
Chapter 2  Sequences.

For most part of the discussion we shall confine to real sequences.  However, most of
the definitions and results apply equally well to complex sequences, i.e., sequences
taking values in the complex numbers.  Of course, we can have sequences whose
values are lying in such mathematical objects as Rn , metric spaces, abstract
topological spaces, set of all functions on [0, 1], groups, etc.  Sequences are used for
very different purposes, presenting themselves as charts of movement of share values,
temperature, distances, blood pressure, etc.  The purpose can be to monitor movement
or fluctuation of temperatures when extreme high or low can be critical.  In a patient
the attention is called when temperature rises above 37.5 C for further treatment or
medical attention.  This is an example of a sequence approaching a certain ‘critical’
value.  Vibration problems can be approached via Fourier series, which is a sort of
sequence.  Number theory problems such as primality testing may use Lucasian
sequence, which has its origin based on Fibonacci sequence.  These sequences are
used in the so called N+1 primality testing, where the knowledge of the prime factors
of N+1 are required to begin a search for these sequences.  The goal is to find a
suitable Lucasian sequence such that its N+1 term is congruent to 0 modulo N.
However our concern will be with the behaviour of the sequence at infinity, i.e., what
happens to the values of the sequence (an),  an as n gets larger and larger.

We shall look at the convergence of sequences.  Through special sequences, i.e.,
monotone sequences, we shall study Cauchy sequences, formulate a convergence
criterion (that presupposes the existence of the irrational numbers) and derive the
Bolzano-Weierstrass Theorem.  Although for R, completeness is equivalent to the
convergence of any Cauchy sequence, which is equivalent to that any bounded
monotone sequence is convergent and which is also equivalent to the conclusion of
the Bolzano Weierstrass Theorem, only the Cauchy principle of convergence is
capable of generalization to Rn and beyond and leads to a definition of completeness
for metric spaces.

Definition 1.   Let P be the set of positive integers.   A sequence is simply a function
from P  into the set of real numbers R.
P is of course the set {1,2, … }.  Thus a function a: P → R is a sequence.

The image a(n) is called the n-th term of the sequence and is also written as a n ,  
We also write (a1 , a2, … ) or simply  (an) for the sequence.
Here we use the round bracket for sequences.  One should not confused the sequence
(a1 , a2, … ) with a row vector.  Note that {a1 , a2, … } is a set and should not be
confused with a sequence, likewise {an} is a singleton set and not a sequence.

We are interested in the behaviour of the values or points of the sequences.  We
want to know if they are bunched together like a cluster or they become further
and further apart or oscillatory.  We focus on whether the points are bunched
together or not.  We have a technical term for this bunching together.

Remark. 1.  More generally, if X is a set, a sequence in X is a function a: P → X.  For
instance, X  can be the complex numbers C or R2 or Rn , n ≥ 3, etc.

©Ng Tze Beng



2.  We can replace P by any set Q with an ordering - a generalization of a sequence
called a net leading to the notion of Moore-Smith convergence of net.
Definition 2.   Let (an ) be a sequence in R.  We say (an ) tends to a real number a in R
if for any ε > 0, there exists a positive integer N0 such that for all n in P with n ≥ N0 ,
|an − a| < ε.  That is,
                                                       n ≥ N0 ⇒ |an − a| < ε.

Notation: 
If (an ) tends to a,  we write 
                      an → a  as n→ ∞ 
or                   nd ∞

lim an = a
Or just simply,  an → a .

Definition 3.   We say (an ) converges if there exists a real number a such that an → a,
otherwise (an ) diverges or is divergent.

Remark. 
1.  The number N0 in definition 2 depends on ε.
2.  We may replace in definition 2 “n ≥ N0” by “n > N0” without changing the sense of
the definition.  That is, it gives rise to equivalent definition.

Example 4.
1.  an = c  for all n in P.   This is a constant sequence and obviously an → c .
Given any  ε > 0 , take any positive integer N .  Obviously for any n ≥ N ,
|an − c| = |c − c| = 0 < ε.
2.   an = (−1) n .  Then (an ) is divergent.   There is a quick way to see this.  Observe
that the value changes from 1 to −1 and so there is no way it can get close to any
value. 
If you like the following is a proof of this fact.
For any a in R, by the triangle inequality,
                                       |1− a| + |(−1)−a| ≥ |1− a − ((−1)−a)| = 2.
Hence, either |1−a| ≥ 1 or |(−1)−a|≥ 1.  
Take any positive integer N0 .  If |a−1| ≥ 1,  then take any even n > N0  and we have    
|an − a| = |1− a| ≥ 1 and if |(−1)−a|≥ 1, then take any odd n > N0 and we have

|an − a| =|(−1)−a|≥ 1.
Thus (an ) cannot converge to any a and so is divergent.

3. an = 1/n.   Then an → 0.  
For any ε > 0,  there exists a positive integer N0 such that     (by the0 < 1

N0
<

archimedean property of R).   Thus for  n ≥ N 0 ,    and this means 1
n [

1
N0

<
 and so by definition an → 0.| 1

n − 0| <

Example  3 illustrates the notion of continuity of a function at the point 0 and the limit
of a function at 0.   We shall use this notion to derive the properties of the sequence.

We make the definition as follows:
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 Let  A be a subset of R containing 0 and  f : A → R is a function.   The function   f   is
said to have a limit at 0 if  there exists a real number L such that given any ε > 0, there
exists δ > 0 such that 
                                  for all x ∈ A,  0 < |x − 0| < δ ⇒ | f (x) − L | < ε .
We write .  If  L = f (0), we say  f  is continuous at 0.   We define the left

xd 0
lim f (x) = L

and right limit at 0 similarly as follows.
                if given any ε > 0, there exists δ > 0 such that 

xd 0 +
lim f (x) = L

                                  for all x ∈ A,  0 < x < δ ⇒ | f (x) − L | < ε .
                if given any ε > 0, there exists δ > 0 such that

xd 0 −
lim f (x) = L

                               for all x ∈ A,  − δ < x < 0 ⇒ | f (x) − L | < ε .

In the next chapter we shall study limits and continuity in general and in more detail.
For our purpose here we shall  use only the notion of limit and continuity at the point
0.

Let P-1 denotes the set {1/n ; n ∈ P}.  That is P −1 = {1, ½, 1/3, ... }.
Then let K = P −1 ∪ {0} = {0, 1, ½, 1/3, ....}.

Here is an easy  result:

Proposition 5.  Let (an ) be a sequence in R.  Define a function
 f : K = P −1 ∪ {0}→ R 

by f (1/n) = an  for n > 0 and  f (0) = a.
Then an → a  if and only if  f  is continuous at 0.

Proof.  
First suppose that  f  is continuous at 0.  Recall the definition of continuity at 0:
Given any ε > 0, there exists δ > 0 such that 
                                  for all x ∈ K,  |x − 0| < δ ⇒ | f (x) − f (0)| < ε .   --------------   (1)
We want to show that an → a.  We want to find an integer N0 in P such that

n ≥ N0 ⇒ | f (x) − a| < ε.
Let N be the largest integer such that   N ≤ 1/δ.
Then n > N implies that n > 1/δ ≥ N.  That means 1/n < δ.  Then by (1) , taking x to be
 1/n,                       
                                       |an − a| = | f (x) − a| = | f (x) − f (0)| < ε.
Let N0 = N +1,  then  n  ≥ Ν0 ⇒ 1/n < δ ⇒ |an − a| < ε.   Therefore, an → a.

Conversely suppose an → a.  Then given ε > 0, there exists a positive integer N0 such
that 
                                                      n  ≥ Ν0  ⇒ |an − a| < ε.   ---------------------------  (2)
Then for any x in (−1/Ν0 , 1/Ν0 ) ∩ K,  x is in P −1 ∪ {0} and |x| < 1/N0 .
If  x = 0, then | f (x) − f (0)| = 0 < ε.
If  x ≠ 0, then x = 1/n for some positive integer n and 1/n < 1/N0.  Therefore, n > N0

and so by (2) |an − a| < ε.  Hence | f (x) − f (0)| = | f (1/n) − a| = |an − a| < ε.
Therefore,  f  is continuous at x = 0.  
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Proposition 5 allows us to formulate results about continuous functions into results
about sequences.  We can use the properties of continuity and limit (see Chapter 3) to
dedeuce results about sequences.  The following examples illustrate this amply.

