Chapter 13 Special Tests for Convergence

Suppose Z an Is a series of positive terms. Suppose applying the d'Alembert’'s Ratio

test and we obtain |im a”” =1. We cannot then infer convergence or divergence

from the test. We may use a comparison test (Proposition 12 Chapter 6) or the
integral test (Theorem 25 Chapter 6) depending on the series. Then we may use

some more delicate tests, tests which are useful to study series 2 an with

a
lim £+1 =1. Some series may fail these tests too and we may need even more

delicate test to deduce convergence or divergence. There is a general theory of
convergence and divergence introduced by Pringsheim in an article of 100 pages
(Mathematische Annalen, vol 35 (1889)). All the tests we give in this chapter may be
deduced from his general theory. However, it does not give a practical method of
testing any series for convergence or divergence. As we shall see the tests are most
effective for series of certain forms.

13.1 Kummer's Test

Kummer's test is a general test for convergence. We can use it to derive the other
tests.

Theorem 1. (Kummer's test, 1835 Journ. fur die reine und angewandte
Mathematik 13. p 172).

Suppose ngl an is a series of positive terms.

(i) If there is a positive sequence { b, }, a positive constant A, and a positive integer
N such that for all mteger n >N,

an+l bn bn+1 >A e (A)

then éan is convergent.
(it) If there is a positive sequence { b, } and a positive integer N such that for all
integer n > N,

Cn an+1 bn bn+1 S0 e (B)

then Z an is divergent if 2 bl is divergent.

Equwalently,
Q) nglan is convergent if lim inf ¢, >0, and

(i) n§1an is divergent if nfll is divergent and lim sup ¢, <0 or when
= = n N—o0
limsup c,=0and c, <0 forall integer n> N for some positive integer N.

n—oo

Proof.
Part (i). Suppose there is a positive sequence { b, }, a positive constant A, and a
positive integer N such that for all integer n > N, inequality (A) is satisfied. Then for
any integer n > N,

anbn —anubnyg > Adnyg  --mmmmmmeee e 1).
Let p be any integer greater than or equal to 1. Summing (1) fromn=Nton=N +
p—1 gives
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N+p-1
L R N L I — (2)
Now let s, = 2 ax be the n-th partial sum of the series Z an. Then
N+p 1 N-+p
X, At = X Ak =SNep SN < K(aNbN —anspbnip) by (2)

< %aNbN.
It follows then that for all integer p > 1,
SNip < SN + KaNbN.
Hence the set {sn.p : p € P} is bounded above by sy +%aNbN. Consequently the

sequence (S, ) is bounded. Therefore, by Proposition 11 Chapter 6, élan is
convergent.

(if) Suppose cn = %bn —bna <0 forallinteger n>N. Then
anbn <an1bnsg for all integer n > N.
Hence, for all integer n > N, anb, >anbn. It follows that for all integer n > N,

an > aNbNbL.
o0 n o0
Thus, if nzl Lis divergent, by the Comparison Test (Proposition 12 Chapter 6), nzl an
=1 =
is divergent.
Remark. To apply Kummer's Test, we need to look for a suitable sequence ( by ) that

satisfies the condition in (i) or (ii) of Theorem 1. We may of course choose the
sequence for ( b, ) and obtain more specialized test.

Example 2. 1.3.52n-1)
. @ n-1) . .
(1) The series néllan , Where a,, = 2.4-6-(2n) is divergent.
For each integer n > 1, Sl — %21% and so Jjim 221 —im %21% =1 and so
the Ratio Test is inconclusive. Now for any integer n > 1,
el ~ 2n+1 7 77 2n+1
so that .
an __n ._ n+
"+ D =on 7 1==on 1 =0
Therefore, by Kummer S Test (Theorem 1 (||)) with ( b, ) = (n) in the notation of
Theorem 1, since nZ bi = 1 is divergent, Z an is divergent.
b, =
. 3 5---(2n— 1) 1
(2) The series néllan , Where a,, = 2 42 5 1(2n) IS convergent.
For each integer n > 1, aa”;1 = (2r$+n2§(n)2 ) and so
anil - (2n+1)n
lim =lim 5——F77——5 =
an "o (2n+2)(n+1)

and the Ratio Test is again inconclusive.
Now for any integer n>1,

o :@Rﬁ)nﬁl ~(1+ 2n£—1)(nﬁl)

an
dn+1

so that
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Therefore, by Kummer’s Test (Theorem 1 (i)), with (b, ) = (n) in the notation of
Theorem 1, , nglan is convergent.

13.2 Raabe's Test

Kummer's Test requires a suitable sequence ( b, ) to test with the series. We may
specify the sequence (b, ) to be the sequence (n) and obtain a special test, the Raabe's
Test.

Theorem 3 (Raabe's Test)
Suppose ngl an is a series of positive terms. Suppose that the limit

: an ) B
LLmo n(an+1 -1)=r

Then
Q) n§1a” converges ifr>1
(i) élan divergesifr<1 and
(iii) if r =1, the series él an may converge or diverge.
Proof. lim n(a?il —1) =r implies that given any ¢ > 0, there exists an integer N
such that for all integer n > N,
an

r-e< n(aml —1) <r+e.

Hence, for integer n > N,

L (T R (N ) B R 1)
and Ngy —(M+D > -1)—g  —mmmmmmeemmoeeooeeeeee 2)
(i) Ifr>1, thentake ¢ = % > 0 and it follows from (2) that for all integer n > N,

a -1
ngn —(n+1)>(r—1)—e=rT>0.

Therefore, by Kummer's Test (Theorem 1(i) with b, = n and A= r;zl > 0),

o0
Zlan is convergent.
n=

(if) Ifr <1, then take ¢ = % > 0 and it follows from (1) that for all integer n > N,
Nl —(n+1) <(r-1)-e= 151 <0

divergent), nglan is divergent.

