
Chapter 14 Improper Integral and Lebesgue Integral  
 

Introduction.   
 

The concept of Riemann integral of a function presupposes that the function is defined on a 

bounded subset of , usually a connected interval and the function is necessarily bounded on 

this bounded and connected interval.  Since the function is bounded, by arbitrarily assigning 

values at the boundary or end points of the connected interval, we may always assume that the 

domain of the function is a closed and bounded interval, say [a, b].  Lebesgue's Theorem then 

asserts that a function :[ , ]f a b →  is Riemann integrable if, and only if, it is continuous 

except on a set of measure zero in [a, b].  Hence, we have two obvious situations when a 

function is not Riemann integrable.  The first is when f is discontinuous on a set of positive 

measure even though f is bounded.  The second is when either f is not bounded or the domain 

is not a bounded subset of .  We shall be concerned with this later case.  Obviously, this 

presents infinite possibilities and situations.  We shall describe the more manageable ones here.  

 

We shall first consider functions on unbounded domains.  Domains are assumed to be 

connected. 

 

Suppose :[0, )f  → is such that for any b > 0, the restriction of f to [0, b] is Riemann 

integrable.  Cauchy's definition of the improper integral is defined to be 

                                        
0 0

lim ( )
b

b
f f x dx

+

→+
=  . 

We shall see later that this definition is equivalent to the Lebesgue integral 
[0, )

L f
  if f is 

non-negative and the limit exists.  We say f is improperly integrable if the limit 
0

lim ( )
b

b
f x dx

→+ 
exists and is finite.   

                      
 

 

Note that by Lebesgue's Theorem f is integrable on [0, b] if, and only if, f is continuous except 

on a set of measure zero in [0, b].  Thus, if f is Riemann integrable on [0, b] for any b > 0, then 

f is continuous on [0, ) except on a set of measure zero.   We can deduce this as follows.  Take 

b to be any integer n and let Sn to be the set of measure zero in [0, b] on which f is discontinuous.   

Then the set S on which f is discontinuous is a countable union  :nS n and is a set of 

measure zero, since each Sn is of measure zero and the measure of S, (S)   (Sn) = 0, where 

f(x)

x

y
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 is the Lebesgue measure.  This means f is continuous almost everywhere on [0, ) and so f  

is (Lebesgue) measurable on [0, ).   

 

Similarly, for function  : ( ,0]f − → such that f is Riemann integrable on [a, 0] for any a < 

0, we can define the improper integral, 

                                             
0 0

lim ( )
aa

f f x dx
− →−

=  . 

And if furthermore, f is non-negative and if the limit exists, then the improper integral is also 

the Lebesgue integral. 

 

Plainly, for non-positive function f satisfying either f is Riemann integrable on [0, b] for any b 

> 0 or f is Riemann integrable on [a, 0] for any a < 0, the improper integral   
0

0
 or f f

+

−  , if 

it exists is also the Lebesgue integral. 

 

For non-negative function f defined on the whole of , which is the only interval unbounded 

on both sides, we can define the improper integral as 

                                           lim ( )
t

tt
f f x dx



− −→−
=  , 

if f is Riemann integrable on [−t, t] for each t > 0. 

 

We would also like to use the convergence theorems in Lebesgue integration theory to deduce 

statements about improper Riemann integrals.  The notion of Lebesgue integrability is a notion 

about absolute integrability, meaning f is Lebesgue integrable if, and only if, | f | is Lebesgue 

integrable.  Thus, if a function f is such that the improper integral of f exists but the improper 

integral of | f | does not exist, then it is not necessary that the improper Riemann integral is 

equal to the Lebesgue integral.  For instance, take the function f defined by f (x) = sin(x)/x for 

x  0 and f (0) = 1, the improper Riemann integral  
0

f
+

  exists and equals /2.  But the 

improper integral 
0

f
+

 does not exist.  We can deduce this as follows. Note that    

( 1) ( 1)

sin( ) 1 2
sin( )

k k

k k

x
dx x dx

x k k

 

  − −
 =   for each integer k > 0.   Thus, we get, 

                          
0 ( 1)

1 1

sin( ) 2
( )

n nn k

k
k k

x
f x dx dx

x k

 

 −
= =

=    . 

And so, since 
1

2

k k



=

  is divergent, 
0

f
+

 does not exist.  It follows that f is not Lebesgue 

integrable. 

   

14.1 Improper Integral on Unbounded Domain   
 

Definition 1. 

1. Suppose :[ , )f a  → is such that f is Riemann integrable on every closed sub-interval 

of [a, ).  We define the improper Riemann integral by ( ) lim ( )
t

a at
f x dx f x dx

+

→+
=  .    

2. If : ( , ]f b− → is Riemann integrable on every closed sub-interval of (−  b], then we 

define the improper integral by  ( ) lim ( )
b b

tt
f x dx f x dx

− →−
=  .                                                                                               
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3. If :f → is such that  f  is Riemann integrable on every closed sub-interval of , 

then we define the improper integral by ( ) lim ( ) lim ( )
c t

t ct t
f x dx f x dx f x dx

+

− →− →+
= +                                                                          

for some c in . 

 

In each case if the limit exists, then we say the improper integral is convergent, otherwise it is 

divergent. 

 

Plainly, if  ( )
a

f x dx
+

 exists, then ( )
r

f x dx
+

  exists for any r  a.   Similar conclusion for the 

other two types of improper integral is valid. 

 

In general, convergence of the integral  ( )
a

f x dx
+

  (respectively ( )
b

f x dx
− , ( )f x dx

+

− ) 

does not imply the convergence of ( )
a

f x dx
+

  (respectively ( )
b

f x dx
− ,  ( )f x dx

+

−  ). 

If ( )
a

f x dx
+

 (respectively ( )
b

f x dx
− , ( )f x dx

+

− ) exists, then we say the improper 

integral is absolutely convergent.  Absolute convergence amounts to the function f being 

Lebesgue integrable.   

 

We have next a convergence theorem. 

 

Theorem 2.  Suppose :[ , )f a  →  is Riemann integrable on every closed sub-interval of 

[a, ).   Then the improper integral ( )
a

f x dx
+

 exists if, and only if, for every  > 0, there 

exists a number N > 0 (depending on ) such that for all s and t > N, ( )
t

s
f x dx  . 

 

Proof.  Suppose ( )
a

I f x dx
+

=   exists.  Then given any  > 0 there exists N > 0 such that   

                                     ( )
2

r

a
I f x dx


−   for r > N. 

Therefore, 

( ) ( ) ( ) ( ) ( )
t t s t s

s a a a a
f x dx f x dx f x dx f x dx I I f x dx= −  − + −       

                  ( ) ( )
2 2

t s

a a
f x dx I I f x dx

 
 − + −  + =                                          

for r, s > N.   

Conversely, assume the condition is satisfied, that is, for every  > 0, there exists a number N 

> 0 such that for all s and t > N, ( )
t

s
f x dx  . 

 Let (an) be a sequence in [a, ) such that an → .  Then there exists an integer M > 0 such 

that n  M  an > N.  Hence the sequence ( )( )
na

a
f x dx satisfies that   

               , ( ) ( ) ( )
n m n

m

a a a

a a a
n m M f x dx f x dx f x dx   − =    .   
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Therefore, ( )( )
na

a
f x dx  is a Cauchy sequence and so by the Cauchy Principle of 

Convergence, it is convergent.  Suppose ( )
na

a
f x dx A→ .  We shall show that 

( )
a

f x dx A


= .  We shall show that for any sequence (bn) in [a, ) such that bn → ,

( )
nb

a
f x dx A→ .   Suppose ( )

nb

a
f x dx B→ .   For any  > 0, there exists an integer N1 such 

that  

                                            1 ( )
3

nb

a
n N f x dx B


  −  .    -------------------------  (1) 

Since ( )
na

a
f x dx A→ , there exists an integer N2 such that  

                                          2 ( )
3

na

a
n N f x dx A


  −  .     -------------------------  (2) 

By assumption, there exists a number N > 0 such that for all s and t > N,  

                                                        ( )
3

t

s
f x dx


 .    

Since an →  and bn → . and there exists an integer M > 0 such that  

n  M  an, bn > N.    

Therefore,        

                                                ( )
3

n

n

b

a
n M f x dx


   .  -------------------------  (3) 

Hence, for n  max(N1, N2,  M), 

( ) ( ) ( )
n n n

n

b b a

a a a
B A B f x dx f x dx f x dx A− = − + + −     

           ( ) ( ) ( )
3 3 3

n n n

n

b b a

a a a
B f x dx f x dx f x dx A

  
 − + + −  + + =   . 

Since  > 0 is arbitrary, B = A.  This shows that ( )
a

f x dx


 is convergent.  This completes the 

proof. 

 

We have a similar result for the integral ( )
b

f x dx
− . 

 

Theorem 3.  Suppose  : ( , ]f b− →  is Riemann integrable on every closed sub-interval of 

(−  b.  Then the improper integral ( )
b

f x dx
−  exists if, and only if, for every  > 0, there 

exists a number N < 0 such that for all s and t < N,  ( )
t

s
f x dx  . 

                                              

The proof of Theorem 3 is similar to that of Theorem 2. 

 

Theorem 2 and Theorem 3 together then gives a convergence criterion for integrals of the type 

( )f x dx
+

− . 

 

For non-negative function  :f → , we have the following results concerning convergence. 
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Theorem 4.  If :f → is Riemann integrable on every closed sub-interval of  and is non-

negative, then  ( ) lim ( )
t

tt
f x dx f x dx

+

− −→
=  .  

 

Proof. Suppose ( )f x dx
+

− is convergent.  Then 
0

0
lim ( )  and lim ( )

t

tt t
f x dx f x dx

−→ →   are 

convergent. Therefore, ( )
0

0
lim ( ) lim ( ) ( )

t t

t tt t
f x dx f x dx f x dx

− −→ →
= +    

                                                           
0

0
lim ( ) lim ( )

t

tt t
f x dx f x dx

−→ →
= +   

                                                            ( )f x dx
+

−
=  .                                                     

                                                     

Conversely, suppose lim ( )
t

tt
f x dx

−→  is convergent.  Then since f is non-negative,  

 
0

( ) ( )
t

g t f x dx=  is an increasing function on [0, ).  In particular,  

                     
0

( ) ( ) ( ) lim ( )
t t t

t tt
g t f x dx f x dx f x dx

− −→
=      

Hence, g is bounded above and so  
0

lim ( ) sup ( ) : [0, )
t

t
f x dx g t t

→
=    by the completeness 

of .  It can be shown similarly that 
0

( ) ( )
t

h t f x dx
−

=  is an increasing function bounded 

above by lim ( )
t

tt
f x dx

−→  .  Thus,  
0

lim ( ) sup ( ) : [0, )
tt

f x dx h t t
−→

=   . This means ( )f x dx
+

−   

is convergent.  By the above discussion, ( ) lim ( )
t

tt
f x dx f x dx

+

− −→
=  .  This completes the 

proof. 