Example 6.
1.   as n → ∞  for all k > 0.1

nk d 0

Consider   f : K = P −1 ∪ {0}→ R defined by   f (1/n) = an =   and f (0) =1
nk = ( 1

n )k

0.  Thus the function is given by  f (x) = xk  for x ≥ 0 .  Recall that as a real valued
function defined on [0, ∞ ),    f  : [0, ∞ )→ R is defined by f (x) = xk  for x > 0 and    
f (0) = 0.
This function is continuous at x = 0 since its limit at 0 is  f (0).

 = f (0)  since  as 
xd 0+
lim f (x) =

xd 0+
lim xk =

xd 0+
lim ek ln(x) =

xd 0+
lim 1

e−k ln(x) = 0
xd 0+
lim e−k ln(x) = ∞

.  Hence our original function is continuous at 0.  Therefore, (an )
xd 0+
lim −k ln(x) = ∞

converges to 0.

2.  Let .an = 27n2 + 3n − 1
15n2 − 2n − 13

Then  f : K = P −1 ∪ {0}→ R  is given by 

  f (1/n) = .an = 27n2 + 3n − 1
15n2 − 2n − 13 =

27 + 3
n − 1

n2

15 − 2
n − 13

n2

Thus  f (x) = .  Since this function on R is a rational function whose  27 + 3x − x2

15 − 2x − 13x2

domain contains 0.  Therefore,  f  is continuous at 0 and   .f (0) = 27
15 = 9

5
Therefore,  .an d

9
5

Below we list the properties for sequences, which are easy consequences of continuity
via Proposition 5.

Properties 7.

1.  If  an → a and bn → b, then an + bn → a + b.

2.  If  an → a, then λan → λa for any real number λ.

3.   If  an → a and bn → b, then an bn → ab

4.   If  an → a  and a ≠ 0, then 1
an d 1

a
Thus,
5.    If  an → a and bn → b with b ≠ 0 , then  an

bn
d a

b

Proof.   By proposition 5 the functions   f : K = P −1 ∪ {0}→ R and  g : K = P −1 ∪
{0}→ R defined by  f (1/n) = an , g (1/n) = bn ,  f (0) = a and g(0) = b are continuous at
0.  Therefore,  f + g is continuous at x = 0 and  f (0) + g(0) = a + b.  Thus, by
Proposition 5, (an + bn) is convergent and an + bn → a + b.  This proves part 1. 
The remaining statements follows similarly from the continuity at 0 of  λ f  for part 2,  
of    f ⋅ g for part 3, of 1/ f ,  if a ≠ 0, for oart 4 and of  f / g , if b ≠ 0, for part 5.
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Remark.  1. The above proof makes use of  Proposition 5 using continuity.  It makes
a connection with the concept of limit of sequences to that of the continuity of a
function.  This is the first time the connection is encounter.  If your are more
comfortable with the notion of continuity, then Proposition 5 is very useful.  But of
course properties 1 to 5 can be proved directly from Definition 2.  We shall see later
(in the next chapter) a characterization of continuity of a function at a point by
sequences. 
2.  Example 6 (2) can now be deduced using (5) of Properties 7 as follows:
       

                          .27n2 + 3n − 1
15n2 − 2n − 13 =

27 + 3
n − 1

n2

15 − 2
n − 13

n2

d 27 + 0 − 0
15 − 0 − 0 = 9

5

 
Next let ( an ) be a real sequence.  Let a be a real number.  We want to know if an →
a.  We consider the difference  an − a and if an − a → 0, then we can conclude that an

→ a.  The question is then when do we know an − a → 0.   The following furnishes a
simple criterion by way of another sequence.  

Propositon 8.  Comparison Test.
If there exists a sequence ( bn ) such that
 (1) |bn| → 0,
 (2)  |an − a| ≤ |bn| 
Then an → a.
Proof.   Given ε > 0, by (1), there exists an integer N such that n ≥ N ⇒ |bn| < ε.
Therefore, for all  n ≥ N, |an − a| ≤ |bn| < ε .  This means an → a .

Remark.  Note that bn → 0 if and only if |bn| → 0.  By the Squeeze Theorem, an − a
→ 0 via Proposition 5.  So this result is trivial but it is very useful.

Example 9.

If |a| < 1, then the sequence ( an ) converges to 0.   
Since |a| < 1,  1/|a| > 1.  Then we can write 1/|a| = 1+ β and β > 0.
Hence .|an − 0| = 1

(1 + )n < 1
n

The last inequality follows from the inequality   for positive(1 + )n m 1 + n > n
integer n.  (Use the binomial expansion for (1 + β)n to deduce the above inequality.)
Since ,  .  By the Comparison Test,  an

  → 0.1
n d 0 1

n d 0

If a = 1, then an = 1 and so an
  → 1.  If  a = −1, then an = (−1)n  diverges (see (2) of

Example 4).

Exercise.  Complex sequence
If a = i, the imaginary complex number i = √(−1), then an  diverges.  Suppose  a is a
complex number.  If |a| > 1, then (an ) diverges, if |a| < 1, then an → 0.  Note that the
Comparison Test applies equally well to complex sequences. 
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Definition 10.  A sequence (an ) is said to be bounded if its range is bounded, that is,
there exists a positive real number K such that |an | ≤ K for all n in P.  It is said to be
bounded above if there exists a real number M such that an ≤ M for all n in P .  M is
called an upper bound of (an ).   It is said to be bounded below if there exists a real
number L such that L ≤ an for all n in P .  The number L is called a lower bound of    
(an ).  Plainly, (an ) is bounded if and only if it is both bounded above and bounded
below.

Theorem 11.  If a sequence (an ) converges, then (an ) is bounded.

Proof.  
(an ) converges means there exists an element a such that an → a.  Thus, by the
definition of convergence, taking ε =1, there exists an integer N such that 

n ≥ N ⇒ |an − a|< ε =1.
Since ||an| − |a|| ≤ |an − a|, we have then n ≥ N ⇒ ||an| − |a|| ≤ |an − a| < 1 which implies
that |an |< |a| + 1.  Let  M = max{|a1|, |a2|, … , |aN-1|, |a|+1}.   Then obviously |an |≤  |a|
+ 1≤ M for all positive integer n ≥  N.  Plainly, for 1 ≤  j ≤ N−1, 

 |aj| ≤ max{|a1|, |a2|, … , |aN-1|} ≤ M.
Therefore,  |an|≤ M for all positive integer n.  This means (an ) is bounded.

Remark.  The converse of Theorem 11 is false.  That is to say, if (an ) is bounded, it
does not necessarily follow that (an ) is convergent.   For instance, take an = (−1)n .
Then (an ) is bounded but not convergent.

Proposition 12.  If  an → a and bn → b and there exists an integer N such that an ≤ bn

for all n ≥ N, then a ≤ b.

Proof.   We can use continuity and results about limit of function here. 
Let  f : K = P −1 ∪ {0}→ R and  g : K = P −1 ∪ {0}→ R  be defined by  f (1/n) = an ,    
g (1/n) = bn ,  f (0) = a and g(0) = b.  Then by Proposition 5 both  f  and g are
continuous at 0.  Then for all x in K and |x| < 1/N ,  f (x) ≤ g (x) since f (1/n) = an ≤  bn

= g(1/n) for all n ≥ N by the given condition.
Therefore,  a = f (0) =

xd0
lim f (x) [

xd0
lim g (x) = b.

This result involves ordering and is a result about real sequences.

