
Chapter 13 Special Tests for Convergence

Suppose  is a series of positive terms.   Suppose applying the d'Alembert's Ratio
n=1

∞
an

test and we obtain .  We cannot then infer convergence or divergencend∞lim an+1
an = 1

from the test.   We may use a comparison test (Proposition 12 Chapter 6) or the
integral test (Theorem 25 Chapter 6) depending on the series.   Then we may use
some more delicate tests, tests which are useful to study series  with 

n=1

∞
an

.  Some series may fail these tests too and we may need even morend∞lim an+1
an = 1

delicate test to deduce convergence or divergence.  There is a general theory of
convergence and divergence introduced by Pringsheim in an article of 100 pages
(Mathematische Annalen, vol 35 (1889)).  All the tests we give in this chapter may be
deduced from his general theory.  However, it does not give a practical method of
testing any series for convergence or divergence.  As we shall see the tests are most
effective for series of certain forms.

13.1  Kummer's Test

Kummer's test is a general test for convergence.   We can use it to derive the other
tests.

Theorem 1. (Kummer's test , 1835  Journ. für die reine und angewandte
Mathematik 13. p 172).
Suppose  is a series of positive terms.   

n=1

∞
an

(i)  If there is a positive sequence { bn }, a positive constant A, and a positive integer
N such that   for all integer n ≥ N,

                                                 -------------------------------   (A)an
an+1 bn − bn+1 m A

      then  is convergent.
n=1

∞
an

(ii)  If there is a positive sequence { bn } and a positive integer N such that for all
integer n ≥ N,        

                                           ------------------------------- (B)cn = an
an+1 bn − bn+1 [ 0

       then  is divergent if  is divergent.  
n=1

∞
an n=1

∞ 1
bn

Equivalently, 
      (i)   is convergent if  , and

n=1

∞
an nd∞lim inf cn > 0

               (ii)   is divergent if  is divergent and  or when              
n=1

∞
an n=1

∞ 1
bn nd∞

lim sup cn < 0
 and  cn ≤ 0  for all integer  n ≥ N for some positive integer N.

nd∞
lim sup cn = 0

Proof.  
Part (i).  Suppose there is a positive sequence { bn }, a positive constant A, and a
positive integer N such that for all integer n ≥ N, inequality (A) is satisfied.   Then for
any integer n ≥ N,
                                          ---------------------------  (1).anbn − an+1bn+1 m Aan+1
Let p be any integer greater than or equal to 1.  Summing (1) from n = N to n = N +
p−1 gives



                                       ----------------------- (2)aNbN − aN+pbN+p m A
k=N

N+p−1
ak+1

Now let  be the n-th partial sum of the series  .  Thensn =
k=1

n
ak n=1

∞
an

                          by  (2)
k=N

N+p−1
ak+1 =

k=N+1

N+p
ak = sN+p − sN [

1
A (aNbN − aN+pbN+p )

                                                           .[ 1
A aNbN

It follows then that for all integer p ≥ 1,  
                                           .sN+p [ sN + 1

A aNbN

Hence the set  is bounded above by .  Consequently the{sN+p : p c P} sN + 1
A aNbN

sequence (sn )   is bounded.  Therefore, by Proposition 11 Chapter 6,  is
n=1

∞
an

convergent.

(ii)  Suppose   for all integer n ≥ N.    Then cn = an
an+1 bn − bn+1 [ 0

                                      for all integer n ≥ N.anbn [ an+1bn+1
Hence, for all integer n ≥ N,  .   It follows that for all integer n ≥ N,anbn m aNbN

                                                  .an m aNbN
1
bn

Thus, if  is divergent, by the Comparison Test (Proposition 12 Chapter 6), 
n=1

∞ 1
bn n=1

∞
an

is divergent.

Remark.  To apply Kummer's Test, we need to look for a suitable sequence ( bn ) that
satisfies the condition in (i) or (ii) of  Theorem 1.  We may of course choose the
sequence for ( bn ) and obtain more specialized test.

Example 2.
(1)  The series  , where  is divergent.

n=1

∞
an an =

1 $ 3 $ 5£(2n − 1)
2 $ 4 $ 6£(2n)

For each integer n ≥ 1,   and so  and soan+1
an = 2n + 1

2n + 2 nd∞lim an+1
an =nd∞lim 2n + 1

2n + 2 = 1
the Ratio  Test is inconclusive.  Now for any integer n ≥ 1,
                                    an

an+1 = 2n + 2
2n + 1 = 1 + 1

2n + 1
so that
                                      .an

an+1 n − (n + 1) = n
2n + 1 − 1 = − n + 1

2n + 1 [ 0
Therefore, by Kummer’s Test (Theorem 1 (ii)) with ( bn ) = (n) in the notation of
Theorem 1,  since   is divergent,  is divergent.

n=1

∞ 1
bn

=
n=1

∞ 1
n n=1

∞
an

(2)  The series  , where  is convergent.
n=1

∞
an an =

1 $ 3 $ 5£(2n − 1)
2 $ 4 $ 6£(2n) $ 1

n

For each integer n ≥ 1,   and so  an+1
an =

(2n + 1)n
(2n + 2)(n + 1)

                        nd∞lim an+1
an =nd∞lim

(2n + 1)n
(2n + 2)(n + 1) = 1

and the Ratio Test is again inconclusive.  
Now for any integer n ≥ 1,
                             an

an+1 = 2n + 2
2n + 1

n + 1
n = 1 + 1

2n + 1
n + 1

n
so that

.an
an+1 n − (n + 1) = n + 1

2n + 1 m
1
2 > 0
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Therefore, by Kummer’s Test (Theorem 1 (i)), with ( bn ) = (n) in the notation of
Theorem 1,  ,  is convergent.

n=1

∞
an

13.2  Raabe's Test     

Kummer's Test requires a suitable sequence ( bn ) to test with the series.  We may
specify the sequence (bn ) to be the sequence (n) and obtain a special test, the Raabe's
Test.

Theorem 3 (Raabe's Test)
Suppose  is a series of positive terms.  Suppose that the limit    

n=1

∞
an

                                     .nd∞lim n an
an+1 − 1 = r

Then
(i)  converges if r > 1

n=1

∞
an

(ii)  diverges if r < 1  and
n=1

∞
an

(iii) if  r =1, the series  may converge or diverge.
n=1

∞
an

Proof.    implies that given any ε > 0, there exists an integer Nnd∞lim n an
an+1 − 1 = r

such that for all integer n ≥ N, 
                                     .r − < n an

an+1 − 1 < r +
Hence, for integer n ≥ N,
                                            ------------------------------  (1)n an

an+1 − (n + 1) < (r − 1) +
and                                      ------------------------------  (2)n an

an+1 − (n + 1) > (r − 1) −

(i)   If r >1, then take  and it follows from (2) that for all integer n ≥ N,= r − 1
2 > 0

                                   .n an
an+1 − (n + 1) > (r − 1) − = r − 1

2 > 0

Therefore, by Kummer's Test (Theorem 1(i) with bn = n and  ),  A = r − 1
2 > 0

 is convergent.
n=1

∞
an

(ii)  If r <1, then take  and it follows from (1) that for all integer n ≥ N,= 1 − r
2 > 0

                                   .n an
an+1 − (n + 1) < (r − 1) − = r − 1

2 < 0

Therefore, by Kummer's Test (Theorem 1(ii) with bn = n so that  is
n=1

∞ 1
bn

=
n=1

∞ 1
n

divergent),   is divergent.
n=1

∞
an

(iii)  Consider the series  , where .  .   
n=1

∞
an an =

1 $ 3 $ 5£(2n − 1)
2 $ 4 $ 6£(2n)

