c) > 0, then let a1 = c, b1 =

b.  If f (c) < 0, then let a1 = a, b1 = c.   We then have f (a1) > 0 > f (b1) and (b1 −a1) = (b

− a)/2.  We then repeat the process with the interval [a1 , b1 ] .  In this way, either we

terminate when finding the root in a finite number of steps or we get a sequence of

nested intervals,

                                         [a, b] ⊃ [a1 , b1 ] ⊃ … ⊃ [an , bn ]

whose end points are getting closer and closer to the actual root and hence

approximate the root better and better as (bn −an) = (b − a)/2n  → 0.

Remark.

Theorems 13 and 14 are topological results.  Theorem 14 is a special case of the

following result: a continuous image of a connected set is connected.

3.4 Monotone Function

We now examine continuous function defined on an interval. Our next result

considers when a function is continuous by knowing if its image is an interval.  First

we formally define monotone function.

Definition 16.  Let  f : D → R  be a function defined on D.

(1)  f  is said to be  monotonically increasing or just simply increasing, if  for all a, b

in D, a < b ⇒ f (a) ≤ f (b) .

Chapter 3 Continuous Functions

7
Ng Tze Beng 2006



(2)  f  is said to be strictly monotonically increasing or strictly increasing, if  for all a,

b in D,  a < b ⇒ f (a) < f (b) .

(3)  f  is said to be  monotonically decreasing or just simply decreasing, if  for all a, b

in D, a < b ⇒ f (a) ≥ f (b) .

(4)  f  is said to be strictly monotonically decreasing or strictly decreasing, if  for all a,

b in D,  a < b ⇒ f (a) > f (b) .

(5)  f  is said to be monotone if  f  is either increasing or decreasing.

(6)  f  is said to be strictly monotone if  f  is either strictly increasing or strictly

decreasing.

Recall the following definition of injectivity and surjectivity

Definition 17.  Suppose  f : A → B  is a function.  f  is said to be injective if for all a

and b in A,  f (a) =  f (b) ⇒ a = b.   f  is said to be surjective or onto if  its image is B,

i.e.,  f (A) = B.  Recall that A is called the domain of  f  and B is called the codomain of

 f  and the range of  f  is f (A).  Thus,  f  is surjective if range of  f  = codomain of  f .

To facilitate the study of continuous functions using sequences, it is useful to know

what a convergent sequence will possess as subsequences.  First we recall the

definition of peak index and trough index.

Definition 18.  Suppose (an ) is a sequence in R.  We say the sequence (an ) has a peak

at k if, for  all j ≥ k, ak ≥ aj .   ak is called the peak and k the peak index.  Similarly we

say the sequence (an ) has a trough at k if, for  all j ≥ k, ak ≤ aj .   ak is called the trough

and k the trough index.

We are going to construct convergent subsequences of a bounded sequence using the

peak and the trough indices.  But first we prove the following simple observation.

Proposition 19.  Suppose (an ) is a sequence in R.  If  (an ) converges to a in R, then

all subsequences are convergent and converge to the same limit a.

Proof.  Suppose  an  → a.  Then given any ε > 0, there exists a positive integer N such

that n ≥ N ⇒ | an − a| < ε.   Suppose  is a subsequence of (an ).  Then,  for all k ≥(ank
)

N,  nk ≥ k ≥ N  and so .  Thus, by definition of convergence,  .|ank
− a| < � ank

d a

Suppose (an ) is a sequence converging to a in R.  Then (an ) is bounded.  Then (an )

has either an infinite number of peak indices, say, k1 , k2 , k3 , …  with k1 < k2 < k3 <

….   or (an ) has finite or no peak indices.   Then by definition of the peak,

                                                       .  .ak1 m ak2 m ak3 m¢

Thus the subsequence  is a monotone decreasing sequence.  Since (an ) is(akj
)

bounded,  is also bounded and so bounded below and by the Monotone(akj
)

Convergence Theorem, .  By Proposition 19, .akj
d inf{akj

: k c P} inf{akj
: k c P} = a

That means  for all j in P. akj
m a

If there are only finite number of these peaks or no peak, then there is an index K,

such that there are no peak indices ≥ K.  Let n1 = K.  Then since n1 is not a peak index

, there exists an index n2 such that n2 > n1 but . Similarly since   is not aan2 > an1 an2
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peak, it means that it is not true that for all j ≥ n2 ,  .  Hence there exists ana j [ an2

index n3 > n2 such that .  Thus, in this way we recursively define nk+1 > nk  an3 > an2

such that that  .  Therefore,  is a monotone increasing sequence.ank+1
> ank

(ank
)

Moreover, for all n ≥ K,  an ≤ a.  This is because if there exists an integer n0 ≥ K such

that , we can deduce a contradiction as follows.  Then, there exists an integer Nan0 > a

≥ K such that

            .n m Nu |an − a| < (an0 − a)/2u an < a + (an0 − a)/2 = (an0 + a)/2 < an0

Consider the maximum of the set {aK , aK+1 , …, aN ,  }.  Then max {aK , aK+1 , …,an0

aN , } = ah  with  h ≥ K  and obviously for all n ≥ h,  an ≤ ah  and so we have a peakan0

index h ≥ K.  This contradicts that we have no peak index ≥ K .  Hence, for all n ≥ K,  

an ≤ a.

We can examine the trough indices in the same way.  If (an ) has an infinite number of

trough indices, say, l1 , l2 , l3 , …  with l1 < l2 < l3 < ….   , then by definition of the

trough, .  and   is an increasing sequence.  Plainly,  isa l1 [ a l2 [ al3 [¢ (a lj
) (a lj

)
bounded above and so by the Monotone Convergence Theorem, .a lj

d sup{a lj
: j c P}

Thus, since an  → a, by Proposition 19, .  Thus   for all j insup{a lj
: j c P} = a alj

[ a

P.    

Now if  there are only finite number of these troughs or no trough, then there is an

index L, such that there are no trough indices ≥ L.  Let n1 =L.  Then since L is not a

trough index , there exists an index n2 such that n2 > n1 but . Similarly since  an2 < an1

 is not a trough, it means that it is not true that for all j ≥ n2 ,  .  Hence therean2 a j m an2

exists an index n3 > n2 such that .  Thus, in this way we recursively define nk+1an3 < an2

> nk  such that that  .  Therefore,  is a  decreasing sequence.  Moreover,ank+1
< ank

(ank
)

for all n ≥ L,  an ≥ a.  Suppose there exists an integer n0 ≥ L such that .  Then,an0 < a

there exists an integer N ≥ L such that

            .n m Nu |an − a| < (a − an0 )/2u an > a − (a − an0 )/2 = (an0 + a)/2 > an0

Then min{aL , aL+1 , …, aN , } = ah with h ≥ L  and obviously, for all n ≥ h,  an ≥  ah  an0

and so we have a trough index h ≥ L.  This contradicts that we have no trough index ≥
L .  Hence, for all n ≥ L,  an ≥ a.

We have thus proved the following:

Proposition 20.  Suppose (an ) is a sequence in R converging to a in R.  Then we

have the following possibilities.

Either

(1)  There is a monotonically decreasing subsequence   converging to a such that (akj
)

 for all j in P and that for each j in P,  , and there is aakj
m a n m k j u an [ akj

monotonically increasing sequence   converging to a with  and (a lj
) alj

[ a

, for all j in P.n m lju an m alj

Or (2) There is a monotonically decreasing subsequence   converging to a such(akj
)

that  for all j in P and that for each j in P,  , and there exists anakj
m a n m k j u an [ akj

integer L such that for all n ≥ L,  an ≥ a.
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Or (3)  There is a monotonically increasing sequence   converging to a with (a lj
)

 and , for all j in P and there exists an integer K such that for allalj
[ a n m lju an m alj

n ≥ K,  an ≤ a.

Or (4) There exists a positive integer N such that n ≥ N ⇒ an = a.

Proof.  This is just a statement of the 4 possibilities depending on whether the

sequence (an ) has infinite peak or infinite trough indices or finite or none peak indices

or trough indices.   The argument preceding the proposition proves part (1) to (3) of

the proposition.  Part (4) is the remaining case when the sequence (an ) have finite or

no peak indices and finite or no trough indices.  Thus there exists a positive integer K

such that n ≥ K  an ≤ a and a positive integer L such that n ≥ L ⇒  an ≥ a.   Let N =

max(K, L).  Then  n ≥ N ⇒  an = a.

Remark.  Proposition 20 describes the possible behaviour of a converging sequence

that may be used. 

We now investigate the behaviour of a monotone sequence under monotone function.

Theorem 21.  Let A be a non-empty subset of R.  Suppose  f : A → R  is a monotone

function such that the image  f (A) is an interval.  Let (an ) be any monotone sequence

in A converging to an element a in A.  Then the sequence ( f (an)) is convergent and

converges to  f (a).

Proof.  Suppose f  is an increasing function.  Suppose (an ) is a monotone sequence in

A converging to an element a in A.  If  (an ) is increasing, then an ≤ a for all n in P.

Since  f  is increasing,  it follows that   f (an) ≤ f (a) for all n in P.  Therefore, the

sequence ( f (an) ) is bounded above and is increasing since 

i > k ⇒ ai ≥ ak ⇒ f (ai) ≥ f (ak).

Thus, by the Monotone Convergence Theorem,  f (an) → sup {f (ak): k ∈P} ≤ f (a).

Let y = sup {f (ak): k ∈P}.  Now we claim that y =  f (a).  Note that  f (a1) ≤ y ≤  f (a).

Since f (A) is an interval, [f (a1),  f (a)] ⊆ f (A).   Suppose on the contrary that y ≠         

f (a).  Then y <  f (a).  Hence, the mid point (y +  f (a))/2  between y and f (a) is in      

[f (a1),  f (a)] and so is in  f (A) and there exists an element b in A such that

 f (b) =  (y +  f (a))/2 < f (a).

Since  f  is increasing, b < a.  Since  a = sup{an : n ∈P) , there exists a positive integer

J such that b < aJ ≤ a.  Therefore,  f (b) ≤ f (aJ ) ≤  y.  But this contradicts f (b) =  (y +  

f (a))/2 > y.  This contradiction shows that y =  f (a) and so ( f (an)) converges to  f (a).