L L a _ 1'3'5'"(2”_1)J2
(iif) Consider the series nglan , Where .aj —[ 2-4-6--(2n)

2
Then |im aé‘:l =jim @ﬂi%) =1 and application of the Ratio Test gives no

conclusion. For any integer n>1,
an 2n n
n(aml _1) “2n+1 @2n+1)2

© Ng Tze Beng
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) an 5 2n n =
Therefore, Jim n(aml - 1) =lim [Zn w1 (2n + 1)2) =1

But for any integer n>1,

-1 n _ n+1 <0,
“on+1 "t 2n+1)2 (2n+1)2—

0 0 _ 2
Thus, by Kummer's Test (Theorem 1 (ii)) nglan:ngl[l -5+(2n 1)j i

2:-4-6--(2n)
divergent.
Hence we have that X a, is divergent and |im n( aizl - 1) =1.
Next consider the series n22an , Where a, = ﬁ . Then for integer n > 2,
= n(n
an _ n+1 (In(n + 1)} (1 )(In(n+ 1)—In(n) + In(n)jz
ansa — N In(n) In(n)

In( n;‘rl)J

|
[EEN
Sl
N4
[EEN
=3
I~~~
=)
S

. . In(2t
Therefore,  Jim = =Jim (1+3)[ 1+ IE]TF]))J ~(1+0)1+0)2=1 and
consequently,  [im aé‘f =—4—=1. It follows that applying the Ratio Test
g an+1

gives no conclusion. From (3) for integer n > 2,

i 2In1+%) (In(%L)
Nany =+ 1)[“ In(n) ( In(n) J ]

1 1
s ) =2 2 [

1 1
i 1 (__2)
In(11+ 7) _lim 1+1\n

Now [im (n+1)In(1+ ) =lim lim —=1, limIn(1+%)=0
n+l T (n+1)2
and |Im|n(—n):0 Therefore,
limn(=22- - 1) =1+ 2 Jim (0 + 1) In(L+ $)) Jim nl
+lim (n+1)In(1 + n))(Ilm In(n)j lim In(1+ %)

=1+2-1-0+1-0=1.
%. Then f is continuous and non-negative on (1, ). Its

x(In(x)) IN(X)(2 + In(x))

derivative  f'(x)=— (x(In(x))%)2

Let f(x)=

<0 for x > 1. Therefore, f is monotone

decreasing on [2, «© ).
We note that for x >2, f

X
[ 1 ] _1 1 . Therefore,

t(I (t))2 In(t) I, ~ In(2)  In(x)
1 1 1
i 2 i) «(In ())2 In(2> In(x)Jz @ = @

Slnce for mteger n>2a,=f (n) by the Integral Test (Theorem 25 Chapter 6),
1

Z ———isconvergent. But [imn -1)=1

n=2 n(ln(n )2 g (a +1 )

nzz an =

We have thus shown that, when |im ”(a R 1) 1, the series may converge or
diverge. This completes the proof

4
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Remark.
1. We have similar conclusions to Theorem 3 when r =+ co. Thatis, when X a, is

. .. . an ® .
a series of positive terms, (i) if [im n( anl 1) = +o0, then nglan is convergent and

(i) if |im ”(aanzl - 1) = —oo, then él an is divergent. The proof is similar to that
of Theorem 3 part (i) and (ii) but with suitable modification.

2. The usefulness of Theorem 3 is that the test is carried out in terms of the limit
lim n(a "] 1) which may be readily computed. The only disadvantage is when

thIS limit turns out to be 1 and other tests may have to be used to determine
convergence or divergence.

Example 4. anal
. X _ n+ .
(1) The series nglan , Where a,, ; —n(nl+ 1)(%+ % is convergent.
For integer n>1, aanjl _ rgn 3(2): ) :( 3n+4) n+3) and so
3(n+3)
- 1)=(1- 537 )n+3)-n=3- 3:?n++4143—1=2>1.
Therefore, by Raabe's Test (Theorem 3 (i), Z mls convergent. One
may also use the much simpler Comparison Test since
a 3n+1 < 3 i
"“nin+1)(n+2) = n(n+2) n2
and , Z n12 Is convergent.
1-3-5-(2n-1)

(2) The series nglan in Example 2 (1), where a, = 2.4-6-(2n) IS shown to be

divergent by Kummer's test. We shall use Raabe's Test as follows.

For each integer n > 1, n(aan”l 1) anlLl - % <1 and so by Raabe's Test

1.3-5-(2n-1). .
(Theorem 3 (ii)), Zl 2.4-6-(2n) is divergent.

The following theorem is a variation of Raabe's Test.

Theorem 5

Suppose 2 an is a series of posmve terms. Suppose for integer n > 1,
an
Ay = =1l+x7 +vn,

where v, is of order 1/n, i.e., n v, — 0.
Then (i) n§1 an converges if r > 1,

(ii) %, a, diverges if r <1,
(i) if r =1, the series él an may converge or diverge.
Proof. Just observe that

n(aanzl —1) =r+nvy,—>r
Theorem 5 then follows from Theorem 3.

The next result is a slightly stronger version of Raabe's Test.

5
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Theorem 6.  Suppose n§1 an Is a series of positive terms.

(i) If there exists a fixed constant A > 1 and an integer N > 1 such that for any n > N,
Frai-f
n —_ L]

then Zlan is convergent.
n=.

(ii) If there exists an integer N > 1, such that for any n > N,
an+1 > 1
“an

then nﬁl an is divergent.