 

Suppose :f → is Riemann integrable on every closed sub-interval of .  We can define 

the principal value of ( )f x dx
+

− to be lim ( )
t

tt
f x dx

−→  .  Note that though ( )f x dx
+

−  may be 

divergent its principal value may exist.  For example, take f (x) = x.   Then plainly, 

( )f x dx
+

− is divergent but its principal value is 0 as ( ) 0
t

t
f x dx

−
= . 

 

Remark.  Theorem 4 simply states that for a non-negative function :f → ,  which is 

Riemann integrable on every closed sub-interval of , the improper integral ( )f x dx
+

− is 

equal to its principal value.  The proof of Theorem 4 also shows that if we know that  

( )f x dx
+

− is convergent, then  ( )f x dx
+

− , the improper integral, is equal to its principal 

value.  Thus, very often we just need to compute the principal value in order to obtain the 

improper integral once convergence is ascertained. 

 

 

Example 5.  

(1)   Let f (x) = 1/(1+ x2) .   Then for any t > 0, 1 1

00
( ) tan ( ) tan ( )

t t

f x dx x t− − = =  . 
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Thus, 1

0
( ) lim tan ( )

2t
f x dx t


−

→
= =  .  Also, 1 1( ) tan ( ) 2 tan ( )

t t

tt
f x dx t t− −

−−
 = =   and so                        

1( ) lim2 tan ( )
t

f x dx t 


−

− →
= = . 

(2)  
0

xxe dx


−

    

   
00 0

t tt
x x xxe dx e x e dx− − − = − +   , by integration by parts, 

                
0

1
0 1 1

t
x x t t

t t

t
e x e e t e

e e

− − − − = − − = − − + + = − −                                                                         

Therefore, 

                   
0 0

1
lim lim 1

t
x x

t tt t

t
xe dx xe dx

e e


− −

→ →

 
= = − − 

 
   .    

Now 
1

lim lim 0
t tt t

t

e e→ →
= = by L' Hôpital's Rule.  Thus, 

0
1 0 0 1xxe dx


− = − − = .   

(3)   
0

xdx


  is divergent since 
2

0
lim lim

2

t

t t

t
xdx

→ →
= = +  . 

 

 

Definition 6.  If  ( )
a

f x dx
+

  is convergent, then we say  ( )
a

f x dx
+

 is absolutely 

convergent. Similarly, if  ( )
b

f x dx
−  is convergent, then we say ( )

b

f x dx
− is absolutely 

convergent.  Likewise, if ( )f x dx


− is convergent, then we say ( )f x dx


− is absolutely 

convergent. 

 

Theorem 7.   If  ( )
a

f x dx
+

  respectively, ( )
b

f x dx
− , ( )f x dx



−  is convergent, then  

( )
a

f x dx
+

 respectively, ( )
b

f x dx
− , ( )f x dx



−  is convergent. 

 

Proof.   Suppose ( )
a

f x dx
+

 is convergent.  Then by Theorem 2, for every  > 0, there exists 

a number N > 0 such that for all s and t > N,          

                                      ( )
t

s
f x dx   . 

It follows that for all s and t > N, ( ) ( )
t t

s s
f x dx f x dx    .  Hence, by Theorem 2,  

( )
a

f x dx
+

 is convergent.  For the case of ( )
b

f x dx
−  and ( )f x dx



− , the proof proceeds in 

the same way. 

 

Definition 8.   If  ( )
a

f x dx
+

  respectively, ( )
b

f x dx
− , ( )f x dx



− is convergent and  

( )
a

f x dx
+

 respectively, ( )
b

f x dx
− , ( )f x dx



−  is divergent, then we say ( )
a

f x dx
+

  

respectively,   ( )
b

f x dx
− , ( )f x dx



−  is conditionally convergent. 
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Example 9.  Let 

sin( )
,  if 0,

( )

1,   if 0

x
x

f x x

x




= 
 =

.  Then 
0 0

sin( )
( )

x
f x dx dx

x

 

=  .  We can establish 

that
0

sin( )x
dx

x



  is convergent as follows. 

 

For t > s > 0,  
2 2

sin( ) cos( ) cos( ) cos( ) cos( ) cos( )
t

t t t

s s s
s

x x x s t x
dx dx dx

x x x s t x

 
= − − = − − 

 
          

by integration by parts.  Therefore, 

                        
2

sin( ) 1 1 1 2t t

s s

x
dx dx

x s t x s
 + + =  .      ---------------------------  (1). 

For any  > 0, there exists a number K > 0 such that 2/K<  It follows that for t > s > K, 

                                      
sin( ) 2 2t

s

x
dx

x s K
   . 

Therefore, by Theorem 2, 
0

sin( )x
dx

x



  is convergent.  Actually,  
0

sin( )

2

x
dx

x



= .  However, 

0

sin( )x
dx

x



 is divergent.  To see this, note that 

                             
( 1) ( 1)

sin( ) 1 2
sin( )

k k

k k

x
dx x dx

x k k

 

  − −
 =                       

and so 
0

1

sin( ) 2 1nn

k

x
dx

x k



 =

   . 

Therefore, since
1

1

k k



=

  is divergent, it follows that 
0

sin( )x
dx

x



 is divergent.  Hence, 

0

sin( )x
dx

x



 is conditionally convergent. 

 

For non-negative function f we have also the following comparison test for convergence.  

Indeed, we have used the following result in the proof of Theorem 4 implicitly. 

 

Theorem 10.  If  ( )
a

g x dx


 exists and 0  f (x)  k g(x) for x  a and :[ , )f a  → is 

Riemann integrable on every closed sub-interval of [a, ), then ( )
a

f x dx


 exists. 

 

Proof.  By hypothesis, ( ) ( )
t

a
h t f x dx=  is an increasing function on [a, ) and bounded above 

by ( )
a

k g x dx


 .   Let K = sup{h(t): t  [a, )}.   Then given any  > 0, there exists a t0 in [a, 

) such that K −  < h(t0)  K.   Now, given any sequence (an) in [a, ) such that an → , 

there exists an integer N such that n  N  an > t0.   Therefore,  

                     n  N  h(an)  h(t0)  K −  < h(t0)  h(an)  K | h(an) − K| < .   
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This shows that for any sequence (an) in [a, ) such that an → , h(an) → K.  Therefore, by 

definition, lim ( ) lim ( )
t

at t
h t f x dx K

→ →
= = .  This means ( )

a
f x dx



 exists. 

 

Note that we have used the completeness property of by using the supremum of {h(t): t  

[a, )}.   The following is a technical observation which may come in handy. 

 

Lemma 11.  If for every  > 0, there exists a number R such that | f (x) − f (y) |<  whenever 

x, y > R, then f (x) tends to a limit as x tends to . 

 

Proof.  Take any sequence (an) such that an→ .  Then there exists an integer N such that      

n  N  an > R.  Thus, | f (an) − f (am) | < .  This means ( f (an)) is a Cauchy sequence.  

Consequently (f (an)) is convergent.  Suppose f (an) → L.   We shall show that for any 

sequence (bn) such that bn→ , f (bn) → L.   By assumption, there exists a number R1 such 

that | f (x) − f (y) | < /2 whenever x, y > R1.  Plainly, there exists an integer M such that n  M 

 an, bn > R1.  Since f (an) → L, there exists an integer M1 such that  

                                           n  M1  | f (bn) − L | <  /2.  

Therefore, n  max (M  )  | f (bn) − L |  | f (bn) − f (an) + f (an)− L |  

                                                     | f (bn) − f (an) | + | f (an)− L < /2 + /2 = . 

This shows that f (bn) → L.  Hence, lim ( )
x

f x L
→

= .  

 

Theorem 12.  The following is equivalent to ( )f x dx S


−
= . 

Given any  > 0, there exists a number R > 0 such that , ( )
v

u
u v R f x dx S 

−
  −  . 

Proof.   

(i) Suppose ( )f x dx S


−
= .  Then given any  > 0 there exists a number R > 0 such that   

             ( )
2

u

u
u R f x dx S


−

  −   and that ( )
2

u

v
f x dx


  and ( )

2

u

v
f x dx

−

−
  .   

Therefore, for u, v  R, we have that if v > u, 

 ( ) ( ) ( ) ( ) ( )
2 2

v u v u v

u u u u u
f x dx S f x dx S f x dx f x dx S f x dx

 


− − −
− = − +  − +  + =                       

and if v < u,  

( ) ( ) ( ) ( ) ( )
2 2

v v v v v

u u v u v
f x dx S f x dx f x dx S f x dx f x dx S

 


− −

− − − − −
− = + −  + −  + =     . 

Hence, for u, v  R, ( )
v

u
f x dx S 

−
−  .     

(ii) Conversely, suppose for any  > 0, there exists a number R > 0 such that  

, ( )
v

u
u v R f x dx S 

−
  −  . 

Then for any x, y > R, 

( ) ( ) ( ) ( ) ( ) 2
y y x y x

x R R R R
f x dx f x dx S S f x dx f x dx S S f x dx 

− − − −
= − + −  − + −      .  
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It follows by Theorem 2 that 
0

( )f x dx


 is convergent.   We deduce in the same way that  

0

( )f x dx
− is convergent.  Hence ( )f x dx



−  is convergent.  Let ( )f x dx S


−
= .  Then by 

part (i), there exists u  R such that ( )
u

u
f x dx S 

−
−    .  But ( )

u

u
f x dx S 

−
−  .  Hence, 

( ) ( ) ( ) ( ) 2
u u u u

u u u u
S S S f x dx f x dx S f x dx S f x dx S   

− − − −
  − = − + −  − + −  + =    .  

Since  is arbitrary, S' = S. 

 

We next have the following convergence criterion that we shall use later, 

 

Theorem 13.   Suppose there exist real numbers R, M > 0 such that for all |x| > R, 

x2 | f (x) |  M and f is Riemann integrable on any closed interval in .   Then  ( )f x dx


− is 

absolutely convergent. 

Proof.  By hypothesis, f is Riemann integrable on [0, R].  For x > R > 0,
2

( )
M

f x
x

 . 

Since 
2

1

R
dx

x



 is convergent, by Theorem 10, ( )
R

f x dx


 is convergent.  It follows that 

( )
R

f x dx


 is absolutely convergent and therefore convergent (Theorem 7).   We show 

similarly that ( )
R

f x dx
−

− is absolutely convergent.  Therefore,        

                 
0 0

( ) ( ) ( )
R

R
f x dx f x dx f x dx

 

= +    

is convergent.  Likewise,  
0 0

( ) ( ) ( )
R

R
f x dx f x dx f x dx

−

− − −
= +    is convergent. 

Therefore, ( )f x dx


−  is absolutely convergent. 

 

Remark.  Similar result holds for ( )
a

f x dx


   or ( )
b

f x dx
−  . 

