Chapter 12 Arithmetic of Power Series

Introduction. In Chapter 7, we have dealt with the representability of a function by a
power series. A natural question arises as to the representability of the sums, products
and quotients of functions by power series in terms of the power series of the
functions and whether we can formally add, multiply or divide the power series
representing the functions to give a power series for the sum, product and quotient.

12.1 Sums of Power Series

The situation of representing sum of functions by power series is quite simple.

Theorem 1. Suppose the function f is represented by nianxn with radius of
convergence r; and g is represented by nibnxn with radius of convergence r.. Then
the sum f + g is represented by the power series i(an+bn)xn with radius of
convergence r > min(ry , r2). "

Proof. If min(r., r;) =0, then we have nothing to prove. Suppose now 0 < min(r.,
ra). Letnc be a real number such that 0 < ¢ < min(r., r). Then the n-th partial sum

Sn(X) = kZ aixk converges absolutely and uniformly to f on [-c, ¢] by Theorem 4 and
=0

Remark 16 of Chapter 7 since ¢ < ri. Similarly we deduce that the n-th partial sum
n

th(X) = 2, bex converges absolutely and uniformly to g on [-c, c], since ¢ < r.. This
k=0

means given any & > 0, there exists a positive integer N; such that for all integer n >
N, and for all x in [—c, c],

[50() = f(X)] < 5 =rrorormemeo e (1)
and there exists a positive integer N, such that for all integer n > N, and for all x in
[-c, cl,

[t0(X) = QOO < 7y womeroeromeem oo 2.
Let N = max (N1, N). It follows by (1) and (2) that for all integer n > N and for all x
in [-c, c],

[0 + ta(¥) = (£ (%) + 9O <[$a () = F O +[tn () —of ] < 5 +5 = &.
This means that sn(X) + th(X) = k}:,)(ak +by)xX converges uniformly to f + g on [, c].
Take a real number ¢' such that 0 < ¢ <c'< min(r,, r;). Then by Theorem 4 of
Chapter 7, sp(c') +tn(c') = kzng(ak +by)(c")¥ is convergent. It follows by Proposition 5

n
Chapter 7 that sp(X) + th(X) = kZ(ak +by)x* converges absolutely to f + g on [-c, c].
=0

(We may also deduce this directly by noting that for [x| < ¢, X la,x"land X |b,x"| are
n=0 n=0
convergent and since for each integer n > 0, |(a, +bn)X"| <lanx"| +Ibyx"[, by the
Comparison Test, . |(an +bn)X"| is convergent for x| < c.) Therefore, > (an+bp)xX"
n=0 n=0

converges for any x such that |[x| < ¢ and for any c such that 0 < ¢ < min(r,, ry).
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Chapter 12 Arithmetic of Power Series

Therefore, if r is the radius of convergence of the series),(an +by)x", r>c for any
n=0

0 <c<min(r., rz). Hence, r > min(ry, rz).

Remark. Theorem 1 is valid when any one of r; or r; is infinite and when both r, and
r, are infinite and in this case r is infinity.

Example 2. We know from Example 21 Chapter 8 that
In(L+x) = (1™ X for -1<x<1.
n=1

and that by Theorem 19 Chapter 9,
1 i 1.3.5 ‘(2n-1)
T-x & 2-4-6-(n)

1-3.5-(2n-1) (—1)”+1J .

Therefore, the power series 1+nZ1( 5. 4.6 w(22)3+5 o x) converges to
1 -

N +In(1 +x) for [x| < 1. Now since 1+nZ1 2 4-6-(2n) is divergent (by

x" for —-1<x<1.