2

Then   and application of the Ratio Test gives nond∞lim an+1
an =nd∞lim 2n + 1

2n + 2
2

= 1
conclusion.   For any integer n ≥ 1,

.n an
an+1 − 1 = 2n

2n + 1 + n
(2n + 1)2
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Therefore, .   nd∞lim n an
an+1 − 1 =nd∞lim 2n

2n + 1 + n
(2n + 1)2 = 1

But for any integer n ≥ 1,
 .an
an+1 n − (n + 1) = −1

2n + 1 + n
(2n + 1)2 = − n + 1

(2n + 1)2 [ 0

Thus, by Kummer's Test (Theorem 1 (ii))  is
n=1

∞
an =

n=1

∞ 1 $ 3 $ 5£(2n − 1)
2 $ 4 $ 6£(2n)

2

divergent.
Hence we have that  is divergent and .

n=1

∞
an nd∞lim n an

an+1 − 1 = 1

Next consider the series   , where  .   Then for integer n ≥ 2,
n=2

∞
an an = 1

n(ln(n))2

             an
an+1 = n + 1

n
ln(n + 1)

ln(n)

2

= 1 + 1
n

ln(n + 1) − ln(n) + ln(n)
ln(n)

2

                                    -------------------------------   (3)= 1 + 1
n 1 +

ln( n+1
n )

ln(n)

2

Therefore,  andnd∞lim an
an+1 =nd∞lim 1 + 1

n 1 +
ln( n+1

n )
ln(n)

2

= (1 + 0)(1 + 0)2 = 1

consequently,   .   It follows that applying the Ratio Testnd∞lim an+1
an = 1

nd∞lim
an

an+1

= 1

gives no conclusion.   From (3) for integer n ≥ 2,

                            .n an
an+1 = (n + 1) 1 +

2 ln(1 + 1
n )

ln(n) +
ln( n+1

n )
ln(n)

2

Thus    .n an
an+1 − 1 = 1 + (n + 1)

2 ln(1 + 1
n )

ln(n) +
ln(1 + 1

n )
ln(n)

2

Now =1 , nd∞lim (n + 1) ln(1 + 1
n ) =nd∞lim

ln(1 + 1
n )

1
n+1

=nd∞lim
1

1+ 1
n

(− 1
n2 )

− 1
(n+1)2

nd∞lim ln(1 + 1
n ) = 0

and  .   Therefore,nd∞lim 1
ln(n) = 0

          nd∞lim n an
an+1 − 1 = 1 + 2 nd∞lim ((n + 1) ln(1 + 1

n ))
nd∞lim 1

ln(n)

                                     + nd∞lim ((n + 1) ln(1 + 1
n ))

nd∞lim 1
ln(n)

2

nd∞lim ln(1 + 1
n )

                                     .= 1 + 2 $ 1 $ 0 + 1 $ 0 = 1
Let  .  Then  f  is continuous and non-negative on (1, ∞ ).   Itsf (x) = 1

x(ln(x))2

derivative    for x > 1.   Therefore,  f  is monotonef ∏(x) = −
ln(x)(2 + ln(x))

(x(ln(x))2)2
< 0

decreasing on [2, ∞ ). 

We note that for x ≥2,   .  Therefore,¶2

x 1
t(ln(t))2 dt = − 1

ln(t) 2

x

= 1
ln(2) − 1

ln(x)

.xd∞lim ¶2

x 1
t(ln(t))2 dt =xd∞lim 1

ln(2) − 1
ln(x) = 1

ln(2) − 0 = 1
ln(2)

Since for integer n ≥ 2, an =  f (n),  by the Integral Test (Theorem 25 Chapter 6),   
is convergent.  But  .             

n=2

∞
an =

n=2

∞ 1
n(ln(n))2 nd∞lim n an

an+1 − 1 = 1

We have thus shown that, when , the series may converge ornd∞lim n an
an+1 − 1 = 1

diverge.  This completes the proof.
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Remark.
1. We have similar conclusions to Theorem 3 when r = ± ∞ .  That is, when   is

n=1

∞
an

a series of positive terms, (i) if , then  is convergent andnd∞lim n an
an+1 − 1 = +∞

n=1

∞
an

(ii) if  , then  is divergent.  The proof is similar to thatnd∞lim n an
an+1 − 1 = −∞

n=1

∞
an

of Theorem 3 part (i) and (ii) but with suitable modification.
2. The usefulness of Theorem 3 is that the test is carried out in terms of the limit  

, which may be readily computed.  The only disadvantage is whennd∞lim n an
an+1 − 1

this limit turns out to be 1 and other tests may have to be used to determine
convergence or divergence.

Example 4.
(1)  The series  , where  is convergent.

n=1

∞
an an = 3n + 1

n(n + 1)(n + 2)

For integer n ≥ 1,    and soan
an+1 =

(3n + 1)(n + 3)
(3n + 4)n = 1 − 3

3n + 4
n + 3

n

         .n an
an+1 − 1 = 1 − 3

3n + 4 (n + 3) − n = 3 −
3(n + 3)
3n + 4 d 3 − 1 = 2 > 1

Therefore, by Raabe's Test (Theorem 3 (i)), is convergent.  One
n=1

∞ 3n + 1
n(n + 1)(n + 2)

may also use the much simpler Comparison Test since
 an = 3n + 1

n(n + 1)(n + 2) [
3

n(n + 2) [
3
n2

and ,  is convergent.
n=1

∞ 1
n2

          (2)  The series    in Example 2 (1), where  is shown to be
n=1

∞
an an =

1 $ 3 $ 5£(2n − 1)
2 $ 4 $ 6£(2n)

divergent by Kummer's test.  We shall use Raabe's Test as follows.
For each integer n ≥ 1,   and so by Raabe's Testn an

an+1 − 1 = n
2n + 1 d 1

2 < 1

(Theorem 3 (ii)), is divergent.
n=1

∞ 1 $ 3 $ 5£(2n − 1)
2 $ 4 $ 6£(2n)

The following theorem is a variation of Raabe's Test.

Theorem 5. 
Suppose  is a series of positive terms.  Suppose for integer n ≥ 1,   

n=1

∞
an

                                     ,an
an+1 = 1 + r

n + vn

where vn  is of order 1/n, i.e., n vn → 0.
Then (i)  converges if r > 1,

n=1

∞
an

(ii)  diverges if r < 1,  
n=1

∞
an

(iii) if  r =1, the series  may converge or diverge.
n=1

∞
an

Proof.   Just observe that 
                  n an

an+1 − 1 = r + nvn d r
Theorem 5 then follows from Theorem 3.

The next result is a slightly stronger version of Raabe's Test.
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Theorem 6.  Suppose  is a series of positive terms. 
n=1