 

Example 14.  
1

x pe x dx


−

  converges for all p. 

Note that 
2

2 0
p

x p

x

x
x e x

e

+
− = →   as x → .   Therefore, there exists a number R > 0 such that  

2 1x px e x−   for x > R.   Since  
2

2
p

x p

x

x
x e x

e

+
− =  is continuous on [1, R] and so is Riemann 

integrable on [1, R], it follows from Theorem 13 that 
1

x pe x dx


−

  is convergent. 

 

14.2 Improper Integrals on Bounded Domain, Part 1 
 

Definition 15 
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(1)   Suppose f is continuous on (a, b] and that lim ( )
x a

f x
+→

=  .  Then 

( ) lim ( )
b b

a tt a
f x dx f x dx

+→
=  , if the limit exists. 

(2)   Suppose f is continuous on [a, b) and that lim ( )
x b

f x
−→

=  .  Then  

( ) lim ( )
b t

a at b
f x dx f x dx

−→
=  , if the limit exists. 

(3)   Suppose f is continuous on  [ , ]a b c− , where a < c < b and that lim ( )
x c

f x
→

= + .  Then  

( ) lim ( ) lim ( )
b c b

a a st c s c
f x dx f x dx f x dx

− +→ →
= +   ,  if the limits exist. 

 

Example 16.    

 

(1)  
1 1

0 0
ln( ) lim ln( )

tt
x x dx x x dx

+→
=  .  Using integration by parts, 

       

1
2 2 2

1 1 11
ln( ) ln( ) ln( )

2 2 2 2t t t
t

x x t x
x x dx x dx t dx

x

 
= − = − − 

 
    

        

1
2 2 2 21

ln( ) ln( )
2 4 4 4 2

t

t x t t
t t

 
= − − = − + − 

 
. 

But  
2 3

21
2

1 20 0 0 0

ln( )
lim ln( ) lim lim lim 0

2

t

t t t t
t t

t t
t t

+ + + +−→ → → →
= = = − = .                                                                          

Thus, 
2 2

1 1 1
ln( ) ln( )

4 4 2 4t

t t
x x dx t= − + − → −  as 0t +→ .                                                              

Therefore 
1

0

1
ln( )

4
x x dx = − .  

 

(2)   
1
3

1

1

1
dx

x−  . 

2 2
3 3

1 1
3 3

1
1 1

0 0 0 0

1 1 3 3 3 3
lim lim lim

2 2 2 2tt t t
t

dx dx x t
x x

+ + +→ → →

   
= = = − =  

   
  . 

Similarly,  

2 2
3 3

1 1
3 3

0

1 10 0 0
1

1 1 3 3 3 3
lim lim lim

2 2 2 2

t
t

t t t
dx dx x t

x x
− − +− −→ → →

−

   
= − = − = − − + =  

   
  .  

Therefore,  
1 1 1
3 3 3

1 1

1 10 0

1 1 1 3 3
lim lim 3

2 2

t

tt t
dx dx dx

x x x
+ −− −→ →

= − = + =   . 

 

(3)   

2
2 2

2 2 20 01 1 1 1
0

1 1 1 1 1
lim lim lim lim

( 2) ( 2) ( 2) 1 1

t
t

tt t t t
t

dx dx dx
x x x x x− + − +→ → → →

   
= + = − + −   − − − − −   

    .                                                                                                           

        But both limits do not exist, therefore the integral 
2

20

1

( 2)
dx

x −  is divergent.   

 

In a later section we shall consider convergence criterion and relation with Lebesgue integral. 
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14.3 Lebesgue Measure and Lebesgue Integral                    
 

In this section we give a review of Lebesgue theory. 

 

Definition 17.  For any function f, define the following associated functions: 

          f +(x) = (| f (x) | + f (x))/2  0, 

          f − (x) = (| f (x) | − f (x))/2  0. 

 

Then 
( ),  if  ( ) 0,

( )
0,       if  ( ) 0

f x f x
f x

f x

+


= 


  and  
( ),  if  ( ) 0,

( )
0,       if  ( ) 0

f x f x
f x

f x

−
− 

= 


.   

In particular, we have that f (x) = f +(x) − f − (x) and | f (x) | = f +(x) + f − (x). 

 

Here we shall present the definition of measurable function and the definition of (Lebesgue) 

measure on .   | f | is measurable need not imply that f is measurable.  For instance, if we 

assume the existence of non-measurable set E, then if we define f (x) = 1 for x in E and f (x) = 

−1 for x not in E, then | f | is measurable but f is not.   In view of this, we shall always assume 

or state the requirement that f be measurable.  

 

 

Lebesgue Measure. 
 

Suppose I is an interval, define (I) to be (b − a) if I is bounded and a and b are end points of 

I, with a < b.  Define (I) to be   if I is unbounded. 

 

Let  be the family of all countable collections of disjoint open intervals.  Define a function 

*  on  into the extended non-negative real numbers,  *: [0, ] + → =   by 

( )* ( )
I

I


  


=  . 

 

Suppose E is a subset of .   Define the family of countable cover of E by disjoint open 

intervals to be C (E) = {:   is a countable collection of disjoint open intervals covering E}. 

Define the Lebesgue outer measure of E by 

                                   *(E) = inf {*():   C (E)}. 

Thus, *(E) is either finite or . 

 

Definition 18.   A subset E of is said to be Lebesgue measurable if, and only if, for all 

subset X of , 

                  *(X) = *(XE) + *(X \ E), 

Equivalently, if for all X  , 

                  *(X)  *(XE) + *(X \ E). 

If E is measurable, the Lebesgue measure of E, (E) is defined to be the outer measure *(E). 

 

Properties 19.   

1.   and  are measurable, 

2.  If E is measurable, then its complement E−  is also measurable. 

            3. Any open subset of is measurable and so any closed subset of  is also 
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                measurable.  Hence any interval is measurable. 

4.  Countable union of measurable subsets is measurable and so countable intersection of 

measurable subsets is also measurable. 

5.  If *(E) = 0, then E and any subset of E is also measurable. 

6.  If E1, E2,  is a countable collection of disjoint measurable sets, then 

      ( ) ( )
1

: 1, 2,n n

n

E n E 


=

= =  .           

 

Measurable Function 
 

Definition 20. 

A function f: E →  is measurable if, and only if, for any open subset U of ,  f −1(U) is 

measurable. 

Hence, it is necessary that E be measurable for f to be measurable. 

 

The following is an immediate consequence of the definition. 

 

Properties 21. 

(1)  Suppose E is measurable.  Then every continuous function f : E →  is measurable. 

(2)  Suppose f : E →  is measurable and f (E)  X and  g : X →  is continuous.  Then the 

composite function g  f : E →  is measurable. 

(3)  Suppose f : E →  and g : E →  are measurable, then  f + g and   f g  are measurable. 

 

Lemma 22.  If  f : E →  is measurable, then  | f |,  f + and  f − are measurable. 

 

Proof.  If f is measurable, then f  f  is measurable by Property 21 (3) and by Property (2),  | f | 

=  ( f  f ) is measurable.  Thus by Property 21 (3),  f + = ( | f | + f )/2 is measurable.  Likewise, 

f  − = ( | f | − f )/2 is measurable. 

 

Simple Function and Lebesgue Integral 
 

Definition 23. 

A function s: E →  is said to be simple if s is measurable and s takes on only a finite 

number of values.   

For any subset A of ,  the characteristic function of A, A  is the function defined by  

                                 
1,  if 

( )
0,  if 

A

x A
x

x A



= 


 . 

Thus, if s: E →  is simple, s(E) = {1, 2, , n} and Ai = s-1(i), i =1, , n, then 

                                         
1

i

n

i A

i

s a 
=

=  . 

Note that each Ai is measurable since s is measurable. 

 

For a non-negative simple function s: E → + = [0, ), we define the Lebesgue integral of s 

to be 

                                  ( )
1

n

i i
E

i

sd A  
=

=    
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where 
1

i

n

i A

i

s  
=

=  , s(E) = {1, 2, , n} and Ai = s−1(i), i =1, , n.  Hence, 
E

sd  is 

either finite or infinite. 

If the Lebesgue measure of E, (E) is finite, we can define for a simple function s: E →  

(not necessarily non-negative), the Lebesgue integral of s to be  

                                        ( )
1

n

i i
E

i

sd A  
=

=  , 

where 
1

i

n

i A

i

s  
=

=  ,  s(E) = {1, 2, , n} and Ai = s-1(i), i =1, , n.  

Note that 
E

sd is finite since each (Ai) is finite.    

 

We say the simple function s is Lebesgue integrable if its Lebesgue integral is finite. 

Thus, a simple function defined on a set E of finite measure is Lebesgue integrable. 

 

Definition 24. 

Suppose (E) is finite, i.e., (E) < .   Suppose f : E → is a bounded function. 

We say f is Lebesgue integrable if, and only if, given  > 0 there exists simple functions u and 

v on E such that 

                               u   f    v 

and ( )
E

v u d −  .   Following Darboux, we define the Lebesgue integral  

            sup :  is a simple function on  such that 
E E

fd d E f    =   . 

Notice that the Lebesgue integral of u and v are analogous to the lower Darboux and upper 

Darboux sums for a bounded function defined by step functions defined for a partition of a 

finite interval.   

 

Theorem 25. 

Suppose (E) < .   Suppose f : E →  is a bounded function.  Then f is Lebesgue integrable 

if, and only if, f is measurable if, and only if, | f | is Lebesgue integrable.   In particular, when 

f  is Lebesgue integrable,  f + and  f −  are Lebesgue integrable and      

                                     
E E E

fd f d f d  + −= −   . 

 

Proof.   Suppose (E) < .   Suppose f : E →  is a bounded function.  We can define the  

lower Lebesgue integral to be      

                       sup :  is a simple function on  such that 
E E

L fd d E f    =    

 and the upper Lebesgue integral to be 

              sup :  is a simple function on  such that 
E E

U fd d E f    =   . 

                

The condition in Definition 24 is equivalent to that the lower and upper Lebesgue integrals 

are the same.  It can be shown that f is measurable if, and only if, the lower and upper 

Lebesgue integrals are the same. We omit the details here as it is a little tedious.  (For a 

reference see Proposition 3, Chapter 4, Royden's "Real Analysis", Third Edition.)  

Note that f   =  f + −  f − .  Since f is measurable, f + and f − are measurable and so their lower 

and upper Lebesgue integrals are the same.  It follows that
E E E

fd f d f d  + −= −   . 
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Now we consider unbounded functions. 

 

Definition 26.  Lebesgue integral of non-negative function. 

Suppose f : E → 
+
 is a non-negative function and E is measurable.  Define the Lebesgue 

integral of  f  to be        

     sup :  is a non-negative simple function on  such that 0
E E

fd sd E s f  =    . 