Comparison Test) and Z( H™E L s convergent (by the Leibnitz's Alternating Series

n+1
Test), the sum 1+ Z(l 23 45 5 (2(nzn)1) + - 1r2 J is divergent. Similarly, because

n=1
)n+1 (_I']]-) "

2 1.3.5--2n—1)
L+ 2 5 4.6 @)

_1\n+1
14+ 2(123 456(2{'%)1) +( 13 J(—l)n is divergent. Therefore, the radius of

1-3-5:(2n-1) (—1)”+1J .
convergence of the series 1+nZl[ 2.4.6--2m T n XIS less than or equal

to 1. But by Theorem 1, its radius of convergence is exactly 1. In particular, it
converges for all x such that —1 < x < 1 and diverges elsewhere.

(=1)" is convergent and Y, (-1 is divergent, the sum
n=1

Given two series, we can form two kinds of products, the first is the termwise product
and the second is the Cauchy product which is a natural product for consideration of
product of two functions represented by power series.

12.2 Termwise Product

Definition 3. If ) a, and D, by, then the termwise product of these two series is
n=0 n=0

defined to be Y. anbn.
n=0

Theorem 4. If ) a, and D b, are absolutely convergent, then Y’ a,b, is also
n=0 n=0 n=0

absolutely convergént.

Proof. Since 2. by is convergent, |b) — 0 asn — o . Therefore, there exists a
=0

positive integer N such that n> N = | b, | < 1. Therefore, for all integer n such that n
>N, we have.
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Chapter 12 Arithmetic of Power Series

L o e )
Since Zlan is convergent, ZIaN+n||s also convergent. Therefore, by inequality (1)

n,

and the Comparison Test,
Z | aN+nbN+n |
n=0

o0 o0
is convergent. Therefore, Y. lasbn| is convergent and so Y. anb, is absolutely
n=0 n=0

convergent.

An easy consequence of Theorem 4 is the following:

If Z an is absolutely convergent, then Z a2 is absolutely convergent.
n=0

The converse of this statement is evidently false as Z is convergent but Z
divergent. It is of course not true that if Z an is convergent, then Z a2 is absolutely

1
Tn

convergent. For instance Z( 1)"

2
is divergent.
o ] :

is convergent but Z(( )"

Definition 5. If Y, anx"and 2 b,x" are power series then the termwise product of
n=0 n=0

these two power series is defined to be Y, anbnx".
n=0

Theorem 6. If Y a,x" has radius of convergence R; > 0 and Y, byx" has radius of
n=0 n=0
convergence R, > 0, then the termwise product Y. a,bnx" has radius of convergence
n=0

> RiR;.

Proof. Take any real number ¢ such that 0 < ¢ < RiR; . We shall show that
Y anbnc" is convergent. Now c<RiR, = o R <Ry and <Ry1. Therefore,
n=0

X1=%(Ry+ RL) <R: and x2 = 3(Rz + %) <Ra. Hence Z anxland 2, boxj are
2 n=0 n=0

absolutely convergent. Therefore, by Theorem 4, the termwise product
> anxfbnxh = X anbn(x1x2)™ is absolutely convergent. Observe that
n=0 n=0

c? c 1 c? c 1 c?
iz =g(RiRe + 20+ gR-) =5 + gRiRe+ g ) > 5 +5(JRiRz - [Rip-) =C
Hence by Proposition 5 Chapter 7, Y, a,bnc" is absolutely convergent. Thus, by
n=0
Proposition 5 Chapter 7 Y, anbnx" is absolutely convergent for all x such that |x| < c.
n=0

Since c is any real number such that 0 < ¢ < RiR;, this means that Y. a,bnx" is
n=0
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Chapter 12 Arithmetic of Power Series

absolutely convergent for all x such that [x] < RiR.. Therefore the radius of
convergence of Y, a,bnx" is greater than or equal to RiR..
n=0

Example 7. If Z anx" has radius of convergence R; > 0 and Z bnx" has radius of
n=0

convergence R, > 0, then the termwise product Z anbnx" may have radius of

convergence exactly equal to RiR, . Take Z anX" = Z Zln x" and Z box" =Y. 31n X",
n=0

Then Ry = 2 and R, = 3. The termwise product Z anbnx" = 1 —=—x" . By the Ratio

=3
Test (Theorem 18 Chapter 7)), since |im ”glg"*l = & the radius of convergence is 6,
nM&Mn

which is precisely equal to RiR; .