∞
an

(i)   If there exists a fixed constant A > 1 and an integer N ≥ 1 such that for any n ≥ N,
                                          ,an+1

an [ 1 − A
n

       then  is convergent.
n=1

∞
an

(ii)  If there exists an integer N ≥ 1, such that for any n ≥ N,
                                           ,an+1

an m 1 − 1
n

       then  is divergent.
n=1

∞
an

Proof.
(i) Since  for n ≥ N, .  Thus,an+1

an [ 1 − A
n 1 − an+1

an m A
n

                               an − an+1
an = an − an+1

an+1 $
an+1
an m A

n
and so                     .an

an+1 − 1 m an
an+1 $

A
n m 1

1 − A
n
$ A

n
Consequently, for integer n ≥ N,  
                                               -------------------------------  (1)n an

an+1 − 1 m A
1 − A

n
It follows from (1) that for integer n ≥ N,

                            > 0.an
an+1 n − (n + 1) m A − 1 + A

n

1 − A
n

> A − 1

Therefore, by Kummer's Test (Theorem 1 (i)) that  is convergent.
n=1

∞
an

(ii)  We may assume that N > 1.  Then for any integer n ≥ N,
                          an+1

an m 1 − 1
n u

an
an+1 [

n
n − 1 = 1 + 1

n − 1
                                               .u

an
an+1 − 1 [ 1

n − 1 u
an

an+1 n − n [ n
n − 1 = 1 + 1

n − 1
It then follows that for any integer n ≥ N,
                                         --------------------------------    (2)an

an+1 n − (n + 1) [ 1
n − 1

Multiply (2) by ln(n), we obtain for any integer n ≥ N,
                             .an

an+1 n ln(n) − (n + 1) ln(n) [
ln(n)
n − 1

Consequently, for any integer n ≥ N,
                             .an

an+1 n ln(n) − (n + 1) ln(n + 1)) [ (n + 1) ln( n
n + 1 ) +

ln(n)
n − 1

                                                                                 ------------------ (3)< −1 +
ln(n)
n − 1

because  for integer n ≥ 1.  (n + 1) ln( n + 1
n ) > 1

Since  there exists a positive integer N0 such that for any integer n,nd∞lim
ln(n)
n − 1 = 0,

                                             .   -------------------------------- (4)n m N0 u
ln(n)
n − 1 < 1

2
Let M = max(N,N0).  Then it follows from (3) and (4) that for any integer n ≥ M,
                 .an

an+1 n ln(n) − (n + 1) ln(n + 1)) [ −1 + 1
2 = − 1

2 < 0
Therefore,  with bn = n ln(n) (in the notation of Theorem 1 (ii)) by Kummer's test,  

 is divergent, since  is divergent (by Integral Test, Theorem
n=1

∞
an

n=2

∞ 1
bn

=
n=2

∞ 1
n ln(n)

25 Chapter 6).
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Remark
For    a series of positive terms we normally apply the Ratio Test first. The

n=1

∞
an

expression for  will be scrutinized and if the Ratio Test fails to make anyan+1
an

conclusion, the expression for  may be studied further to test for the condition ofan+1
an

Theorem 6.

The next variation of Raabe's Test will make use of absolute convergence of some
known series.  It is stated below.

Theorem 7.  Suppose  is a series of positive terms. 
n=1

∞
an

Suppose there exists an integer N ≥ 1 such that for any n ≥ N,
                                           ,           --------------------------  (C)             an+1

an = 1 − A
n + vn

            
where  is absolutely convergent.

n=1

∞
vn

Then  converges if and only if A > 1.
n=1

∞
an

We shall need an estimate of ln(1− x) for |x| < 1 for the proof of Theorem 7.   We state
the result as follows.

Lemma 8.   for |x| <1.   In particular,ln(1 − x) = −
n=1

∞ xn

n
                       ----------------------  (D)−x − x2 1

1 − |x| [ ln(1 − x) [ −x + x2 1
1 − |x|

and for , |x| < 1
2

                             -------------------------------- (E)−x − 2x2 [ ln(1 − x) [ −x + 2x2

Proof.   The expansion for ln(1−x) for |x| < 1 is as given in Example 21 of Chapter 8.   
Thus

  for |x| < 1.ln(1 − x) = −
n=1

∞ xn

n = −x − x2
n=2

∞ xn−2

n

Note that  for |x| <1 and so we havex2
n=2

∞ xn−2

n [ x2 1
1 − |x|

 , −x − x2 1
1 − |x| [ ln(1 − x) [ −x + x2 1

1 − |x|
which is (D).  
(E) follows from (D).

Proof of Theorem 7.
Since  is absolutely convergent, vn → 0.  It follows that, .   Therefore,

n=1

∞
vn

A
n − vn d 0

there exists a positive integer N1 such that for any integer n,
                             ----------------------------------------- (1)n m N1 u

A
n − vn < 1

2
Let M = max(N, N1).
Now apply the logarithmic function on both sides of (C), we obtain for n ≥ M,
                                  ,ln(an+1) − ln(an) = ln(1 − ( A

n − vn))
Then summing from M onwards we obtain for n ≥ M,
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k=M

n
(ln(ak+1) − ln(ak)) =

k=M

n
ln(1 − ( A

k − vk))

Thus,                ln(an+1) − ln(aM) =
k=M

n
ln(1 − ( A

k − vk))

or  for integer n ≥M,   
                              -----------------------------  (2)ln(an+1) = ln(aM) +

k=M

n
ln(1 − ( A

k − vk))

It then follows from (1) and (E) that for integer n ≥M,
               ln(an+1) [ ln(aM) −

k=M

n A
k +

k=M

n
vk + 2

k=M

n
( A

k − vk)2

                             [ ln(aM) −
k=1

n A
k +

k=1

M−1 A
k +

k=1

∞

vk + 2
k=M

n
( A

k − vk)2

                                                                                since we know  is convergent.
k=1

∞

vk

Now note that  is convergent.   This is because 
k=1

∞

( A
k − vk)2

, ( A
k − vk)2 = A2

k2 + vk
2 − 2A 1

k vk

and   is convergent,   is convergent since  is absolutely convergent
k=1

∞ 1
k2

k=1

∞

vk
2

k=1

∞

vk

and  is absolutely convergent by a simple Comparison Test.  Therefore, for A >
k=1

∞ 1
k vk

1 and  n ≥M,

                          ln(an+1) [ ln(aM) − A ln(n + 1) +
k=1

M−1 A
k +

k=1

∞

vk + 2
k=1

∞

( A
k − vk)2

since .
k=1

n 1
k > ln(n + 1)

Letting , we then have for A > 1 and  nC = ln(aM) +
k=1

M−1 A
k +

k=1

∞

vk + 2
k=1

∞

( A
k − vk)2

≥M,
                                       .  ------------------------------ (3)ln(an+1) [ C + ln( 1

(n + 1)A )

Therefore, applying exponential function to (3), we obtain for A > 1 and  n ≥M,
                                        .an+1 [ eC 1

(n + 1)A

Since A > 1,   is convergent and so by the Comparison test,  is
n=1

∞ 1
(n + 1)A n=M

∞

an+1

convergent and consequently  is convergent.
n=1

∞

an

Suppose now A ≤ 1.  Then it follows from (2), (1) and (E) that for integer n ≥ M,  
                       ------------------  (4)ln(an+1) m ln(aM) −

k=M

n A
k +

k=M

n
vk − 2

k=M

n
( A

k − vk)2

Thus, if 0 ≤ A ≤ 1, for integer n ≥ M,

         ln(an+1) m ln(aM) −
k=2

n A
k +

k=2

M−1 A
k −

k=1

∞

vk − 2
k=1

∞

( A
k − vk)2

                                                 since we know  and are convergent,
k=1

∞

vk
k=1

∞

( A
k − vk)2

                         m ln(aM) − A ln(n) +
k=2

M−1 A
k −

k=1

∞

vk − 2
k=1

∞

( A
k − vk)2

                                                                                                       since   .
k=2

n 1
k < ln(n)
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Hence letting , for 0 ≤ A ≤ 1 and integer nK = ln(aM) +
k=2

M−1 A
k −

k=1

∞

vk − 2
k=1

∞

( A
k − vk)2

≥ M,
                                .ln(an+1) m K − A ln(n) = K + ln( 1

nA )

Applying the exponential function we obtain, for 0 ≤ A ≤ 1 and integer n ≥ M,
                                            .an+1 m eK 1

nA

Therefore, by the Comparison Test  is divergent because for 0 ≤ A ≤ 1 is
n=1

∞

an
n=1

∞ 1
nA

divergent.
If A < 0, it follows from (4) that for integer n ≥ M,

                    ln(an+1) m ln(aM) −
k=1

n A
k +

k=1

M−1 A
k −

k=1

∞

vk − 2
k=1

∞

( A
k − vk)2

                                  .m ln(aM) − A ln(n + 1) +
k=1

M−1 A
k −

k=1

∞

vk − 2
k=1

∞

( A
k − vk)2

Let  .   We then have for A < 0 and integerK = ln(aM) +
k=1

M−1 A
k −

k=1

∞

vk − 2
k=1

∞

( A
k − vk)2

n ≥ M,
                                 .ln(an+1) m K + ln((n + 1)−A)
Therefore, for A < 0 and integer n ≥ M,
                                        .an+1 m eK(n + 1)−A

Plainly, by the Comparison Test,  is divergent.  This completes the proof of
n=1

∞

an

Theorem 7.