Remark.  1.  The proof makes use of what we know about properties of continuous
function and limits and follows easily if familiarity with properties of continuous
functions and limits for function is assumed.  We can give an alternative proof using
Definition 2 as follows.
an → a means that for any ε > 0, there exists a positive integer K such that 

n ≥ K ⇒ |an − a| < ε/2
and similarly, since bn → b , there exists also a positive integer L such that 

n ≥ L ⇒ |bn − b| < ε/2. 
Now take M = max (N, K, L).   We have then that
                 n ≥ M ⇒ a − ε/2 <an  < a + ε/2  and b − ε/2 <bn  < b + ε/2.
Consequently, fixing an integer n ≥ M, we get 

a < an + ε/2 ≤ bn + ε/2 < b + ε/2 + ε/2 = b + ε.
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Hence, a <  b + ε.   Since ε is arbitrary we have that a ≤  b.
2.  If  an → a and bn → b and there exists an integer N such that an < bn for all n ≥ N,
then we do not necessarily get a < b.   
Example:  Let  an =  1/n2 and bn =1/n.  Then  an =  1/n2  < bn =1/n for n ≥ 2.   But
obviously an → 0 = a and bn → 0 = b and a = b. 
        
Theorem 13.  Squeeze Theorem.
If  an → a and bn → a and there exists an integer N such that for all n ≥ N, an ≤ cn ≤ bn ,
then cn → a .

Theorem 13 follows easily from the Squeeze Theorem for functions.  We shall give a
proof by the definition.

Proof.  Since an → a and bn → a, for any ε > 0, there exists a positive integer K such
that 

n ≥ K ⇒ |an − a| < ε
and there exists also a positive integer L such that 

n ≥ L ⇒ |bn − a| < ε.
Let M = max (N, K, L).  We have thus, that n ≥ M ⇒ a − ε < an  < a + ε  and a − ε < bn

 < a + ε.  Consequently, for any n ≥ M, we get a − ε < an ≤ cn ≤ bn < a + ε.  Thus , 
n ≥ M ⇒ |cn − a| < ε.

This means  cn → a.

Remark.  Even though Squeeze Theorem is a Theorem for real sequences only, we
can apply it to deduce the following results about complex sequences.
For a complex sequence (an),  (an) converges if and only if the real part ( Re an) and
the imaginary part ( Im an) converge, where an = Re an + i Im an and Re an and Im an

are respectively the real and imaginary parts of an .
Note that  for any complex number z,
                                           | Re z|,  |Im z|≤ |z| ≤ |Re z| + |Im z|.
Thus for any complex number a,
                       |Re an − Re a |≤ |an − a |
and                 |Im an − Im a |≤ |an − a |.
Therefore, if  an → a and so  |an − a| → 0, then by the Squeeze Theorem,

|Re an − Re a |→0 and |Im an − Im a | → 0
and consequently Re an → Re a and Im an → Im a.  
Conversely, since
                                     |an − a| ≤ |Re an − Re a| + |Im an − Im a|,
by the Squeeze Theorem, if Re an → Re a and Im an → Im a, then |an − a|→ 0 and so
an → a.

Of course, we may use the Comparison test as well.

We shall now describe an important class of real sequences.

Definition 14.  A real sequence (an ) is  increasing if  n > m ⇒ an ≥ am .
                          It is decreasing if n > m ⇒ an ≤ am .
                          It is strictly increasing if n > m ⇒ an > am .
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                          It is strictly decreasing if n > m ⇒ an < am .
                          It is a monotone sequence if it is either increasing or decreasing. 

Theorem 15.  Monotone Convergence Theorem.   Suppose (an ) is a bounded
monotone (real) sequence.  Then (an ) is convergent.  In particular, if (an ) is
increasing and bounded above, then an → sup {an : n ∈ P} and if (an ) is decreasing
and bounded below, then an → inf {an : n ∈ P}.

Proof .  Actually the proposition is equivalent to the completeness of R.
Suppose (an ) is a bounded monotone increasing sequence.  Then the set S ={an : n ∈
P} is bounded above and obviously non-empty.  Therefore, by the completeness
property of R,  S has a supremum or the least upper bound in R.  Let a = sup S.  We
claim that an → a.
Now take any ε > 0, then a − ε < a.  Hence a − ε is not an upper bound of S.
Therefore, there exists an integer N such that a − ε < aN ≤ a.  Therefore, since (an ) is
increasing for all n ≥ N, an ≥  aN  and so we have

a − ε < aN  ≤ an ≤ a.
It follows that n ≥ N ⇒ |an − a| =a − an < ε .  Therefore, by the definition of
convergence, an → a.

  
The case when (an ) is a bounded monotone decreasing sequence, is similar.  This
time the limit is the infimum of S.  We may also just consider the sequence (−an ) .
This is an increasing sequence and also bounded above.   Therefore, by what we have
just proved (−an ) is convergent and converges to sup {−an : n ∈ P}.  Hence (an ) is
convergent and converges to −sup {−an : n ∈ P} =   inf {an : n ∈ P}.

Example.    is a bounded increasing sequence and so is convergent.(1 − 1
n )

Remark.  Theorem 15 says that any real bounded monotone sequence is convergent.
The statement can be taken as the completeness axiom for R.  Another equivalent
definition for completeness of R is : every Cauchy sequence in R is convergent.  Note
that the essential step in the proof of Theorem 15 is the existence of supremum in the
case of increasing sequence and the existence of infimum in the case of decreasing
sequence.   The existence is provided by the (order) completeness of R.   We can use
the property "that every bounded monotone sequence in R has a limit” to prove the
completeness of R. 

The following theorems give different ways of thinking about completeness for R.
Under different conditions, it may be useful to know the different ways and to know
which is the more efficient way to use.

Theorem 16.  Every Cauchy sequence in R is convergent if and only if every
bounded monotone sequence in R is convergent.

Theorem 17.  Every bounded monotone sequence in R is convergent if and only if R
is order complete, i.e., every bounded above subset of R has a supremum in R.
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We shall prove these two theorems later in the chapter.

The notion of a Cauchy sequence expresses when a sequence is somehow "bunched"
together. Thus Theorem 16 and Theorem 15 says that a Cauchy sequence is
convergent.  Now we shall find out what this notion is.

Definition 18.  A sequence  (an ) is a Cauchy sequence if and only if given any ε > 0,
there exists an integer N such that for all n, m ≥ N,  |an − am | < ε .

Definition 18 uses the distance function to express the "bunching" togetherness of a
Cauchy sequence.  Here the distance between two terms an and am is given by the
modulus of the difference an − am .  Hence, definition 18 says that a sequence is
Cauchy if the distance between two terms, an  and am is getting closer and closer as n
and m get larger and larger.  We shall see later that for R, this "bunching
togetherness" produces a convergent sequence.  

An easy consequence of the definition is:

Theorem 19.   Any Cauchy sequence is bounded.

Proof.  Suppose (an ) is a Cauchy sequence.  Then taking ε = 1, there exists an integer
N such that for all n, m ≥ N,  |an − am | < 1.  Hence, we have for all n ≥ N,  |an − aN | <
1.  It follows that for all n ≥ N,  |an |< |aN| + 1.  Let M = max{|a1|, |a2|, … , |aN -1|, |aN| +
1}.  Then plainly |an| ≤  M for all positive integer n.  Hence (an ) is a bounded
sequence.

Theorem 20.  Cauchy Principle of Convergence.
A sequence (an ) in R is convergent⇔ it is Cauchy.

Note that Theorem 20 is a consequence of Theorem 16 and 17 assuming that R is
order complete.

We shall prove this by constructing two monotone sequences and invoking Theorem
15.