If  (an ) is decreasing, then an ≥ a for all n in P.  Since  f  is increasing, it follows that  f

(an) ≥ f (a) for all n in P.  Therefore, the sequence ( f (an) ) is bounded below and is

decreasing since i > k ⇒ ai ≤ ak ⇒ f (ai) ≤ f (ak).  Thus, by the Monotone Convergence

Theorem,  f (an) → inf{f (ak): k ∈P} ≥ f (a).  Let y = inf{f (ak): k ∈P}.  Now we claim

that y =  f (a).  As before we observe that  f (a1) ≥ y ≥  f (a).  Since f (A) is an interval,

[f (a),  f ( a1)] ⊆ f (A).   Suppose on the contrary that y ≠  f (a).  Then y >  f (a).  Hence,

the mid point (y +  f (a))/2  between y and f (a) is in [f (a),  f ( a1)] ⊆  f (A) and so there

exists an element b in A such that f (b) =  (y +  f (a))/2 > f (a).  Since  f  is increasing, b
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> a.  Since  a = inf{an : n ∈P}, there exists a positive integer k such that b > ak ≥ a.

Therefore,  f (b)≥ f (ak ) ≥  y.  But f (b) =  (y +  f (a))/2 < y.  This contradiction shows

that y =  f (a) and so ( f (an)) converges to  f (a).

If  f is decreasing, then − f is increasing.   If  f (A) is an interval, then (− f ) (A) is also

an interval.  Thus, by what we have just proved, if (an ) is a monotone sequence

converging to a, then  − f (an) → − f (a)  and so  f (an) →  f (a).  This completes the

proof.

Theorem 22.  Let A be a non-empty subset of R.  Suppose  f : A → R  is a monotone

function such that the image  f (A) is an interval.  Then  f  is a continuous function.

Proof.  We shall assume that  f  is increasing.  Take any element a in A. We shall

show that f  is continuous at a by showing that if (an) is any sequence in A converging

to a, then f (an) →  f (a).  Thus, suppose an →  a.  Then by Proposition 20 we have the

four possible consequences (1) to (4) as stated there.   

For case (1), there is a decreasing subsequence  of  (an) defined by the peaks of(akj
)

(an) and an increasing subsequence  of (an) defined by the troughs of (an).  Both(a lj
)

subsequences converge to a.   By Theorem 21,   and f (akj
) d f (a) f (a lj

) d f (a).
Therefore, given any ε > 0, there exist positive integers N1 and N2 such that

                                                            -------------------   (1)j m N1 u | f (akj
) − f (a)| < �

and                                              .        -------------------   (2) j m N2 u | f (a lj
) − f (a)| < �

Let .  Then  by definition of peakN = max{kN1 , lN2 } n m Nu an [ akN1
and an m a lN2

and trough indices.  For any n ≥ N, either an ≥ a or an < a.  If  an ≥ a, then  

.  Since f is increasing,  and so  a [ an [ akN1
f (a) [ f (an) [ f (akN1

)
 by (1).  If  an < a, then .  Hence, | f (an) − f (a)| [ |f (akN1

) − f (a)| < � a lN2
[ an [ a

 and it follows that   by (2).f (a lN2
) [ f (an) [ f (a) | f (an) − f (a)| [ |f (a lN2

) − f (a)| < �
Therefore,  .  This means f (an) →  f (a).n m Nu | f (an) − f (a)| < �

For case (2) we have a decreasing subsequence  given by the peaks of (an) and(akj
)

there exists a positive integer L such that n ≥ L ⇒ an ≥ a.  Then given any ε > 0, take 

 and so .   It follows that N = max{kN1 , L} n m Nu a [ an [ akN1
f (a) [ f (an) [ f (akN1

)
and  by (1).  Thus, f (an) →  f (a).| f (an) − f (a)| [ |f (akN1

) − f (a)| < �

For case (3) we have an increasing subsequence  of (an) defined by the troughs of(a lj
)

(an) and there exists an integer K such that for all n ≥ K,  an ≤ a.  Let  .N = max{lN2 , K}
Then  by the definition of trough index since .  It follows,n m Nu a lN2

[ an [ a n m lN2

as f  is increasing, that  for n ≥ N .  Thus,  n ≥ N  ⇒  f (a lN2
) [ f (an) [ f (a)
  by (2).  Hence, f (an) →  f (a).| f (an) − f (a)| [ |f (a lN2

) − f (a)| < �

Case (4) is trivial since there exists an integer N such that 

n ≥ N  ⇒  an = a ⇒ f (an) =  f (a).

If  f  is decreasing, then − f  is increasing and the image (− f )(A) = − f (A) is still an

interval.  Hence, by what we have just proved, − f   is continuous.  Therefore,  f  is

continuous.
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This completes the proof.

Remark.  A proof using the topological definition of continuity in terms of open sets

is shorter. We only need to show that the inverse image of an open set, in this case an

open interval, is (relatively) open.  

Theorem 23.  Suppose I is an interval and f : I → R  is a strictly monotone function.

Then the inverse function  f -1 : f (I ) →I  is continuous.

Proof.  Since f  is strictly monotone, its inverse  f −1 is also strictly monotone.  Since

the image of the inverse function  f −1 is I , which is an interval, by Theorem 22,  f −1 is

continuous.

Theorem 24.  Suppose  I  is an interval and f : I → R  is a  monotone function.  Then f

 is continuous if and only if the range of f ,  f (I ) is an interval.

Proof.  If  f  is continuous, then by Theorem 14, the image of I or the range of f  is an

interval.  Conversely, if the image f (I) is an interval, then by Theorem 22, f  is

continuous.

The next result expresses that for a continuous function defined on an interval,

injectivity is equivalent to strict monotonicity.  We present a technical result to begin

with.

Proposition 25.  Suppose I is an interval and  f : I → R is continuous and injective.

Then for any x, y and z in I with  x < y < z  either  f (x) <  f (y) <  f (z) or  f (x) >  f (y) >  

f (z).

Hence we have

(i)    If  f (x) <  f (y) or f (x) <   f (z) or f (y) <   f (z), then  f (x) <  f (y) <  f (z).

(ii)   If  f (x) >  f (y) or f (x) >   f (z) or f (y) >  f (z),  then  f (x) >  f (y) >  f (z).

Proof.   Suppose x < y < z.   Then (x, y)∩(y, z) = ∅.  Since  f  is injective, this implies

that  f ((x, y))∩ f ((y, z)) = ∅.  We have then the following possibilities regarding          

f (x),  f (y) and    f (z):

Case (1)   f (x) <  f (y) and  f (y) <  f (z).

Case (2)   f (x) <  f (y) and  f (y) >  f (z).

Case (3)   f (x) >  f (y) and  f (y) <  f (z).

Case (4)   f (x) >  f (y) and  f (y) >  f (z).

By the Intermediate Value Theorem, since I is an interval, we have the following

conclusions according to each case above:

(1)  ( f (x),  f (y) ) ⊆ f ((x, y)) and ( f (y),  f (z)) ⊆  f ((y, z));

(2)  ( f (x),  f (y) ) ⊆ f ((x, y)) and ( f (z),  f (y)) ⊆  f ((y, z));

(3)  ( f (y),  f (x) ) ⊆ f ((x, y)) and ( f (y),  f (z)) ⊆  f ((y, z));

(4)  ( f (y),  f (x) ) ⊆ f ((x, y)) and ( f (z),  f (y)) ⊆  f ((y, z));

Case (2) implies that  ( f (x),  f (y) ) ∩ ( f (z),  f (y)) = (max(f (x),   f (z)), f (y))≠ ∅.  But
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( f (x),  f (y) ) ∩ ( f (z),  f (y))⊆  f ((x, y))∩ f ((y, z)) = ∅ and so ( f (x),  f (y) ) ∩ ( f (z),  f

(y)) = ∅ contradicting ( f (x),  f (y) ) ∩ ( f (z),  f (y)) ≠ ∅.  Thus, Case (2) is not

possible.

Similarly, case (3) implies that

 ( f (y),  f (x) ) ∩ ( f (y),  f (z)) = ( f (y), min(f (x), f (z)))≠ ∅.

But  ( f (y),  f (x) ) ∩ ( f (y),  f (z))⊆  f ((x, y))∩ f ((y, z)) = ∅ and so 

( f (y),  f (x) ) ∩ ( f (y),  f (z)) = ∅
contradicting ( f (y),  f (x) ) ∩ ( f (y),  f (z)) ≠ ∅.  Thus, Case (3) is not possible.

Therefore, we are left with cases (1) and (4).  That is to say , f (x) <  f (y)  <  f (z)  or    

f (x) >  f (y) >  f (z).  This completes the proof of the proposition.

Theorem 26.  If  I is an interval and f : I → R is continuous.   Then  f   is injective if

and only if  f  is strictly monotone.

Proof.  If  f  is strictly monotone, then plainly it is injective.

Suppose now  f  is injective and continuous.   

Suppose for some x1, x2 in I  with x1 < x2 , we have that f (x1) < f (x2).  We shall show

that then  f  is strictly increasing, i.e., for any y, z in I with y < z , f (y) < f (z).

If  x1 = y and  x2 = z, then we have nothing to show since f (x1) < f (x2).  If only one of y

or z is equal to either x1 or x2 , then by Proposition 25 part (i)  f (y) < f (z).  It remains

to see the same conclusion can be reached when y and z are distinct from both x1 or x2.

 By the total ordering on R, we have the following six possibilities:

Case (1)  y < z < x1 < x2;

Case (2)  y < x1 < z < x2;

Case (3)  y < x1 < x2 < z;

Case (4)  x1  < y < z < x2 ;

Case (5)  x1  < y < x2 < z;

Case (6)  x1  < x2 < y < z.

For cases (1), (2) and (3), applying Proposition 25 Part (i), we obtained  f (y) < f (x1)

using the inequality y < x1 < x2 and the supposition  f (x1) < f (x2).   Applying

Proposition 4 Part (i) again, we have then  f (y) < f (z)  since f (y) < f (x1) and either y <

x1 < z or  y < z < x1. 

For cases (4) and (5) since x1  < y < x2  and f (x1) < f (x2), applying Proposition 4 Part

(i), we get  f (y) < f (x2).  Then applying Proposition 25 Part (i) again we get  f (y) <      

f (z)  since we now have f (y) < f (x2) and either y < z < x2  or y < x2 < z.

For case (6) Applying Proposition 25 part (i) gives us f (x2) < f (y).  Therefore,

applying again Proposition 25 Part (i) we get f (y) < f (z) since x2 < y < z.  Hence  f  is

strictly increasing. 

Similarly, if  f (x1) > f (x2), we can show that for any y, z in I with y < z, we have that     

f (y) > f (z).  We only have to reverse the inequality in the images in the above

proceeding and use Proposition 25 Part (ii) instead of Part (i).  This means that  f  is

strictly decreasing.

Therefore,  f  is strictly monotone.  This completes the proof of Theorem 26.

Note that injectivity does not imply strict monotonicity as the following example will

show.  The theorem simply says that any example of an injective function defined on

an interval and which is not monotone will have to be discontinuous.
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Example

Define g : R → R by  g(x) =2x if x is rational and g(x) = −x if x is irrational.  Then  g

is not continuous and g is injective but not monotone.