Example 8. If Y a,x" has radius of convergence R; > 0 and Y, b,x" has radius of
n=0 n=0

convergence R, > 0, a termwise product may have its radius of convergence strictly
greater than RiR; .

Let Z anx" = 2((%)%1 + (%jznj and g box" = i((é)zm + (éjznj That is,

n=0 n=0

(%) ifnisevenandn>0

n
) if nis odd positive integer

Wl

an = (
n
(l) ifnisevenandn>0
and b, = 3
AN . :
(E) if nis odd positive integer

Then lim sup [a,| =< and lim sup by|
n—oo

1
n

= % Therefore, by the Cauchy-Hadamard

Formula (Theorem 19 Chapter 7), the radius of convergence R; of Y a,x" and the
n=0

radius of convergence R, of X b,x" are the same and equals 3. But the termwise
n=0

1
(15"
Formula is 15 and is strictly greater than RiR, =9.

product Y, apb,x" = x" whose radius of convergence by the Cauchy Hadamard
n=0

Remark. Note that if f(x)= Y a,x"and g(x)= 2. b,x", then the termwise product
n=0 n=0

Y. anbnx" is not equal to f (x) g(x) in general. Take the two series in Example 7.
n=0

Fex)= Z anX" = 2 2_1an and g(x) =2 bnx" = 2 %x” Then f (1) = 2 and g(1) :%
n=0

Therefore f (1) g(1) = 3. The termwise product of the two power series is

D anhpx" = L0 and converges to the value % + f(1)g(1) whenx = 1.
n=0

6n
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Chapter 12 Arithmetic of Power Series

12. 3 Cauchy Product

Suppose f(x)= Z anx" and g(x) = Z bnx" . We now come to a product of power

series of Z anx" and Z bnx"which when it converges gives the value of the product
n=0
f(x) g(X)

First we give the definition for series of constant terms.

Definition 9. Suppose Z an and Z b, are two series. Then we define the Cauchy
n=0

product of these two series to be the series Z Cn, Where
n=0

n
Ch= Z a-kbn4<-
k=0

Theorem 10. If Y a, and Y, b, are absolutely convergent, then the Cauchy product
n=0 n=0

Y. ¢y is also absolutely convergent. Moreover, if D, a,=A, >, b,=Band >, c,=C
n=0 n=0 n=0 n=0

then C = A B.

Proof. We shall prove Theorem 10 when both a, and b, are non-negative for all
integer n>0. Suppose Z an and Z b, are convergent. Then the product,

n=0

o) E0)- Fo 20 E{uingo)- g fingp)-o

o0 o0
Now for each integer n > 0, a, 2, bk is convergent means Y, a,by is convergent for
k=0 k=0
n o]
each integer n > 0, or equivalently that a, lim D bj exists. Since Y. an is convergent
j=0 n=0

0

n
Z(ak lim > b,} is convergent
k=0 i=0

and
E(ak Jim bj] =lim Z(ak lim 2, bJJ ['n'm 2, akJ('an 2 bj]-
k=0 j=0 k= j=0 k=0 j=0

This explains the identity (1) above. For each integer n>0, let I, = [é akj(é ka.

Thus by (1), I is convergent and converges to [2’6 anJ[Z an

N NN NN AN
“hrana( S rbm(Ta @

Consider the array
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Chapter 12 Arithmetic of Power Series

aobo| aobi| aobz| aobs| aghg -+ aobk  aobk
aibo aibi| aibs| aibs| aibg - aibx  aibia
azbo apby  aphy| axhs| axbg o azbk  azbki
asbo asby asby asbs| asbg - asbx  asbku
asbo ashby asby asbs  azbg - asbx  asbka
akbo akbs akb, akbs akbg e akbx  akbys
a1bo akibr akibz akibs akabg oo akr1bx akibigr