Remark.    Usually the following specialization of  Theorem 7 is used:
Suppose  is a series of positive terms. 

n=1

∞
an

Suppose there exists an integer N ≥ 1 such that for any n ≥ N,
                                                                    an+1

an = 1 − A
n + vn

and for k > 0, that is   for some positive constant C.vn = O 1
n1+k |vn| < C 1

n1+k

Then  is convergent if and only if A > 1. 
n=1

∞
an

This follows from Theorem 7 since  implies that  is absolutelyvn = O 1
n1+k n=1

∞
vn

convergent.

13.3 Bertrand's Test

The next test that we shall present may be useful when Theorem 3 is inconclusive,
that is when    nd∞lim n an

an+1 − 1 = 1.

Theorem 9 (Bertrand's Test).   Suppose  is a series of positive terms. 
n=1

∞
an

(i)   Suppose there exists an integer N ≥ 2 such that for any n ≥ N,
                                           .          ---------------------------  (F)     an

an+1 m 1 + 1
n + A

n ln(n)
     
       If A > 1, then    is convergent.

n=1

∞
an

(ii)  Suppose there exists an integer N ≥ 2 such that for any n ≥ N,
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                                           .           ---------------------------  (G)an
an+1 [ 1 + 1

n + 1
n ln(n)

     Then  is divergent.
n=1

∞
an

Proof.
(i).   From (F) we have, for any integer n ≥ N,      
                                        an

an+1 n ln(n) m (n + 1) ln(n) + A
        and so            
                    an

an+1 n ln(n) − (n + 1) ln(n + 1) m (n + 1) ln( n
n + 1 ) + A m −1 − 1

n + A

        since .(n + 1) ln( n
n + 1 ) > −1 − 1

n
If A > 1, then A −1 > 0.   Then there exists a positive integer N1 such that for any
integer n,
                                  .n m N1 u

1
n < 1

2 (A − 1)
Therefore, if  A > 1, then for any integer n ≥ max(N, N1),  

.an
an+1 n ln(n) − (n + 1) ln(n + 1) > −1 − 1

n + A > 1
2 (A − 1) > 0

Hence, by Kummer's Test (Theorem 1 (i)),  is convergent.
n=1

∞
an

(ii)   Similarly it follows from (G) that for any integer n ≥ N,     
                              an

an+1 n ln(n) [ (n + 1) ln(n) + 1
        and so 

an
an+1 n ln(n) − (n + 1) ln(n + 1) [ (n + 1) ln( n

n + 1 ) + 1 [ −1 + 1 [ 0
        since .(n + 1) ln( n

n + 1 ) < −1

Therefore, by Kummer's Test (Theorem 1(ii)), since is divergent,  
n=2

∞ 1
n ln(n) n=1

∞
an

is divergent. 

Next we have the following variation of Bertrand's Test in terms of .an+1
an

Theorem 10.   Suppose  is a series of positive terms. 
n=1

∞
an

(i)   Suppose there exists an integer N ≥ 2 such that for any n integer ≥ N,
                                           .          ---------------------------  (H)     an+1

an [ 1 − 1
n − A

n ln(n)
     
       If A > 1, then    is convergent.

n=1

∞
an

(ii)  Suppose there exists an integer N ≥ 2 such that for any integer n ≥ N,
                                           .           ---------------------------  (I)an+1

an m 1 − 1
n − 1

n ln(n)
       Then  is divergent.

n=1

∞
an

We can prove Theorem 10 in the same way Theorem 9 is proved  but using a version
of Kummer's Test in terms of :an+1

an

Suppose  is a series of positive terms.   
n=1

∞
an

(i)  If there is a positive sequence { bn }, a positive constant A, and a positive
integer N such that   for all integer n ≥ N,
                                              ,  bn − bn+1

an+1
an m A
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then  is convergent.
n=1

∞
an

(ii)  If there is a positive sequence { bn } and a positive integer N such that  for all
integer n ≥ N ,                                      ,bn − bn+1

an+1
an [ 0

hen  is divergent if  is divergent.
n=1

∞
an n=1

∞ 1
bn

We shall give a different proof using Theorem 9.

Proof of Theorem 10.
(i)   From (H), we have for any integer n ≥ N, .an+1

an [ 1 − 1
n − A

n ln(n)
If  A > 1,  since , there exists a positive integer N1 such that for1

n + A
n ln(n) d 0

any integer n,
                         .n m N1 u 0 < 1

n + A
n ln(n) < 1

Therefore, for any integer n ≥ max(N, N1 ),
 .       an

an+1 m
1

1 − 1
n − A

n ln(n)

m 1 + 1
n + A

n ln(n)

It follows by Theorem 9 (i) that   is convergent.
n=1

∞
an

(ii)  We shall prove part (ii) along the lines of the proof of Theorem 7.
Applying the logarithmic function to both sides of (I) we obtain for any integer    
n ≥ N,
                                    --------------------  (1)ln(an+1) − ln(an) m ln(1 − 1

n − 1
n ln(n) )

We may assume that   .  We shall assume that         n m N u 0 < 1
n + 1

n ln(n) < 1
2

N  > 4.
It then follows from (1) and Lemma 8 or (E) that,

                         'ln(an+1) − ln(an) m − 1
n − 1

n ln(n) − 2 1
n + 1

n ln(n)

2

Thus, summing from N onwards we obtain for integer n ≥ N,                       

ln(an+1) − ln(aN) m −
k=N

n 1
k −

k=N

n 1
k ln(k) − 2

k=N

n 1
k + 1

k ln(k)

2

                                               

             m −
k=2

n 1
k +

k=2

N=1 1
k −

k=4

n 1
k ln(k) +

k=4

N−1 1
k ln(k) − 2

k=N

n 1
k + 1

k ln(k)

2

                                                     assuming without loss of generality that N > 4,
                                               

             m − ln(n) +
k=2

N=1 1
k − ln(ln(n)) +

k=4

N−1 1
k ln(k) − 2

k=N

n 1
k + 1

k ln(k)

2

                                     since   and  , 
k=2

n 1
k < ln(n)

k=4

n 1
k ln(k) < ln(ln(n)) − ln(ln(3))

                                               

             m − ln(n ln(n)) +
k=2

N=1 1
k +

k=4

N−1 1
k ln(k) − 2

k=2

∞ 1
k + 1

k ln(k)

2
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since plainly  is convergent by a simple Comparison Test with
k=2

∞ 1
k + 1

k ln(k)

2

the convergent .
k=2

∞ 1
k2

Therefore, for integer n ≥ N,    

.ln(an+1) m ln(aN) +
k=2

N=1 1
k +

k=4

N−1 1
k ln(k) − 2

k=2

∞ 1
k + 1

k ln(k)

2

− ln(n ln(n))

Letting    , we then get forC = ln(aN) +
k=2

N=1 1
k +

k=4

N−1 1
k ln(k) − 2

k=2

∞ 1
k + 1

k ln(k)

2

integer n ≥ N,
                                    . ------------------------------------ (2).ln(an+1) m C − ln(n ln(n))
Therefore, applying the exponential function to (2), we obtain for any integer n ≥
N,
                                        . .an+1 m eC 1

n ln(n)

Therefore, by the Comparison Test, since is divergent,  is
k=2

∞ 1
n ln(n) n=1

∞
an

divergent.  This completes the proof of Theorem 10.