We say f is Lebesgue integrable (or summable) if the integral 
E

fd is finite. 

 

The following is well known. 

 

Lemma 27.  Suppose f : E → 
+
 is a non-negative measurable function.  Then there exists 

an increasing sequence of non-negative measurable simple functions {sn : E → 
+
} such that  

s1  s2     f  and ( sn ) converges pointwise to  f  .   

 

 

Theorem 28. Lebesgue Monotone Convergence Theorem. 

Suppose { f n : E → 
+
} is a sequence of non-negative increasing measurable functions 

tending pointwise to  f : E → 
+
. Then f is measurable and

n
E E

f d fd   ..  

   

In view of Theorem 28 we have: 

 

Corollary 29. Suppose f : E → 
+
 is a non-negative measurable function.  Then there exists 

an increasing sequence of non-negative measurable simple functions {sn : E → 
+
} such that  

s n   f ,  ( sn )  converges pointwise to  f  and 
n

E E
s d fd   .  

 

In some sense, Theorem 25 motivates the next definition. 

 

Definition 30.  Lebesgue integral of a real valued functions. 

Suppose f : E →  is a measurable function.  We say f is Lebesgue integrable if, and only if,  

E
f d   . Note that we then have ,

E E E
f d f d f d  + −      .  We define the 

Lebesgue integral of f to be 
E E E

fd f d f d  + −= −   . 

 

Theorem 31.  Lebesgue Dominated Convergence Theorem. 

Suppose { f n : E → } is a sequence of  measurable functions tending pointwise (almost 

everywhere) to  f : E → . Suppose further that there exists a Lebesgue integrable function  

:g E →  such that | f n |  g for all positive integer n and for almost all x in E (i.e., | f n |  g 

for all positive integer n except perhaps on a set of measure zero).  Then f n and f are 

Lebesgue integrable and 
n

E E
f d fd →  .   

 

Remark.  A reference for Lebesgue Monotone Convergence Theorem and Lebesgue 

Dominated Convergence Theorem is Royden's "Real Analysis, Pearson Prentice Hall Third 

Edition", Page 87 Theorem 10, page 91 Theorem 16.   Lemma 27 is well known and is often 
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stated without proof (see for example, Proposition 7 in Chapter 11 page 260 of Royden's 

"Real Analysis".)  One can produce the required simple functions by an appropriate dissection 

of the subinterval [0, n] in [0, ) for each n and use the pre-image of the subintervals of the 

dissection to define the simple function for each n. 

 

For bounded function defined on a bounded interval the following is well known. 

 

Theorem 32. Lebesgue. 

Suppose f :[a, b → is a bounded function on a closed and bounded interval [a, b.     

If f is Riemann integrable, then f is Lebesgue integrable, hence measurable and the Lebesgue 

integral 
[ , ]

( )
b

a b a
fd f x dx =  , where the right integral is the Riemann integral of f on [a, b. 

 

The following is a characterization of Riemann integrable functions in terms of continuity. 

 

Theorem 33.  Lebesgue.  

Suppose f :[a, b → is a bounded function on a closed and bounded interval [a, b.  f is 

Riemann integrable if, and only if, f is continuous except perhaps on a set of measure zero, i.e.,  

f is continuous almost everywhere. 

 

14. 4 Improper Integral and Lebesgue integral.                           
 

Theorem 34.  Suppose f :[a, ) → 
+
 is a non-negative function which is Riemann integrable 

on every closed sub-interval of  [a, ).  Then f is measurable.   f   is Lebesgue integrable if, and 

only if, the improper (Riemann) integral ( )
a

f x dx
+

 exists.  When f is Lebesgue integrable, the 

Lebesgue integral          

                                       
[ , )

( )
a a

fd f x dx
+


=  .  

Proof.   

 Since f is Riemann integrable on every sub interval of [a, ), or each integer n ≥ 1, define          

:[ , )nf a + →  by 
( ),   

( )
0,    

n

f x a x a n
f x

x a n

  +
= 

 +
.   Then ( f n ) is a monotone increasing 

sequence converging pointwise to  f.   Each f n  is Riemann integrable on [a, a + n] and 0 on 

(a+n, ).   Therefore, f n restricted to [a, a + n] is measurable by Theorem 32 and so for any 

open U not containing 0, ( )
1

1

[ , ]( ) ( )n n a a nf U f U
−

−

+=  is measurable.  For any open U 

containing 0, ( )
1

1

[ , ]( ) ( ) ( , )n n a a nf U f U a n
−

−

+=  +  , which is a union of measurable sets, is 

measurable.  This shows that f n is measurable.  By definition 26 and the fact that [a,) is a 

disjoint union of [a, a+n] and (a+n, ), the Lebesgue integral 

              
[ , ) [ , ] [ , ) [ , ]

0 ( )
a n

n n n n
a a a n a n a a n a

f d f d f d f d f x dx   
+

 + +  +
= + = + =     ,       

since the Lebesgue integral 
[ , ]

( )
a n

n
a a n a

f d f x dx
+

+
=   by Theorem 32. 

By the Lebesgue Monotone Convergence Theorem (Theorem 28), f is measurable and  

                                   
[ , ) [ , )

n
a a

f d fd 
 

→   . 
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That is, 
[ , )

lim ( ) lim ( )
a n t

a a an t
fd f x dx f x dx

+

 → →
= =   .   

f is Lebesgue integrable if, and only if, 
[ , )a

fd
 is finite if, and only, if the sequence  

( ) ( )[ , )
( )

a n

n
a a

f d f x dx
+


=  has a limit if, and only if, the improper integral ( )

a
f x dx

+


exists. 

Thus, when f is Lebesgue integrable,  
[ , )

( )
a a

fd f x dx
+


=  . 

 

Similarly, we can prove the following analogous results. 

 

Theorem 35.  Suppose f : (− , a] → 
+
is a non-negative function which is Riemann 

integrable on every closed sub-interval of  (− , a].  Then f is measurable.   f   is Lebesgue 

integrable if, and only if, the improper (Riemann) integral ( )
a

f x dx
− exists.   When f is 

Lebesgue integrable, the Lebesgue integral          

                               ( )( , ]
( ) lim ( )

a a

a tt
fd f x dx f x dx

− − →−
= =   . 

 

               

Theorem 36.  Suppose f : (− , ) → 
+
is a non-negative function which is Riemann 

integrable on every closed sub-interval of  (− , )   Then  f   is measurable.   f   is Lebesgue 

integrable if, and only if, the improper (Riemann) integral ( )f x dx


− exists.   When f is 

Lebesgue integrable, the Lebesgue integral          

                                ( )( , )
( ) lim ( )

t

tt
fd f x dx f x dx



−  − −→
= =   . 

 

             

Remark.  The proof of Theorem 36 is the same as for Theorem 34 by defining f n to be equal 

to f on [−n, n] and 0 elsewhere and making use of the fact that the improper (Riemann) 

integral  ( ) lim ( )
t

tt
f x dx f x dx



− −→
=   by Theorem 4. 

 

Theorem 37. Suppose f :[a, ) →  is Riemann integrable on every closed sub-interval of  

[a, ).  Then f is Lebesgue integrable if, and only if, the improper (Riemann) integral    

( )
a

f x dx
+

 exists.   When f is Lebesgue integrable, the Lebesgue integral          

                                     
[ , )

( )
a a

fd f x dx
+


=  , 

where the integral on the right is the improper Riemann integral. 

 

Proof.  By Definition 30, f is Lebesgue integrable if, and only if, | f | is Lebesgue integrable 

if, and only if, the improper integral ( )
a

f x dx
+

  exists by Theorem 34.  If f is Lebesgue 

integrable, 

                         
[ , ) [ , ) [ , )a a a

fd f d f d  + −

  
= −   . 

Note that | f | is Lebesgue integrable implies that both f + and  f −  are Lebesgue integrable.  
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By Theorem 34, 
[ , )

( )
a a

f d f x dx


+ +


=    and 

[ , )
( )

a a
f d f x dx


− −


=  .   Therefore, when f 

is Lebesgue integrable, 

          
[ , ) [ , ) [ , )

( ) ( )
a a a a a

fd f d f d f x dx f x dx  
 

+ − + −

  
= − = −         

                         ( )( ) ( ) ( )
a a

f x f x dx f x dx
 

+ −= − =  ,       

where all the improper integrals are convergent. 

 

The following result is similar to Theorem 37 and is proved in exactly the same way. 

 

Theorem 38.   Suppose   f :(−, a] → is Riemann integrable on every closed sub-interval 

of (−, a].  Then f is Lebesgue integrable if, and only if, the improper (Riemann) integral    

( )
a

f x dx
− exists.   Moreover, when f is Lebesgue integrable, the Lebesgue integral          

                                
( , ]

( )
a

a
fd f x dx

− −
=  , 

where the integral on the right is the improper Riemann integral. 

 

In view of Theorem 37 we can phrase absolute convergence of improper integral with 

Lebesgue integrability. 

 

 

Definition 39.   In view of Definition 6 of absolute convergence, if  f :[a, ) →  is 

Riemann integrable on every closed sub-interval of  [a, ), then ( )
a

f x dx
+

  is absolutely 

convergent if, and only if, ( )
a

f x dx
+

  is convergent if, and only if,  f is Lebesgue integrable 

on [a, ).   If  ( )
a

f x dx
+

 is conditionally convergent (see Definition 8), then this means  

( )
a

f x dx
+

 is convergent but  ( )
a

f x dx
+

 is divergent.  Hence, conditional convergent 

implies non-Lebesgue integrability. 

Similarly, if f : (−, a]→  is Riemann integrable on every closed sub-interval of (−, a],  

then ( )
a

f x dx
−  is absolutely convergent if, and only if, ( )

a

f x dx
−  is convergent if, and 

only if,  f  is Lebesgue integrable on (−, a].  ( )
a

f x dx
−   is conditionally convergent (see 

Definition 8), means that ( )
a

f x dx
−  exists but ( )

a

f x dx
−  is divergent or equivalently, f   is 

not Lebesgue integrable but the improper integral is convergent.   

 

Recall from Definition 8 that for f : (−, )→  which is Riemann integrable on every 

closed sub-interval of (−, ),  the improper integral ( )f x dx


−  converges absolutely if, and 

only if, for some a in  (hence any a) the improper integrals  ( )
a

f x dx
+

 and ( )
a

f x dx
−  

converge absolutely if, and only if,  f  is Lebesgue integrable on (−, a] and on [a, ) if, and 

only if,   f   is Lebesgue integrable.  Hence, absolute convergence of  f  is equivalent to  f  

being Lebesgue integrable. 
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( )f x dx


−  converges conditionally if either one of the improper integrals ( )
a

f x dx
+

   or  

( )
a

f x dx
− converges conditionally and this implies that  f  is not Lebesgue integrable on . 

 

 

 

Example 40. 