Proof.
(⇒) Suppose (an ) in R is convergent and an → a.  Then given any ε > 0, there exists
an integer N such that n ≥ N ⇒ |an − a|  < ε/2.  Thus for all n, m ≥ N , by the triangle
inequality,

|an − am| ≤ |an − a| +  |a − am| < ε/2 + ε/2 = ε.
Therefore, by Definition 18, (an ) is Cauchy.
(⇐)  The converse is much harder.  There are alternative proofs.  One can use the
Bolzano Weierstrass Theorem to prove the converse as well. (See later)
We shall introduce the notion of limit superior and limit inferior for sequences.
Suppose (an ) is Cauchy.  Then by Theorem 19, (an ) is bounded.  In general, for a
bounded sequence, we can perform the following construction for limit superior and
limit inferior.
By boundedness, there exists a positive constant M such that |an | ≤ M for all n in P.
We shll invoke the (order) completeness property of R.  For each n in P, define the set
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Sn = { an , an+1, … } = {ak : k ≥ n}.
Then  Sn  is a subset of { a1 , a2, … } and is therefore also bounded and obviously
non-empty.  By the (order) completeness of R, the supremum and infimum of Sn exist.
Let xn = sup Sn and yn = inf Sn .  Then
                                              for all k ≥ n,   yn ≤ ak ≤ xn.            ----------------------   (1)
Now, since   −M ≤ an ≤ M for all n in P,  M is also an upper bound for Sn and −M a
lower bound for Sn for each n in P.  Therefore, −M ≤ the least upper bound or  
supremum of Sn  = sup Sn = xn ≤ M.  This means the set { x1 , x2, … } is bounded.
Similarly, −M ≤ greatest lower bound of Sn = inf Sn = yn ≤ M.  This means { y1 , y2, …
} is also bounded.  Therefore, the sequence (xn ) is bounded below and the sequence
(yn ) is bounded above.  We shall next show that (xn ) is decreasing and (yn ) is
increasing.
Suppose  m > n.  Then  Sm = { am , am+1, … }⊆ { an , an+1, … } = Sn .  Therefore, xm =
sup Sm ≤ sup Sn = xn.  Thus, (xn ) is decreasing.  Similarly by the definition of infimum,
 ym = inf Sm  ≥ inf Sn = yn .  (We can deduce this as follows: by definition, yn = inf Sn , a
lower bound for Sn , is also a lower bound for Sm  since Sm ⊆ Sn .  Therefore, yn ≤ the
greatest lower bound or inf Sm = ym .) Hence (yn ) is increasing.
It follows by Theorem 15 that (xn ) is convergent and  xn → inf{x1 , x2, … }.  This
limit when it exists is defined to be the limit superior of  (an ).  Let a = inf{x1 , x2, …
}.  That is,  

n d ∞
lim sup an =nd∞lim sup{ak : k m n} =nd∞lim xn = a.

Now (yn ) is increasing and bounded above and so by Theorem 15, it is convergent
and yn  → sup{y1 , y2, … }.  Let b = sup{y1 , y2, … }.  Similarly, the limit inferior of
(an ) is defined to be the limit of yn.  Hence, 

n d ∞
lim inf an =nd∞lim inf{ak : k m n} =nd∞lim yn = b.
(Note that from the above argument the lim sup and lim inf of a bounded sequence
always exist.)
If (an ) is Cauchy, then a = b and subsequently (an ) is convergent and converges to a.
  We shall proceed to prove this statement.  First note that by (1) above 

.  Suppose on the contrary that a ≠ b.  Then a > b.  We shalla =nd∞lim xn mnd∞lim yn = b
derive a contradiction.  We shall show that if a > b, then (an ) is not Cauchy and hence
the contradiction.  How do we do this?  We shall show that we can find a ε > 0 such
that for any positive integer N we can find integers n, m ≥ N with |an − am| ≥ ε.
Take  ε = (a − b)/3 > 0.  Remember that a = inf{x1 , x2, … } and so for each N in P,    
xN ≥ a > a −ε.  Therefore, a −ε is not an upper bound for SN .  Thus there exists n ≥ N
such that 
                                                   a −ε < an ≤ xN  (=sup SN )  --------------------------   (2)
Similarly, since b = sup{y1 , y2, … },  b ≥ yN for any N in P.  Hence for any integer N
in P,  b + ε > b ≥ yN .  Thus b + ε  is not a lower bound for SN .  Therefore, we can find
an integer m ≥ N such that
                                                   b +ε > am  ≥  yN  (=inf SN ) --------------------------- (3)
Thus from (2) and (3), we get

an − am > a −ε - (b + ε) = a − b − 2ε = 3ε − 2ε = ε > 0  since a − b = 3ε.
Therefore, |an − am| = an − am > ε .  Hence, for each integer N in P, we can find
integers n, m ≥ N with |an − am| ≥ ε.  Thus (an ) is not Cauchy.  This is the required
contradiction and so a = b.
Therefore, by the inequality (1) and the Squeeze Theorem, (an ) is convergent and
converges to a.

Chapter 2 Sequences

10
©Ng Tze Beng



This completes the proof.

This is the most important theorem.  It expresses the most commonly stated result that
every Cauchy sequence is convergent is equivalent to (order) completeness of R.   
There are a few characterization of completeness for R in terms that can be
generalized to Rn .   The next Theorem which is a very useful tool in analysis is one
that can be generalized to  Rn.  It is also equivalent to completeness for R.

Theorem 21.  Bolzano Weierstrass Theorem.
Every bounded sequence in R has a convergent subsequence.

Remark.
1.  In the proof of Theorem 20, we have actually proved the following useful fact:
     For a bounded real sequence (an ),  (an ) is convergent if and only if 
                                          .

n d ∞
lim sup an = n d ∞

lim inf an

     Note that for a bounded sequence (an ),  and   both exist.
n d ∞

lim sup an n d ∞
lim inf an

2. For R, every bounded sequence has a convergent subsequence is equivalent to
every Cauchy sequence is convergent. 
3. The basic conclusion of the theorem generalizes to complete metric space, which is
like Rn with a distance function and in which every Cauchy sequence is convergent,
but we needed to replace the notion of bounded sequence to the notion of a totally
bounded sequence.  It is indeed true that boundedness implies totally boundedness for
Rn .  Therefore, Theorem 21 is true for Rn.
4. A simple extension to complex sequences.  Suppose (an ) is a complex sequence.
Then (an ) is a Cauchy sequence ⇔ (Re an ) and (Im an ) are (real) Cauchy sequences
⇔ (Re an ) and (Im an ) are convergent (real) sequences⇔ (an ) is convergent.
5.  We say a metric space is Cauchy complete if every Cauchy sequence is
convergent. A simple Cauchy sequence argument will show that R is Cauchy
complete implies that Rn is Cauchy complete.  Indeed product of  Cauchy complete
spaces is Cauchy complete.
6.  If (an ) is convergent then (an ) is Cauchy.  This is true in other situation when (an )
is a rational sequence a: P → Q, where Q is the set of rational numbers or a normed
vector space or a metric space.  But the converse need not be true.  (an ) Cauchy does
not necessarily imply that (an ) is convergent.  It is true if and only if Q is complete.
For example, let a: P → Q = rational numbers be the sequence (an ) = (3, 3.1, 3.14,
…), where an = first n-digits of π.   Then (an ) does not converge in Q for if it did, π
would be rational.  
7.  Note that for R, order complete (every bounded subset has a supremum and an
infimum in R)   is equivalent to Cauchy or metric complete (every cauchy sequence is
convergent).  The notion of Cauchy completeness can be generalized to Rn  (and to
metric spaces) but not order completeness. For instance the complex number cannot
be totally ordered: it cannot have a positive cone.  Indeed neither does Rn, n ≥ 2 has a
positive cone and so it cannot be order complete.

We often need to use Theorem 15.  But of course we need to obtain a monotone
sequence.  The next result will extract a monotone subsequence from a bounded
sequence.  We now formally define a subsequence of a sequence.
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Definition 22.  Suppose  (an ) is a sequence.  Then a subsequence is given by  ,(ank )
where n1 < n2  < n3 < … .   More generally, if a: P → Q is a sequence, then a
subsequence of a is given by the composite  , where n is a strictlya ) n : P → n P → a Q
increasing function n : P→P.  Then

a ) n(k) = a(n(k)) = an(k) = ank

using our convention for writing terms of a sequence (n(k) is written nk ).

Proposition 23.  Every real bounded sequence has a monotone subsequence.