13.4 Gauss Test

We now introduce Gauss test.  The first result is in the form that is usually applied.

Theorem 11 (Gauss Test).  Suppose  is a series of positive terms. 
n=1

∞
an

Suppose there exists an integer N ≥ 1 such that for any n ≥ N,
                                           ,                                  an

an+1 = 1 + A
n + An

n2

where (An ) is a bounded sequence.
Then   converges if and only if A > 1.

n=1

∞
an

We shall prove this by proving the following slightly more generalized version.

Theorem 12 (Gauss Test).  Suppose  is a series of positive terms. 
n=1

∞
an

Suppose there exists an integer N ≥ 1 such that for any n ≥ N,

                                           ,         --------------------------------  (J)       an
an+1 = 1 + A

n + vn

where vn is of order , i.e., there is a positive integer M such that 1
n1+k , k > 0

, for some positive constant C and for all integer n ≥ M.vn [ C 1
n1+k

Then  converges if and only if A > 1.
n=1

∞
an
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Proof.  By supposition, for any integer n ≥ N,
                                                 --------------------------------  (1)n an

an+1 − 1 = A + nvn

Since  integer n ≥ M, we have then that for n ≥ M, , .vn [ C 1
n1+k nvn [ C 1

n1+k

Therefore, because   for k > 0, by the Comparison Test (Proposition 8nd∞lim 1
n1+k = 0

Chapter 2), , . nd∞lim nvn = 0
It follows then from (1) that     
                           .nd∞lim n an

an+1 − 1 = A +nd∞lim nvn = A + 0 = A
Therefore, by Raabe's Test (Theorem 3),    converges if A > 1 and diverges if A <

n=1

∞
an

1. 
If A =1, by (J) we have that for integer n ≥ N1 = max(N, M),

.an
an+1 = 1 + 1

n +
n ln(n)vn
n ln(n)

Note that for integer n ≥ N1,  , .  Since  for k > 0,n ln(n)vn [ C ln(n)
nk nd∞lim C ln(n)

nk = 0
there exists a positive integer N2 such that n ≥ N2  implies that ,   n ln(n)vn [ 1.
Therefore, for integer n ≥ max(N1 ,  N2),
                                          .an

an+1 [ 1 + 1
n + 1

n ln(n)
It then follows by Bertrand's Test (Theorem 9 (ii)),    is divergent.  This

n=1

∞
an

completes the proof of Theorem 12.

Theorem 11 follows from Theorem 12 since  is of order  if the sequence (An ) is
An
n2

1
n2

bounded. 

A further generalization may be called Gauss Test too.   Indeed Theorem 7 may be
called a "Gauss-like"  test too.

Theorem 13.  Suppose  is a series of positive terms. 
n=1

∞
an

Suppose there exists an integer N ≥ 1 such that for any n ≥ N,
                                             ---------------------------  (K)        an

an+1 = 1 + A
n + vn

where  is absolutely convergent.
n=1

∞
vn

Then  converges if and only if A > 1.
n=1

∞
an

Proof.  The proof is similar to that of Theorem 7.  We reproduce here for
convenience.
Since  is absolutely convergent, vn → 0.  It follows that, .  Therefore,

n=1

∞
vn

A
n + vn d 0

there exists a positive integer N1 such that for any integer n,
                                     ----------------------------------------- (1)n m N1 u

A
n + vn < 1

2
Let M = max(N, N1).
Now applying the logarithmic function on both sides of (K), we obtain for n ≥ M,
                                  ,ln(an+1) − ln(an) = − ln(1 + ( A

n + vn))
Then summing from M onwards we obtain for n ≥ M,
                      

k=M

n
(ln(ak+1) − ln(ak)) = −

k=M

n
ln(1 + ( A

k + vk))
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Thus,                ln(an+1) − ln(aM) = −
k=M

n
ln(1 + ( A

k + vk))

or  for integer n ≥M,   
                              -----------------------------  (2)ln(an+1) = ln(aM) −

k=M

n
ln(1 + ( A

k + vk))

It then follows from (1) and (E) that for integer n ≥M,
               ln(an+1) [ ln(aM) −

k=M

n A
k −

k=M

n
vk + 2

k=M

n
( A

k + vk)2

                             [ ln(aM) −
k=1

n A
k +

k=1

M−1 A
k +

k=1

∞

vk + 2
k=M

n
( A

k + vk)2

since we know  is convergent.
k=1

∞

vk

Now note that  is convergent.  This is because 
k=1

∞

( A
k + vk)2

,( A
k + vk)2 = A2

k2 + vk
2 + 2A 1

k vk

 is convergent,   is convergent since  is absolutely convergent and 
k=1

∞ 1
k2

k=1

∞

vk
2

k=1

∞

vk

 is absolutely convergent by a simple Comparison Test (compare with ,
k=1

∞ 1
k vk

k=1

∞

vk

ref Proposition 12 Chapter 6).  Therefore, for A > 1 and  n ≥M,

            ln(an+1) [ ln(aM) − A ln(n + 1) +
k=1

M−1 A
k +

k=1

∞

vk + 2
k=1

∞

( A
k + vk)2

since .
k=1

n 1
k > ln(n + 1)

Letting , we then have for A > 1 and  nC = ln(aM) +
k=1

M−1 A
k +

k=1

∞

vk + 2
k=1

∞

( A
k + vk)2

≥M,
                                       .  ------------------------------ (3)ln(an+1) [ C + ln( 1

(n + 1)A )

Therefore, applying exponential function to (3), we obtain for A > 1 and  n ≥M,
                                        .an+1 [ eC 1

(n + 1)A

Since A > 1, the series  is convergent and so by the Comparison test, 
n=1

∞ 1
(n + 1)A

 is convergent and consequently  is convergent.
n=M

∞

an+1
n=1

∞

an

Suppose now A ≤ 1.  Then it follows from (2), (1) and (E) that for integer n ≥ M,  
                       ------------------  (4)ln(an+1) m ln(aM) −

k=M

n A
k −

k=M

n
vk − 2

k=M

n
( A

k + vk)2

Thus, if 0 ≤ A ≤ 1, for integer n ≥ M,

      ln(an+1) m ln(aM) −
k=2

n A
k +

k=2

M−1 A
k −

k=1

∞

vk − 2
k=1

∞

( A
k + vk)2

                                                since we know  and are convergent,
k=1

∞

vk
k=1

∞

( A
k − vk)2

                    m ln(aM) − A ln(n) +
k=2

M−1 A
k −

k=1

∞

vk − 2
k=1

∞

( A
k + vk)2

since   .
k=2

n 1
k < ln(n)

Hence letting , for 0 ≤ A ≤ 1 and integer nK = ln(aM) +
k=2

M−1 A
k −

k=1

∞

vk − 2
k=1

∞

( A
k + vk)2

≥ M,
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                                .ln(an+1) m K − A ln(n) = K + ln( 1
nA )

Applying the exponential function we obtain, for 0 ≤ A ≤ 1 and integer n ≥ M,
                                            .an+1 m eK 1

nA

Therefore, by the Comparison Test,  is divergent because for 0 ≤ A ≤ 1, is
n=1

∞

an
n=1

∞ 1
nA

divergent.
If A < 0, it follows from (4) that for integer n ≥ M,

                    ln(an+1) m ln(aM) −
k=1

n A
k +

k=1

M−1 A
k −

k=1

∞

vk − 2
k=1

∞

( A
k + vk)2

                                  .m ln(aM) − A ln(n + 1) +
k=1

M−1 A
k −

k=1

∞

vk − 2
k=1

∞

( A
k + vk)2

Let  .  We then have for A < 0 and integerK = ln(aM) +
k=1

M−1 A
k −

k=1

∞

vk − 2
k=1

∞

( A
k + vk)2

n ≥ M,
                                 .ln(an+1) m K + ln((n + 1)−A)
Therefore, for A < 0 and integer n ≥ M,
                                        .an+1 m eK(n + 1)−A

Plainly, by the Comparison Test,  is divergent.  This completes the proof of
n=1

∞

an

Theorem 13.