Let 

sin( )
,  if 0

( )

1,    if 0

x
x

f x x

x




= 
 =

 .  Then 
0 0

sin( )
( )

2

x
f x dx dx

x

 

= =   .  We have shown in 

Example 9 that f is conditionally convergent. Hence, f is not Lebesgue integrable on [0, ). 

 

14.5   Improper Integrals on Bounded Domain, Part 2 
 

If f :[a, b] →  is unbounded, then  f  is not Riemann integrable.  We shall consider the case 

when f has only one singularity at one of the end points of [a, b].  

 

Definition 41.   Suppose f :[a, b] → is such that  f  is Riemann integrable on any 

subinterval in (a, b].    

(1)  Suppose there is a sequence of points (xn ) in [a, b] such that | f (xn) | → as xn → a.   

Then if the limit 

                                   lim ( )
b

tt a
f x dx

+→
   

exists, this is defined to be the improper Riemann integral of f on [a, b]. 

 

(2) Suppose there is a sequence of points ( yn ) in [a, b] such that | f (yn) | → as yn → b.   

Then if the limit 

                                   lim ( )
t

at b
f x dx

−→
  

exists, this is defined to be the improper Riemann integral of f on [a, b]. 

 

(3)  Suppose there is a sequence of points (xn ) in [a, b] such that | f (xn) | → as xn → a and a 

sequence of points  ( yn ) in [a, b] such that | f (yn) | → as yn → b.  If for some c in (a, b) the 

improper integrals, ( )
c

a
f x dx  and ( )

b

c
f x dx exist, then the improper integral 

                            ( ) ( ) ( )
b c b

a a c
f x dx f x dx f x dx= +   . 

 

We have a convergence criterion similar to Theorem 2.  

 

Theorem 42.  Suppose f :[a, b] → 
+
is such that  f  is Riemann integrable on any 

subinterval in (a, b].   Then the improper integral ( )
b

a
f x dx exists if, and only if, for every  

> 0, there exists a number k > a (depending on ) such that for all a < s < t < k,          

                                                   ( )
t

s
f x dx        . 

The proof is similar to that of Theorem 2. 
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We now consider non-negative function f : [a, b] → 
+
,  Suppose  f  is measurable.  What is 

the relation between Lebesgue integral on [a, b] and improper Cauchy Riemann integral?   It 

will be very similar to the case of unbounded domain. 

 

 

Theorem 43.  Suppose f :[a, b] →
+
is such that  f  is Riemann integrable on any subinterval 

in (a, b).   Suppose f is either unbounded at a or at b or even at both points.   Then f is 

Lebesgue integrable on [a, b] if, and only if, the limit of the sequence of Riemann integrals, 

( )( )
b

n
a

f x dx , where f n = min( f , n), exists. 

 

Proof.    For each positive integer n, f n :[a, b] → 
+
 is defined by 

                                   
( ),   if ( )

( )
,  if  ( )

n

f x f x n
f x

n f x n


= 


, 

Thus, f n = min( f , n).   Take a decreasing sequence (xn) in (a, (a+b)/a )  such that xn →a and 

an increasing sequence (yn) in  ((a+b)/a, b) such that and yn →b.  Then f is Riemann 

integrable on [xn , yn] and so [ , ]n nx yf  is continuous except on a set An of measure zero.  

Therefore, f is continuous except perhaps on the set E = {An : n in }, whose measure is 

also zero since each An has measure zero.  Since f n = min (f , n) = ( f + n − | f − n|)/2 ,  f n is 

continuous except perhaps on a set of measure zero.   Since each f n is plainly bounded, f n is 

Riemann integrable and so is measurable and Lebesgue integrable by Theorem 32.   Plainly     

( f n ) is an increasing sequence and so is a sequence of increasing non-negative measurable 

functions converging pointwise to  f .  Therefore, by the Lebesgue Monotone Convergence 

Theorem (Theorem 28), f is measurable and the Lebesgue integrals,  

                                  
[ , ] [ , ]

n
a b a b

f d fd   . 

Since 
[ , ]

n
a b

f d  is equal to the Riemann integral ( )
b

n
a

f x dx ,   

                                                
[ , ]

( )
b

n n
a a b

f x dx f d  . 

Thus, f is Lebesgue integrable if, and only if, the limit lim ( )
b

n
an

f x dx
→  exists.  This completes 

the proof. 

 

Now, we shall apply the above proof to a different sequence of functions. 

 

Theorem 44.  Suppose f :[a, b] → 
+
is such that  f  is Riemann integrable on any 

subinterval in (a, b].   Suppose there is a strictly decreasing sequence (xn) in (a, b) such that xn 

→a but     f (xn ) →, that is,  f  is unbounded in any neighbourhood containing a.  Then f is 

Lebesgue integrable on [a, b] if, and only if, the improper Cauchy Riemann integral 

( )
b

a
f x dx exists. 

Proof.  For each integer n in , define f n :[a, b] → 
+
by 

                                

( ),   if  

( ) 0,   if  

( )  if  

n

n n

f x x x

f x a x x

f a x a




=  
 =

 .  
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Then since f is Riemann integrable on [xn ,b], f n is Riemann integrable for each n in .    

Therefore, by Theorem 32, f n is measurable and Lebesgue integrable for each n in .  

Obviously, ( f n ) is an increasing sequence of non-negative functions converging pointwise to  

f .  Therefore, by the Lebesgue Monotone Convergence Theorem, f is measurable and 

                                            
[ , ]

( )
b

n
a a b

f x dx fd  . 

Now, the Lebesgue integral  
[ , ]

( ) ( )
n

b b

n n n
a b a x

f d f x dx f x dx = =   .   Hence, 

                                          
[ , ]

( )
n

b

n
x a b

f x dx fd  . 

If f is Lebesgue Integrable, then the limit lim ( )
n

b

n
xn

f x dx
→  exists for any sequence (xn) in (a, b) 

such that xn → a+.  That is to say, the improper Cauchy Riemann integral ( )
b

a
f x dx  exists.   

On the other hand, if the improper Riemann integral exists, then for any sequence xn →a, 

[ , ]
( )

n

b

n
x a b

f x dx fd   and so  
[ , ]a b

fd   and f is Lebesgue integrable. 

 

Theorem 45.   Suppose f :[a, b] → is such that  f  is Riemann integrable on any subinterval 

in (a, b].   Suppose there is a strictly decreasing sequence (xn) in (a, b) such that xn →a but      

( )xf x →  , that is, | f  | is unbounded in any neighbourhood containing a.  Then f is 

Lebesgue integrable on [a, b] if, and only if, the improper Cauchy Riemann integral   

( )
b

a
f x dx exists.  Moreover, when f is Lebesgue integrable, the Lebesgue integral

[ , ]a b
fd     

is equal to the improper Cauchy Riemann integral, ( ) lim ( )
b b

a tt a
f x dx f x dx

+→
=  . 

 

Proof.  By Definition 30, f is Lebesgue integrable if, and only if, | f | is Lebesgue integrable 

if, and only if, both f + and f − are Lebesgue integrable.   By Theorem 44, the Lebesgue 

integral 
[ , ]

lim ( )
b

a b tt a
f d f x dx

+

+ +

→
=  = the improper Cauchy Riemann integral ( )

b

a
f x dx+

 .  

Similarly, the Lebesgue integral
[ , ]

lim ( ) ( )
b b

a b t at a
f d f x dx f x dx

+

− − −

→
= =   .   

In particular, if the improper Riemann integral ( )
b

a
f x dx exists, then the improper integrals   

( )
b

a
f x dx+

 and  ( )
b

a
f x dx−

  exist (by the Comparison Test) and the Lebesgue integral 

            
[ , ] [ , ] [ , ]

( ) ( ) ( )
b b b

a b a b a b a a a
f d f d f d f x dx f x dx f x dx  + − + −= + = + =          

is the sum of the improper Cauchy Riemann integrals.   Moreover, the Lebesgue integral  

[ , ]a b
fd  too exists and 

                  
[ , ] [ , ] [ , ]

( ) ( )
b b

a b a b a b a a
fd f d f d f x dx f x dx  + − + −= − = −     . 

Conversely, suppose that f is Lebesgue integrable, then | f  | is Lebesgue integrable and so 

both  f +  and  f −  are Lebesgue integrable.  Therefore, by Theorem 44, both improper Cauchy 

Riemann integrals  ( )
b

a
f x dx+

 and ( )
b

a
f x dx−

 exist and are finite.  It follows that 

                                 ( ) ( ) ( )
b b b

a a a
f x dx f x dx f x dx+ −= +                                        
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exists.  Moreover,  
[ , ] [ , ] [ , ]

( ) ( ) ( )
b b b

a a a a b a b a b
f x dx f x dx f x dx f d f d fd  + − + −= − = − =      .   

                                                 

We have a similar result when the function is unbounded in any neighbourhood containing b. 

 

Theorem 46.   Suppose f :[a, b] → is such that  f  is Riemann integrable on any subinterval 

in [a, b).   Suppose there is a strictly increasing sequence (xn) in (a, b) such that xn → b but 

( )xf x →  , that is, | f | is unbounded in any neighbourhood containing b.  Then f is 

Lebesgue integrable on [a, b] if, and only if, the improper Cauchy Riemann integral   

( )
b

a
f x dx exists.  Moreover, when f is Lebesgue integrable, the Lebesgue integral 

[ , ]a b
fd   

is equal to the improper Cauchy Riemann integral, ( ) lim ( )
b t

a at b
f x dx f x dx

−→
=  .   

 

The proof of Theorem 46 is exactly the same as for Theorem 45. 

 

Definition 47.   

Suppose one of the following is satisfied. 

(1)  There is a sequence of points (xn ) in [a, b] such that | f (xn) | → as xn → a; 

(2)  There is a sequence of points (yn ) in [a, b] such that | f (yn) | → as yn → b; 

(3)  There is a sequence of points (xn ) in [a, b] such that | f (xn) | → as xn → a and a 

sequence of points ( yn ) in [a, b] such that | f (yn) | → as yn → b. 

The improper Cauchy Riemann integral ( )
b

a
f x dx converges absolutely if ( )

b

a
f x dx   exists 

(or converges) or equivalently if both ( )
b

a
f x dx+

 and  ( )
b

a
f x dx−

 exist or in  view of 

Theorems 45 and 46 if  f  is Lebesgue integrable on [a, b].    

 

The improper Cauchy Riemann integral ( )
b

a
f x dx  converges conditionally if  ( )

b

a
f x dx  

converges and ( )
b

a
f x dx  diverges (does not exist) or equivalently, f is not Lebesgue 

integrable on [a, b]. 

 

If for a point b, there is a sequence of points (xn ) such that | f (xn) | → as xn → b, i.e.,  f  is 

not bounded in any neighbourhood containing b, then we say  f  has a singularity at b.   Thus 

condition (1) is the same as saying that f has a singularity at a and condition (2) a singularity 

at b while condition (3) a singularity at both a and b. 