Corollary 27.  If  I is an interval and f : I → R is continuous and injective, then the

inverse function f -1 is continuous.

Proof.  If  f is continuous and injective, then by Theorem 26  f  is strictly monotone

and so by Theorem 23, its inverse  f -1 is continuous.

3.5 Uniform continuity

Now we proceed to the idea of uniform continuity, which is often used in the

development of integration.  For a function  f : D → R, continuity at a point by

Definition 1 requires a δ to be found so that for all x in D,

|x − a| < δ ⇒ | f (x) − f (a) | < ε.

Thus, for different x, we may have different δ, i.e., δ depends on x.  If we remove this

dependency on x, then we get the idea of uniform continuity.

Definition 28.  Let D be a subset of R.  A function  f : D → R is said to be uniformly

continuous on D if for any ε > 0, there exists δ > 0 such that for all x, y in D,

|x − y| < δ ⇒ | f (x) − f (y) | < ε.

Remark.  Plainly, it follows from Definition 1 that if  f : D → R is uniformly

continuous, then f  is continuous.

Theorem 29.  A continuous function defined on a closed and bounded interval [a, b]

is uniformly continuous.

Remark.  In part inspired by the ideas of George Cantor and Weierstrass, Heine

enunciated the notion of uniform continuity and proved the above Theorem using

methods, which clearly spelt out the principle of being able to choose a finite covering

from a countably infinite cover of [a, b], a theorem independently stated by Emile

Borel (1871-1956).  We now recognize this as countable compactness.  Heine used

this principle in his proof of uniform continuity and the theorem on countable

compactness is known as Heine-Borel Theorem.  The extension of the Heine Borel

Theorem to the case of uncountably infinite covering is credited to Lebesgue but was

first published by Pierre Cousin (1867-1933) in 1895.  We have proved the Heine

Borel Theorem for countable compactness in Chapter 2 where we also proved the

equivalence of sequential compactness and countable compactness for subsets of R.

The proof for the case of compactness without using the equivalence of  compactness

and countable compactness for metric spaces is given in my article "Closed and

bounded sets, Heine Borel Theorem, Bolzano-Weierstrass Theorem, Uniform

continuity and Riemann integrability".
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Before we embark on the proof of Theorem 29, we shall show how a countable

subfamily of open sets can be extracted from an arbitrary open cover.  We shall be

using the density of the rational numbers.

Any open set U is a countable union of intervals of the form (p, q) with p < q and p

and q are rational numbers.  We deduce this as follows.  For any a in U, there exists a

δ > 0 such that (a −δ, a+δ) ⊆ U.  Then, by the density of rational numbers, there exists

rational numbers p and q such that a −δ < p < a and a < q < a+δ and so a ∈ ( p, q) ⊆
(a −δ, a+δ) ⊆ U.  Now the family G = {(p, q): p < q, p and q are rational numbers} is

a countable family of open sets.  This is because it is indexed by the ordered pairs    

(p, q) with p < q, p and q ∈ Q and so G is indexed by a subset of Q×Q which is

countable.  Hence, G  is countable.  Therefore any subset of G is countable.  Consider

the family H = {open interval (p, q):  p, q rational and ( p, q) ⊆ U}.  Then H is a

subset of G and so is countable.  Obviously ∪ {V: V∈ H} = U.  Thus, any open set is a

countable union of members from G, i.e., a countable union of open intervals of the

form (p, q) with p < q and p and q are rational numbers.

Theorem 30.  Suppose  A is a subset of R and C is any open cover of A by open

subsets of R.  Then C has a countable subcover.

Proof.  Consider the family F ={ B ∈ G: B ⊆ V, for some V ∈ C}.   Then F is a cover

for A.  This is deduced as follows.  Take any x ∈ A, then since C is an open cover of A

, there exists a member V in  C such that x ∈ V .  Then since V is open, V is a union of

members from G.  Hence, there exists B in G such that x∈ B ⊆ V.  Hence, B ∈ F.

Thus,  A ⊆ ∪ {B: B∈ F} and so F is an open cover of A.  F is countable since F is a

subset of G and so F is a countable open cover of A.  We now use this cover to extract

a countable subcover of C .   Now for each B in F choose a member VB  in C such that

B ⊆ VB .  Let now H = {VB : B ∈ F}.  Then obviously H is a subfamily of C .  H is

countable because it is indexed by F and F is countable.  Note that ∪ {B: B∈ F} ⊆
∪{VB : B ∈ F} = ∪ {U: U ∈ H}.  Hence, A ⊆ ∪ {U: U ∈ H} and so H is a cover for

A.  Therefore, H is a countable subcover of C .

Remark.  

The proof given above can be adapted to a proof that for a C2 topological space, every

open cover has a countable subcover (Lindeöf Theorem).  A C2 topological space is a

topological space having a countable base for its topology.  For the real numbers, R,

the set G defined above is a countable base for the usual metric topology on R.  The

density of the rational numbers plays an important part in the proof of Theorem 30.

Proof of Theorem 29. 

Let  f : [a, b]→ R  be a continuous function.   The most important fact here is that the

interval [a, b] is countably compact.  Take any ε > 0.  Then for each x in [a, b], there

exists δx > 0 such that for all y in [a, b],

                                       |y − x| < δx  ⇒ | f (y) − f (x) | < ε/2.  --------------------------  (1)

Then the family F = {(x − δx/2, x + δx/2  ) : x ∈ [a, b]} is an open cover for [a, b].   By

Theorem 30,  F  has a countable subcover.  Then since [a, b] is countably compact,

the countable subcover has a finite subcover, i.e., it has n members for some positive
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integer n for a subcover.  Let the subcover be 

, where we denote the open interval E = {I(x1, �x1 /2), I(x2, �x2 /2),¢, I(xn, �xn /2)}
 for 1 ≤ j ≤ n.  Let .(x j − �xj

/2, x j + �xj
/2) by I(x j, �xj

/2) � = min{�x1 /2, �x2 /2,¢, �xn /2}
Now take x, y in [a, b] such that |x − y| < δ.  Since E covers [a, b],  x ∈  forI(xk, �xk

/2)
some k such that 1 ≤ k ≤ n.    Therefore, by (1) we have

                                                           -------------------------------- (2)| f (x) − f (xk)| < �/2
Now .  Therefore, by (1),|y − xk| [ |y − x| + |x − xk| < � + �xk

/2 [ �xk
/2 + �xk

/2 = �xk

                                                        .     ------------------------------ (3)| f (y) − f (xk)| < �/2
Hence, if |x − y| < δ,   by (2)| f (x) − f (y)| [ | f (x) − f (xk)| + | f (xk) − f (y)| < �/2 + �/2 = �
and (3).  This means  f  is uniformly continuous.

Remark.

1. Note that the proof of Theorem 29 is easily adapted almost word for word to a

proof of the general result:  Suppose  f : D → R  is a continuous function and D is

a sequentially compact or countably compact or compact subset of R.  Then  f  is

uniformly continuous.

2. One can use the sequential compactness of [a, b] to prove Theorem 29.  One

proceeds by contradiction.  Suppose  f  is not uniformly continuous.  Then there

exists a ε > 0 such that for each positive integer n, there exist xn , yn in  [a, b] such

that |xn − yn| < 1/n but | f (xn) − f ( yn)| ≥ ε.   Then since [a, b] is sequentially

compact, (xn) has a convergent subsequence   converging to a point x in [a, b].(xnk
)

Then since |xn − yn| < 1/n, we see that   and so,   converges to| ynk
− xnk

| < 1/nk (ynk
)

the same limit x.  Since f  is continuous at x, both  and   converge( f (xnk
)) ( f (ynk

))
to f (x) and so .  But  for all positive integerf (xnk

) − f (ynk
) d 0 | f (xnk

) − f (ynk
)| m �

k and so  cannot converge to 0 and we have arrived at a( f (xnk
) − f (ynk

))
contradiction.

We have used sequences to investigate if a function is continuous.   We have the

methods of sequences to decide if a sequence is convergent.  This is particularly

useful to test continuity by using various sequences to see if the corresponding image

sequences under the function converge.  It affords some way to look for a non

convergent image sequence if the function is not continuous.  The following is a

similar criterion for uniform continuity using sequences.

Proposition 31.  Suppose  f : D → R is a function.  The following two statements are

equivalent.

(1)  f  is uniformly continuous.

(2)  For any two sequences (xn) and ( yn) in [a, b], 

|xn − yn| → 0 ⇒ | f (xn) − f (yn) | → 0.

Proof.  (1) ⇒ (2) is easy just use Definition 28 (definition of uniform continuity) as in

the proof of  (A) ⇒ (B) of Theorem 12.  

(2) ⇒ (1).  We prove this by contradiction. Suppose on the contrary  f  is not

uniformly continuous.  That means there exists a ε > 0 such that for each positive

integer n, there exist xn , yn in  [a, b] such that |xn − yn| < 1/n but | f (xn) − f ( yn)| ≥ ε.   

Plainly  |xn − yn| →0 but | f (xn) − f (yn) | \ 0.  This contradicts the assumption (2) that |

f (xn) − f (yn) | →0. Hence, f  must be uniformly continuous.
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Example. 

1.  The following example is well known.  The function f : (0, 1) →R defined by  f (x)

= 1/x, is not uniformly continuous.  Let xn = 1/(n+1) and yn = 1/(n+2).   Then plainly

|xn − yn| →0.  But  | f (xn) − f (yn)| = |(n+1) − (n+2)| = 1 and cannot converge to 0.

Therefore, f is not uniformly continuous by Proposition 31.  This is an example of a

non uniformly continuous function defined on a bounded domain, which is not closed.

2.  The function f : R →R, defined by  f (x) = x2 , is not uniformly continuous.

Let xn = n  and yn = n + 1/n  for each positive integer n.   Then |xn − yn| = 1/n →0.  But |

f (xn) − f (yn)| = | n2  − (n2 + 2 + 1/n2) | = 2 + 1/n2 →2 ≠ 0.  Thus,  f  is not uniformly

continuous.

3.  Plainly  f : R →R, defined by  f (x) = 3x, is uniformly continuous.

3.6 Limits.

In Chapter 2 we have discussed limit points of a subset S of R.  The limit points may

be or may not be in S.  However, by Proposition 31 of Chapter 2, if a is a limit point

of S, then there exists a sequence (xn) in S − {a} such that  xn → a.  So if  f  is a

function defined on S, then we have the sequence ( f (xn)).  Thus, this allows us to talk

about the limit of a function f  at a point not in the domain but is a limit point of the

domain S.