Note that in the proof of Theorem 13 we use only inequalities.  Thus we may
formulate Theorem 13 as follows:

Theorem 14.  Suppose  is a series of positive terms. 
n=1

∞
an

(i)  Suppose there exists an integer N ≥ 1 such that for any n ≥ N,
                                           ,        an

an+1 m 1 + A
n + vn

where  is absolutely convergent.  If A > 1, then  converges.
n=1

∞
vn n=1

∞
an

(ii) Suppose there exists an integer N ≥ 1 such that for any n ≥ N,
                                           ,        an

an+1 [ 1 + 1
n + vn

where  is absolutely convergent.  Then  diverges.  
n=1

∞
vn n=1

∞
an

Proof.  The proof is embedded in the proof of Theorem 13.  
For part (i) note that for any n ≥ N,  assuming that ,1 + ( A

n + vn) > 0
                 .ln(an+1) − ln(an) [ − ln(1 + ( A

n + vn))
With this inequality, the rest of the proof is exactly the same as in the proof of
Theorem 13.
Likewise for part (ii),   and the proof proceeds inln(an+1) − ln(an) m − ln(1 + ( 1

n + vn))
exactly the same manner as in the proof of Theorem 13.

Thus specializing Theorem 14 we obtain:
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Theorem 15.  Suppose  is a series of positive terms. 
n=1

∞
an

(i)  Suppose there exists an integer N ≥ 1 such that for any n ≥ N,
                                           ,        an

an+1 m 1 + A
n + An

n2

where (An ) is a bounded sequence.  If A > 1, then  converges.
n=1

∞
an

(ii) Suppose there exists an integer N ≥ 1 such that for any n ≥ N,

                                           ,        an
an+1 [ 1 + 1

n + An
n2

where (An ) is a bounded sequence.  Then  diverges.
n=1

∞
an

Example 16.
For a, b > 0 the series   converges if and only if b−a >

n=1

∞ a(a + 1)(a + 2)£(a + n − 1)
b(b + 1)(b + 2)£(b + n − 1)

1.
Proof.  Let .  Then for integer n ≥ 1,an =

a(a + 1)(a + 2)£(a + n − 1)
b(b + 1)(b + 2)£(b + n − 1)

                   an
an+1 = b + n

a + n = 1 + b − a
n −

a(b − a)
(1 + a

n ) ÷n2

and so since the sequence  is bounded, by Gauss Test (Theorem 11) the−
a(b − a)
(1 + a

n )

series  is convergent if and only if (b−a) > 1.
n=1

∞ a(a + 1)(a + 2)£(a + n − 1)
b(b + 1)(b + 2)£(b + n − 1)

13.5 Cauchy Condensation Test

There is one interesting test, the Cauchy condensation test, particularly useful for
certain  logarithmic series.  This test applies only to series with monotone decreasing
terms.

Theorem 17.  
Suppose ( an ) is a monotone decreasing sequence of non-negative terms.  Then 

n=1

∞
an

is convergent  if and only if   is convergent.
n=1

∞
2na2n

Proof.   Let   be the n-th partial sum of the series for each integer n ≥ 1.sn =
j=1

n
aj

Since each an is nonnegative, the sequence ( sn ) is an increasing sequence.  Therefore,
by the Monotone Convergence Theorem (Theorem 15 Chapter 2),  is convergent

n=1

∞
an

if and only if ( sn ) is convergent if and only if the sequence  ( sn ) is bounded above.   
Let Let  for each integer n ≥ 0.  Let Let .   Similarly we deducevn = 2na2n tn =

j=0

n−1
vj

that  is convergent if and only if the sequence ( tn ) is bounded above.  Now we
n=0

∞
vn

make some simple observation.
Since ( an ) is a monotone decreasing, for each integer n ≥ 0 and any j ≥ 0,  .a2n m a2n+j

Hence for each integer n ≥ 0,
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                                            .2na2n m
j=0

2n−1
a2n+j =

j=2n

2n+1−1
aj

We also have that for each integer n ≥ 0 and any ,  .   0 [ j [ 2n − 1 a2n+1−1 [ a2n+j

Hence,
                               

                                             .2na2n+1−1 [
j=0

2n−1
a2n+j =

j=2n

2n+1−1
aj

Therefore, for each integer n ≥ 0,    .    It then follows that2na2n+1 [ 2na2n+1−1 [
j=2n

2n+1−1
aj

for each integer n ≥ 0,

                                      .  ---------------------------   (1)

1
2 2n+1a2n+1 [

j=2n

2n+1−1
aj [ 2na2n

or 1
2 v n+1 [

j=2n

2n+1−1
aj [ vn

⎫ 

⎭ 

⎬ 
⎪ 

⎪ 

⎪ 

⎪ 

Suppose that the series    is convergent, i.e., the sequence ( tn ) is bounded above.
n=0

∞
vn

We shall next show that the sequence ( sn ) is also bounded above.
Take any integer n ≥ 1.  Then for some k ≥ 1,   n ≤ 2k −1.   We have
      sn = a1 + (a2 + a3) + (a4 + a5 + a6 + a7) +£+ an
                               
           [ a1 + (a2 + a3) + (a4 + a5 + a6 + a7) +£+ (a2k−1 + a2k−1+1 +£+ a2k−1)
                                 -------------------------------------   (2)[ v0 + v1 + v2 +£+ vk−1 = tk
by (1).
Since ( tn ) is bounded above, there exists a positive constant C such that tn ≤ C.
Therefore, by (2), sn ≤ tk ≤ C.   It follows that sn ≤ C for all integer n ≥ 1.  This means  
( sn ) is also bounded above.  Hence  is convergent.

n=1

∞
an

Conversely suppose  is convergent.  This means ( sn ) is bounded above and so
n=1

∞
an

there exists a positive number K such that sn ≤ K for all integer n ≥ 1.  We shall show
that ( tn ) is also bounded above.  Take any integer n ≥ 2.   Then

    .             tn =
j=0

n−1
vj = v0 + v1 +£ + vn−1

    [ a1 + 2a1 + 2(a2 + a3) + 2(a4 + a5 + a6 + a7)£+ 2(a2n−2 + a2n−2+1 +£+ a2n−1−1)
                                                                                                                              by (1)
     .[ a1 + 2s2n−1−1 [ a1 + 2K = D
Plainly t1 ≤ D.   Therefore, the sequence ( tn ) is bounded above by D.   This means 

 is convergent.
n=1

∞
vn

Example 18.    is divergent.
n=2

∞ 1
n ln(n)

Note that  is a monotone decreasing sequence of positive terms.  Therefore,1
n ln(n)

by the Cauchy Condensation Test,   is convergent if and only if 
n=2

∞ 1
n ln(n)
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 is convergent.  But   is divergent by Comparison Test since 
n=1

∞ 2n

2n ln(2n) n=1

∞ 1
n ln(2)

 is divergent.   Hence,  is divergent.
n=1

∞ 1
n n=2

∞ 1
n ln(n)

13. 6  Examples of the use of the tests.