 

14.6   Convergence Tests       
 

Theorem 48.  Cauchy Criterion. 

Suppose f :[a, b] → is such that  f  is Riemann integrable on any subinterval in [a, b).   

Then the improper Cauchy Riemann integral ( )
b

a
f x dx  exists if, and only if, for every  > 0, 

there exists a number M < b (depending on ) such that for all M < s < t < b,          

                                                       ( )
t

s
f x dx  . 

The proof is similar to that of Theorem 2.                
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Theorem 49.  

Let b be a finite point or  and f a non-negative function on [a, b).  Suppose f is Riemann 

integrable on [a, c] for any c, a < c < b with a singularity at b. 

Then the improper Cauchy Riemann integral  ( )
b

a
f x dx exists if, and only if, the function 

defined by ( ) ( )
x

a
F x f t dt=   is bounded on [a, b). 

 

Proof.  Plainly since F(x) is non-decreasing, lim ( )
x b

F x
−→

exists if, and only if, F(x) is bounded 

by the completeness property of , i.e., the improper Cauchy Riemann integral ( )
b

a
f x dx  is 

convergent if, and only if,  F(x) is bounded.   

 

Theorem 50.  Comparison Test. 

Suppose f and g are non-negative functions defined on I = [a, b), integrable on [a, c] for any 

c, a < c < b.  Suppose f and g each has a singularity at b and that f (x)  g(x) for all x in I. 

Then 

(1)  If the improper Cauchy Riemann integral  ( )
b

a
g x dx converges, then so does ( )

b

a
f x dx . 

(2)  If the improper Cauchy Riemann integral ( )
b

a
f x dx diverges, then so does ( )

b

a
g x dx . 

 

Proof.  This a consequence of Theorem 49.  If ( )
b

a
g x dx  converges, then ( )

x

a
g x dx  is 

bounded on I.  Since ( ) ( )
x x

a a
f t dt g t dt  , ( )

x

a
f t dt  is bounded and consequently,  

( )
b

a
f x dx is convergent. 

( )
b

a
f x dx diverges implies that ( )

x

a
f t dt  is unbounded and so ( )

x

a
g x dx  is unbounded and  

( )
b

a
g x dx diverges. 

 

Theorem 51. Limit Comparison Test 

Suppose f and g are positive functions defined on I = [a, b), integrable on [a, c] for any c, a < 

c < b.  Suppose that 
( )

0 lim
( )x b

f x

g x−→
   . 

Then either both improper Cauchy Riemann integrals ( )
b

a
f x dx and ( )

b

a
g x dx converge or 

they both diverge. 

 

Proof.   Suppose 
( )

lim 0
( )x b

f x
q

g x−→
=  . Then taking  = q/2 > 0, there exists  > 0 such that  

                                
( )

( ) 2

f x q
b x b q

g x
 −    −  =  . 

Therefore, taking X = b − , for all x such that X < x < b, we have 
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( ) 3

2 ( ) 2

q f x q

g x
  , 

i.e.,                                  
3

( ) ( ) ( )
2 2

q q
g x f x g x   .   --------------------------  (1) 

By hypothesis, ( )
b

a
f x dx  and ( )

b

a
g x dx converge if, and only if, ( )

b

X
f x dx and ( )

b

X
g x dx  

converge.  It follows from (1) and Theorem 50 that either both ( )
b

X
f x dx  and ( )

b

X
g x dx   

converge or they both diverge.  Consequently, either both ( )
b

a
f x dx and ( )

b

a
g x dx  converge 

or they both diverge. 

 

14.7 Anti-derivative and Improper Integral 

 

We can make use of primitive or more specifically limit of primitive to determine Lebesgue 

integral.  For example, Theorem 45 tells us that under the given condition there, the Lebesgue 

integral is an improper Cauchy Riemann integral.  Then we can make use of the Fundamental 

Theorem of Calculus to calculate the improper integral and hence the Lebesgue integral. 

 

Theorem 52.  

(1)  Suppose f : [a,  ) →  is continuous and non-negative on [a,  ).   Suppose F is an 

antiderivative of f .  Then f is Lebesgue integrable on [a, ) if, and only if, the limit   

lim ( )
x

F x
→

 exists (and is finite). 

In this case, the Lebesgue integral 

                                
[ , )

( ) lim ( ) ( )
a a x

fd f x dx F x F a


 →
= = −  . 

(2)  Suppose f : (a,  b →  is continuous and non-negative on (a,  b and has a singularity at 

a.  Suppose F is an antiderivative of f .  Then f is Lebesgue integrable on (a,  b if, and only 

if, the limit lim ( )
x a

F x
+→

exists (and is finite). 

In this case, the Lebesgue integral 

                                
( , ]

( ) ( ) lim ( )
b

a b a x a
fd f x dx F b F x

+→
= = −  . 

 

Proof.  Part (1) is a consequence of Theorem 34 and the Fundamental Theorem of Calculus, 

as ( ) lim ( ) lim ( ) ( )
x

a ax x
f x dx f t dt F x F a



→ →
= = −  .   Part (2) is a consequence of Theorem 44 

and the Fundamental Theorem of Calculus. 

 

Example 53.        

For x > 0 and k > 0, an anti-derivative for 
1k

k
x

x

− =   is 11

1

kx
k

− +

− +
 for k  1 and ln(x) for k = 

1.   

Therefore, for a > 0, 

1 11 1
,  for 0 and 1,1

1 1

  ln( ) ln( ),   for   1

k k
x

ka

x a k k
dt k k

t
x a k

− + − +
−  

= − + − +
 − =

  . 

Now, (−k +1) < 0 if, and only if, k >1 and so
1
ka

dt
t



 converges when k > 1, since 
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11
0

1

kx
k

− + →
− +

 as x →.  Thus, 11 1 1 1

1 1 1

k

ka
dt a

t k k k


− += =

− − −  for k >1 and 
1
ka

dt
t



   

diverges when 0 < k < 1.   Likewise, 
1

a
dt

t



  diverges because ln(x) →  as x→.   Plainly  

1
ka

dt
t



 diverges when k  0.  

 

Thus, we have the following summary. 

(1) 
1

ka
dx

x



  for a > 0 converges if, and only if, k > 1. 

 

We can similarly deduce the following 

 

(2)  
0

1a

k
dx

x  for a > 0 converges if, and only if, k < 1. 

 

It then follows that 

 

(3) 
( )0

1
ka

dx
x x



−
  for a > x0 converges if, and only if, k > 1 

 and  

(4) 
( )0

0

1a

kx
dx

x x−
  for a > x0 converges if, and only if, k < 1. 

 

Example 54. 

 

(1)  
1

x pe x dx


−

  converges for all p. 

Use a simple comparison test. 

       
2 0 as x pe x x− + → →  . 

Therefore, there exist a number M such that 2

2

1
1x p x px M e x e x

x

− + −     . 

Since 
21

1
dx

x



 is convergent, by the Comparison Test (Theorem 50), 
1

x pe x dx


−

 is 

convergent. 

Hence the Lebesgue integral 
[1, ) 1

x p x pe x d e x dx


− −


=  . 

 

(2) 
1

0

x
a

pe x dx  for a > 0 diverges for all p. 

 

Note that  
1

1  as 0x pe x x+ +→  → because  
1

1 11 1

!
x p p

n
e x x

n x

+ + for n > p+1 and 

1

0

1 1
lim

!

p

n
x

x
n x+

+

→
=  .  Therefore, there exists  > 0 such that  

                                
1 1

1 1
0 1x xp px e x e x

x
 +      . 
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Since  
0

1
dx

x



  is divergent, consequently, by the Comparison Test (Theorem 50),
1

0

x pe x dx


 is 

divergent for any p.  It follows that 
1

0

x
a

pe x dx is divergent for all p.  Therefore, by Theorem 

44,  
1
x pe x  is not Lebesgue integrable on [0, a]. 

 

(3) 
0

ln( )
a

x dx converges for any a > 0. 

 For any 0 < t  a, by integration by parts, 

             ( )ln( ) ln( ) 1 ln( ) ln( )
a aa

tt t
x dx x x dx a a a t t t= − = − − −  . 

Now, it can be easily deduced by using L'Hôpital's Rule that 
0

lim ln( ) 0
t

t t
+→

= . 

Therefore, 

                     
0 0

ln( ) lim ln( ) ln( )
a a

tt
x dx x dx a a a

+→
= = −  . 

Hence, by Theorem 45, ln(x) is Lebesgue integrable on [0, a] for any a > 0 and the Lebesgue 

integral is aln(a)−a. 

 

(4)   
1

1

ln( )
dx

x



  diverges. 

By using L'Hôpital's Rule, we can show that lim
ln( )x

x

x→
=  .        

Therefore, there exists K > 0 such that 
1 1

1
ln( ) ln( )

x
x K

x x x
     .  . 

Since
1

K
dx

x



  diverges, it follows that 
1

ln( )K
dx

x



  diverges by Theorem 50 (Comparison 

Test). 

Therefore, 
1

1

ln( )
dx

x



  diverges.   Hence 
1

ln( )x
  is not Lebesgue integrable on [1, ). 

 

For a function, not necessarily non-negative, we can, with sufficient condition satisfied by the 

function, formulate a convergence criterion along the line of the Leibnitz alternating series 

test. 

 

Theorem 55. 

Suppose f :[a, ) →  is such that  f  is Riemann integrable on [a, b  for every b > a.  

Suppose there is a strictly increasing sequence (an) in [a, ) with a0 = a and an → satisfying 

the following 4 conditions. 

(1)  f (x) has constant sign in each interval (an, an+1), 

(2)  f (x) changes sign from (an-1, an) to (an, an+1), 

(3)   
1

1

( ) ( )
n n

n n

a a

a a
f x dx f x dx

+

−

  , 

(4)   
1

( ) 0  as  
n

n

a

a
f x dx n

−

→ →  . 

Then the improper Riemann integral ( )
a

f x dx


  converges. 
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Proof.  Let 
1

( )
n

n

a

n
a

c f x dx
−

=  .  Then by condition (4) cn → 0.  By condition (3), ( |cn| ) is a 

decreasing sequence.  By condition (2), 
1

n

n

c


=

 is an alternating series.  Therefore, by 

Leibnitz's Alternating Series Test, (see Chapter 6 Series, Theorem 20), 
1

n

n

c


=

 is convergent. 

We shall show next that 
1

n

n

c


=

 is the improper integral. 

Now, take any b > a.  Since an →, there exists an integer n0 with 
0na b .  Let n0 be the least 

integer such that 
0na b  so that 

0 01n na b a−   . 

Thus,  
0

1

1

1

( ) ( )
no

n
b b

k
a a

k

f x dx c f x dx
−

−

=

= +  . 