Proof.
H H dn+1 A dn+l A
(i) Since 3 = <1-fforn=N,1-—73=>". Thus,
an —dns1 _ dn—dn+1  Ansl A

aan A ZR
n n_ A A
and so an+1_12an+1'n21_% n-

Consequently, for integer n > N,

A
(am—l _1)2 1_A ------------------------------- (1)
It follows from (1) that for integer n > N,
A-1 + &
a,nN—-(n+1)> >A-1>0.
- n
Therefore, by Kummer's Test (Theorem 1 (i)) that nglan is convergent.
(i) We may assume that N1> 1. Then for any integer n > N,
an+l an n
>1- nzaﬂ+l_n—1fl+nal ) .
n n
j— an+1 —1S n—l = an+1n—nﬁ n—l :1+ I‘]—l
It then follows that for any integer n > N,
a
I ¥
Multiply (2) by In(n) we obtain for any integer n > N,
In(n)
Consequently, for any integer n > N,
In(n)
In nn+1) n-1
L LLL - 3)
because (n+ 1) In( s 1) > 1 for integer n > 1.
In(n . e .
Since Jim ﬁ =0, there exists a positive lnteger No such that for any integer n,
In(n
n>No= n_ ( ])_ 72— 4
Let M = max(N,No). Then it follows from (3) and (4) that for any integer n > M,
<-1+ % = —% <0.

Therefore, W|th b =n In(n) (|n the notation of Theorem 1 (ii)) by Kummer's test,

Z ay is divergent, since Z Z L divergent (by Integral Test, Theorem
5 bn = nin(n)

25 Chapter 6).

© Ng Tze Beng



Chapter 13 Special Tests for Convergence

Remark

For nglan a series of positive terms we normally apply the Ratio Test first. The

expression for aa”—:lwill be scrutinized and if the Ratio Test fails to make any

conclusion, the expression for aa”—:l may be studied further to test for the condition of

Theorem 6.

The next variation of Raabe's Test will make use of absolute convergence of some
known series. It is stated below.

Theorem 7.  Suppose nﬁl an Is a series of positive terms.
Suppose there exists an integer N > 1 such that for any n > N,

a A
Bl =1-f+Vn, e ©

where nglvn is absolutely convergent.

Then él an converges if and only if A> 1.

We shall need an estimate of In(1- x) for |x| < 1 for the proof of Theorem 7. We state
the result as follows.

o0

X" .
Lemma8. In(1-x)=-2 ‘5 for|x| <1. In particular,

n=

—X — X?

1

21
—X—2X% < IN(1 = X) < =X+ 2X? --mmmmmmmmm oo (E)

<IN(L = X) < —X + X2 s =mmmmmm oo (D)

1
1-Ix 1-Ix

and for |x| <

Proof. The expansion for In(1—x) for |x| < 1 is as given in Example 21 of Chapter 8.

Thus
X yn X yn-2
In(l—x):—nzzllXT=—x—x2n§=)2XTfor|x|<1.
o n-2
Note that |x? . XT=| <x? 1 1|x| for [x| <1 and so we have
n=2 -
v _y2 1 _ . 2 1
X — X 1_lxlsln(l X) < —X+X 1o
which is (D).

(E) follows from (D).

Proof of Theorem 7.
Since 21\’” is absolutely convergent, v, — 0. It follows that, % —Vn = 0. Therefore,
there exists a positive integer N such that for any integer n,

nlez‘%—vn <% ----------------------------------------- (1)
Let M = max(N, N).
Now apply the logarithmic function on both sides of (C), we obtain for n > M,

IN(@ns1) - In(@n) = In(L = (& ~vp)),

Then summing from M onwards we obtain for n > M,

7
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Zn', (In(ak:1) — In(ax)) = Zn’, In(1 —(% —Vy))
KM k=M

Thus, IN(@n:1) — In(aw) = k_iM In@- (5 - vi)
or for integer n >M, )
IN(@ni2) = IN(@w) + 35 IN(L= (¢ = Vi) wrrrremessssssemmmmmmeeeeee (2)

It then follows from (1) and (E) that for integer n >M,
In(ans1) < In(am) — Z T Z Vi + 2 Z(k —Vi)?

n

1
<In@n) -3 R+ 2 f e Tl +2 X} -wy
since we know Zlvkl is convergent.
k=1

Now note that Z(% —Vk)? is convergent. This is because
k=1

& A vz =B v ZA&vk,

and Z k2 is convergent, Z vZ is convergent since Z vk is absolutely convergent

and Z VK is absolutely convergent by a simple Comparison Test. Therefore, for A >
k=1

land n zM,
M-1 A
In(an;1) < In(am) —Aln(n+1) + kZ + Zlvkl +2 Z(— —Vi)?
=1
n
since Y L > > In(n + 1)
i1k

Letting C = In(aw) + Z +Z|vk| +2 Z(k —vk)?, we then have for A > 1 and n

>M,
1
In(an+1)£C+|n((n+1)A)- """""""""""""""" (3)
Therefore, applying exponential function to (3), we obtain for A > 1 and n>M,
c_ 41
a.n+]_ <e (I’H—l)A
Since A > 1, Z T +1)A is convergent and so by the Comparison test, Y, an;1 is
n=M

convergent and consequently Z an Is convergent.

Suppose now A< 1. Then it foIIows from (2) 1) and (E) that for integer n > M,
In(ans1) > In(am) - Z Kt Z Vi —2 Z( o~ Vi) e 4

Thus, if 0<A <1, for mteger n > M

In(ans1) > In(am) — Z Z i lvil -2 Z( Vo’

since we know Zlvkl and Z( K — vi)2are convergent,

> In(am) — Aln(n) + g % élel—Zé(?—Vk)z
since Zn:%dn(n).
k=2

© Ng Tze Beng
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M-1 0 )
Hence letting K = In(am) + Y, % — 2l -2 Z(% —-vk)?, for 0 < A <1 and integer n

k=2 k=1 k=1
> M,

In(@n1) 2 K~ Aln(n) = K+ In(-5),
Applying the exponential function we obtain, for 0 < A <1 and integer n > M,
kLl
a.n+]_ =€ I’]A .