Definition 32.  Suppose   f : D → R is a function.  Let a be a limit point of  D.   If

there exists a number L such that for any sequence (xn) in D−{a}, with  xn → a, we

have f (xn) → L, then we say the limit of  f  as x tends to a exists and equals L.   We

write   Equivalently,  if given any ε > 0, there exists δ > 0
xda
lim f (x) = L.

xda
lim f (x) = L.

such that

for all x in D,  0 < |x − a| < δ ⇒ | f (x) − L| < ε.

Remark. 

1. It is an easy exercise to prove that if the limit exists, then it must be unique.

2  An examination of the definition of limit and the definition of continuity at a leads

us to the following: Suppose a is a limit point of  D, it  is clear that  f  is continuous at

a if and only if .   
xda
lim f (x) = f (a)

The following properties of limits are consequences of the properties of sequences.

Theorem 33.  Suppose   f : D → R  and  g : D → R  are two functions and a  is a  

limit point of  D.  Suppose that  
xda
lim f (x) and

xda
lim g(x) exist. Then

(1)   , 
xda
lim ( f (x) ! g(x)) =

xda
lim f (x) !

xda
lim g(x)

(2)    and 
xda
lim ( f (x) $ g(x)) = (

xda
lim f (x)) $ (

xda
lim g(x))

(3)  if further then there exists δ > 0 such that g(x) ≠ 0 for all x in 
xda
lim g(x) ! 0,

(D−{a})∩(a−δ, a+δ) and  
xda
lim

f (x)
g(x) = xda

lim f (x)

xda
lim g(x) .

Chapter 3 Continuous Functions

17
Ng Tze Beng 2006



Proof.  This follows from the convergence properties of sequences.   For part 3, we

need to have the quotient f / g defined in a small punctured neighbourhood

(D−{a})∩(a−δ,a+δ), hence the requirement that g(x) ≠ 0 there.  The proof is left as an

easy exercise.

Hence, we can compute limit of a function as we would compute the limit of a

sequence.

Limit and Composition

The next result that is often used is the property of limit with respect to composition.

Theorem 34.  Suppose   f : D → R  and  g : V → R  are two functions such that            

f (D -{a}) ⊆ V.  Thus, the composite g) f :D − {a} → R  is defined.  Suppose a is a

limit point of  D and  b is a limit point of V.

(A)  Suppose   and .  Suppose that for x ∈ D and  x ≠ a ,   f
xda
lim f (x) = b

ydb
lim g(y) = c

(x) ≠ b.  Then .
xda
lim g ) f (x) = c

(B)  Suppose   and .  If g is continuous at b,  i.e., g(b) = c,       
xda
lim f (x) = b

ydb
lim g(y) = c

then  .
xda
lim g ) f (x) = c

Proof.   Let  ε > 0 be given.  Then since , there exists δ1 > 0 such that 
ydb
lim g(y) = c

                             for all  y in V, 0 < | y − b| < δ1 ⇒ | g(y) − c| < ε.   -----------------  (1)  

Since ,  there exists δ > 0  such that 
xda
lim f (x) =b

                             for all  x in D , 0 < | x − a| < δ ⇒ | f (x) − b| < δ1.  ----------------  (2)   

(A) Suppose f (x) ≠ b for x ≠ a.  Then by (2) for all  x in D ,

                   0 < | x − a| < δ ⇒ 0 < | f (x) − b| < δ1 ⇒ | g( f (x)) − c| < ε by (1).

Hence, .
xda
lim g ) f (x) = c

(B)  Suppose g is continuous at b,  i.e., g(b) = c, then we have in place of (1), that

there exists δ1 > 0 such that 

                              for all  y in V ,  | y − b| < δ1 ⇒ | g(y) − g(b)| < ε.    ---------------  (3)   

   

Therefore, by (2) for all  x in D,  

                0 < | x − a| < δ ⇒  | f (x) − b| < δ1 ⇒ | g( f (x)) − g(b)| < ε by (3).

Hence,  .
xda
lim g ) f (x) = g(b) = c

Remark

1. We can define left and right limits for functions defined on subset of R in a

similar way.  Of course we would require a to be a limit point of (a,  ∞)∩D for

right limit and a limit point of (−∞, a)∩D for left limit.  One often used criterion is

that limit exists if both left and right limits exist and are the same.  It offers some

technical help in computing limits. 

2. The notion of limit is important for differentiation as derivative is a limit of a

function.  To investigate further the behaviour of a function near a limit point,

other refined forms of limit, such as    and the one
xda

lim sup f (x) and
xda

lim inf f (x)

sided versions of these two limits are used.  When applied to the difference

quotient of a function at a point, they lead to the four Dini derivatives and to the
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Denjoy-Saks-Young Theorem on a real valued function defined on [a, b], which

gives possibilities for the values of Dini derivatives in the extended real numbers.

We can use these derivatives to investigate the behaviour of function, which may

not be differentiable everywhere.  This belongs to advanced area of analysis.

Definition 35.

Suppose a is a limit point of (a,  ∞)∩D and  f : D → R is a function.  Then the limit of

 the function  f  |(a,  ∞)∩D : (a,  ∞)∩D→ R is called the right limit of  f  at a.  It is denoted

by    Similarly suppose a is a limit point of (−∞, a)∩D.   Then the limit of the
xda+
lim f (x).

function   f |(−∞, a)∩D : (−∞, a)∩D→ R is called the left limit of  f  at a.   We denote this

left limit by 
xda−lim f (x).

Plainly, if a is a limit point of (a,  ∞)∩D, then a is a limit point of D.   Likewise a

limit point of (−∞, a)∩D is also a limit point of  D.  

Theorem 36.  Suppose a is a limit point of (a,  ∞)∩D and of (−∞, a)∩D.  Suppose      

f  :D→ R is a function defined on D.  Then   exists if and only if both the left
xda
lim f (x)

and right limits of  f  at a exist and are the same.

Proof.   Suppose  exists and equals L.   This means for any sequence (xn) in D
xda
lim f (x)

− {a} with xn →a,   f (xn) → L.  Therefore, for any sequence (xn) in (a,  ∞)∩D ⊆ D −
{a} with xn →a we have that f (xn) → L .  Hence  .   Similarly, it follows

xda+
lim f (x) = L

that  .
xda−lim f (x) = L

Conversely suppose .  Take any sequence (xn) in D − {a}.
xda+
lim f (x) =

xda−lim f (x) = L

Consider the subsets S = {n : xn > a }  and T = {n:  xn < a}.  If  S  is finite, then T is

infinite.  Let M = max S.   Note that the limit of ( f (xn))  is the same as the limit of       

( f (xn+M)) and that for all counting number n,  xn+M < a.  Since  ,                  
xda−lim f (x) = L

f (xn+M) → L.  Therefore, f (xn) → L .

Similarly, if  T is finite, then S must be infinite and we can show in the same way that

f (xn) → L .   Suppose now  both S and T are infinite.  Let  S = { s1 , s2 ,  … }, where  

s1 < s2 <  … and let T = { t1 , t2 ,  … }, where  t1 < t2 <  … . Since 

 ,   and  .  This means given ε > 0, there
xda+
lim f (x) =

xda−lim f (x) = L f (x tk
) d L f (xsk

) d L

exists a positive integer N1 such that  k ≥ N1 ⇒   and there exists a| f (x tk
) − L| < �

positive integer N2 such that  k ≥ N2 ⇒ .  Let .  Then| f (xsk
) − L| < � N = max{tN1 , sN2 }

n ≥ N ⇒   .   Now n is either equal to tk  or sk for some k.  If  n isn m tN1 and n m sN2

equal to tk , then  and consequently k ≥ N1 and so tk = n m tN1

 .  If n is equal to sk , then  and consequently    | f (xn ) − L| = | f (x tk
) − L| < � sk = n m sN2

k ≥ N2  and we have .   Hence, in either case we have | f (xn ) − L| = | f (xsk
) − L| < �

.   Therefore,  f (xn) → L. Thus  exists.| f (xn ) − L| < �
xda
lim f (x)

The next result is a useful tool in computing limits.
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Theorem 37 Squeeze Theorem.

Suppose a is a limit point of  D.   Suppose  f  ,  g and  h are functions defined on D

such that g(x) ≤ f (x) ≤ h(x) for any x in D − {a}.   Suppose the limits of g and h at a

exist and are the same, i.e.,  .   Then  exists and is equal
xda
lim g(x) =

xda
lim h(x) = L

xda
lim f (x)

to L.

Proof.  This follows immediately from the Squeeze Theorem for sequences.  For any

sequence (xn) in D − {a} with xn →a,  g(xn) → L  and h(xn) → L.  Therefore, by the

Squeeze Theorem for sequence (Theorem 13 Chapter 2), f (xn) → L.  This means 

 exists and is equal to L.
xda
lim f (x)

Recall what it means for a sequence (an ) of real numbers to converge to either + ∞ or

− ∞.  (see Definition 28 Chapter 2).  We have the corresponding notion of the limit of

a function tending to either + ∞ or − ∞.  We shall be concerned mainly with this kind

of behaviour either at a point or at + ∞ or − ∞.  The definitions can be easily adapted

from the definition of a limit of a function (see Definition 32).

Example 38

1.   Given that ,   .   Le t  for x ≠ 0 and    
xd0
lim

sin(x)
x = 1

xd0
lim

sin(sin(x))
sin(x) = 1 g(x) =

sin(x)
x

f (x) = sin (x).   Then  f (x) = sin(x) ≠ 0 for x ≠ 0 in the interval .  Thus by(− �
2

,
�
2

)

Theorem 34 (A),  .
xd0
lim

sin(sin(x))
sin(x) =

xd0
lim g( f (x)) = 1

2.    .   Let h(x) = sin-1 (x).  Then h(x) ≠ 0 for x ≠ 0.   Therefore, by
xd0
lim

x

sin−1(x)
= 1

Theorem 34 (A), , where g is as
xd0
lim g( h (x)) =

xd0
lim

sin(sin−1(x))
sin−1(x)

=
xd0
lim

x

sin−1(x)
= 1

defined in example 1 above.