1.    The series    is divergent.
n=1

∞ 1 $ 4 $ 7 $£ $ (3n − 2)
3 $ 6 $ 9 $£ $ (3n)

Let   for integer n ≥ 1.an =
1 $ 4 $ 7 $£ $ (3n − 2)

3 $ 6 $ 9 $£ $ (3n)
         
Then for integer n ≥ 1,
            an

an+1 = 3n + 3
3n + 1 = 1 + 2

3n + 1 = 1 + 2
3n $

3n
3n + 1 = 1 + 2

3n $ 1 − 1
3n + 1

                     .= 1 + 2/3
n − 2

3n(3n + 1) = 1 + 2/3
n − 1

n2
2n

(3n + 1)

Since  , the sequence is bounded and so because− 2n
(3n + 1) [ 2

3 An = − 2n
(3n + 1)

in the notation of Theorem 11, , by Gauss Test (Theorem 11),  isA = 2
3 < 1

n=1

∞
an

divergent.

2.  The series    is convergent. 
n=1

∞ 1 $ 3 $ 5 $£ $ (2n − 1)
2n(n + 1)!

For integer n ≥ 1 let  .   Then for n ≥ 1,     an =
1 $ 3 $ 5 $£ $ (2n − 1)

2n(n + 1)!
                                 .   an

an+1 =
2(n + 2)
(2n + 1) = 1 + 3

2n + 1
Therefore, for integer n ≥ 1,

                              .an
an+1 − 1 n = 3n

2n + 1

Thus    .nd∞lim an
an+1 − 1 n =nd∞lim 3n

2n + 1 = 3
2 > 1

Therefore, by Raabe's Test (Theorem 3 (i)),  is convergent.
n=1

∞
an

3.   The series    is divergent.  
n=1

∞ 1 $ 3 $ 5 $£ $ (2n − 1)
2 $ 4 $ 6 $£ $ (2n)

4n + 1
2n + 2

Here   for integer n ≥ 1.  Then for n ≥ 1, an =
1 $ 3 $ 5 $£ $ (2n − 1)

2 $ 4 $ 6 $£ $ (2n)
4n + 1
2n + 2

       .   an
an+1 =

(2n + 4)(4n + 1)
(2n + 1)(4n + 5) = 1 + 3

2n + 1 1 − 4
4n + 5

                = 1 + 3
2n + 1 − 4

4n + 5 − 12
(2n + 1)(4n + 5)

                = 1 + 3
2n

2n
2n + 1 − 1

n
4n

4n + 5 − 12
(2n + 1)(4n + 5)

                = 1 + 3
2n 1 − 1

2n + 1 − 1
n 1 − 5

4n + 5 − 12
(2n + 1)(4n + 5)

                = 1 + 1
2n − 3

2n(2n + 1) + 5
n(4n + 5) − 12

(2n + 1)(4n + 5)
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                .= 1 + 1
2n + 1

n2 − 3n
2(2n + 1) + 5n

4n + 5 − 12n2

(2n + 1)(4n + 5)

Now  for all|An | = − 3n
2(2n + 1) + 5n

4n + 5 − 12n2

(2n + 1)(4n + 5) [ 3
4 + 5

4 + 2 = 4

integer n ≥ 1.  Therefore, by Gauss Test (Theorem 11), ,  is divergent.
n=1

∞
an

4.   The series , , where  , diverges for k ≤ 2,    
n=1

∞
an an =

1 $ 3 $ 5 $£ $ (2n − 1)
2 $ 4 $ 6 $£ $ (2n)

k

       converges for  k > 2.
For integer n ≥ 1,    .an

an+1 = 2n + 2
2n + 1

k
= 1 + 1

2n + 1
k

Therefore,

            nd∞lim an
an+1 − 1 n =nd∞lim

1+
1

2n + 1
k

−1

1
n

=nd∞lim
k 1+

1
2n + 1

k−1

(−
2

(2n + 1)2 )

− 1
n2

                                                                                                by L' Hôpital's Rule,
                                    .=nd∞lim k 1 + 1

2n + 1
k−1 2n2

(2n + 1)2 = k
2

Therefore, by Raabe's Test (Theorem 3),  converges if , i.e., k > 2 and 
n=1

∞
an

k
2 > 1

 diverges if ,  i.e., k < 2.   If  k = 2, for integer n ≥ 1, 
n=1

∞
an

k
2 < 1

                an
an+1 = 2n + 2

2n + 1
k

= 1 + 1
2n + 1

2
= 1 + 2

2n + 1 + 1
(2n + 1)2

                         = 1 + 1
n (1 − 1

2n + 1 ) + 1
(2n + 1)2

                         = 1 + 1
n − 1

n(2n + 1) + 1
(2n + 1)2

                         .= 1 + 1
n + 1

n2 − n
(2n + 1) + n2

(2n + 1)2

Since , the sequence |An | = − n
(2n + 1) + n2

(2n + 1)2 [ 1
2 + 1

4 = 3
4

An = − n
(2n + 1) + n2

(2n + 1)2

is bounded and we have for integer n ≥ 1,
                                        .an

an+1 = 1 + 1
n + An

n2

Therefore, by the Gauss Test (Theorem 11),  is divergent.
n=1

∞
an

5.  The series , , where  is convergent.
n=1

∞
an an = (1 + 1

2n )2 − (1 + 1
2n+1 )2

Now  for integer n ≥ 1.an = 1 + 1
2n + 1 + 1

2n + 1
1
2n − 1

2n + 1 =
8n(n + 1) + 1
4n2(2n + 1)2

Therefore, for integer n ≥ 1,

     an
an+1 =

8n(n + 1) + 1
n2(2n + 1)2

(n + 1)2(2n + 3)2

8(n + 1)(n + 2) + 1

              =
8n(n + 1) + 1

8(n + 1)(n + 2) + 1
(n + 1)(2n + 3)

n(2n + 1)

2

              = 1 −
16(n + 1)

8(n + 1)(n + 2) + 1 1 + 4n + 3
n(2n + 1)

2
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            .= 1 +
2(4n + 3)
n(2n + 1) + 4n + 3

n(2n + 1)

2

−
16(n + 1)

8(n + 1)(n + 2) + 1 1 + 4n + 3
n(2n + 1)

2

It follows then that for integer n ≥ 1,

 .an
an+1 − 1 n =

2(4n + 3)
(2n + 1) + 1

n
4n + 3

(2n + 1)

2

−
16(n + 1)n

8(n + 1)(n + 2) + 1 1 + 4n + 3
n(2n + 1)

2

Therefore,

nd∞lim an
an+1 − 1 n

 =nd∞lim
2(4n + 3)
(2n + 1) +nd∞lim 1

n
4n + 3

(2n + 1)

2

−nd∞lim
16(n + 1)n

8(n + 1)(n + 2) + 1 1 + 4n + 3
n(2n + 1)

2

 = 4 + 0 − 2 = 2 > 1.
Hence, by Raabe's Test (Theorem 3), ,  is convergent.

n=1

∞
an

6.   It is well known that the binomial series,  , where , is absolutely
n=0

∞
anxn an = n

convergent for |x| < 1 and any real number β.  We shall establish its convergence at
the end points x = ± 1.

First of all note that for β = 0, the series  ,  is convergent for any x since 
n=0

∞
anxn

 for n > 0.n = 0

(i)  When β > 0,  the series is absolutely convergent at x = ± 1.
(ii)  When β < 0 and x = −1, the series is divergent.
(iii) When β ≤ −1 and x = 1, the series is divergent.
(iv)  When −1 < β < 0 and x = 1, the series is conditionally convergent.