Therefore, by the Comparison Test ), a, is divergent because for 0 <A <1 Y niAis
n=1 n=1

divergent.
If A<Q, it follows from (4) that for integer n > M,

o0

n A M*].A 0 A 2
In(@ns1) = In(@am) — X 4+ 2 40 = Zlvid =2 2= vi)
k=1 k=1 _1k=1 k=1

> In(am) —Aln(n+ 1)+ 2, % - élel ~2 kil(% — V)2

M-1 0 )
Let K=In(aw)+ kZ % - kZlvkl -2 kZ(% —vk)2  We then have for A < 0 and integer
=1 =1 =1

n=M,
In(@ns1) > K+ In((n+1)™).
Therefore, for A <0 and integer n > M,
an1 >ek(n+1)™A.
Plainly, by the Comparison Test, Y a, is divergent. This completes the proof of
n=1

Theorem 7.

Remark. Usually the following specialization of Theorem 7 is used:
Suppose n§1 an Is a series of positive terms.
Suppose there exists an integer N > 1 such that for any n > N,
Gt _qg_A L,
an nTVn
and v, = O(ﬁ)for k>0, thatis |vqa| < Cﬁ for some positive constant C.
Then n§1 an is convergent if and only if A > 1.

1
ni+k

This follows from Theorem 7 since v, = O( ) implies that 21\’” is absolutely

convergent.

13.3 Bertrand's Test

The next test that we shall present may be useful when Theorem 3 is inconclusive,

- - an
that is when  |im n( An g 1) =1

Theorem 9 (Bertrand's Test). Suppose nﬁl an is a series of positive terms.

(i) Suppose there exists an integer N > 2 such that for any n > N,

an 1 A
A 10 Ting) - )

If A>1, then élan is convergent.
(if) Suppose there exists an integer N > 2 such that for any n > N,

9
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an 1 1
dn+1 <1 Tht n |n(n) - TTTTTTTTTTmTmmmTmmmmmmmTmT (G)

Then nian is divergent.

Proof.
(1). From (F) we have, for any integer n > N,

and so
2nInm) -+ +1) > (+ DI +A> -1 F +A
since(n+1)|n(n+1)>—1—%.

IfA>1,then A-1>0. Then there exists a positive integer N: such that for any
integer n,
n>N; = & < (A 1).
Therefore, if A > 1, then for any mteger n > max(N, N.),
F+A>2a-1)>0.
Hence, by Kummer's Test (Theorem 1 (i)), él an Is convergent.
(it) Similarly it follows from (G) that for any integer n > N,

and so

21)+1g—1+1go

since(n+1)|n(n21)< -1.

Therefore, by Kummer's Test (Theorem 1(ii)), since 2 1

2 nin(n)

is divergent, 2 an
is divergent.

Next we have the following variation of Bertrand's Test in terms of —— a”” :

Theorem 10. Suppose nﬁl an Is a series of positive terms.

(i) Suppose there exists an integer N > 2 such that for any n integer > N,

a 1 A
an:]- S:l'_ﬁ_nm(n) - TTTTTTTTTTTTTTTTTTT T (H)

If A>1, then éan is convergent.

(if) Suppose there exists an integer N > 2 such that for any integer n > N,
n+l 1— i 1 0
an == N nin(n) -

Then nflan is divergent.

We can prove Theorem 10 in the same way Theorem 9 is proved but using a version
of Kummer's Test in terms of ”*1
Suppose ngl an Is a series of p03|tive terms.

(i) If there is a positive sequence { b }, a positive constant A, and a positive
integer N such that for all integer n > N
bn - bn+1 A1 > A!

10
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o0
then 2 a, is convergent.

(i) If there is a positive sequence { b, } and a positive integer N such that for all

integer n> N, b — brag- <0,

° N .
hen nglan is divergent if ngl b, is divergent.

We shall give a different proof using Theorem 9.

Proof of Theorem 10. 1 A
n+1
(i) From (H), we have for any integer n > N, S <1 - — 1y,

If A>1, since % 4 InA(n) - 0, there exists a positive integer N; such that for

any integer n,

1, _A
N>N; =0<y{+ A n(n) <1
Therefore, for any integer n > max(N, N1 ),
an 1 A
> >1+5+ .
an+1 1_%__n|r#]\(n) N7 nin(n)

It follows by Theorem 9 (i) that nglan IS convergent.

(i) We shall prove part (ii) along the lines of the proof of Theorem 7.
Applying the logarithmic function to both sides of (I) we obtain for any integer
n=>N,

In(@ns1) —In(an) > In(1 - % -

1 1
We may assume that n>N=0<{+ - In(n) <

N >4,

It then follows from (1) and Lemma 8 or (E) that, ,
1 1 (1 1 :

Thus, summing from N onwards we obtain for integer n > N,

In(@n+1) — In(an) > - zﬁl Zkln(k) 22( klr}(k)j

k=N

. We shall assume that

1 < 1Y
& k- k;kln(k) zkln(k) kZN( kln(k)j

assuming without loss of generality that N > 4,

_ N-1 2
> —In(n) + Z‘,% In(ln(n))+k§1 k.%(k) 22[ klnl(k)j

k=N

since k; % <In(n) and k; klr}(k) < In(In(n)) - In(In(3)),

© 2
>—In(nIn(n)) + 2 % k* 2 kln(k) 2 kzz[%_'_ klr}(k)j
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0 2
since plainly Z(l p— j is convergent by a simple Comparison Test with
2\ k " kiIn(k)
the convergent Y. k_lZ
k=2
Therefore, for integer n > N,

N=1

l N-1 l
In(an:1) > In(an) + Z kT Z kIn(k)

0 2
-2 Z[% + ﬁ(k)j —In(nIn(n)).