3.   Given that ,   .   Let   and f (x) =
xd0
lim

ex − 1
x = 1

xd0
lim

x
ln(1 + x) = 1 g(x) = ex − 1

x

ln(1+x).  Note that f (x) ≠ 0 for x ≠ 0.   Therefore, by Theorem 34 (A) 

.
xd0
lim g( f (x)) =

xd0
lim

e ln(1+x) − 1
ln(1 + x) =

xd0
lim

x
ln(1 + x) = 1

4.   Given that ,   .   Let    and   
xd0
lim

cos(x) − 1
x = 0

xd0
lim sin

cos(x) − 1
x = 0 g(x) = sin(x)

 for x ≠ 0.  Since g is continuous at x = 0, Theorem 34 (B),  f (x) =
cos(x) − 1

x

.
xd0
lim sin

cos(x) − 1
x =

xd0
lim g( f (x)) = 0

5.   .
xd 0
lim x 2 cos( 1

x2 ) = 0

For  x ≠ 0,  . . Since , by the Squeeze−x2 [ x 2 cos( 1

x2 ) [ x2

xd 0
lim x 2 =

xd 0
lim −x 2 = 0

Theorem (Theorem 37), . .
xd 0
lim x 2 cos( 1

x2 ) = 0

6.  In Theorem 34 (A), if g is not continuous at b, then it is necessary that there is a

small interval I = (a − δ, a + δ ) such that for x ∈ D∩I and  x ≠ a ,  f (x) ≠ b.
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     For example let  and  .   Then  g(x) =
 

 
 

sin(x)
x , if x ! 0

0, if x = 0
f (x) =

 

 
 

x sin( 1
x ), if x ! 0

0, if x = 0

 by the Squeeze Theorem (Theorem 37)  and .
xd0
lim f (x) = 0

yd0
lim g(y) =

yd0
lim

sin(x)
x = 1

But .  Actually  does not exist.   We deduce this as
xd0
lim g( f (x)) ! 1

xd0
lim g( f (x))

follows.  For each integer n ≥ 1, let .  Then for all integer n ≥ 1, xn ≠ 0.   xn = 1
n�

The sequence ( xn ) converges to 0.  But for each integer n ≥ 1,   g( f (xn)) = g(0) = 0

and so g ( f (xn)) → 0 as n → ∞.  Take the sequence ( yn ) where  foryn = 1
2n� + �

2

each integer n ≥ 1.  Then yn ≠ 0 for each integer n ≥ 1 and yn → 0 as n → ∞.   Then  

  as n → ∞.  Thus we have two sequences ( xn ) andg( f (yn)) = g(yn) =
sin(yn)

yn
d 1

( yn ) in R − 0} both converging to 0 but their images ( g ( f (xn))) and (g ( f (yn)))

converge to distinct values.  Therefore, by Definition 32,  does not
xd0
lim g( f (x))

exist.

3.7 Limit At Infinity and Infinity As Limit

Definition 39.  

Let D be a subset of R.  Suppose   f : D → R is a function.  Let a be a limit point of  

D.   

If for any sequence (xn) in D−{a}, with  xn → a, we have f (xn) → + ∞, then we say the

limit of  f  as x tends to a  is + ∞.   We write    It is important to note
xda
lim f (x) = +∞.

that   implies that the limit at a does not exist in the ordinary sense (in
xda
lim f (x) = +∞

the sense of Definition 32 Chapter 3) as +∞ is not a real number.

Equivalently,   if given any K > 0, there exists δ > 0 such that 
xda
lim f (x) = +∞

                                  for all x in D,  0 < |x − a| < δ ⇒  f (x)  > K.

If for any sequence (xn) in D−{a}, with  xn → a, we have f (xn) → − ∞, then we say the

limit of  f  as x tends to a  is − ∞.   We write    Note again that  
xda
lim f (x) = −∞.

 implies that the limit at a does not exist in the ordinary sense (in the
xda
lim f (x) = −∞
sense of Definition 32 Chapter 3) as  −∞ is not a real number.

Equivalently,   if given any K < 0, there exists δ > 0 such that 
xda
lim f (x) = −∞

                                 for all x in D,  0 < |x − a| < δ ⇒  f (x)  <  K.

Remark.

Although it may be convenient to work with functions into the extended real numbers

which include +∞ and − ∞, the properties we seek concern largely with real numbers

and it is best to stick to just the real numbers.  Thus the formalism   or 
xda
lim f (x) = +∞

 is just a shorthand for the definition.
xda
lim f (x) = −∞

We can make similar definition for the left and right derivative.
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Definition 40.

Suppose a is a limit point of (a,  ∞)∩D and  f : D → R is a function.  Then the limit of

 the function  f  |(a,  ∞)∩D : (a,  ∞)∩D→ R is called the right limit of  f  at a. 

It is denoted by    We write  if  .  
xda+
lim f (x).

xda+
lim f (x) = +∞

xda
lim f |(a,∞)3D(x) = +∞

Equivalently,   if given any K > 0, there exists δ > 0 such that 
xda+
lim f (x) = +∞

                                       for all x in D,  0 < x − a < δ ⇒  f (x)  > K.

We write  if  .  
xda+
lim f (x) = −∞

xda
lim f |(a,∞)3D(x) = −∞

Equivalently,   if given any K < 0, there exists δ > 0 such that 
xda+
lim f (x) = −∞

                                        for all x in D,  0 < x − a < δ ⇒  f (x) < K.

Similarly suppose a is a limit point of (−∞, a)∩D.   Then the limit of the function        

f |(−∞, a)∩D : (−∞, a)∩D→ R is called the left limit of  f  at a.   We denote this left limit

by   We write  if  .  
xda−lim f (x).

xda−lim f (x) = +∞
xda
lim f |(−∞,a)3D(x) = +∞

Equivalently,   if given any K > 0, there exists δ > 0 such that 
xda−lim f (x) = +∞

                                       for all x in D,  0 < a − x < δ ⇒  f (x)  > K.

We write  if  .  
xda−lim f (x) = −∞

xda
lim f |(−∞,a)3D(x) = −∞

Equivalently,   if given any K < 0, there exists δ > 0 such that 
xda−lim f (x) = −∞

                                       for all x in D,  0 < a − x < δ ⇒  f (x) < K.

Definition 41.  

Let D be a subset of R and  f : D → R is a function. 

Suppose D is not bounded above.  Suppose L is a real number.

If for any sequence (xn) in D, with  xn → + ∞,  we have that  f (xn) → L then we say the

limit of  f  as x tends to + ∞ is L.  We write    
xd+∞
lim f (x) = L.

Equivalently,   if given any ε > 0, there exists a real number  Κ > 0 such
xd+∞
lim f (x) = L

that 

                                       for all x in D,  x > K ⇒ | f (x) − L | <  ε.

If for any sequence (xn) in D, with  xn → + ∞,  we have that  f (xn) → + ∞ then we say

the limit of  f  as x tends to + ∞ is +∞.  We write .
xd+∞
lim f (x) = +∞

Equivalently,   if given any J > 0, there exists a real number  Κ > 0 such
xd+∞
lim f (x) = +∞

that 

                                           for all x in D,  x > K ⇒  f (x) > J .

Similarly, if for any sequence (xn) in D, with  xn → + ∞,  we have that  f (xn) → − ∞
then we say the limit of  f  as x tends to + ∞ is −∞.  We write .

xd+∞
lim f (x) = −∞

Equivalently,   if given any J < 0, there exists a real number  Κ > 0 such
xd+∞
lim f (x) = −∞

that 

                                           for all x in D,  x > K ⇒  f (x) < J .
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Definition 42.  

Let D be a subset of R and  f : D → R is a function. 

Suppose D is not bounded below.  Suppose L is a real number.

If for any sequence (xn) in D, with  xn → − ∞,  we have that  f (xn) → L then we say the

limit of  f  as x tends to − ∞ is L.  We write    
xd −∞
lim f (x) = L.

Equivalently,   if given any ε > 0, there exists a real number  Κ < 0 such
xd −∞
lim f (x) = L

that 

                                      for all x in D,  x < K ⇒ | f (x) − L | <  ε.

If for any sequence (xn) in D, with  xn → − ∞,  we have that  f (xn) → + ∞ then we say

the limit of  f  as x tends to − ∞ is +∞.  We write .
xd −∞
lim f (x) = +∞

Equivalently,   if given any J > 0, there exists a real number  Κ < 0 such
xd −∞
lim f (x) = +∞

that 

                                          for all x in D,  x < K ⇒  f (x) > J .

Similarly, if for any sequence (xn) in D, with  xn → − ∞,  we have that  f (xn) → − ∞
then we say the limit of  f  as x tends to − ∞ is −∞.  We write .

xd −∞
lim f (x) = −∞

Equivalently,   if given any J < 0, there exists a real number  Κ < 0 such
xd −∞
lim f (x) = −∞

that 

                                          for all x in D,  x < K ⇒  f (x) < J .

Remark.

Although it may be convenient to work with functions into the extended real numbers

which include +∞ and − ∞, the properties we seek concern largely with real numbers

and it is best to stick to just the real numbers.  Thus the formalism   or  
xda
lim f (x) = +∞

, where a may be replaced by a+ , a− , +∞ or − ∞, is just a shorthand for
xda
lim f (x) = −∞
the respective definition.  

The next two theorems are the analogues of Theorem 33.

Theorem 43.  Suppose   f : D → R  and  g : D → R  are two functions and D is not

bounded above.  Suppose   both exist (as finite number).   Then
xd+∞lim f (x) and

xd+∞lim g(x)
(1)   , 

xd+∞
lim ( f (x) ! g(x)) =

xd+∞
lim f (x) !

xd+∞
lim g(x)

(2)    and 
xd+∞
lim ( f (x) $ g(x)) = (

xd+∞
lim f (x)) $ (

xd+∞
lim g(x))

(3)  if further then  
xd+∞lim g(x) ! 0,

xd+∞
lim

f (x)
g(x) = xd+∞

lim f (x)

xd+∞
lim g(x) .

Proof.  This follows from the convergence properties of sequences.  

Similar results for limits of functions as x tends to − ∞ holds.

Theorem 44.  Suppose   f : D → R  and  g : D → R  are two functions and D is not

bounded below.  Suppose   both exist (as finite number).  Then
xd −∞lim f (x) and

xd −∞lim g(x)
(1)   , 

xd −∞
lim ( f (x) ! g(x)) =

xd −∞
lim f (x) !

xd −∞
lim g(x)

(2)    and 
xd −∞
lim ( f (x) $ g(x)) = (

xd −∞
lim f (x)) $ (

xd −∞
lim g(x))

(3)  if further then  
xd −∞lim g(x) ! 0,

xd −∞
lim

f (x)
g(x) = xd −∞

lim f (x)

xd −∞
lim g(x) .
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Similarly we have the Squeeze Theorem too.

Theorem 45 Squeeze Theorem.

Suppose  f , g and  h are functions defined on D. 

(1) Suppose D is not bounded above and there is a real number K such that 

g(x) ≤ f (x) ≤ h(x) for all x > K in D.

Suppose  .  Then  exists and is equal to L.
xd+∞lim g(x) =

xd+∞lim h(x) = L
xd+∞
lim f (x)

(2) Suppose D is not bounded below and there is a real number K such that

g(x) ≤ f (x) ≤ h(x) for all x < K in D. 

Suppose  .   Then  exists and is equal to L.
xd −∞lim g(x) =

xd −∞lim h(x) = L
xd −∞
lim f (x)

Proof. 