Note that for integer n > 0,
                an

an+1 =
( − 1) $£ $ ( − (n − 1))

1 $ 2 $£ $ n
1 $ 2 $£ $ (n + 1)
( − 1) $£ $ ( − n)

                          = n + 1
− n

Therefore,  .   Hence the radius of convergence is 1.nd∞lim an
an+1 =nd∞lim n + 1

− n = 1

For integer n > β , 
             an

an+1 = n + 1
n − = 1 +

1 +
n − = 1 +

1 +
n (1 + n − )

                         = 1 +
1 +

n +
(1 + )

n(n − ) = 1 +
1 +

n + 1
n2

n (1 + )
(n − )

In the notation of Theorem 11, A = 1+ β and  for integer n > β.   An =
n (1 + )
(n − )

Now the sequence (An ) is bounded since for n > β, 

.  An =
(1 + )

(1 − /n) [
⎧ 

⎩ 
⎨ 
⎪ 

⎪ 

(1 + )
(1 − /([ ] + 1)) if > 0

(1 + ) if < 0
Therefore, by Gauss Test (Theorem 11), the series is absolutely convergent when
x = ± 1 and A = 1+ β > 1, i.e., β > 0.   This proves part (i).
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By Gauss Test (Theorem 11), the series ,  is divergent when 1+β < 1, 1+β <
n=0

∞
an

1, i.e., β < 0.
When β < 0 and x = −1,  for integer n ≥ 0.  Therefore, theanxn = an(−1)n = |an|
series
                                  ,

n=0

∞
an(−1)n =

n=0

∞
an

is divergent.  This proves part (ii).
When β ≤ −1 and x = 1, 

 ,an =
( − 1) $£ $ ( − (n − 1))

1 $ 2 $£ $ n =
( + 1) $£ $ ( + (n − 1))

1 $ 2 $£ $ n m 1

and so  .  Therefore, when β ≤ −1 and x = 1, the series ,  diverges.an \ 0
n=0

∞
anxn

This proves part (iii).
(iv) When −1 < β < 0, 1 > − β > 0  so that for any integer k > 0, 
                                    1 + k > − β + k > k   --------------------------------------  (1)
Now, 

          . an =
( − 1) $£ $ ( − (n − 1))

1 $ 2 $£ $ n = (−1)n (− )(− + 1) $£ $ (− + (n − 1))
1 $ 2 $£ $ n

Let   for integer n ≥ 1 and b0 = 1.  Then bybn =
(− )(− + 1) $£ $ (− + (n − 1))

1 $ 2 $£ $ n
(1), 0 < bn < 1.  Thus by (1) for integer n ≥ 1, 

                                          .bn+1
bn

=
− + n
n + 1 < 1

Hence the sequence ( bn ) is a positive decreasing sequence.
Now we write for integer n > 1,
                                  bn = bn

bn−1

bn−1
bn−2

$£ $
b2
b1

b1

Applying the logarithmic function we obtain for integer n ≥ 1,

.ln(bn) =
k=1

n
ln bk

bk−1
[

k=1

n bk
bk−1

− 1 =
k=1

n − + k − 1
k − 1 = (− − 1)

k=1

n 1
k

(Here we have used the fact that for 0 < x < 1, ln(x) < x−1.)
Therefore, since (−β −1) < 0 and  ,   and consequently,

k=1

∞ 1
k = +∞ nd∞lim ln(bn) = −∞

bn → 0. 
It now follows by the Leibnitz's Alternating Series Test (Theorem 20 Chapter 6),
that when −1 < β < 0 and x =1,,   is convergent.  Since

n=0

∞
anxn =

n=0

∞
an =

n=0

∞
(−1)nbn

we already knew that  diverges for β < 0,  the convergence is conditional.
n=0

∞
an

Exercises 19.

1.  Test ∑ an  for convergence where  an is given as follows.
(a)  , n p + α ≠ 0 ,  (b)  ,   (c)    ,1

np +
1

2n + x , 2n + x ! 0 e−n2x

(d)  ,     (e)   ,      (f)  ,1
n + n + 1

n
n4 + 1

n2 + n + 1 − n2 − n + 1
n

Chapter 13 Special Tests for Convergence

21
© Ng Tze Beng



(g)   ,    (h)   ,   (i)  ,   (j)   , 1
(ln(n)) , n m 2 n

n!
(n!)2

(2n)! x2n 1
n2 + a2

(k)   ,   (l)   n
2n + 1

n3
1

n(ln(n))2

2.   Determine the convergence of the series.

(a)   , x > 0,    (b)  ,
n = 1

∞ n!
x(x + 1)¢(x + n − 1) n = 1

∞ (2n)!
22n(n!)2

(c)    ,    (d)   ,
n = 1

∞ ( + 1)¢( + n − 1)
( + 1)¢( + n − 1) , , > 0

n = 1

∞ x(x + 1)¢(x + n − 1)
nn

(e)     ,   (f)   ,
n = 1

∞

n ln 3n + 2
3n − 2 − 1

n = 1

∞

sin x
n , x > 0

(g)     ,                 (h)    , 
n =2

∞ 1
(ln(n))3n

n =2

∞ 1
(ln(n))ln(n)

 (i)    ,          (j)    
n =3

∞ 1
(ln(ln(n)))ln(n) n =3

∞ 1
(ln(n))ln(ln(n)) ,

 (k)     ,   (l)   ,
n =1

∞ 1 $ 3 $ 5£(2n − 1)
2 $ 4 $ 6£2n $ 1

n n =2

∞ 1
n(ln(n))2

(m)   .
n =1

∞ n ln(n)
n2 + 2n + 3

3.    Test ∑ an  for absolute convergence or conditional convergence where  an is
given as follows.

(a)   ,  (b)   , (c)    ,   (d)   (−1)n (n + 1)
n3 ln(n) , n m 2

(−3)n+1

n(n!)
(−1)n

n1+1/n (−1)n ln(1 + 2
n )

(e)   ,      (f)     (g)  ,   (h)   .
(−1)n

n + 1
n

(−3)n+1

n(n!) sin (n + 1
n ) (−1)n−1(ln(1 + 1

n ))n

4.   Determine the values of x for which the following series is (i) absolutely
convergent , (ii) convergent.

(a)    , (b)    ,   (c)   ,
n = 1

∞ n!
(2n)! xn

n = 1

∞ (n!)2

(2n)! xn
n = 1

∞ 1
n ln 2n + 1

n xn

(d)      ,      (e)    ,    (f)  .
n = 1

∞ xn

nx
n = 1

∞

(ln(x))n ln n + 1
n n = 1

∞

(−1)n 1
(nx)n

5.   Determine the region of convergence of the power series
                                .

n = 1

∞ 3n + 4
n(n + 1)(n + 2) xn

      Find the sum when x = 1.

6.   Determine the values of x for which the following series is convergent.

(a)     ,  (b)     , (c)   .
n = 1

∞ cos(nx)
n + 1 n = 1

∞ sin(nx)
ln(n + 1) n = 1

∞

cos(nx) sin x
n

7.   Prove that the series
          1 + 1

3 − 1
2 + 1

5 + 1
7 − 1

4 +£ + 1
(4n − 3) + 1

(4n − 1) − 1
(2n) +£
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is properly divergent when β < 1 and convergent when β ≥ 1.   Show that when 
β = 1,  the sum of the series is ln(2√2).

8.   Prove that the series
                         1 + 1

2 − 1
3 + 1

4 + 1
5 − 1

6 + 1
7 + 1

8 − 1
9 + £

is divergent whereas the series
                        1 + 1

2 − 2
3 + 1

4 + 1
5 − 2

6 + 1
7 + 1

8 − 2
9 + £

is convergent and converges to ln(3).
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