=1 _ 2
Letting C = In(an) + g% g, In(k) 22( klr}(k)j , e then get for

k=2
integer n > N,

In(@ans) > C—In(nIn(n))-------------=--m-mmmmmmmcmm e (2).
Therefore, applying the exponential function to (2), we obtain for any integer n >
N,

1
C
.an+1 =>e nln(n).
1

Therefore, by the Comparison Test, since Z is divergent, élan is

nin(n)
divergent. This completes the proof of Theorem 10.

13.4 Gauss Test

We now introduce Gauss test. The first result is in the form that is usually applied.

Theorem 11 (Gauss Test). Suppose é:l an Is a series of positive terms.

Suppose there exists an integer N > 1 such that for any n > N,
dn 1+ A An
dn+1 n2 '
where ogAn ) is a bounded sequence.

Then ngl an converges if and only if A > 1.

We shall prove this by proving the following slightly more generalized version.

Theorem 12 (Gauss Test). Suppose él an is a series of positive terms.
Suppose there exists an integer N > 1 such that for any n > N,

a A
A =L+ +Vn, e Q)
where v, is of order n1+k’k>0’ i.e., there is a positive integer M such that

lval <C nik , for some positive constant C and for all integer n > M.

Then él an converges if and only if A> 1.

12
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Proof. By supposition, for any integer n > N,

a
n(an?_]_ _1) =A+NV, - (1)
Since vyl ﬁcnik integer n > M, we have then that for n > M, ,|Inv,| Scn11+k-
1

Therefore, because |im —=-=0 for k > 0, by the Comparison Test (Proposition 8
-0 N +
Chapter 2), ,Jim nv, = 0.
It follows then from (1) that
lim n(aanzl - 1) =A+limnv,=A+0=A

Therefore, by Raabe's Test (Theorem 3), él an converges if A> 1 and diverges if A <

1.

If A =1, by (J) we have that for integer n > N; = max(N, M),
an _q, 1, nin(nyv,
antt — 77 N7 nin(n)

. In(n In
Note that for integer n > Ny, ,InIn(n)v,| <C n(k)' Since Jim C—— ( ) =0 for k > 0,
there exists a positive integer N, such that n > N, implies that ,Inln(n)vnl <1
Therefore, for integer n > max(Nl , Ni) .
an+l §1+ + nln_(n).
It then follows by Bertrand's Test (Theorem 9 (ii)), nglan is divergent. This

completes the proof of Theorem 12.

Theorem 11 follows from Theorem 12 since % is of order n_12 if the sequence (A,) is
bounded.

A further generalization may be called Gauss Test too. Indeed Theorem 7 may be
called a "Gauss-like" test too.

Theorem 13. Suppose ngl an is a series of positive terms.

Suppose there exists an integer N > 1 such that for any n > N,

a A
gy =1+ { +Vn e (K)

o0
where nglvn is absolutely convergent.

Then ngl an converges if and only if A> 1.

Proof. The proof is similar to that of Theorem 7. We reproduce here for
convenience.

Since 21\’” is absolutely convergent, v, — 0. It follows that, % +Vn — 0. Therefore,
there exists a positive integer N; such that for any integer n,
nlez‘%wn <% ----------------------------------------- (1)
Let M = max(N, N,).
Now applying the logarithmic function on both sides of (K), we obtain for n > M,
IN(@ns1) - In(@n) = - In(L + (B + o)),
Then summlng from M onwards we obtaln forn> M,

Z(In(ak+1) In(ay)) = — Z In(1+(k +Vy))

13
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Thus, IN@ns1) — IN(an) = k_iM InL+ (5 +vi)
or for integer n >M,
In(@ans1) = In(am) - Z In(1+ (2 VK)o ()

It then follows from (1) and (E) that for integer n >M,
In(ans1) < In(am) — Z * Z’:,Avk+2 Z(k +Vi)?

< In(am) - 2A+z: +zmna§xk+wf
since we know Zlvkl is convergent.
k=1

Now note that Z(% +Vk)? is convergent. This is because
k=1

(k +Vg)? = 'ﬁ‘z +V2 +2A%vk,

Z k2 IS convergent, Z vZ is convergent since Z v is absolutely convergent and

Z vk is absolutely convergent by a simple Comparison Test (compare with Z Vi,
k=1
ref Proposmon 12 Chapter 6). Therefore, for A>1and n>M,
M-1 ) ©
IN@n1) < IN@n) AN+ 1)+ 3 2+ Dl +2 T2 +vy)?2

N w1 k& k=1 K
since Y L > > In(n + 1)

ia kK

Letting C = In(aw) + Z +Z|vk| +2 Z(k +Vk)?, we then have for A > 1 and n
>M,

IN(@na) < C-+ NG tyz) . ~rorrmmmreeerommeeeeeoe 3)

Therefore, applying exponential function to (3), we obtain for A > 1 and n>M,

<eC—r.
Am1 =€ (n+1)A

is convergent and so by the Comparison test,

Since A > 1, the series Z . +1)A

Z ans1 1S convergent and consequently Z an Is convergent.
n=M
Suppose now A< 1. Then it foIIows from (2) 1) and (E) that for integer n > M,
In(an:1) > In(am) - Z Z Vi —2 Z( T L A (4)
Thus, if 0 <A <1, for integer n 2 M,
n A M-1 A 0 0 A
IN@n:1) > In(@m) = 2 P+ 20— 2l =2 2 (3 +vi)?
k=2 k=2 k=1 k=1

o0 o0
since we know Y. |vi| and Z(% — Vi)Zare convergent,
k=1 k=1

M-1 A 0 ) A
> In(am) —Aln(n) + . e vl =2 Z(?+vk)2
) k=2 k=1 k=1
since Y << In(n).
=2 Kk

o0

M-1 ©

Hence letting K = In(am) + 2, % —Dlwl =2 Z(% +vi)?, for 0 < A< 1and integer n
k=2 k=1 k=1

> M,

14
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In(@n1) 2 K- Aln(n) = K+ In(-%),

Applying the exponential function we obtain, for 0 < A <1 and integer n > M,

1
ansl = eKn—A.