(1)  This follows immediately from the Squeeze Theorem for sequences.  For any

sequence (xn) in D with xn →+∞,  g(xn) → L  and h(xn) → L.   Since  xn →+∞ ,  there

exists an integer N such that for all n ≥ N, xn > K.   Consider the subsequence (xn+N ),  

Then by supposition g(xn+N) ≤ f (xn+N) ≤ h(xn+N) for all n ≥ 1.  Therefore, by the

Squeeze Theorem for sequences (Theorem 13 Chapter 2), f (xn+N) → L.   It follows

that  f (xn) → L.  This means  exists and is equal to L.
xd+∞lim f (x)

The proof of part (2) is similar.

The next result is a comparison theorem.

Theorem 46.  Suppose  f  and  g  are functions defined on D. 

(1) Suppose D is not bounded above and there is a real number K such that

g(x) ≤ f (x) for all x > K in D.

If   , then .  If   , then  
xd+∞lim g(x) = +∞

xd+∞
lim f (x) = +∞

xd+∞
lim f (x) = −∞

xd+∞lim g(x) = −∞

(2) Suppose D is not bounded below and there is a real number K such that 

g(x) ≤ f (x) for all x < K in D.

If  , then .  If   , then 
xd −∞lim g(x) = +∞

xd −∞
lim f (x) = +∞

xd −∞
lim f (x) = −∞

xd −∞lim g(x) = −∞

Proof.  We shall prove only part (1).  The proof of part (2) is similar.

If  , then for any sequence (xn) in D with xn →+∞,  g(xn) → + ∞ .   
xd+∞lim g(x) = +∞

Therefore,  for any real number J > 0, there exists a positive integer L such that n  ≥ L

⇒ g(xn) > J .   Since xn →+∞ , there exists a positive integer N such that for all integer

n ≥ N , xn > K.  Let M = max{L, N}≥ N.  Therefore , by supposition, for all integer      

n ≥ M , g(xn) ≤ f (xn).   Hence n ≥ M ⇒ f (xn) ≥ g(xn) > J.  This means f (xn) → + ∞.

Therefore, by Definition 40 .
xd+∞
lim f (x) = +∞

If  , then for any sequence (xn) in D with xn →+∞,  f (xn) → − ∞ .   
xd+∞lim f(x) = −∞

Therefore,  for any real number J < 0, there exists a positive integer L such that n  ≥ L

⇒ f (xn) < J .   Since xn →+∞ , there exists a positive integer N such that for all integer

n ≥ N , xn > K.  Let M = max{L, N}≥ N.  Therefore , by supposition, for all integer n ≥
M , g(xn) ≤ f (xn).   Hence n ≥ M ⇒ g(xn) ≤  f (xn) < J.  This means g(xn) → − ∞.

Therefore, by Definition 40,   .
xd+∞
lim g(x) = −∞

We next present the following useful results.  
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Theorem 47.  Suppose   f : D → R  is a function a  is a limit point of  D.   

(1)  If  then  
xd a
lim f (x) = +∞ or − ∞,

xd a
lim

1
f (x) = 0.

(2)  If   and  for some δ > 0, f (x) > 0 for all x in D∩ (a-δ, a+δ) except
xd a
lim f (x) = 0

possibly at a, then  
xd a
lim

1
f (x) = +∞.

(3)  If   and  for some δ > 0, f (x) < 0 on D∩ (a-δ, a+δ) except possibly at
xd a
lim f (x) = 0

a, then   
xd a
lim

1
f (x) = −∞.

The statements are also true with x → a  replaced by   x → a+ or x → a− .

Statement (1) is also true with  x → a  replaced by x → ± ∞.

Statement (2) is also true with x → a  replaced by   x → a+ and the condition be

replaced by there exists δ > 0, f (x) > 0 for all x in D∩ (a, a+δ) or with x → a  replaced

by x → a−and the condition be replaced by there exists δ > 0, f (x) > 0 for all x in D∩
(a−δ, a) .

Statement (2) is also true with x → a  replaced by   x → a+ and the condition be

replaced by there exists δ > 0, f (x) < 0 for all x in D∩ (a, a+δ) or with x → a  replaced

by x → a−and the condition be replaced by there exists δ > 0, f (x) < 0 for all x in D∩
(a−δ, a) .

Proof.  

(1).   Suppose .    Given any ε > 0, by the Archimedean property of R,
xd a
lim f (x) = +∞

there exists a positive integer N such that .  Since , there0 < 1
N < �

xd a
lim f (x) = +∞

exists δ > 0 such that for all x in D,

0 <  |x −a | < δ ⇒ f (x) > N.

Therefore, for all x in D,

.0 < |x − a| < �u 1
f (x) < 1

N
< �

Hence, 
xd a
lim

1
f (x) = 0.

(2).  Suppose  .  By assumption f (x) > 0 for all x in D∩ (a−δ, a+δ) except
xd a
lim f (x) = 0

possibly at a.   Note that a is a limit point of D∩ (a-δ, a+δ).  Thus  is defined on   1
f (x)

C =D∩ (a−δ, a+δ) − {a}.

Take any real number K > 0.  Since , there exists δ1 > 0 such that for all x
xd a
lim f (x) = 0

in D,

.0 < |x − a| < �1 u | f (x)| < 1
K

Now let η = min{δ, δ1 }.  Then .   0 < |x − a| < �u 0 < |x − a| < � and 0 < |x − a| < �1

Therefore, for all x in D,

                     0 < |x − a| < �u 0 < | f (x)| = f (x) < 1
K

                                           .u
1

f (x) > K

This means 
xd a
lim

1
f (x) = +∞.

(3) The proof is similar to part (2).  By assumption f (x) < 0 for all x in D∩ (a−δ, a+δ)

except possibly at a.  Take any real number K < 0.  Since , there exists    
xd a
lim f (x) = 0

δ1 > 0 such that for all x in D,
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.0 < |x − a| < �1 u | f (x)| < − 1
K

Let η = min{δ, δ1 }.  Then .0 < |x − a| < �u 0 < |x − a| < � and 0 < |x − a| < �1

Therefore, for all x in D,

                       0 < |x − a| < �u 0 < | f (x)| = − f (x) < − 1
K

                                             .u
1

f (x) < K

This means
xd a
lim

1
f (x) = −∞.

The statements with x → a  replaced by   x → a+ or x → a− may be proved similarly so

is the statement (3) with x → a  may be replaced by x → ± ∞.  The proof is left as an

exercise.

We have similar results for limits at infinity in the following theorem..

Theorem 48.  Suppose   f : D → R  is a function.   

(1) Suppose D is not bounded above and  .  
xd+∞lim f (x) = 0

If for some real number K > 0,  f (x) > 0 for all x in D and x > Κ, then 
xd+∞
lim

1
f (x) = +∞.

If for some real number K > 0,  f (x) < 0 for all x in D and x > Κ, then
xd+∞
lim

1
f (x) = −∞.

(2) Suppose D is not bounded below and  .  
xd−∞lim f (x) = 0

If for some real number K < 0, f (x) > 0 for all x in D and x > Κ, then
xd −∞
lim

1
f (x) = +∞.

If for some real number K < 0, f (x) < 0 for all x in D and x > Κ, then
xd −∞
lim

1
f (x) = −∞.

Proof.  

We shall prove only part (1).  The proof of part (2) is similar.

Suppose   and  f (x) > 0 for all x in D and x > Κ.  Thus   is defined
xd+∞lim f (x) = 0 1

f (x)
on  C =D∩ (K, ∞).

Take any real number J > 0.  Since , there exists a real number  L > 0
xd+∞lim f (x) = 0

such that for all x in D,

.x > Lu | f (x)| < 1
J

Now let M = max{Κ, L}.  Then  .   Therefore, for all x in D,x > Mu x > L and x > K

                                     x > Mu 0 < | f (x)| = f (x) < 1
J

                                               .u
1

f (x) > J

This means
xd+∞
lim

1
f (x) = +∞.

Suppose  f (x) < 0 for all x in D and x > Κ.  Thus   is defined on  C =D∩ (K, ∞).
1

f (x)
Take any real number J < 0.  Since , there exists a real number  L > 0

xd+∞lim f (x) = 0

such that for all x in D,

.x > Lu | f (x)| < − 1
J

Now let M = max{Κ, L}.  Then  .   Therefore, for all x in D,x > Mu x > L and x > K

                                    x > Mu 0 < | f (x)| = − f (x) < − 1
J

Chapter 3 Continuous Functions

26
Ng Tze Beng 2006



                                        .u
1

f (x) < J

This means
xd+∞
lim

1
f (x) = −∞.

Sums and Products

We next have the results for limits of sums and products involving infinity.

Theorem 49. 

Suppose   f : D → R  and  g : D → R  are two functions.   Suppose 
xd a
lim g(x) = c.

(1)  If and c is either finite or  + ∞, then   
xd a
lim f (x) = +∞

xda
lim [ f (x) + g(x)] = +∞ .

(2)  If  and c is either finite or  − ∞, then  
xd a
lim f (x) = −∞

xda
lim [ f (x) + g(x)] = −∞ .

Here  x → a  may be replaced by   x → a+ or x → a−  or  x → ± ∞.

Proof.  We shall prove part (1) only.

Suppose   If c is finite,  then taking , we have that there exists δ1  xd a
lim g(x) = c. � = 1 > 0

> 0 such that for all x in D,

                        0 < |x − a| < �1 u |g(x) − c| < 1

                                               .        -----------------------------   (1)u g(x) > c − 1

Take any real number K > 0.  Since ,  there exists δ2 > 0 such that for all
xd a
lim f (x) = +∞

x in D,

                               ------------------------- (2)0 < |x − a| < �2 u f (x) > K + c + 1.

Now let δδδδ = min {δ1 , δ2 }.   Then

                      0 < |x − a| < �u 0 < |x − a| < �1, �2

                                                    u f (x) + g(x) > K + c + 1 + c − 1 m K

by (1) and (2).

Hence       
xda
lim [ f (x) + g(x)] = +∞ .

Now suppose    Then there exists δ3  > 0 such that for all x in D,
xd a
lim g(x) = +∞.

                                                     --------------------------- (3)0 < |x − a| < �3 u g(x) > 1

Since ,  there exists δ4 > 0 such that for all x in D,
xd a
lim f (x) = +∞

                                               -------------------------- (4)0 < |x − a| < �4 u f (x) > K.

Let δδδδ = min {δ3 , δ4 }.

Then for all x in D, 0 < |x − a| < �u 0 < |x − a| < �3, �4

                                                     u f (x) + g(x) > K + 1 > K

by (1) and (2)..

Therefore, 
xda
lim [ f (x) + g(x)] = +∞ .