Proof.   Let  (an ) be a bounded sequence.  It is sufficient to pick the so called "peak"
in the graph of the function giving the sequence.  We say the sequence (an ) has a
peak at k if, for  all j ≥ k, ak ≥ aj .   ak is called the peak and k the peak index.  Now we
shall find our subsequence by using these peaks.  If there are infinite number of these
peaks say having the peak indices, k1 , k2 , k3 , …  with k1 < k2 < k3 < ….  Then by
definition of the peak,

.ak1 m ak2 m ak3 m¢
Thus the subsequence  is a monotone decreasing sequence.  If there are only(akj )
finite number of these peaks or no peak, then there is an index k, beyond which there
are no peaks.  Let n1 = k +1.  Then since n1 is not a peak index , there exists an index
n2 such that n2 > n1 but . Similarly since   is not a peak, it means that it isan2 > an1 an2

not true that for all j ≥ n2 ,  .  Hence there exists an index n3 > n2 such that aj [ an2

.  Thus, in this way we recursively define nk+1 > nk  such that that  .an3 > an2 ank+1 > ank

Therefore,  is a monotone increasing sequence.  We have thus constructed a(ank)
monotone subsequence of  (an ).

24. Proof of  Theorem 21 Bolzano Weierstrass Theorem
Suppose (an ) is a bounded sequence.  Then by Proposition 23 (an ) has a monotone
subsequence .  Since (an ) is bounded,  is also bounded.  Therefore, by(ank) (ank)
Theorem 15,  is convergent.  Hence (an ) has a convergent subsequence.                (ank)
                      

To proof Theorem 16 and 17 we shall need the following general observation.

Proposition 25.   If (an ) is a Cauchy sequence that has a convergent subsequence,
then it is convergent.

Proof.   Suppose  (an ) is Cauchy and  is a convergent subsequence.  Given any     (ank)
ε > 0, since (an ) is cauchy, there exists a positive integer M such that 
                                           n, m ≥ M ⇒ |an − am| < ε/2 .   ------------------------------  (1)
Suppose  . Then there exists a positive integer L such thatank d a
                                               .    --------------------------------- (2)k m L e |ank − L| < /2
Let N = max (M,L).  Then k ≥ N ⇒ k ≥ L  and nk ≥  k ≥ M.  Therefore, we have
                    for any k ≥ Nn m Ne |an − a| [ |an − ank | + |ank − a|
                                                                              by (1) since  n, nk ≥ M< /2 + |ank − a|
                                            < ε/2 + ε/2 = ε
by (2) since  k ≥ L.
Thus, by definition, (an ) is convergent.
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Remark.  This is a result that applies to sequences in any metric space.   The proof is
exactly the same.  It provides a convergence criterion for non complete metric spaces.
The result is of course superfluous when the space is complete.

26. proof of Theorem 16.
Suppose that any bounded monotone sequence is convergent.  We shall then show
that any Cauchy sequence is convergent.  Let (an ) be a Cauchy sequence.  Then by
Theorem 19 (an ) is bounded.  By Proposition 23 (an ) has a bounded monotone
subsequence .  By our assumption  is convergent.  Suppose .  Then(ank) (ank) ank d a
by Proposition 25 (an ) is convergent and converges to a.
Conversely suppose any Cauchy sequence is convergent.  We shall show then that
any bounded monotone sequence is convergent.  This is a little harder to show.
Let (an ) be a bounded monotone sequence.  Without loss of generality we may
assume that it is increasing.  Suppose it is a finite sequence, that is, its image is finite.
Then it has a constant subsequence .  (Why? Consider the preimages of  (ank)
singleton subsets of the image of the sequence.  One of them must be infinite and
gives the required constant subsequence.)  Then for any n ≥  n1 = N, an = = c foran1

some constant c.  We deduce this as follows.  For any n ≥  n1, there exists a positive
integer k such that nk ≥ n ≥  n1 .  Since (an ) is increasing   and soank = c m an m an1 = c
, .  Thus (an ) is convergent and we have nothing to prove.  Suppose that (an ) isan = c
infinite, i.e., its range is infinite.  We shall show then that (an ) is Cauchy.  The idea
below uses the fact that any bounded subset in R is "totally bounded".  Since (an ) is
increasing, for all n in P, an ≥ a1 = c.  Since (an ) is bounded there exists d such that  c
≤ an < d for all n in P.  Now given any ε > 0, there exists an integer l such that |d − c|/
2l < ε.  We now divide or partition the interval [c, d] into 2l subintervals each of
length (d − c)/ 2l .   Then one of these subintervals must contain infinite number of the
range of (an ).  Suppose it is the k-th subinterval Ik of [c, d].  Then Ik contains a
subsequence .  In particular  and so for any k, j in P,   (ank) {ank : k c P} ` Ik

.  Let N = n1.   Then for any integers m ≥ n ≥ N = n1 , there exists an|ank − anj | <
integer L such that m ≤ nL .   Therefore, since (an ) is increasing, 

.  It follows that  .  Thus (an ) isaN = an1 [ an [ am [ anL |an − am| [ |anL − an1 | <
Cauchy.  Therefore, by assumption, (an ) is convergent.  Hence any bounded
monotone increasing sequence is convergent.  If (an ) is bounded and decreasing, then
(−an ) is bounded and increasing and so is convergent and it follows that (an ) is
convergent.  Hence any bounded monotone sequence is convergent.

27.  Proof of Theorem 17.
Recall the statement of the theorem: Every bounded monotone sequence in R is
convergent if and only if R is order complete.
(if part)  Suppose R is order complete.  Then this is just Theorem 15.  The proof is
exactly the same.
(only if)  Suppose every bounded monotone sequence is convergent.  Now take a
non-empty subset A of R which is bounded above.  We shall show that it has a
supremum.  Since it is bounded above, there exists a real number K such that for all a
in A,  a ≤ K.   If there exists an element a in A such that a = K then K = supremum of
A and we have nothing to prove.  Thus we assume that for all a in A,  a < K.   Pick an
element L in A.  Then L < K.  Now we are going to define two monotone bounded
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sequences in R inside the interval [L,  K], one always inside A and one always outside
of A and they will both converge to the supremum of A.  Let  a1 = L and b1 = K.  Let c1

be the mid point of [L,  K], i.e., c1 = (K +L)/2.  We shall define the sequence (an ) and
(bn ) as follows.
If c1 is an upper bound of A, let b2 = c1 and a2 = a1 .  Then |b2 − a2| ≤ (K -L)/2.   If  c1 is
not an upper bound of A, then there exists an element a2 in A such that c1 < a2 < K  
and let b2 = K .  We have then |b2 − a2| ≤ |K -c1| ≤ (K −L)/2.   In either cases, we have    
     |b2 − a2| ≤ (K -L)/2.   We have also,
                                                       a1 ≤ a2 < b2 ≤ b1.
If b2 ∈ A, then we are done because  b2 = sup Α and the process of definition
terminates.  If b2 ∉ A then we repeat the process using the interval [a2 , b2 ].   Let c2 =  
(b2 + a2)/2 the mid point of  [a2 , b2 ].  If c2 is an upper bound of A, let b3 = c2 and a3 =
a2.  If  c2 is not an upper bound of A, then there exists an element a3 in A such that c2 <
a3 < b2 and we let b3 = b2 .  Again if b3  ∈ A, the process terminates with the
supremum being b3 and we are done.  In particular |b3 − a3| ≤ (b2 − a2)/2 ≤ (K -L)/ 22  
and  a2 ≤ a3 < b3 ≤ b2.  If this process terminates in a finite steps, then the set A has a
supremum.  If the process does not terminate, then we have a bounded increasing
sequence (an ) and a bounded decreasing sequence (bn ) such that an ≤ bn for all n in P.
 (an ) is bounded above by K and (bn ) is bounded below by L.  Furthermore,
                                                      |bn− an| ≤ (K −L)/ 2n − 1 .        -----------------------  (1)
Thus, by our assumption both (an ) and (bn ) converges.  Suppose an → a  and bn → b
in R then  a ≤ b since an ≤ bn for all n in P.   We now claim a = b.   Suppose  a ≠ b,
then a < b .  Note that for each n in P,   since (an ) is increasing and an [kd∞

lim ak = a
 because (bn ) is decreasing.  Therefore, we have for each n in P,  

kd∞
lim bk [ bn

                                                           an ≤  a < b ≤  bn .              ----------------------- (2)
Let now ε = |b − a|/ 2.  Choose a positive integer n such that (K −L)/ 2n − 1 < ε.  Then
we have from (2),  |b − a| ≤ |bn− an| ≤ (K −L)/ 2n − 1 < ε = |b − a|/ 2 .  This is absurd and
so a = b.  Now we show that sup A = a.   Since each bn is an upper bound for A and 

, b is an upper bound for A and so a = b is an upper bound for A.   We shallb =
kd∞
lim bk

show that a is the least upper bound for A.  We do this by showing that for any ε > 0,  
a − ε cannot be an upper bound for A.   Since  for any ε > 0, there exists a

kd∞
lim ak = a

positive integer N such that
n ≥ N ⇒ ≤ |an− a| < ε ⇒ a− ε < an < a + ε.