Therefore, by the Comparison Test, 2. a, is divergent because for 0 <A <1, > niAis
n=1 n=1

divergent.
If A <O, it follows from (4) that for integer n > M,

n A M-1 A 0 © A
IN@n:1) > In(@m) — 2 P+ 20— 2l =2 2 (3 +vi)?
k=1 k=1 k: k=1

=1

M-1 A 0 0 A
>In(am) —Aln(n+1)+ X e vl =2 Z(? +Vi)2.
k=1 k=1 k=1

M-1
Let K=In(aw)+ X,
k=1

n=M,

=|>

— 2wl =2 Z(% +Vk)2 We then have for A < 0 and integer
k=1 k=1

In(@ns1) = K+ In((n+1)™).
Therefore, for A < 0 and integer n > M,
any1 >ek(n+1)™A.

Plainly, by the Comparison Test, >’ a, is divergent. This completes the proof of
n=1
Theorem 13.

Note that in the proof of Theorem 13 we use only inequalities. Thus we may
formulate Theorem 13 as follows:

Theorem 14. Suppose él an Is a series of positive terms.

(i) Suppose there exists an integer N > 1 such that for any n > N,

an A
Ansl >1++Vn,

where nglvn is absolutely convergent. If A> 1, then nglan converges.

(ii) Suppose there exists an integer N > 1 such that for any n > N,

an 1
Ay <1+ +Vn,

where nglvn is absolutely convergent. Then nglan diverges.

Proof. The proof is embedded in the proof of Theorem 13.
For part (i) note that for any n > N, assuming that 1 + (% +Vn) >0,
IN(@n1) - IN@n) < — In(L+ (B +vn).
With this inequality, the rest of the proof is exactly the same as in the proof of
Theorem 13.

Likewise for part (ii), In(an:1)—In(@n) >—-In(1+ (% +Vpn)) and the proof proceeds in
exactly the same manner as in the proof of Theorem 13.

Thus specializing Theorem 14 we obtain:

15
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Theorem 15. Suppose n§1 an is a series of positive terms.

(i) Suppose there exists an integer N > 1 such that for any n > N,
dn
dnsl =

where (A, ) is a bounded sequence. If A> 1, then él an converges.

(ii) Suppose there exists an integer N > 1 such that for any n > N,

an 1 An
Ansl <l+{+—> ~

where (A, ) is a bounded sequence. Then n§1 an diverges.

Example 16.

o a@+1l)a+2)--(a+n-1) . .
For a, b > 0 the series Z b+ Db+2)~(brn-1) converges if and only if b—a >
1.

a@+1l)(a+2)--(a+n-1) .
Proof. Leta,= b(b+ 1)(b+2) (b+n—1)° Then for integer n > 1,

an__b+n b—a ab-a
an4|21:8.+l'1:1+ n (1+ )/2

and so since the sequence [—&))Jls bounded, by Gauss Test (Theorem 11) the
n

S a(a+l)a+2)y--(a+n-1) . . .
series Z + bb+1)(b+2)(b+n—1) is convergent if and only if (b—a) > 1.

13.5 Cauchy Condensation Test

There is one interesting test, the Cauchy condensation test, particularly useful for
certain logarithmic series. This test applies only to series with monotone decreasing
terms.

Theorem 17.
Suppose ( a. ) is a monotone decreasing sequence of non-negative terms. Then nglan

is convergent if and only if nglznazn is convergent.

Proof. Let s, :j:%l a; be the n-th partial sum of the series for each integer n > 1.
Since each a, is nonnegative, the sequence ( s, ) is an increasing sequence. Therefore,
by the Monotone Convergence Theorem (Theorem 15 Chapter 2), E an is convergent
if and only if (s, ) is convergent if and only if the sequence ('sn) |s bounded above.

Let Let vp =2"ay for each integer n > 0. Let Let t, = 21v, Similarly we deduce

that ngovn is convergent if and only if the sequence ( t, ) is bounded above. Now we
make some simple observation.

Since (a.) is a monotone decreasing, for each integer n > 0 and any j > 0, azr > azn,j .
Hence for each integer n > 0,

16
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2"-1 2mig
2Man > D amj= 2, a;
j=0 j=2n
We also have that for each integer n > 0 and any 0<j<2"—-1, azmig <aon.
Hence,
201 2ml_g
2”a2n+1_1 < 2 aznij = z dj.
j=0 j=2n
2n+1_1
Therefore, for each integer n >0, 2"axa <2"axa g < 2, aj. It then follows that
j=2n
for each integer n > 0,
2n+l_1
%2n+1a2n+1 < 'zzln a.j < 2na2n
j=
on+l_q L TTTTTTTEEEEEEE T T (1)

OF 3V < j_%:n aj < Vn

Suppose that the series nﬁovn is convergent, i.e., the sequence ( t, ) is bounded above.

We shall next show that the sequence ( s, ) is also bounded above.
Take any integer n> 1. Then forsomek >1, n<2“-1. We have
Sh=ar+(@+az)+(as+as+as+az)+--+an

<ai+(az+az)+(as+as+apg+ay)+ -+ (At + g+ +ak )
SVo+Vi+Vo+-"+Vg =tk = semmeeeeeeemeeeeeeeeeeeeeeeeee 2
by (1).
Since ( t, ) is bounded above, there exists a positive constant C such that t, < C.
Therefore, by (2), s» <t < C. It follows that s, < C for all integer n > 1. This means

o0
(‘'sn) is also bounded above. Hence ngllan IS convergent.