Since
0 01n na b a−   and f (x) is of constant sign on ( )

0 01,n na a− ,  

                                   
0

0
1 10 0

( ) ( )
n

n n

b a

n
a a

f x dx f x dx c
− −

 =  . ---------------------- (1) 

Plainly, as b → , n0 → .    

Now as cn → 0, given  > 0, there exists an integer N1 such that 

                                       n  N1  |cn | < /2         --------------------  (2) 

Since 
1

n

n

c


=

 is convergent, there exists an integer N2 such that  

                                      2
2

n

n k

k N c


=

   .   -----------------------  (3) 

Let N = max(N1, N2).   Then, since n0 →  as b → , there exists a number K > 0 such that 

b >K  n0 > N. 

Therefore, for b >K, 

               
0

0

1

1 1

( ) ( )
n

b b

k k k
a a

k k k n

f x dx c f x dx c c
− 

= = =

−  − +      

                                           
0

0

n k

k n

c c


=

 +  , by (1), 

                                          
0

2
k

k n

c
 

=

 +  , by (2) since n0 > N  N1 

                                           
2 2

 
 + = , by (3) since n0 > N  N2. 

Hence, 
1

lim ( )
b

k
ab

k

f x dx c


→
=

=  . Thus, the improper integral ( )
a

f x dx


 is convergent. 

 

Example 56.  Use of the Lebesgue Dominated Convergence Theorem. 

1

0

1
lim 2

nx

n

e
dx

x

−

→

−
=  .               

Define f n: (0, 1] →  by 
1

( )
nx

n

e
f x

x

−−
= .  Then f n converges pointwise to 

1

x
 on (0, 1]. 
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Now, 0 1nxe−   for x  0 so that  0 1 1nxe− −  .  Hence, 
1

0 ( )nf x
x

   for x in (0, 1]. 

Note that each f n is continuous on (0, 1] and so is measurable on (0, 1].  

Now, the improper integral 
11

0 0

1
lim 2 2

tt
dx x

x
+→

 = =
  .  Therefore, by Theorem 52(2),

1

x
 is 

Lebesgue integrable on (0, 1] and its Lebesgue integral, 

                                   
1

(0,1] 0

1 1
2d dx

x x
 = =  . 

Therefore, by the Lebesgue Dominated Convergence Theorem, 

                                
1

(0,1] 0 (0,1]

1 1
2

nx

n

e
f d dx d

x x
 

−−
= → =   . 

 

Note that by the Comparison Test (Theorem 50), the improper integral 

1 1

0 0

1
( )

nx

n

e
dx f x dx

x

−−
=   is convergent and equals the Lebesgue integral 

(0,1]
nf d . 

 

14. 8 Differentiation Under the Integral Sign and Lebesgue Integral 

 

Since differentiation is a process of limit, we shall investigate the processes of limits before 

and after a Lebesgue integral. 

 

Here is a result that makes use of the Lebesgue Dominated Convergence Theorem. 

 

Theorem 57.  Suppose E is a non-empty (Lebesgue) measurable subset of and I is an 

interval.  Suppose f : E  I →  is a function satisfying 

(1) for each t in I, the function 

                             f t: E →  defined by f t (x) = f (x, t) 

is measurable; 

(2) there exists a Lebesgue integrable function g: E →  such that for almost all x in E and 

all t in I, 

                                | f t (x) | = | f (x, t) |  g(x); 

(3) for some point t0 (t0 may be ,) in the closure of I,  I , there exists a function :h E →     

such that, for almost all x in E, 
0 0

lim ( ) lim ( , ) ( )t
t t t t

f x f x t h x
→ →

= = . 

Then  

(1)  h is Lebesgue integrable and 

(2) 
0 0

lim ( ) ( ) lim ( ) ( ) ( ) ( )t t
E E Et t t t

f x d x f x d x h x d x  
→ →

= =   .   

Proof.  Since t0  I ,  there exists a sequence ( tn ) in I  such that  t n → t0.  For each n in  

define the function, gn :E →  by 

                       ( ) ( ) ( , )
nn t ng x f x f x t= = for x in E. 

By Condition (2), tf   is Lebesgue integrable for each t in I and so gn is Lebsgue integrable on 

E.  (Note that f t is measurable implies that | f t | is measurable.  Then by Lemma 27, there is a 

sequence of increasing simple non-negative function tending pointwise to | f t |, and by 

condition (2), the integral of these non-negative simple functions is bounded above by the 

Lebesgue integral of g and so by the Lebesgue Monotone Convergence Theorem (Theorem 

28), | f t | is Lebesgue integrable.  Consequently, f t is Lebesgue integrable.  By Condition (3) 
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gn converges pointwise to h(x) almost everywhere.  Therefore, by the Lebesgue Dominated 

Convergence Theorem, since |gn (x) |  g(x) for almost all x in E and g is Lebesgue integrable,   

                                   ( ) ( )n
E E

g x d h x d →  . 

Note that since 
nn tg f= , for any sequence ( tn ) in I  such that  t n → t0, we conclude that 

           
0 0 0

lim ( ) lim ( ) ( ) lim ( )t n t
E E E Et t t t t t

f x d g x d h x d f x d   
→ → →

= = =    .             

 

Now we specialize Theorem 57 to differentiation under an integration sign. 

 

Theorem 58.  Suppose E is a non-empty (Lebesgue) measurable subset of and  

 f : E  (a, b) → is a function satisfying the following three conditions. 

(1) For each t in I, the function 

                             f t: E →   defined by f t (x) = f (x, t) 

is Lebesgue integrable. 

(2)  For some t0 in (a, b), the partial derivative 0( , )
f

x t
t




exists for almost all x in E.  

(3)  There exists a neighbourhood V of t0 and a Lebesgue integrable function g: E →  such 

that for almost all x in E and all t in V, 

                   
0

0

0

( , ) ( , )
( , ) ( )t

f x t f x t
D x t g x

t t

−
= 

−
, 

where 
0

0
0

0

0

( , ) ( , )
,

( , )

       0,       if  

t

f x t f x t
t t

t tD x t

t t

−


−= 
 =

. 

 

Then,  

(i)  the function F: E →  defined by 0( ) ( , )
f

F x x t
t


=


 is a (Lebesgue) integrable function  

and  

(ii) the function H: (a, b) → , defined by ( ) ( ) ( , ) ( )t
E E

H t f d x f x t d x = =   is 

differentiable at t0 and 

                        0 0( ) ( ) ( ) ( , ) ( )
E E

f
H t F x d x x t d x

t
 


 = =

  . 

  

Proof.   Let 00 0

0 0 0

( ) ( )( ) ( ) ( , ) ( , )
( ) ( ) ( )

t t

E E

f x f xH t H t f x t f x t
G t d x d x

t t t t t t
 

−− −
= = =

− − −      

                           
0
( , ) ( )t

E
D x t d x=    for t in V.                               

Note that for each t in V, the function 
0
( , )tx D x t  is measurable, since 

0
  and  t tf f  are 

integrable and so measurable.  Therefore, 
0
( , )tD x t  satisfies the condition of Theorem 57 and  

 
0

0
0lim ( , ) ( , )t

t t

f
D x t x t

t→


=


for almost all x in E. 

Hence, by Theorem 57, for t in V, 
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            0

0
0 0 0

0

0 0

( ) ( )( ) ( )
( ) lim lim ( ) lim ( , ) ( )

t t

t
E Et t t t t t

f x f xH t H t
H t d x D x t d x

t t t t
 

→ → →

−−
 = = =

− −   

                     

                    
0

0
0lim ( , ) ( ) ( , ) ( )t

E Et t

f
D x t d x x t d x

t
 

→


= =

  .   

This shows that H is differentiable at t0 and the derivative 0 0( ) ( , ) ( )
E

f
H t x t d x

t



 =

 . 

 

Remark.   

(1)  Conditions (2) and (3) are satisfied by any function f : [c, d] (a, b) → whose partial 

derivative ( , )
f

x t
t




 is continuous on  [c, d] (a, b) → so that it is uniformly continuous on 

[c, d] V, where V is a closed interval in (a, b) containing t0.  In this case, by continuity and 

compactness of [c, d] V, ( , )
f

x t
t




 is bounded on [c, d] V, say by M.   By the Mean Value 

Theorem, for any (x, t) in [c, d] V,              

                              
0

0
1

0

( , ) ( , )
( , ) ( , )t

f x t f x t f
D x t x t

t t t

− 
= =

− 
                

for some t1 in V.  Therefore, 
0
( , )tD x t M .  We can just take g in Theorem 58 to be the 

constant function M. 

More generally, if ( , )
f

x t
t




 exists for all t in a neighbourhood V of t0 and for almost all x in E 

and if there exists a Lebesgue integrable function g(x) such that ( , ) ( )
f

x t g x
t





for all t in V 

and for almost all x in E, then by using the Mean Value Theorem, condition (3) of Theorem 

58 is satisfied. 

(2) We can replace the interval (a, b) in Theorem 58 by [a, b), or (a, b] or [a, b].  Taking the 

derivative at any end point to be the appropriate one-sided limit, the conclusion of Theorem 

58 is still valid. 

 

 

The next Theorem is a special case. 

 

Theorem 59.  Suppose one of the following two conditions (i) and (ii) is satisfied. 

(i)  :[ , ] [ , ]f c d a b → is a continuous function such the partial derivative ( , )
f

x t
t




 exists 

for all (x, t) in [c, d]  [a, b] and is continuous on [c, d]  [a, b] or  

(ii) : ( , ) [ , ]f c d a b → is a continuous function such that the partial derivative ( , )
f

x t
t




 

exists for all (x, t) in (c, d)  [a, b] and is continuous on (c, d )  [a, b] and that for each t in 

[a, b], the function ( ) ( , )tf x f x t= is Lebesgue integrable on (c, d.  Suppose there exists a 

Lebesgue integrable function g on (c, d) such that ( , ) ( )
f

x t g x
t





 for all (x, t) in 

( , ) [ , ]c d a b . 
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Let :[ , ]F a b → be defined by ( ) ( , )
d

c
F t f x t dx=  . 

Then, F is differentiable and ( ) ( , )
d

c

f
F t x t dx

t


 =

  for each t in [a, b]. 

 

Proof.   Suppose condition (i) is satisfied. 

For any t0 in [a, b], there exists a closed interval V containing t0 such that ( , )
f

x t
t




 is 

continuous on [c, d] V.  Therefore, by the remark preceding the theorem, conditions (2) and 

(3) of Theorem 58 are satisfied.  Condition (1) of Theorem 58 is of course satisfied since for 

each t,  f t: [a, b] →  defined by ( ) ( , )tf x f x t= , is continuous and so is Riemann 

integrable, hence Lebesgue integrable and the Lebesgue integral 
[ , ]

( , ) ( )
c d

f x t d x  is equal to 

the Riemann integral  ( , )
d

c
f x t dx .  Similarly, the Lebesgue integral 

[ , ]
( , ) ( )

c d

f
x t d x

t




  is 

the same as the Riemann integral ( , )
d

c

f
x t dx

t



 .  Therefore, by Theorem 58,  

( ) ( , )
d

c

f
F t x t dx

t


 =

 . 