By the construction of the sequence (an ), each an is in A.   Therefore, a− ε < aN  and
aN ∈ A and so a− ε cannot be an upper bound for A.  Hence a = least upper bound of  
A = sup A.  This completes the proof.

Remark.  Note that the statement of the Bolzano Weierstrass Theorem (Theorem 21)
does not involve ordering.  Thus we can make the same statement for Rn and for
general metric spaces.  The theorem is true also in Rn.  However, it is not true for
general (Cauchy) complete metric spaces.   For R we can show that it is equivalent to
the Monotone Convergence Theorem for R.  Thus completeness for R has many
interpretations: we can find a convergent subsequence for a bounded sequence, any
Cauchy sequence is convergent, any bounded monotone sequence is convergent, any
bounded above subset of R has a supremum in R, any bounded below subset of R has
an infimum in R.
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Definition 28.  The notion of  (an ) tending to + ∞  means    regarding thend ∞
lim a(n) = ∞

limit as a function on P.  That is, given any real number K > 0, there exists an integer
N such that for all n in P, n ≥ N ⇒ an > K.   When this happens, we write an → +∞.   
Similarly, the sequence (an ) is said to tend to − ∞ if given any real number L < 0,
there exists an integer N such that for all n in P, n ≥ N ⇒ an < L and we write             
an → − ∞.

The rules for functions translate to the following useful results for computing limits
involving infinity.  Of course the following rules can be proved directly using
Definition 28.

Proposition 29.
Suppose (an ), (bn ) are  two sequences in R.
1.  If   an → +∞ or  an → − ∞ , then 1

an d 0.
2.  If   an → +∞ and  bn → a,  a finite, then an +bn→ +∞
3.  If   an → −∞ and  bn → a,  a finite, then an +bn→ −∞
4.  If   an → +∞ and  bn → a > 0  a finite, then an bn→ +∞
5.  If   an → +∞ and  bn → a < 0  a finite, then an bn→ −∞

These rules are particular useful when an is a rational function of n.

Example
1.   ( n + 1/n )  tends to + ∞
2.    5 − n + 1/2n  tends to − ∞

3.  n + 1
n2 + 1 =

1
n + 1

n2

1 + 1
n2

d 0

4.  n2 + 1
2n2 + n + 1 =

1 + 1
n2

2 + 1
n + 1

n2

d 1
2

Subset of the real numbers

There is a class of subsets of R that is important in analysis.   For example we know
by Proposition 12 that if (an ) is a sequence in the closed  interval [a, b]  and if an → c,
then a ≤ c ≤  b.  That is to say the limit stays in the interval [a, b].   There is also an
important covering property of  [a, b] that is used in the proof of the uniform
continuity of continuous function on [a, b] and is also the essence of the Extreme
Value Theorem.

Definition 30.  Let S be a subset of  R.  Then an element a in R is said to be a limit
point of S if for every ε > o, the open interval (a − ε, a + ε) contains a point of S
different from a.   Hence,  (a − ε, a + ε) ∩ (S − {a}) ≠ ∅ .

Example.  0 is a limit point of the open interval (0, 1).  It is also a limit point of the
set {1/n: n ∈P}

There are equivalent definitions of a limit point. 
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Proposition 31.   Let S be a subset of  R and a an element in R. .  The following
statements are equivalent:
(1)  a is a limit point of S.
(2)  There is a sequence (an ) in S − {a} such that an → a.
(3)  Any open interval I containing a has infinite intersection with S.

Proof. (1) ⇒ (2).  For each positive integer n, take an in (a − 1/n, a + 1/n) ∩ (S −
{a}).  Plainly an → a.
(2) ⇒ (3).  Take an open interval I containing a.  Then, there exists ε > 0 such that    
(a − ε, a + ε) ⊆ I.   By (2) there is a sequence (an ) in S − {a} such that an → a.
 Therefore, there exists a positive integer N such that 

n ≥ N ⇒ |an − a| < ε  ⇒ a − ε <  an < a + ε ⇒ an  ∈ (a − ε, a + ε).  
Note that {an : n ≥ N } is infinite.  If it were finite, then (an ) would have a constant
subsequence, which obviously converge to a point b in S − {a}.  Therefore, since (an)
is convergent, it has the same limit as any subsequence and hence b = a and so a ∈ S
− {a}.  But a ∉ S − {a}.   This contradiction shows that {an : n ≥ N } is infinite and
hence (a − ε, a + ε) ∩ S  is infinite. Therefore, since (a − ε, a + ε) ∩ S ⊆ I ∩ S , I ∩ S
is infinite.
(3) ⇒ (1).  For any ε > 0, (a − ε, a + ε) ∩ S  is infinite and so it must contain a point
in S different from a. 

For a set S of R, let S' be the set of limit points of S.  

Definition 32.  A subset S of R is said to be closed if S' ⊆ S.

Example.  1.  Any singleton set {a} in R is closed since S' is empty.  
                  2.  [0, 1] is closed, [0, ∞ ) is also closed.
                3.  The rational numbers Q in R is not closed in R.  This is because taking
an irrational number like √2, we can find a sequence of rational numbers converging
to it and so √2 is a limit point of Q but √2 is not in Q as it is not rational. 

The following property of closed set is very useful.

Proposition 33.  A subset A of R is closed if and only if any convergent sequence in
A converges to an element in A. 

Proof. (Only if part) Suppose A is closed.  Suppose on the contrary that there is a
sequence in A which converges to an element a not in A.  Then by proposition 31, a is
a limit point of A.  Since A is closed, a ∈A.  This contradicts a ∉ A.  Therefore, any
convergent sequence in A must converge to an element in A.
(If part) Let a be a limit point of  A.  Then by Proposition 31, there is a sequence (an )
in S − {a} such that an → a.  By assumption, the limit of this sequence is in A.  Hence
a ∈ A.  Therefore, the set of limit points A' ⊆ A.  Hence A is closed.
 
Let S be a subset of R.   Then the set H = S ∪ S' is a closed set in R.  This is seen as
follows.  Let a be a limit point of H.  Then take any open interval I containing a.   
Then by Proposition 31, I  has infinite intersection with H.   Since I ∩ H = (I ∩ S ) ∪
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(I ∩S'), (I ∩ S ) must be infinite. This is because if (I ∩ S ) were finite, then (I ∩S')
would be infinite and so I would contain a limit point of S and so I would have an
infinite intersection with S by Proposition 31 thus contradicting the assumption of
finiteness for (I ∩ S ).  Therefore, a is a limit point of  S.  Hence H' ⊆ S' ⊆ H.
Therefore, H is closed.  H is also the smallest closed subset containing S.  We deduce
this in the following way.  Suppose there exists a smaller closed subset A containing
S, i.e., S ⊆ A G H =S ∪ S' .  We shall then derive a contradiction.  Thus, there is an
element h in S' such that h ∉ A.   Since S' ⊆ A', h ∈ A' .  Since, A is closed, A' ⊆ A and
so h ∈ A contradicting h ∉ A.  Therefore, there does not exist a closed subset
containing S smaller than H.

Definition 34.  We define the closure of S to be Cl(S) = S ∪ S'. 

Example. The closure of (a, b) is [a, b].  The closure of Q is R.

Definition 35.  A subset U of R is said to be open if it is an arbitrary union of open
intervals.

Example.  (0, 1) ∪ (2,3) is open but (0,1) ∪ [2, 3) is not.

The following characterization of open set is particularly useful. 