Conversely suppose nglan is convergent. This means ( s, ) is bounded above and so

there exists a positive number K such that s, < K for all integer n > 1. We shall show
that (t, ) is also bounded above. Take any integer n>2. Then

n-1
th = Zé)vj =Vo+Vi+ " +Vni.
J:

<ai+2a;+2@x+az)+2(@s+as+ag+az) - +2(ax2+ama ++amig)
by (1)
<a;+25,mi3<a;+2K=D.
Plainly t; < D. Therefore, the sequence ( t, ) is bounded above by D. This means

2 Vn s convergent.

1

Example 18. ngz nTn(n) is divergent.
Note that [ m r%( m Is @ monotone decreasing sequence of positive terms. Therefore,

by the Cauchy Condensation Test, 2, 1 is convergent if and only if
n=2 nln(n)

17
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I n(2n) is convergent. But Z = n(2) is divergent by Comparison Test since

1

Z 2n
= 1.
nZl & is divergent. Hence, Z i)

is divergent.

13. 6 Examples of the use of the tests.
1. The series nZl 34 6 3. (3{]3;)2) is divergent.

_1-4.7 (3n— 2) .
Let a,= 3-6-9-----(3n) for integer n > 1.

Then for integer n > 1,

ap - 3n+3 2 2 31 . 2 1
At =30+l 1T+ -1t 3 I+l -1t 3 (1 3n+1j
23 2 __1,23 L_on
=1+ —3nGnen =1 N2 @n+1)°
2n 2 2n

Since ‘

(3n+1) < 3, the sequence (An “@n+ 1)jIS bounded and so because
in the notation of Theorem 11, A= % < 1, by Gauss Test (Theorem 11), nglan is

divergent.
1.3.5.--.(2n-1) .
2. The series Z 2n(n 1)1 is convergent.
~1.3.5-----(2n-1)
Forintegern>1leta, = 200+ 1)! . Thenforn>1,

a1 - 2n+1) T 2n+1
Therefore, for integer n>1,

any —Ln= 2n+1'

3n 3
Thus !]lm(a ) 1)n =im-7=5>1

Therefore, by Raabe's Test (Theorem 3 (i)),é1 an Is convergent.

-3-5 (2n—1)4n+1 -
3. The series nzl 5 4. 6 @n) 2n+2 is divergent.
1. 2n—-1
Here a, = 3-5 (n )4n+1

2-4. 6 T@2n) 2n+2 for integer n> 1. Then forn > 1,

a,  (2n+4)@n+1) 3 4
An - (2n+13)(4n+5) =(1+ 2n+12(1_ s )
_ 1
=1+ o0 1 " Wn+s L Dn 5

3 2n 1 4n

2n2n+1 " N4n+5 (2n+1)(4n+5)

3 1 1 5 12
=1 (1) - (21— gas) - 2n+1)@n+5)
.1 3 . _ 5 12

2n 2n(2n+1) " n(@n+5) (2n+1)(4n+5)

18
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.1 1 3n 5n 12n2
=l+on nZ{_2(2n+1) T an+5 (2n+1)(4n+5)}'
3n 5n 12n2

Now |An|:‘ <341242=4 for all

- 2(2n+1) T an+5 @2n+1)(@n+5)| —
integer n > 1. Therefore, by Gauss Test (Theorem 11), ,nizllan is divergent.

N ~ 1-3-5-----(2n—1)Jk :
4. The series, X an, where a, = [ 746 -(2n) ) diverges for k < 2,

converges for k> 2. ) )
For integer n > 1, dp :(2n+2) :(1 1 ) .

a1~ \2n+1 Ton+1
Therefore, B
1 1 ) 2
_/ap [“2n+1]‘1 _ k[1*2n+1J “@n+1)?’
im (&g — 1)” =lim T =lim T
) by L' Hopital's Rule,
T 1 Yt o on2 Kk
_LLer(1+2n+1) 2n+1)2 — 2°
Therefore, by Raabe's Test (Theorem 3), n§1 an converges if% >1,i.e.,k>2and
él an diverges if % <1, ie, k<2 |If k=2, forintegern>1,
an__(2n+2Y\_ 1\ _ 2 1
an+1 ‘(2n1+1) _(11+ 2n+1)l =1+ on+1 " (2n+1)2
= al-oni D  enr 1y
—1+l— 1 + 1
- N n2n+1) " (2n+1)2
=1+ ) + 1 _n + n* }
“TTN 2|l 2n+1) T (2n+1)2 )
: n n2 1,1_3
Since |Ay| = ‘ <5+ - =, the sequence

“@en+D) T @n+2 |2 4T
-t )
2n+1)  (2n+1)?
is bounded and we have for integer n > 1A
1 n

Therefore, by the Gauss Test (Theorem 11), nﬁl an is divergent.

5. The series , > aq, where an = (1+77)° - (L+557)° is convergent.

B 1 1 1 1 _8n(n+1+1 .
Now a = (1+ 5 + 1+ 50t (0~ g ) = 4n2(2n+ 1)z [OF integern>1.
Therefore, for integer n > 1,
an [8n(n +1)+ 1j (n+1)2(2n +3)2
ansi —( n2(2n+1)2 )\ 8(n+1)(n+2)+1
_( 8n(n+1)+1 j((n+1)(2n+3)j2
~(8n+1)(n+2)+1 n(2n+1)
_(1 16(n+1) j[l 4n+3 jz
T8+ Dn+2)+ 1) T n@n+ 1)
19
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_q, 24n+3) [ 4n+3 jz 16(n +1) (1 4n+3 jz
n(2n+1) n2n+1)) 8n+1)(n+2)+1 * n(2n+1)
It follows then that for integer n > 1,
1) _2@n+3) [4n+3j 16(n+1)n [1+ 4n+3 Jz
an+1 (2n+ 1) (2n+1) 8n+1)(n+2)+1 n(i2n+1)
Therefgre,
LL@ (anJr:l - 1)]'\
2 2
Jim 24n+3) . %[ 4n+3J Jim — 26+ 1n [1+ 4n+3 J
S0 (2n+1) 2n+1)) m* 8(n+1)(n+2)+1 n2n+1)
=4+0-2=2>1.