We note from (2) that ... is obtained from |, by adding the term,

n+1 n
an+1(z ka + bn+1( akj-
k=0 k=0

Note also that |, is obtained by adding the terms in the n x n square in the above
array. Hence ( l,) is convergent means the series obtained by summing up in
succession the terms in the k x k square by adding the next (2k+1) terms

K k1
(ak(Z biJ + bk(Z aiDis convergent. That is the series, starting with a, b, then add
i=0 i=0

(a1bo +aibi +aohi), then add (azbg +azbs +asby +bsag +byas) and so on, is
convergent. Since all the terms are non-negative, the series obtained from the above
by adding only one term at a time is convergent and converges to the same limit. We
define this series as below by defining its terms. We let di = ao b ,
d2 =aibo,ds = aib1, ds = aobs,
ds = azbo, ds = a2b1, d7 = @202, ds = baao, do = boas
and in general,

dizsi = akbi—g, fori=1, -, k+1, diesj = be@i—gsny, fori =k +1, -+, 2k.
Hence, for integer n > 1,

Ih = (Zn: akj[é ka = (ngz O 3

k=0
Since ( I, ) is convergent and since it is non-negative and monotone increasing, it is
bounded above. The n-th partial sum for each integer n > 1

n

Sn = é dk
is also bounded above. This can be deduced as follows.
2

n n
Sn = Z dk < Z dk = In—l <lim In
k=1 k=1 =%

Since ( s, ) is monotone increasing and bounded above, by the Monotone
Convergence Theorem (Theorem 15 Chapter 2), ( s» ) is convergent. Then any
subsequence of ( s, ) is convergent and converges to the same limit (see Proposition
19 Chapter 3). By (3), for each integer n > 1, sp2 =l_1 . Therefore,
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Chapter 12 Arithmetic of Power Series

n n
Jim snz =jim I =Jim [Z akj[Z ka =

It follows that le Sh, =AB. This means Z d, = AB. Now we examine the series

n=1
o0

Z cn. Recall that Z Cn = Z[Z akbn- kJ Let t, = Z ck be the n-th partial sum for
n=0 n=0 k=0

n=0
each integer n > 0.
Then, to= do =ado bo and

n n+1
th = Z Ck+Cns1 = kZO Ck + kz;,) akbnyyk  -mmmmmmmmmemmeee- (4)
Let Z gn be the series obtained from Z Cnh= Z(Z akbn_ "j without the bracketing.
n=0 n=0

Slnce each ai bj corresponds uniquely to some d and conversely each di corresponds
uniquely to some a; b, by (4), D, gn is a rearrangement of Y, d,. Therefore, since
n=0 n=1

Y. d, is (absolutely) convergent , Y. gn= Z d, =AB. (see Tut 10 Question 1 and
n=1 n=0

solution). Now), ¢, = Z[Z axbn_ "j is obtained from Z gn by group the terms in

n=0 n=0\k=0
brackets without altering the order of the terms. Therefore,
0 o] n o0
> Cn= Z(Z akbn_kJ =Y gn=AB. (See Tut 10 Question 2 and solution.)  This
= n=0\k=0 n=0

proves the theorem for the case when a, ,b, are non-negative for aII integer n 2 0.
In general, if Z an and Z b, are absolutely convergent, then Zlanl and Zlbnl are

n=0 n=0

convergent. It follows that Z dn, where d, is defined as before, is absolutely
n=1

convergent, because by the above argument Zld | is convergent and converges to

o0 o0 o0 n
[ZlanlJ(ZlbnlJ. Let Z gn be the series obtained from Z Cn = Z[Z akbn_kj
n=0 n=0

n=0 n=0\k=0
without the bracketing. Then as noted and observed before, Z gn is a rearrangement
n=0
of > dn. Since ), d, is absolutely convergent,
n=1 n=1

