
Chapter 12 Arithmetic of Power Series 
Introduction.  In Chapter 7, we have dealt with the representability of a function by a
power series.  A natural question arises as to the representability of the sums, products
and quotients of functions by power series in terms of the power series of the
functions and whether we can formally add, multiply or divide the power series
representing the functions to give a power series for the sum, product and quotient.  

12.1 Sums of Power Series

The situation of representing sum of functions by power series is quite simple.  

Theorem 1.  Suppose the function f  is represented by   with radius of
n=0

∞

anxn

convergence r1 and g  is represented by   with radius of convergence r2.  Then
n=0

∞

bnxn

the sum  f + g is represented by the power series   with radius of
n=0

∞

(an + bn)xn

convergence r ≥ min(r1 , r2).

Proof.   If  min(r1 , r2) = 0, then we have nothing to prove.  Suppose now 0 <  min(r1 ,
r2).  Let c be a real number such that 0 < c < min(r1 , r2).   Then the n-th partial sum 

 converges absolutely and uniformly to  f  on [−c, c] by Theorem 4 andsn(x) =
k=0

n
akxk

Remark 16 of Chapter 7 since c < r1.  Similarly we deduce that the n-th partial sum 
 converges absolutely and uniformly to  g  on [−c, c], since c < r2.  Thistn(x) =

k=0

n
bkxk

means given any ε > 0, there exists a positive integer N1 such that for all integer n ≥
N1 and for all x in [−c, c], 
                                                   ---------------------------------  (1)|sn(x) − f (x)| < 2
and there exists a positive integer N2 such that for all integer n ≥ N2 and for all x in
[−c, c], 
                                                   ---------------------------------  (2).|tn(x) − g(x)| < 2
Let N = max (N1, N2).  It follows by (1) and (2) that for all integer n ≥ N and for all x
in [−c, c],
            .|sn(x) + tn(x) − ( f (x) + g(x))| [ |sn(x) − f (x)| + |tn(x) − gf (x)| < 2 + 2 =

This means that  converges uniformly to f  + g on [−c, c].   sn(x) + tn(x) =
k=0

n
(ak + bk)xk

 Take a real number c' such that 0 < c < c' <  min(r1 , r2).   Then by Theorem 4 of
Chapter 7,  is convergent.  It follows by Proposition 5sn(c ∏) + tn(c ∏) =

k=0

n
(ak + bk)(c ∏)k

Chapter 7 that  converges absolutely to f  + g on [−c, c].   sn(x) + tn(x) =
k=0

n
(ak + bk)xk

(We may also deduce this directly by noting that for |x| < c,  and   are
n=0

∞

anxn
n=0

∞

bnxn

convergent and since for each integer n ≥ 0, , by the(an + bn)xn [ anxn + bnxn

Comparison Test,  is convergent for |x| ≤ c. )  Therefore,  
n=0

∞

(an + bn)xn
n=0

∞

(an + bn)xn

converges for any x such that |x| ≤ c  and for any  c such that 0 < c < min(r1 , r2).   
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Therefore, if r is the radius of convergence of  the series ,  r > c  for any
n=0

∞

(an + bn)xn

0 < c < min(r1 , r2).  Hence, r ≥  min(r1 , r2).

Remark.  Theorem 1 is valid when any one of r1 or r2 is infinite and when both r1 and
r2 are infinite and in this case r is infinity.

Example 2.   We know from Example 21 Chapter 8 that
                           for  −1 < x ≤ 1.ln(1 + x) =

n=1

∞

(−1)n+1 xn

n
and that by Theorem 19 Chapter 9,

     for  −1 < x < 1.1
1 − x

= 1 +
n=1

∞ 1 $ 3 $ 5£(2n − 1)
2 $ 4 $ 6£(2n) xn

Therefore, the power series  converges to  1 +
n=1

∞ 1 $ 3 $ 5£(2n − 1)
2 $ 4 $ 6£(2n) +

(−1)n+1

n xn

 for |x| < 1.  Now since  is divergent (by1
1 − x

+ ln(1 + x) 1 +
n=1

∞ 1 $ 3 $ 5£(2n − 1)
2 $ 4 $ 6£(2n)

Comparison Test) and  is convergent (by the Leibnitz's Alternating Series
n=1

∞

(−1)n+1 1
n

Test),  the sum  is divergent.  Similarly, because 1 +
n=1

∞ 1 $ 3 $ 5£(2n − 1)
2 $ 4 $ 6£(2n) +

(−1)n+1

n

 is convergent and  is divergent, the sum1 +
n=1

∞ 1 $ 3 $ 5£(2n − 1)
2 $ 4 $ 6£(2n) (−1)n

n=1

∞

(−1)n+1 (−1)n

n

 is divergent.  Therefore, the radius of1 +
n=1

∞ 1 $ 3 $ 5£(2n − 1)
2 $ 4 $ 6£(2n) +

(−1)n+1

n (−1)n

convergence of the series  is less than or equal1 +
n=1

∞ 1 $ 3 $ 5£(2n − 1)
2 $ 4 $ 6£(2n) +

(−1)n+1

n xn

to 1.  But by Theorem 1, its radius of convergence is exactly 1.  In particular, it
converges for all x such that −1 < x < 1 and diverges elsewhere.  

Given two series, we can form two kinds of products, the first is the termwise product
and the second is the Cauchy product which is a natural product for consideration of
product of two functions represented by power series. 

12.2 Termwise Product

Definition 3.  If   and  , then the termwise product of these two series is
n=0

∞

an
n=0

∞

bn

defined to be  .  
n=0

∞

anbn

Theorem 4.  If   and   are absolutely convergent, then  is also
n=0

∞

an
n=0

∞

bn
n=0

∞

anbn

absolutely convergent.