Hence, by Raabe's Test (Theorem 3), ,élan is convergent.

6. Itis well known that the binomial series, 2, anx", where a, = (ﬁj is absolutely

convergent for |x| < 1 and any real number . We shall establish its convergence at
the end points x = + 1.

First of all note that for § = 0, the series ,n§0 anX" is convergent for any x since

[ﬁ)zOforn>0.

(i) When 3 >0, the series is absolutely convergent at x = + 1.

(if) When B <0 and x = —1, the series is divergent.

(iii) When 3 < -1 and x = 1, the series is divergent.

(iv) When -1 < B <0and x = 1, the series is conditionally convergent.

Note that for integer n > 0,
an _pp-1H---(f-(n-1) 1-2----(n+1)
dnsl — 1.2.--.n /)’(/3—1)-~~-(/3—n)

Therefore, lim ‘ Ans =1. Hence the radius of convergence is 1.

For integern> 3,

1 1
aanzl ﬂi% 1+ +ﬁ:1 ;ﬁ(1+ ﬂﬁ)
1+ﬂ ﬂ(1+ﬁ) 1+p np( +f)
- R LR e R )
In the notation of Theorem 11, A = 1+ B and A, = % for integer n > f.

Now the sequence (A, ) is bounded since for n > 3,
BA+BI .
P fp>0
Al = | <1 @ paA 1y 1P
B+ p)lif p<0
Therefore, by Gauss Test (Theorem 11), the series is absolutely convergent when
x=xlandA=1+B>1,ie,pB>0. This proves part (i).

20
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By Gauss Test (Theorem 11), the series ,éolanl is divergent when 1+B < 1, 1+B <
1,ie,pB<0.
When B <0 and x = -1, anX" =an(-1)" =|ay| for integer n > 0. Therefore, the
series
Z an(-1)" = Z Ianl
is divergent. This proves part (ii).
WhenBs-landle
lan| = pB-1)-- (ﬁ (n )| _|1BldpI+1)-- (|/3|+(n D)1
e 1.2. 1-2-
and so an » 0. Therefore, When B <-1andx =1, the series ,go anx" diverges.
This proves part (iii).
(iv) When -1 <pB<0,1>-3>0 so that for any integer k > 0,

1+K>—B+K>K =-mmmmmmmmmmem oo (1)
Now,
pp-1)- (ﬂ (n—l)) _ OB+ - ( ﬁ+(n D)
= 1.2 =D 1.2

Let b,= (—ﬁ)(—ﬁ+i).-2. .:'(.—§+(n—1)) for integer n > 1 and b, = 1. Then by
(1),0<b,<1. Thus by (1) for integer n > 1,

bn+ _ﬂ'i'n

b_nl: nr1 <L

Hence the sequence ( b, ) is a positive decreasing sequence.

Now we write for integer n > 1,
b bn bna bzb
"= bn 1 bn 2 bl !
Applying the logarithmic function we obtain for integer n > 1,

In(bn) = z“In(bk 1J<Z(bkl )_zn:[_ﬁJr—kk_l_l):(_ﬂ_l)é:l%'

k=1
(Here we have used the fact that for 0 < x < 1, In(x) < x-1.)
Therefore, since (- —1) < 0 and kZ % =400, |im In(bs) =—o0 and consequently,
=1

b, — 0.
It now follows by the Leibnitz's Alternating Series Test (Theorem 20 Chapter 6),

that when —1 < 3 <0 and x 1,, 2 anX" = Z an= Z( 1)"b, is convergent. Since

we already knew that ngolanl dlverges for B <0, the convergence is conditional.

Exercises 19.

1. Test 2. a, for convergence where a, is given as follows.

(8 =, n"+a =0, (b) 24 x#0, () e
\/n2+n+1—\/n2—n+1

) —2—. (@ . ,

Jn+J/n+1 n+1’

2n+x
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2
© b=z O % 05 0 e

nd 1
(k) (2n+lj () W

2. Determine the convergence of the series.

@ 3 iy oo ® 352

© 3 g apso, (@ 3 XD,
@ ()1 o _%{sin@)}“bo,

© %z (ln(rln)?’” o z;}(ln(n))'”“”

(i) wm () nZSW

© X Gz n O Wln))z

(m) 3 -0

~n2+2n+3

3. Test 2 a, for absolute convergence or conditional convergence where a, is
given as follows.

3 n+1 1"
@) (—1)”,1(? J](ln)) >2, (b) (n(r)],) , (€) f]m),n, (d) (D" In(L+%)
DY (3™

®) M e @ sin(@+ ). ) D™Hn@+H)".

Jn+d

4. Determine the values of x for which the following series is (i) absolutely
convergent , (ii) convergent

0 2 0
@ 3 (2nn)' . (b) Z Egn))' , (©) n§1%|n(%)xn,

© I © 2('”(X>)”'n( H) O b

n=1

5. Determine the region of convergence of the power series
i 3n+4
= n(n+1)(n+2)
Find the sum when x = 1.

x".

6. Determine the values of x for which the following series is convergent.
o Cos(Nnx) & sin(nx)

(a) n; T (b) 2 Tty +© E,lcos(nx)sin(ﬁj.

7. Prove that the series

4 1.1 1 1. .. 1 1 1
Yyt e T T T an—3y T @n-17 @y
22
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is properly divergent when 3 <1 and convergent when 3 > 1. Show that when
B =1, the sum of the series is In(2V2).

8. Prove that the series

i1 1,1 1,1 1 1 .
I+5-3+4 5" 6+t778 9"

isdivergentwhereasthezseriles L2 11 2
e I R R S R A B R

is convergent and converges to In(3).
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