0

zgn—zdn

—O
We have observed above that Z Cn = Z On. HenceZ cnh =, dn. Now from (3)
n=1

(n+1)?
Sn+1)2 = Z dk=1In= (Z akJ[Z ka
Therefore, lim s@.12 =lim ln =lim (Z ak Z by | = AB . Since we already knew
('sn) is convergent, Z dn =lim sn =lim S(n+1)2 = AB. Hence, 2_‘6 Ch = nZ’i dn = AB.
Note that for each integer n > 0, [c,l < Ig)lakllbn_kl. We have already shown that

o0 n 0
Z(Zlakllbn_liis convergent. It follows then by the Comparison test that Y.|c| is
n=0\k=0 n=0

o0
convergent and so Y, ¢, is absolutely convergent.
n=0
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Chapter 12 Arithmetic of Power Series

If > a,and Y b, are conditionally convergent, it need not follow that the Cauchy
n=0 n=0

product Y, c, is convergent. See the following example:
n=0

Example 11. Let Y a,and Z b, be two series where
n=0
ao:alzbo:b1:0andan bn=(-1)"

for integer n > 2.

In(n)
By the Alternating Series Test, Z an and Z bn %n) i for
integer n > 2 and Z fis divergent, by the Comparison Test Z is divergent.

()

Hence Z an and Z bn are conditionally convergent.
n=0 n=0

Co = C; = C, = C3 = 0 and for integer n > 3,
n

_ _( 1 1 ey 1
Cn = 2 A= ( 1)n{ )T -2) @ Ih0=3) "t Thi=2)In2) }
Thus, for nevenand >3, Cy> (In(n %))2 By application of L'Hopital's Rule (see

remark after Example 39 Chapter 4), - 0 Therefore, by the

n-—3
(In(n—2))2 ’

Comparison test, Con — ..

0
— —o0. Hence the series Y. ¢, cannot

o __h=3
Similarly for n odd and > 3, ¢y < ~n(n=2))? =

converge.

12.4 Multiplication of Power Series

Theorem 12. Suppose fi(X)= 2 anx" has radius of convergence R; and
n=0

f 2(X) = 2, bax™ has radius of convergence R, . Then the product f (x) =f1(x) f (X)
n=0
is represented by a power series )
> cnX", where ¢, = 2, akbn,
n=0 k=0
in the interval (-R, R), where R = min(R: , Ry)
Proof. Let x be in the interval (-R, R). Thenx € (-R:, R:) and x € (-Rz, R>).
Therefore, Y. anx"and Y. b,x" are absolutely convergent (see Theorem 4 Chapter 7).

n=0 n=0
Then by Theorem 10, the Cauchy product of these two series,

Z dn, where d, = Z(akxk)(bn_kx” e (Z akbn- kj

is absolutely convergent. That is, if ¢, = Z axbn_«for each integer > 0, then Z CnX"
is absolutely convergent Moreover, the Cauchy product,

nZ;acnx” [Z anx”J[nZ:‘ab X J f1(x) f2(X)
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Hence Y, c,x" is absolutely convergent for |x| < R.

n=0
In(1 .
Example 13. We can express %as a power series for |x| < 1.
First we note that 3=~ = Z( 1)"x" and In(1+x) = 2( 1)”X for |x| < 1. That is,
n=|

the radius of convergence for both series is 1. Therefore, by Theorem 12, for |x| < 1,
In(1+x > 1 n ©
§-+X) :_ZX (2( l)n k( ) J 2( 1)n [2 &JZZ(_l)mlann,
n n=1 k= n=1
where H, = ), i
ok

12. 5. Quotient of Power Series.