Suppose condition (ii) is satisfied.   By assumption, ( , )f x t  is Lebesgue integrals on the 

interval (c, d) for each t in [a, b].  Since ( , ) ( )
f

x t g x
t





 for all (x, t) in ( , ) [ , ]c d a b  and g is 

Lebesgue integrable on the interval (c, d), ( , )
f

x t
t




 is Lebesgue integrable on (c, d) for each t 

in [a, b].   By hypothesis, all the conditions for Theorem 58 are met.  It follows that 

( ) ( , )
d

c

f
F t x t dx

t


 =

 for all t in [a, b]. 

                                              

 

What happens if the integral is given by improper Riemann integral?  If the improper integral 

is of the type with singularity at d, or d = , then even if ( , )
f

x t
t




 exists for all (x, t), ( , )

f
x t

t




 

may not be continuous on [c, d]  [a, b] or that [c, d] is unbounded (when d =  or c = −∞). 

( , )
f

x t
t




 is not generally uniformly bounded.   Assuming that the improper Riemann integrals 

are also Lebesgue integrals, we may need to introduce the notion of uniform convergence for 

the improper Riemann Cauchy integral ( , )
d

c

f
x t dx

t



 .   

The next theorem deals with the special case of when [ , ] [ , )c d c=  and the integrals are 

improperly Riemann integrable as well as Lebesgue integrable. 

 

 

Theorem 60.  Suppose f : [c, )  [a, b] →  is a continuous function such that the partial 

derivative ( , )
f

x t
t




 exists for all (x, t) in  [c, )  [a, b] and is continuous on [c, )  [a, b]. 
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Suppose that the improper Cauchy Riemann integral ( , )
c

f x t dx


  converges absolutely for 

each t in [a, b].  Suppose that the Cauchy Riemann integral ( , )
c

f
x t dx

t

 

 converges absolutely 

for each t in [a, b].    Suppose furthermore the improper integral ( , )
c

f
x t dx

t

 

  converges 

uniformly for t in [a, b].   Let F: [a,b] → be defined by  ( ) ( , )
c

F t f x t dx


=  .   

Then, F is differentiable and ( ) ( , )
c

f
F t x t dx

t

 
 =

 . 

 

Proof.  ( , )
c

f
x t dx

t

 

  converges uniformly in t in [a, b] means that  

                     ( , ) ( )
d

c

f
x t dx G t

t


→

  as d →  for each t in [a, b], 

where ( ) ( , )
c

f
G t x t dx

t

 
=

 , and that given  > 0, there exists a real number K > 0 such that 

for all d > K and for all t in [a, b], 

                                     ( , ) ( )
d

c

f
x t dx G t

t



− 

 .     ----------------------------- (1) 

For each d > c, define ( ) ( , )
d

d
c

F t f x t dx=  . Then Fd converges pointwise to F on [a, b], where 

( ) ( , )
c

F t f x t dx


=  .  By Theorem 59, Fd is differentiable and 

                                     ( ) ( , )
d

d
c

f
F t x t dx

t

 =
 . 

Then condition (1) says that Fd ' (t) converges uniformly to G(t) on [a, b] as d → .  By 

taking any sequence ( dn ) in (c, ) such that dn  →  and letting 
nn dH F= , by the above 

argument, we have that 

                            Hn converges pointwise to F on [a, b], 

                            Hd ' converges uniformly to G on [a, b]. 

Then by Theorem 8, Chapter 8, F is differentiable and F' = G. 

 

Remark.  As remarked in Chapter 8, we only need require that there exists a t0 in [a, b] such 

that Hn(t0) converges to F(t0).  This is equivalent to 
0( , )

c
f x t dx



 is convergent.  In Theorem 

60, instead of requiring ( , )
c

f x t dx


 to be convergent for each t in [a, b], we need only 

require convergence at some point t0 in [a, b].  That it is convergent for all t is a consequence 

of the uniform convergence of Fd ' as d tends to infinity.   

 

As an application of the theorems in this section, we shall give an indirect method of 

computing the probability integral, more specifically 
2

0

xe dx


−

 . 

 

Example 61.  
2

0 2

xe dx


− = . 
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By Theorem 10 (a comparison test), since 
2x xe e− − for x  1 and  

1

xe dx


−

 is convergent,  

2

1

xe dx


−

 is convergent.  Consequently, the improper Riemann integral 
2

0

xe dx


−

  is 

convergent.  Since 
2xe− is non-negative, by Theorem 34, 

2

0

xe dx


−

  is a Lebesgue integral on 

[0, ).  Consider the following two functions: 

                       ( )2
2

0
( )

t
xf t e dx−=   and   

2 2( 1)
1

20
( )

1

t xe
g t dx

x

− +

=
+  .   

We shall take the limit of these two functions to determine 
2

0

xe dx


−

 . 

Observe that by the Chain Rule and the Fundamental Theorem of Calculus, 

                                         
2 2

0
( ) 2

t
t xf t e e dx− − =   ----------------------   (1) 

Let 

2 2( 1)

2
( , )

1

t xe
h x t

x

− +

=
+

.   Then h is continuous on [0,1][0,) and so ht(x) = h(x,t) is 

continuous on [0,1] and so is Riemann integrable on [0, 1] and hence Lebesgue integrable on 

[0, 1].  The partial derivative
2 2( 1)( , ) 2 t xh

x t te
t

− +
= −


 exists for all x in [0, 1] and for all t > 0.  

In particular,  
2 2( 1)( , ) 2 2t xh

x t te t M
t

− +
= −  


 for some constant number M (depending on 

t0 > 0 ) for some neighbourhood of any t0.  Therefore, by Theorem 58, 

              ( )
2 2 2 2 21 1 1

( 1)

0 0 0
( ) ( , ) 2 2t x t t xh

g t x t dx te dx te e dx
t

− + − −
 = = − = −

   . 

For t > 0, using a change of variable, y = xt , 

                             
2 2 2 2

0 0
( ) 2 2

t t
t y t xg t e e dy e e dx− − − − = − = −     --------------------  (2) 

Thus from (1) and (2), we see that f '(t) + g'(t) = 0 for all t > 0.  Therefore, f (t) + g(t) = c for 

some constant c, for all t > 0.  Note that f is obviously continuous at 0.   Since 
2 2( 1)

2 2

1
( , )

1 1

t xe
h x t

x x

− +

= 
+ +

 and 
2

1

1x +
 is Lebesgue integrable on [0,1], by Theorem 57, g(t) is 

continuous at t = 0.  Hence f (t) + g(t) is continuous at t = 0.  Therefore, f (t) + g(t) = c  for 

some constant c, for all t  0.  Thus 

                              
1

1

20

1
(0) (0) 0 tan (1)

1 4
c f g dx

x

−= + = + = =
+ . 

So, we have the equation, 

                                                      ( ) ( )
4

f t g t


+ =   ------------------------------- (3). 

By Theorem 57,  

          

2 2( 1)
1

20
lim ( ) lim 0

1

t x

t t

e
g t dx

x

− +

→ →
= =

+ , since 

2 2( 1)

2
lim 0

1

t x

t

e

x

− +

→
=

+
for all x in [0, 1]. 

Thus, passing to the limit (3) becomes 

                                  lim ( ) lim ( )
4t t

f t g t


→ →
+ =        

and so  lim ( )
4t

f t


→
=  .  This means  ( )2

2

0 4

xe dx


− =  and so 
2

0 2

xe dx


− = . 
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Exercises 62. 

 

1.  Determine for each of the following integrals whether it is convergent,  

     absolute convergent, or conditionally convergent.  Evaluate the convergent ones  

     if possible. 

    (a)  
1

0

1
n

dx
x ,  n  1, (b) 

1

1
n

dx
x



  , n > 1, (c) 
1

1
n

dx
x



 , n  1,  

    (d)  
2

0
tan( )x dx



 ,   (e) 
1

sin( )
n

x
dx

x



  , n > 1, (f)  ( )
1 2

0
ln( )x dx ,  

    (g) 
0

cos(2 )xe x dx


−

 , (h) 
2

0

1

1 cos( )
dx

x



− , (i) 
0

n xx e dx


−

 ,  n > 0,  

    (j) 
2 2

0
sin (2 )cos (2 )x x dx



 , (k) 
0

xe
dx

x

−


 , (l)  
0

1

1 x
dx

e



+ , 

    (m) 
22

0

xx e dx


−

 , (n) 
0

1

(1 )
dx

x x



+
 , (o) 

22 1

0

n xx e dx


+ −

 , n   0. 

 

2.  Suppose ( )
b

a
f x dx is an absolutely convergent improper integral and g is a bounded 

integrable function on [a, b].   Prove that ( ) ( )
b

a
f x g x dx converges absolutely. 

 

3.  Prove that 
2

0
sin( )x dx



 and  
2

0
cos( )x dx



 are convergent. 

 

4.  Show that 
2

20 0

sin ( ) sin( )x x
dx dx

x x

 

=  . 

 

5.  Determine (a) 2

0
ln(sin( ))x dx



 , (b) 
0

ln(sin( ))x x dx


 .   

 

6.  Test the following improper integrals for convergence. 

 

     (a)  
0

sin( )x dx


 ,    1, (b) 
2

2 20 (1 )

x
dx

x



+ ,   (c) 
3

2 20 (1 )

x
dx

x



+ , 

     (d)  111

1

x

dx
x



+ , (e) 
4

1 ln( )

x
dx

x ,  (f) 
0

1 1
cos dx

xx

  
 
 

 , 

     (g)  
0 sin( )

x
dx

x



 ,  (h)  
0

sin( )xx e dx


 , (i)  
cos( )

0

xe
dx

x



 . 
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7.  Suppose f  is a positive continuous function defined on [a, ).  Prove that ( )
a

f x dx


 is 

convergent if 
( 1)

lim 1
( )x

f x

f x→

+
 .   

8.   Prove that 
0

sin( )te t t dt


−

  converges absolutely if  > −2.  [Hint:  consider the integral 

from 0 to 1 and from 1 to  separately.] 

9.  Test the integral 
2

0

1

1 sin( )
dx

x



−
 for convergence. 

10.  Prove that for t  0, 
1

0

sin( )
tan ( )

2

tx x
e dx t

x


− −= − .   Hence deduce that 

       
0

sin( )

2

x
dx

x



= . 

11.   Show that 
2

0

1

2

txe dx
t


− =  for any real number t > 0. 

12.  Show that the function 
2

ln( )
( )

x
f x

x
=  is Lebesgue integrable over [1, ) and that the 

Lebesgue integral  
[1, )

1f d


= . 

13.  For any t in , prove that 
2 2

0
cos(2 )

2

x te tx dx e


− −= . 

                            

  

 

     

 