Part (2) is proved similarly.  The cases when x → a is replaced by x → a+ or x → a−  

or  x → ± ∞  is proved similarly.

 

                                        

Theorem 50.  Suppose  .
xda
lim f (x) = +∞ and

xda
lim g(x) = c ! 0

(1)  If  c > 0 or  c = + ∞,  then  .
xd a
lim f (x)g(x) = +∞

(2)  If  c < 0 or  c = − ∞,  then  .                                                           
xd a
lim f (x)g(x) = −∞

Here x → a  may be replaced by   x → a+ or x → a− or  x → ± ∞.
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Proof.

We shall prove part (2) only.  The proof of part (1) is similar.

Suppose   If c < 0,  then taking , we have that there exists          
xd a
lim g(x) = c. � = c

2
> 0

δ1  > 0 such that for all x in D,

                    0 < |x − a| < �1 u |g(x) − c| < c
2

                                                  -------------------   (1)u g(x) < c + c
2

= c − c
2

= c
2

< 0

Take any real number K < 0.   Then since ,  there exists δ2 > 0 such that
xd a
lim f (x) = +∞

for all x in D, 

                                     (>0) .   ------------------  (2)0 < |x − a| < �2 u f (x) >
2|K|

|c|
= 2

K
c

Let δδδδ = min {δ1 , δ2 }.

Then for all x in D, 0 < |x − a| < �u 0 < |x − a| < �1, �2

                                                      and        u f (x)g(x) < 2
K
c g(x) 2

K
c g(x) < K

                                                                                                                  by (1) and (2)

                                                     .u f (x)g(x) < K

Therefore, .        
xd a
lim f (x)g(x) = −∞

Suppose c = −  ∞, i.e.,     Then by definition, there exists δ1  > 0 such
xd a
lim g(x) = −∞.

that for all x in D,

                                       .                   -------------------   (3)0 < |x − a| < �1 u g(x) < −1

Take any real number K < 0.   Then since ,  there exists δ2 > 0 such that
xd a
lim f (x) = +∞

for all x in D, 

                                     (>0) .   --------------------------  (4)0 < |x − a| < �2 u f (x) > K

Let δδδδ = min {δ1 , δ2 }.

Then for all x in D, 0 < |x − a| < �u 0 < |x − a| < �1, �2

                                                     u f (x)g(x) < g(x) K < − K = K

by (3) and (4).  Hence .
xd a
lim f (x)g(x) = −∞

                                                                              

The cases when x → a  is replaced by  x → a+ or x → a− or  x → ± ∞ are proved

similarly.

Theorem 51.  Suppose .
xda
lim f (x) = −∞ and

xda
lim g(x) = c ! 0

(1)  If  c > 0 or  c = + ∞, then .
xd a
lim f (x)g(x) = −∞

(2)  If  c < 0 or  c = − ∞,  then .
xd a
lim f (x)g(x) = +∞

Here  x → a  may be replaced by   x → a+ or x → a− or  x → ± ∞.

The proof of Theorem 51 is similar to that of Theorem 50.

Examples 52.

(1)
xd0
lim

1
x

= +∞ ,
xd0+
lim

1
x = +∞ and

xd0−
lim

1
x = −∞

We can deduce that  by using the Definition 38.  Take any sequence (xn)
xd0
lim

1
x

= +∞

in R− {0} with xn →0.  Take any real number K > 0.  Since xn →0, there exists a
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positive integer Ν such that n ≥ N ⇒ 0 < | xn | < 1/K.   Therefore,  .n m Nu
1

|xn|
> K

This shows that .  Hence by Definition 38,  .   1
|xn|
d ∞

xd0
lim

1
x

= +∞

We may also use Theorem 46 (2) as follows.  Since  and |x| > 0 for all x ≠ 0,
xd0
lim |x| = 0

by Theorem 46 (2) .
xd0
lim

1
x

= +∞

We deduce similarly that .  Take any sequence (xn) in (0, ∞) with xn →0.
xd0+
lim

1
x = +∞

Then for any real number K > 0,  there exists a positive integer Ν such that 

n ≥ N ⇒ 0 < | xn |= xn < 1/K.

Therefore,   .  This means .  Hence by Definition 39, n m Nu
1
xn

> K
1
xn
d ∞

.  In almost exactly the same way, we shall show that .  Take
xd0+
lim

1
x = +∞

xd0−
lim

1
x = −∞

any sequence (xn) in (− ∞, 0) with xn →0.  Then for any real number K < 0,  there

exists a positive integer Ν such that n ≥ N ⇒ 0 < | xn |= −xn < −1/K.  Therefore,  

 .  This means .  Hence by Definition 39,  .n m Nu
1
xn

< K
1
xn
d −∞

xd0−
lim

1
x = −∞

We may use Theorem 46 (1) to deduce that  since  and in the
xd0+
lim

1
x = +∞

xd0+
lim x = 0

interval (0, ∞), x > 0.  Likewise Theorem 46 (3) applies to give .
xd0−
lim

1
x = −∞

(2)  .
xd 3
lim

1
x − 3

= +∞

      Since  and |x − 3| > 0 for x ≠ 3, by Theorem 46 (2) .
xd 3
lim |x − 3| = 0

xd 3
lim

1
x − 3

= +∞

(3)  .
xd7+
lim

1
x − 7

=+∞

 Since  and x − 7 > 0 for x in (7, ∞), by Theorem 46 (2), 
xd 7+
lim x − 7 = 0

  .
xd 7+
lim

1
x − 7

= +∞

(4)  .   This is immediate by Theorem 46 (1) since 
xd+∞
lim

1
x − 3

= 0
xd+∞
lim x − 3 = +∞.

(5)  
xd 1
lim

−2
(x − 1)2 = −∞

      By Theorem 46 (2)  ,  By Theorem 59 (2), 
xd 1
lim

1
(x − 1)2 = +∞

xd 1
lim

−2
(x − 1)2 = +∞

(6) .
xd7
lim [ 1

(x − 7)2 + 2 + 5x] = +∞

 by Theorem 46 (2) and  is finite.  Therefore, by
xd7
lim

1
(x − 7)2 = +∞

xd7
lim [2 + 5x] = 37

Theorem 48 (1) 
xd7
lim [ 1

(x − 7)2 + 2 + 5x] = +∞

(7)  .
xd7
lim

x − 9
(x − 7)2 = −∞

We can write .  Because  and  
xd7
lim

x − 9
(x − 7)2 =

xd7
lim

1
(x − 7)2 $ (x − 9)

xd7
lim

1
(x − 7)2 = +∞

, by Theorem 49 (2), .
xd7
lim (x − 9) = −2 < 0

xd7
lim

x − 9
(x − 7)2 = −∞

(8) .
xd∞
lim

1
x cos( 1

x2 ) = 0

For  x ≠ 0,  . .  Since , by the− 1
x [

1
x cos( 1

x2 ) [ 1
x xd∞

lim
1
x =

xd∞
lim − 1

x = 0

Squeeze Theorem (Theorem 45), . .
xd∞
lim

1
x cos( 1

x2 ) = 0

Composition
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We have extended the notion of limits to include formally ± ∞ .  We now describe

how this behaves with composition.  The next result is an analogue of Theorem 34.

Theorem 53.   

Suppose   f : D → R  and  g : V → R  are two functions such that  f (D -{a}) ⊆ V.

Thus, the composite g) f :D − {a} → R  is defined.  Suppose a is a limit point of  D

and  b is a limit point of V.  Let c be a finite real number or the symbol +∞ or − ∞.

(1)  Suppose   and .  Then  .
xda
lim f (x) = +∞

yd+∞lim g(y) = c
xda
lim g ) f (x) = c

(2)  Suppose   and .  Then  .
xda
lim f (x) = −∞

yd−∞lim g(y) = c
xda
lim g ) f (x) = c

(1) and (2) hold when x→ a is replaced by  x→ a+ or  x → a− .

(1) and (2) also holds when we require that f (D ) ⊆ V  and x→ a is replaced by  x→ +

∞ or  x → − ∞ .

Proof.   We shall prove part (1) only. The proof of part (2) is similar.

Suppose c is finite.  Since  , given any ε > 0, there exists a real number    
yd+∞lim g(y) = c

L > 0 such that for all y in V,

                                                    y > L ⇒ | g(y) − c| < ε .        ---------------------   (1)

Because , there exists a δ > 0 such that for all x in D,  
xda
lim f (x) = +∞

                                        0 < |x − a| < δ  ⇒ f (x) > L.       ----------------------------- (2)

Therefore, for all x in D, 

                                   0 < |x − a| < δ ⇒ f (x) > L ⇒ | g( f ( x)) − c| < ε         

by (2) and (1).

This means   .
xda
lim g ) f (x) = c

If  c is + ∞ , then because  , given any real number K > 0, there exists a
yd+∞lim g(y) = +∞

real number L > 0 such that for all y in V, 

                                                          y > L ⇒  g(y) > K .            ---------------------   (3)

It then follows from (2) and (3) that for all x in D, 

                                  0 < |x − a| < δ ⇒ f (x) > L ⇒  g( f ( x)) > Κ .

Hence .
xda
lim g ) f (x) =+∞

If c is − ∞ , we proceed in exactly the same manner.    implies that  
yd+∞lim g(y) = −∞

given any real number K < 0, there exists a real number L > 0 such that for all y in V,   

                                                      y > L ⇒  g(y) < K .                ---------------------   (4)

Therefore, it follows from (4) and (2) that for all x in D, 

                                   0 < |x − a| < δ ⇒ f (x) > L ⇒  g( f ( x)) < Κ .

Thus .
xda
lim g ) f (x) =−∞

The other cases when x→ a is replaced by  x→ a+ or  x → a− or x→ + ∞ or  x → − ∞
are proved similarly.

Remark.  Note that the proof is just a careful handling with Definition 39 and

Definition 41.

Theorem 54.   
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Suppose   f : D → R  and  g : V → R  are two functions such that  f (D ) ⊆ V.  Thus,

the composite g) f :D  → R  is defined.  Suppose b is a limit point of V.  Let c be a

finite real number or the symbol +∞ or − ∞.

(1)  Suppose   and .   If there exists a real number K > 0 such
xd+∞
lim f (x) = b

ydb
lim g(y) = c

that for all x in D and x > K,  f (x) ≠ b.  Then  .
xd+∞lim g ) f (x) = c

(2)  Suppose   and .   If there exists a real number K < 0 such
xd −∞
lim f (x) = b

yd b
lim g(y) = c

that for all x in D and x < K,  f (x) ≠ b.  Then  .
xd −∞lim g ) f (x) = c

(3)  If  c is finite,  ,  and g is continuous at b, then  
xd+∞
lim f (x) = b

ydb
lim g(y) = c

.
xd+∞lim g ) f (x) = c

(4)  If  c is finite,  ,  and g is continuous at b, then  
xd −∞
lim f (x) = b

ydb
lim g(y) = c

.
xd −∞lim g ) f (x) = c

Proof.  We shall prove parts (1) and (3) only.  The proof of parts (2) and (4) is similar.