We now consider division of power series. Plainly it is sufficient to study the

quotient of a power series 1/ Y, a,x" since
n=0

o0

Z bpx" 0 1
= [2 bnx“} = ,
2 anxn =0 Y anpxn
n=0 n=0

for if we can represent as a power series we can then obtain the Cauchy

> apXn
n=0

product with Y, b,x" by Theorem 12.
n=0

Let f(x)= n% anx". Suppose n% anx"has radius of convergence R > 0. We consider

first the case that f (x) = O at least in a neighbourhood containing 0. Hence the
leading coefficient ao # 0. We may assume that a; = 1. This is seen as follows. We
can write

Z;,)anx” =ap Z aoxn

o0
The series D, a,x" and Z a—oxn have the same radius of convergence R while the
n=0 n=0

leading coefficient of Y, g—gx” is1. Then
n=0

1 1 1
0 ~ Qg * o a .
anXn 2 XN
ngo n ngo a0

=Y bn,x". Hence for such a

We seek a power series Y, byx" such that
n=0 ngo anxn

(Zan ) (Zon)-

Hence by the definition of Cauchy product,
Z Can =
n=0

solution, we have
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and so we have the equations

Co=1
and ¢, = 0 for all integer n > 1.
That means,
n —
Ch= kgé akbnk = { ]6' ?];011 '
That is,
bo=1
b1 =-aibo
b2 T_(albl +azbo) U o (A)
’ n
— 2. akbnx
k=1

0 0
In this way we define a formal inverse Y, byx" to Y. anx".
n=0 n=0

Theorem 14. Suppose Y, a,x" is a power series with a, = 1 and with a non-zero
n=0

radius of convergence R. Then the formal inverse of f(x)= Z anpx" as given by (A)

IS a power series expansion for f +—~with a non-zero radius of convergence. That is,

( ).
f(x) 2 bnX",

where the b,'s are determined recurswely by (A).

Proof. It is sufficient to show that Y, b,x"has a non-zero radius of convergence.
n=0

Note that by assumption, f (0) = a; = 1 # 0. Since the radius of convergence of
Z anx" is positive, by continuity f (x) = 0 in a neighbourhood of 0. Thus —=isat

f(x ( )
Ieast defined in a neighbourhood of 0.
We shall give some estimate of by's to use the Cauchy Hadamard formula to show that

the formal inverse Y, b,x" has a positive radius of convergence.
n=0

Let r be any real number such that 0 < r <R. Then Y. anr" is convergent. Therefore,
n=0

a, " — 0. (See Proposition 10 Chapter 6). Therefore, the sequence ( a.r") is
bounded and so there exists a constant M > 1 such that
|a,r"| < M forinteger n> 0.
Hence, for integer n > 0,
o] e ®

Then using (1), we get,

lbo|=1<M,

|b1 | = |a1 bol = |a1| <M/r ,

2

Ib2] = [(@1bs +abo)| < [a1ba| +[azbo] < MM r—'\QM _ 2%
3
Iba] < fasbal + [acha] + asho| < 2. 2M2 M M My o2 M

10
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n
We claim that |b| < 2“'\r/|—n for any integer n > 0. Evidently from the above it is true

for n =0,1,2 and 3. Assuming that the claim is true for k = 0, 1,2, ..., n-1, we shall
show that it is true for k = n.

By (A),

n n —kp\jn—k
lbnl < I(ZIaklleI < kZ % . ann—w by (1) and the induction hypothesis
-1

1 n
_nz 2n- an+1—k

=1
n

I/\
IA

1 n
_n Z 2n—an
k=1

Hence, by mathematlcal induction |bn| < Z”Ar/l—;for any integer n > 0.

Therefore, for all integer n > 1, |by|™ < ZM . It follows that sup{|ba|™ : n>k} < 2¥

for integer k > 1. Therefore, lim sup bnl% < ZM. By Theorem 19 Chapter 7 (Cauchy
N—o0

Hadamard Formula), the radius of convergence of Z bnx" is given by

1
lim sup by ™ ~ 2'\/'
N—o0

>O

In practice we can obtain the coefficients b,'s by long division and for region of
convergence estimate of M for a particular r need to be sought.

We now come to the case when the leading coefficient a; =0 so that f (0) = 0. We
can find the reciprocal 1/ f (x) as a power series in a deleted neighbourhood of 0.