Proposition 36.  A subset U is open in R if and only if for each x in U there exists an
open interval I such that x ∈ I ⊆ U.

Proof.  If  U is open in R, then by definition, U is an arbitrary union of open intervals.
Take any x in U, x must belong to one of these open interval I which is obviously a
subset of U.  Conversely suppose for each x in U, there exists an open interval Ix such
that x ∈ Ix  ⊆ U.  Then,  U = ∪ {Ix : x ∈ U} and so U is an arbitrary union of open
intervals.  Therefore, U is open. 

Our next definition is one of several equivalent meaning of compactness for subsets
of R.

Definition 37.  A subset S of R is said to be sequentially compact if any sequence in S
has a convergent subsequence converging to a point in S.

Hence we have

Proposition 38.  The closed interval [a, b], where a < b are real numbers, is
sequentially compact.

Proof.  Any sequence in [a, b] is bounded above by b and bounded below by a and so
is bounded.  Therefore, by the Bolzano Weierstrass Theorem (Theorem 21), it has a
convergent subsequence.  By Proposition 33, the subsequence converges to a point in
[a, b].

More generally we have:
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Theorem 39.  Suppose S is a subset of R.  Then S is sequentially compact ⇔  S is
closed and bounded.

Proof.  
(⇐)  Suppose  S  is closed and bounded.  Take a sequence (an ) in S.  Then (an ) is
bounded since  S  is.  It then follows by the Bolzano Weierstrass Theorem that (an )
has a convergent subsequence converging to a in R.   If a is in S, then we are done.  If
a ∉ S, then a∈ S ' .  But S is closed so that S' ⊆ S and so a∈ S .  Hence we have
arrived at a contradiction.  Therefore, a ∈ S.  Thus, S is sequentially compact.
(⇒)  Suppose S is sequentially compact.  Let s be a limit point of S.  By Proposition
31, there is a sequence (an ) in S − {s} such that an → s.  Since S is sequentially
compact, (an ) has a subsequence converging to a point a in S.  Since (an ) is already
convergent both the sequence and any subsequence must have the same limit.
Therefore, s = a and so s ∈ S .  Hence all the limit points of S are in S.  Therefore, S is
closed.  S must be bounded for other wise there exists a sequence in S that does not
converge in R.

Now we proceed to investigate the covering property of a sequentially compact sets.
We shall describe a simpler form of compactness or what is called countable
compactness.

Definition 40.   A family F of  subsets of R is said to cover S if  S ⊆ ∪ {U: U ∈ F}.
F is said to be a cover for S.  If F is countable, then F is a countable cover for S.  If
each member of F is open, then we say the cover is an open cover.  A subcover of F is
a subset G ⊆ F which is also a cover. 

Example.  {(n−1, n+1): n ∈ Z} is a countable open cover of  R.

Definition 41.   A subset S of R is said to be (countably) compact if any open cover
of S has a finite subcover.  More precisely, if {Un : n∈P} is a countable cover for S,
then there exist a finite number of members of {Un : n∈P},  for{Un1 , Un2¢, Unk}
some integer k, such that .S `Un1 4Un2 4¢4Unk

Theorem 42.  A subset S in R is (countably) compact ⇔ S is sequentially compact.

Proof.  (⇒)  Suppose S is (countably) compact.  If S is finite, then any sequence in S
has finite image and so has a constant subsequence and we are done.  Suppose S is
infinite and suppose on the contrary that S is not sequentially compact.  Then there
exists a sequence (an ) in S that does not  have a convergent subsequence converging
to a point in S.  Then the set A = {an : n ∈ P} must be infinite, for otherwise it would
have a convergent constant subsequence.  Then the set A cannot have a limit point in
S.  This is because if A has a limit point a in S, then we can construct a subsequence
of (an ) converging to a as follows. (a−1, a+1) ∩ A has a point in A different from a.
Then there exists a positive integer n1  such that   and  .an1 (a − 1, a + 1)3A an1 ! a
Then by Proposition 31(3) (a−1/2, a+1/2) ∩ (A-{a}) is infinite.  Therefore, there
exists an integer n2 > n1 such that  .  In  this way, wean2 (a − 1/2, a + 1/2)3 (A − {a})
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define  recursively.  If we have already defined  , then since (a−1/(k+1),ank ! a ank ! a
a+1/(k+1)) ∩ (A-{a}) is infinite, there exists nk+1 > nk such that
                                .ank+1 (a − 1/(k + 1), a + 1/(k + 1)) 3 (A − {a})
Plainly the subsequence  converges to a.  This contradicts that (an ) has no(ank)
convergent subsequence converging to a point in S.  Therefore, A has no limit points
in S.  Thus, for each  x in S and x ∉ A,  there exists an open interval Ux containing x
such that Ux ∩ A = ∅.  Then the set U = ∪{Ux : x ∈ S − A} is open, being arbitrary
union of open intervals.  Also, we have for each x ∈ A, there exists an open interval Vx

such that Vx ∩ A = {x}.  Thus the family F = {Vx : x ∈ A }∪{U} is an open cover for S
since A ⊆ ∪{Vx : x ∈  A} and S − A ⊆ U.  Now since A is countably infinite, the
family is a countably infinite open cover of S.  Plainly it cannot have a finite
subcover.  This is because if it did say, S ⊆    for someVx1 4Vx2 4¢4VxN 4U
positive integer N, then A = A∩S = 

 = {x1 , x2, …, xN}A3 (Vx1 4Vx2 4¢4VxN) = (A3Vx1)4 (A3Vx2)4¢4 (A3VxN)
since A∩U = ∅.  Therefore, A is finite, thus contradicting that A is countably infinite.
 Hence, S is sequentially compact.
(⇐) Conversely suppose S is sequentially compact.   Suppose on the contrary that S is
not countably compact.  Then there exists an open cover of  S by countably infinite
number of open sets, say F = {Ui : i ∈ P} such that no finite subsets of F covers S.
We shall derive a contradiction.  Since no finite subset covers S, for each k,  

S ∩(U1 ∪ U2 ∪…∪Uk) ≠ S.
We shall now construct a sequence (an ) in S as follows.  We can find a1 in S such that
 a1 ∉ S ∩U1 since S ∩U1  ≠ S.  For each integer k >1  in P, we can find an element ak

in S such that ak ∉ S ∩(U1 ∪ U2 ∪…∪Uk) since S ∩(U1 ∪ U2 ∪…∪Uk) ≠ S .  Then we
claim that the sequence (an ) cannot have a convergent subsequence that converges to
a point in S.   Wre deduce this as follows. Suppose on the contrary that (an ) has a
convergent subsequence  that converges to a point s in S.  Then s ∈ S ∩ UN for(ank)
some positive integer N since S ⊆ ∪ {Ui : i ∈ P}.   Then, for any k ≥ N,  by definition
of the sequence (an ),

ak ∉ S ∩(U1 ∪ U2 ∪…∪Uk) implies that ak ∉ S ∩(U1 ∪ U2 ∪…∪UN )
and hence that ak ∉ S ∩UN .  Thus, for any ε > 0 such that (s - ε, s + ε) ⊆ UN , there
dose not exist an integer L such that k ≥ L implies that ak ∈ (s - ε, s + ε).  This is
because  ak ∈ (s - ε, s + ε) ⇒ ak ∈ (s - ε, s + ε) ∩ S ⊆ S ∩UN  but ak ∉ S ∩UN for         
k ≥ Ν.  Therefore, there does not exist an integer K such that

.k m K e ank (s − , s + ) w |ank − s| <
Hence  cannot be convergent.  But this contradicts our assumption that S is(ank)
sequentially compact.  Therefore, S is (countably) compact.

Remark.  The proof of Theorem 42 can be easily adapted to Rn and metric spaces.

Theorem 43. (Heine Borel).  A subset S of R is (countably) compact if and only if S
is closed and bounded.

Proof.  By  Theorem 42, S is (countably) compact ⇔ S is sequentially compact.  By
Theorem 39 S is sequentially compact ⇔ S is closed and bounded.