(1)  Suppose c is a finite real number.  Then since , for any ε > 0, there
ydb
lim g(y) = c

exists δ > 0 such that for all y in V,

                                          0 < |y − b| < δ  ⇒ | g(y) − c| < ε .      -----------------------  (1)

Since  , there exists a real number L > 0 such that for all x in D,
xd+∞
lim f (x) = b

                                                  x > L ⇒ | f (x) − b| < δ .           

Now let M = max{K, L}.  Then by assumption for all x in D, x > M ⇒ x > Κ ⇒  f (x)

≠ b.  Hence we have that for all x in D,

                                              x > M ⇒ 0 < | f (x) − b| < δ .      -------------------------  (2) 

Therefore, combining (1) and (2) we obtain that for all x in D,

                                            x > M ⇒ 0 < |g( f (x)) − c| < ε .          

This means   .
xd+∞lim g ) f (x) = c

Now for the case c = +∞.   implies that given any real number J > 0,
ydb
lim g(y) = +∞

there exists δ > 0 such that for all y in V,

                                               0 < |y − b| < δ  ⇒  g(y) > J .        -----------------------  (3)

Therefore, it follows from (2) and (3) that for all x in D,

                                    x > M ⇒ 0 < | f (x) − b| < δ ⇒  g( f (x)) > J .

This means .  
xd+∞
lim g ) f (x) =+∞

The case when c = −∞ is similar.  We note that  implies that given any
ydb
lim g(y) = −∞

real number J < 0, there exists δ > 0 such that for all y in V,

                                                0 < |y − b| < δ  ⇒  g(y) < J .       -----------------------  (4)

It follows then by (2) and (4) that for all x in D,

                                  x > M ⇒ 0 < | f (x) − b| < δ ⇒  g( f (x)) < J .

This means .
xd+∞
lim g ) f (x) =−∞

(3).  If c is finite and g is continuous at b, for any ε > 0, there exists δ > 0 such that for

all y in V,

                                                |y − b| < δ  ⇒ | g(y) − c| < ε .      -----------------------  (5)

Since  , there exists a real number L > 0 such that for all x in D,
xd+∞
lim f (x) = b

                                                    x > L ⇒ | f (x) − b| < δ .       -------------------------  (6)

Chapter 3 Continuous Functions

31
Ng Tze Beng 2006



Thus combining (5) and (6) we get that for all x in D,

                                      x > L ⇒ | f (x) − b| < δ ⇒ | g( f (x)) − c| < ε .  

This means  .
xd+∞lim g ) f (x) = c

Example  55.      

1.    .  Let  and  for x ≠ 0.  Since 
xd+∞
lim x sin( 1

x ) =
xd+∞
lim

sin( 1
x )

1
x

= 1 f (x) = 1
x g(x) =

sin(x)
x

 and , by Theorem 54 (1),  
xd0
lim g(x) =

xd0
lim

sin(x)
x = 1

xd+∞
lim f (x) =

xd+∞
lim

1
x = 0

.
xd+∞
lim g( f (x)) =

xd+∞
lim

sin( 1
x )

1
x

= 1

2.    Given that ,   . 
xd0
lim

ex − 1
x = 1

xd+∞
lim x2(e

1

x2 − 1) = 1

Let   and .g(x) = ex − 1
x f (x) = 1

x2

Note that f (x) ≠ 0 for x ≠ 0.   Therefore, by Theorem 54 (1) 

.
xd+∞
lim g( f (x)) =

xd0
lim x2(e

1

x2 − 1) = 1

3.    Note that in Theorem 54 (1)  the condition that  f (x) ≠ b for large x, cannot be

removed. 

For instance, let for x ≠ 0 and g(0) = 0 and let f (x) = 0 the constantg(x) =
sin(x)

x

function.  Obviously,   and   But 
xd0
lim g(x) =

xd0
lim

sin(x)
x = 1

xd+∞lim f (x) = 0.

.
xd+∞lim g( f (x)) ! 1

Exercises 56.

1.  Suppose  f : [0,1] → R is defined by .   Determinef (x) =
 

 
 

x, x is rational

1 − x, x is irrational

the points of continuity of  f .

2.  If  f : D → R is continuous, prove that | f | : D → R is also continuous.

3.  Suppose g : R → R is continuous and that g(x) = x2  for all rational x.  Prove that

g(x) = x2 for all x in  R.    

4.  Use the Bolzano-Weierstrass Theorem to prove that if  f  is continuous on [a, b],

then  f  is bounded on [a, b].  (Hint:  Suppose  f  is unbounded.  Find a sequence     

( an ) in [a, b] such that  f (an)  > n , find a convergent subsequence and use  

Definition 2. )

5. For each of the following statements, determine whether it is true or false and

justify your answer.

(a)  If the function  f + g : R →R is continuous, then the function  f : R →R and     

g : R →R also are continuous.
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(b) If the function  f  2  : R →R is continuous, then so is the function f : R →R.

(c)  If the function  f + g : R →R and   g : R →R are continuous, then so is the

function f : R →R.

(d)  Every function  f : N →R is continuous , where N is the set of natural numbers.

6.  Suppose that the function  f :[0, 1] → R is continuous and that  f (x) ≥ 3 for             

0 ≤ x <1.   Show that f (1) ≥ 3.    

7.  Suppose that the function  f :[0, 1] → R is continuous,  f (0) > 0 ,  f (1) = 0. 

     Prove that there is a number  x0 in (0, 1] such that  f (x0) = 0 and  f (x) > 0 for all      

0 ≤ x < x0 .

8.   Prove that there is a solution of the equation

                                                .x179 + 163

1 + x2 + sin2(x)
= 119

    

9.   Suppose  p :R → R is a polynomial function of odd degree.  Prove that there is a

solution of the equation  p(x) = 0,  x in R. 

10.  Suppose that the function f : [a, b] → R is continuous.  For a positive integer k,

let  x1 , x2 , … , xk  be points in [a, b].  Prove that there is a point z in [a, b] such

that

                                       .f (z) =
f (x1) + f (x2) +£ + f (xk)

k

11.  Suppose that  f :[2,3] → R is continuous and that its image is a subset of the

rational numbers.  Prove that f  is a constant function.

12.  Show that there dose not exist a strictly increasing function f : Q → R such that     

f (Q) = R.   Here Q is   the set of rational numbers.

Uniform Continuity

13.   Let  f : [0, 1] → R be defined by  f (x) = √x.  

      (a)  Prove that  f  is continuous.

      (b)  Show that  f  is uniformly continuous.

      (c)  Show that  f  does not satisfy the Lipschitz condition.

            [  f  is said to satisfy a Lipschitz condition or is a Lipschitz function if there

exists a constant C such that  | f (x) − f (y) | ≤ C |x − y|.]

14.  Suppose that the function  f :(a, b) → R is uniformly continuous.  Prove that then

f :(a, b) → R is bounded.

15.  Prove that if  f : D → R and g : D → R are uniformly continuous , then so is  f +

g: D → R but it is not necessary that the product f g : D → R be uniformly

continuous. 

16. Show that the function  f : R →R defined by  f (x) = x 3 is not uniformly

continuous.  
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17.  Suppose that the function f : R →R  satisfies  f (x + y) = f (x) + f ( y) for all x and

y in R and that  f  is continuous at some point a in R.   Prove that.

(a)  f  is continuous everywhere and

(b) there is a constant C such that  f (x) = C x for all x in R.

18.  Prove that for any constant b,  x3 − 3x + b = 0 has at most one root in [−1, 1].

19.  Suppose that the function  f  : R →R and  g : R →R are  continuous,  f 2  = g 2  and

that f (x) ≠ 0 for all x in R.  Prove that either f (x) = g (x) for all x or else f (x) = −
g (x) for all x.   

20.  Let the function  f : [a, b]→ R  be continuous and injective and such that               

f (a) < f (b).   For any c in (a, b), prove that  f (a) <  f ( c) < f (b).     

21.  Assuming that temperature varies continuously along the equator of the earth,

prove that there are at any time antipodal points on the equator with the same

temperature.  [Hint:  Let  f  be a continuous function on [0, 2π] such that                

f (0) = f (2π).   Define g on [0,  π] by g(x) = f (x) − f (x+π). ]

Limits   

22.  Suppose f : R →R is a continuous function with  f (x) > 0 for all x in R.   Suppose

  and  .   Prove  that there is a point c in R such that  f (c)
xd+∞
lim f (x) = 0

xd−∞
lim f (x) = 0

≥ f (x) for all x in R.

   

23.  Suppose that the function f : R →  R is continuous and that  f (x) = 0 if x is

rational.  Prove that  f (x) = 0 for all x in R.  

24.   Evaluate the following limits.                                                                                   

a.   .       b.   .      c.   .                             
xd+∞
lim 3

8x2 + 7
27x2 − 1 xd−∞lim

x2 + 9

1 + 4x xd−6−
lim

3x
36 − x2

d.   .
xd4+
lim

x − 4

8x − x2 − 4

25.   Evaluate the following limits.

       a.  .    b.   .    c.   .        
xd+∞
lim

23x2 − 5x3 + 7
13x3 + 3 xd− ∞

lim
x3

4x2 − 2
− x2

4x + 3 xd−∞lim
9x2 − 2

3 − x
d.   .

xd+∞lim x2 + 25000 − x

26.   Evaluate the following limits.  

a.   .   b.  .   c.   .   d.   .     
xd0
lim

sin(7x)
sin(5x) xd0

lim
tan4(2x)

4x4 xd0
lim

1 − cos(8x)
sin(8x) xd0

lim
sin(sin(x2))

23x

e.   .
xd 0
lim x3 cos( 1

x7 )

27.   Let  g  be a function that satisfies  1− 4x2 ≤ g(x) ≤ cos(2x)  for all x  in the open

interval  .      Is g  continuous at x = 0?  Justify your answer. (− �
2

,
�
2

)
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28.   Find a non-zero value for the constant k so that the function  h  defined by             

               will be continuous at  x = 0.h(x) =
 

 
 
 

 

tan(kx)
x , x < 0

7x + 5k2 , x m 0

29.    a.   Apply the Intermediate Value Theorem to show that there is a root of the

polynomial equation 2x3 + x2 + 2 = 0  in the interval (−2, -1).                                  

b.   Show that the equation  x − 2sin(x) = 1 has a solution  in the open interval  

.(0,
3�
2

)
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