Suppose f(X)=xP X, a,x" and p is an integer > 1 and a, # 0. Suppose f (x) has
n=0

radius of convergence R >0. Then for x = 0 and x in (-R, R),

Note that Y a,x"has the same radius of convergence R > 0. By Theorem 14, the

formal quotient of Y, anx",
n=0

= bpx"

Z apxn =0
has radius of convergence R' >0. Therefore, by Theorem 12,

f(x) Z box" =
for x =0 and x in (-Rz, Ry), Where Rz— min (R, R"). Thenin (— Rz, R.) — {0},

1 bo b,
W—Xprnx” <0+ |01+ +bp+k§1bp+kxk

fx

In view of Theorem 14, division of power series 90 can be performed as forming
the product of f (x) and 1/g(x) and is equivalent to formal power series division.

11
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Example 15. Find the first few terms of cor;((x))by power series division. Recall
from Chapter 11,
. P x3 X2 n ¥ 2n+1
S|n(x)=x—§+ﬁ+ +(—1)m+
N X2
= 2D o)
X2 X4 0 n
cos(x):l—ﬁ+ T 4+ (-1) (2n)! + e
0 2n
:Z( 1)n (2n)'
We perform long d|V|5|on as follows:
l 2 2 5 17 62 9
X+ 3%+ 95X + 375X’ + 7535
1X2 xt xs 1s, 1.5 1. Loy
IR - I IRt S s TR TR s
x—%x3 +%x5 — éﬂ + %xg
1 4.5, 6.7 8.9
X - X+ 7yX X7+
- 5 - 6?3)(9
2 5 4 7 1 9
15% ~ 315% * 2268 %
2.5 1.7 1 o,
15% ~ 15% * 180 "
17 - 29 .o
315% ~5e70° T
17 ., 17 o,
315°% ~ 630" T
62 .o, ...
2835° *
sin(x
Therefore, cos((x)) = X+ 2X2 4+ 2X5 + geX + 5oe=xd +
Remark.

Is the composition of two power series expandable as a power series function? The
If the power

series function f (x) = 2 an(X —Xo)" satisfies that f ' (xo ) # 0, then by continuity ' (x
n=0

) = 0 for some neighbourhood of x, and so by Darboux Theorem (Theorem 47 Chapter
4) in that neighbourhood either f' (x) >0 orf' (x) < 0. Therefore, in a small
neighbourhood of X, , f (x) is either strictly increasing or strictly decreasing. Hence f
. Therefore, its inverse f 7 exists in that

answer is "yes". But the proof will require analytic function theory.

(x) is injective in some interval containing Xo

12
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Chapter 12 Arithmetic of Power Series

interval. The question we can ask is whether the inverse function is representable as
powers of (y—f (xo)). The answer is ‘yes’ but the proof would require an invariance
of domain result.

12.6 Analytic Function

We have seen that not all infinitely differentiable functions can be expandable as a
power series, (See Example 13 Chapter 8). For manipulation of function by power
series, we need to ascertain if the function to be manipulated has a power series
expansion, i.e., if it is analytic. The next theorem gives a necessary and sufficient
condition for a function to be analytic at the origin. This gives another criterion for
analyticity in addition to Theorem 15 of Chapter 8.

Theorem 16. Suppose the function f is defined in a neighbourhood of the origin.
Then f is analytic at the origin if and only if f is infinitely differentiable and that
there exists a real number r > 0 and a real number K > 0 such that

D) rKn!
If M)l < (r—[x))"*

for —r<x<r.

Proof. Suppose f is analytic at the origin. Then f has a power series expansion in
some interval say (—R, R) containing the origin. That is to say,

f(x)= Zb anx"

for all |x] <R.
Then by Theorem 11 of Chapter 8, we can differentiate f (x) termwise any number of
times in the interval (-R, R) and

FO00 = dxn 2 akxk 2 Ak dxn
Z A dxn
= 3 ak(k=1) (k= (=D

= Z Ak —m! (k n)l X e (1)

for all [x| <R. Letconstantr >0 besuchthat 0 <r<R. Then f(r)=2 a,r" is
n=0

absolutely convergent. Therefore, X’ la,r"| is convergent and so for each integer n >
n=0
0,
|lanr"| skZ;,)Iakrkl. --------------------------------------- 2