Remark.  
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The usual definition of compactness for a subset S of R is: any open cover has a finite
subcover.  In general, for subset of a topological space, this is the definition.
However, for metric spaces like R or Rn , any open cover has a countable subcover (a
result attributed to Lindelöf).   Therefore, for subsets of R or for that matter of Rn,
countably compactness is equivalent to compactness.  Thus, for subsets of R, the
following statements are equivalent.
1. S is compact. 
2. S is sequentially compact.
3. S is (countably) compact.
4. S is closed and bounded.

Exercises 44

Sequences

1.  Let   .an =
⎧ 

⎩ 
⎨ 

1 + 1
n , n odd

1 − 1
2n , n even

  (i)   Find positive integer N1  such that n > N1 ⇒ |an − 1| < 0.01.    
 (ii)  Find positive integer N2  such that n > N2 ⇒ |an − 1| < 0.000016.
(iii)  Given ε in R, ε > 0, find positive integer N such that 
                        n > N  ⇒ |an − 1| < ε.
(Hint:  Prove 2n > n for any n in N.  Let [ x ] be the greatest integer ≤ x , i.e. [ x ] =
n ∈ N and  n ≤ x < n + 1.  Then take N = [ 1/ε ]. )

2.  Prove that a sequence cannot converge to two different limits.

3. Let (an) be a real sequence. Suppose the subsequences (a2n) and (a2n-1) are
convergent and converges to the same value a.  Prove that an → a.

4.  Prove that if an → a , then |an | → | a |.  If  ( |an | ) converges , show by a counter
example that ( an ) need not converge.

5.  (Existence of n-th root.).  Suppose a ≥ 0 and n ∈ N, prove that there is a unique b
in R, b ≥ 0 such that bn = a.  (Use the completeness property of R.)
Prove by induction or otherwise, that h > 0 ⇒ (1 + h) n ≥ 1 + nh and deduce that     
a > 1 ⇒ 1 <  and conclude that  → 1.a1/n [ 1 + a − 1

n a1/n

Show that a > 1 ⇒   I.e., for any K > 0, there exists an integer Nn d ∞
Lim an = + ∞.

such that n ≥ N ⇒ an > K.   
Show that if  an → + ∞  and an ≠ 0 for all n,  then 1/ an → 0.

     Using these results find    and   for a = 1 , 0 < a < 1 and a = 0.n d ∞
Lim an

n d ∞
Lim a1/n

6.  Prove the following
      (i)      (ii)  .n d ∞

Lim n
n + 1 = 1 n d ∞

Lim n + 1
n3 + 4 = 0

7.   Use Squeeze Theorem or the Comparison test to prove
(i)      (ii)  n d ∞

Lim
sin(n)

n = 0 n d ∞
Lim n!

nn = 0
(iii)    n d ∞

Lim n1/n = 1
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      [Hint: write let hn =  and show that n = ( 1 + hn) n ≥ 1 + ]n1/n − 1 n(n − 1)
2 hn

2

(iv)   , where α(n) = number of primes dividing n.  [Hint: show  n d ∞
Lim

(n)
n = 0

α(n) ≤ √n.]

8.  Show that if (an ) converges to 0 and ( bn ) is a bounded sequence, then ( an bn )
converges to 0.  Hence, or otherwise, show that .n d ∞

Lim 2n − 1
3n + 1

n
= 0

9.  Find the limit of the following sequences.
(i)  ,  a ≤ 1     (ii)  ( an ), where   n 1 − (1 − a

n )1/3 an = 1
n2+1 + 1

n2+2 + £ + 1
n2+n

[Hint :  1 −  k3 = (1 − k)(1 + k + k2).  Use Squeeze Theorem.]

Monotone Convergence Theorem 

10.  Show that ( (1+1/n)n ) is an increasing sequence.   Show that (1+1/n)n < 3.   
Hence deduce that it is convergent.

11.  (i)  Suppose ( an ) is a decreasing (respectively increasing) sequence.  Show that
the sequence ( Un ) , where  is also a decreasingUn = a1 + a2 + £ + an

n
(respectively increasing) sequence.  Hence deduce that the sequence 

 is convergent.( 1
n (1 + 1

2 +£+ 1
n ) )

        (ii)  Prove that  an → a ⇒     Show that the converseUn = a1 + a2 + £ + an
n d a.

is false.
12.  Suppose ( an ) is a monotone sequence.   Prove that  ( an ) is convergent if and

only if (  ) is convergent.an
2

13.   Suppose   and |q| < 1.  Show that    Hence deduce that  n d ∞
Lim an+1

an = q n d ∞
Lim an = 0.

 for any real number x.n d ∞
Lim xn

n! = 0

14.   Suppose ( an ) is a sequence defined by a1 = 1,   an+1 = 2 (2an + 1)/(an +3 ) for n ≥
1.  Prove that  1 ≤ an < 2 and that ( an ) is increasing.  Hence deduce that ( an ) is
convergent and an → 2.

15.  Show that if for a sequence ( an ), the subsequence ( a2n )  and ( a2n−1 ) both
converges to a , then an → a. 

16.  Suppose a1 > 0.  For n ≥ 1, define .  Show that the sequence is   an+1 = 1
1 + an

convergent and find its limit.  [Hint: first show that ( a2n )  and ( a2n−1 ) are
bounded monotone sequences converging to the same limit.]

17.   Suppose ( an ) is a sequence of positive terms defined by  an+1 = 3 (an + 1)/(an +3
) for n ≥ 1.  Prove that  if  a1 < √3 then ( an ) is strictly increasing and if  a1 > √3
then ( an ) is strictly decreasing.  Hence deduce that ( an ) is convergent and
determine its limit.

18.  Suppose   an → a  and that |a| < 1.  Show then that  → 0.an
n
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19.  Show that if a sequence is convergent and converges to a, then any subsequence
is also convergent and converges to a . 

20.  If ( an ) is a Cauchy sequence and it has a convergent subsequence, then ( an ) is
convergent and has the same limit as the subsequence.  

21.  Prove that every Cauchy sequence in R has a convergent subsequence.  Deduce
Cauchy principle of  convergence for real sequencces.  

       [Hint:  Bolzano-Weierstrass Theorem.]

Subsets of the real numbers.

22. For each of the following statements, determine whether it is true or false and
justify your answer.

(a)  Every bounded sequence converges.
(b)  A convergent positive sequence of positive numbers has a positive limit.
(c)  A convergent sequence of rational numbers has a rational limit.
(d)  The limit of a convergent sequence in the interval (a, b) also belongs to (a, b).
(e)  The set of irrational numbers is a closed subset of R.
(f)  The set of rational numbers in the interval [0, 1] is (countably) compact.
(g)  A subset of a (countably) compact set is also (countably) compact.
(h)  Every closed set is compact.
(i)  Every bounded set in R is a closed subset of R.
(j)  Every sequence of rational numbers has a convergent subsequence.
(k)  Every sequence in (0, 1) has a convergent subsequence.

23.  Let S be the interval [1, 5).    
(a)  Using the definition of sequential compactness, show that S is not sequentially
compact.
(b) Using the definition of countably compactness, show that S is not countably
compact.
(c)  Using the definition of closedness, show that S is not closed. 

24.   Let S be the set of rational numbers in [0,1].
(a) Using the definition of sequential compactness, show that S is not sequentially
compact.
(b) Using the definition of countably compactness, show that S is not countably
compact.
(c)  Using the definition of closedness, show that S is not closed.

25.  For c >0, consider the quadratic equation  x2 − x − c = 0,  x > 0.
Define the sequence ( xn ) recursively by fixing x1 > 0 and then, if n is an index
for which xn is defined, defining  .xn+1 = c + xn

Prove that the sequence ( xn ) converges monotonically to the solution of the
above equation.
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26.  Suppose  ( bn) is a bounded sequence of non-negative numbers and r is a number
such that 0 ≤ r < 1.  Define sn = b1r + b2r 2 + … + bn r n  for each n in P.  Prove
that (sn ) is convergent.

27.   Show that [2, 3]∪[4,5] is (countably) compact.

28.  Let A and B be compact subsets of R.  Show that A∪B and A∩B are (countably)
compact.

29.   If A∪B is (countably) compact, does it follow that both A and B are (countably)
compact?
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