Let K= Y laxr*|. Then from (1) we obtain by the triangle inequality,
k=0
f M(x)l < Zlakx" |

[
leakl‘ s r"‘”(kk!n),
<Slarily -+

13
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Chapter 12 Arithmetic of Power Series

Therefore, for |x| <,

|f(n)(x)|<2|akr"|(k n)" (MJH
—ZK(k ln)I r_ln(%ljkn by @)
S
<583 () (XJ
[ M] ------------------------ ©)

X x|\ ™D o
since | ¥| < 1 so that Z (K )(l l) = (1—¥J . We deduce this series

expansion as a speCIaI case of the following:
0

First note that ﬁ => x for |x| < 1. Then by Theorem 11 Chapter 8, we can
—X k0

differentiate the function termwise any number of times in the interval (-1, 1).
Therefore, for any integer n > 0 and for |X| <1

dn 1 S kv d" g

dxn 1-x dxn ZX z;j dxn X

- 2 k(k—1)-+(k— (n = L)xkn

I/\

k-n

zw o

n! _ k! k=n
Hence, o)™ _kz T

It follows that

(oo}

(1- x)n+1 Z(k n)lnl k‘”=k§3(ﬁ)xk‘” ------------------ 4)

=n

for |x| < 1 and any integer n > 0.

It follows from (3) that

Knt XY™ Kt
ropo < K- BT K

J(M) __rKn!

r—Ix| - (r=xpn

for |x| < r and any integer n > 0.

Now for the proof of the converse statement. Suppose f is infinitely differentiable
and that there exists real numbers r > 0 and K > 0 such that for |x| < r and integer n >
0,

") rKn!
If ™M) <=

By Theorem 44 Chapter 4, the Lagrange form of the remainder for the Taylor
expansion for f around the origin is given by
Rn(X) = Garx"f ™)

for some m between 0 and x. Therefore for |x| < r/2,
IRn(X)I —‘ o jl) X" ()| for some n between 0 and x.
rK(n+1) 1 IxM| = rK x|
- (r - [ZI)“+2 (n+1)! (r—lnhm2
X2 — Byt since |n| <|X|
14
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+1
rK [ x| jn

L L e — 5

NG o ®)
x| [ | j "’ .
Now because [x| < r/2, <1 and so -0asn . Hence it

X () (B o

follows from (5) that [Ry(X)| = 0.  Therefore, f is analytic on the interval ( ).

This completes the proof.

Exercises 17.

1. By squaring the left hand side of o= Z x" and using the Cauchy product of

1

the right hand side with itself show that (=

Z (n+1)x" for |x| < 1.
n=0

no

By using power series multiplication (Cauchy product), compute the first few
terms in the expansion about x = 0 of the following:

(@) cos’(x) (b)e*In(1+x) (c) (sin ~*(x))? (d) sin(x) sin *(x)

(e) e*cos(x) (f) sin(x) cosh (x)

w

By using division of power series find the first few terms in the expansion about

x = 0 of the following functions.
Cos(X) ex 1 cos(x)

(@) 1 +sin(x) (b) eX 1 © 1-x2 (d) cosh(x) () cosh(x) -

4. The Bernoulli numbers By, i eXX 1= 2 ﬁf x" . Prove that
o n=0
Baws =0fork=1,23, ... andthat B, =-1/2, B, =1/6, B, =-1/30, B¢ = 1/42 and
Bg = —1/30 .
1 s B - : o
5. Showthat 7= —ngo (2" =1)x™* , where the B, 's are defined in

question 4 above.

S

Show by using Cauchy product that
1,1 .., 1\
Tox NT=x )_2(1+2+3+ +n)x

n=1
and state the range for which it is valid.

\‘

. Show that for x| <1,
2 Z x" cos(nd) Z x"sin(nd) = Z x"(n+1)sin(nd) .

15
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