Proof.   Since  is convergent,  |bn| → 0 as n → ∞ .   Therefore, there exists a
n=0

∞

bn

positive integer N such that  n ≥ N ⇒ | bn | < 1.  Therefore, for all integer n such that n
≥ N, we have.
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                                     |an bn | = |an| |bn| ≤ | an |                          ------------------------  (1)
Since  is convergent,  is also convergent.  Therefore, by inequality (1)

n=0

∞

an
n=0

∞

aN+n

and the Comparison Test, 
                                      

n=0

∞

aN+nbN+n

is convergent.  Therefore,   is convergent and so  is absolutely
n=0

∞

anbn
n=0

∞

anbn

convergent.  

An easy consequence of Theorem 4 is the following:

If  is absolutely convergent, then  is absolutely convergent.  
n=0

∞

an
n=0

∞

an
2

The converse of this statement is evidently false as  is convergent but  is
n=0

∞ 1
n2

n=0

∞ 1
n

divergent.  It is of course not true that if  is convergent, then  is absolutely
n=0

∞

an
n=0

∞

an
2

convergent.  For instance  is convergent but  is divergent.
n=0

∞

(−1)n 1
n n=0

∞

(−1)n 1
n

2

Definition 5.  If    and   are power series then the termwise product of
n=0

∞

anxn
n=0

∞

bnxn

these two power series is defined to be  .
n=0

∞

anbnxn

Theorem 6.  If     has radius of convergence R1 > 0 and  has radius of
n=0

∞

anxn
n=0

∞

bnxn

convergence R2 > 0,  then the termwise product   has radius of convergence
n=0

∞

anbnxn

≥ R1R2 .

Proof.  Take any real number c such that 0 < c < R1R2 .   We shall show that 
 is convergent.   Now  .  Therefore, 

n=0

∞

anbncn c < R1R2 u
c

R1
< R2 and c

R2
< R1

 and .  Hence and   arex1 = 1
2 (R1 + c

R2
) < R1 x2 = 1

2 (R2 + c
R1 ) < R2

n=0

∞

anx1
n

n=0

∞

bnx2
n

absolutely convergent.   Therefore, by Theorem 4,  the termwise product  
 is absolutely convergent.   Observe that   

n=0

∞

anx1
nbnx2

n =
n=0

∞

anbn(x1x2)n

x1x2 = 1
4 (R1R2 + 2c + c2

R1R2
) = c

2 + 1
4 (R1R2 + c2

R1R2
) > c

2 + 1
2 ( R1R2 $

c2

R1R2
) = c

Hence by Proposition 5 Chapter 7,  is absolutely convergent.  Thus, by
n=0

∞

anbncn

Proposition 5 Chapter 7  is absolutely convergent for all x such that |x| ≤ c.   
n=0

∞

anbnxn

Since c is any real number such that 0 < c < R1R2, this means that  is
n=0

∞

anbnxn
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absolutely convergent for all x such that |x| < R1R2.  Therefore the radius of
convergence of   is greater than or equal to R1R2.

n=0

∞

anbnxn

Example 7.  If     has radius of convergence R1 > 0 and  has radius of
n=0

∞

anxn
n=0

∞

bnxn

convergence R2 > 0,  then the termwise product  may have radius of
n=0

∞

anbnxn

convergence exactly equal to R1R2 .   Take  and .
n=0

∞

anxn =
n=0

∞ 1
2n xn

n=0

∞

bnxn =
n=0

∞ 1
3n xn

Then R1 = 2 and R2 = 3.  The termwise product  .    By the Ratio
n=0

∞

anbnxn = 1
6n xn

Test (Theorem 18 Chapter 7 ), since , the radius of convergence is 6,nd∞lim an+1bn+1
anbn

= 1
6

which is precisely equal to R1R2 .

Example 8.  If     has radius of convergence R1 > 0 and  has radius of
n=0

∞

anxn
n=0

∞

bnxn

convergence R2 > 0,  a termwise product may have its radius of convergence strictly
greater than R1R2 .

Let  and .  That is,
n=0

∞

anxn =
n=0

∞ x
3

2n+1
+ x

5
2n

n=0

∞

bnxn =
n=0

∞ x
5

2n+1
+ x

3
2n

         an =
⎧ 

⎩ 
⎨ 
⎪ 

⎪ 

1
5

n
if n is even and n m 0

1
3

n
if n is odd positive integer

and .bn =
⎧ 

⎩ 
⎨ 
⎪ 

⎪ 

1
3

n
if n is even and n m 0

1
5

n
if n is odd positive integer

Then  and .  Therefore, by the Cauchy-Hadamard
nd∞

lim sup |an| 1
n = 1

3 nd∞
lim sup |bn| 1

n = 1
3

Formula (Theorem 19 Chapter 7), the radius of convergence R1  of   and the
n=0

∞

anxn

radius of convergence R2 of  are the same and equals 3.  But the termwise
n=0

∞

bnxn

product  whose radius of convergence by the Cauchy Hadamard
n=0

∞

anbnxn = 1
(15)n xn

Formula is 15 and is strictly greater than R1R2 =9.

Remark.  Note that if   and  , then the termwise productf (x) =
n=0

∞

anxn g(x) =
n=0

∞

bnxn

  is not equal to f (x) g(x) in general.  Take the two series in Example 7.  
n=0

∞

anbnxn

 and  .  Then f (1) = 2 and f (x) =
n=0

∞

anxn =
n=0

∞ 1
2n xn g(x) =

n=0

∞

bnxn =
n=0

∞ 1
3n xn g(1) = 3

2
.  Therefore, f (1) g(1) = 3.  The termwise product of the two power series is 

 and converges to the value  when x = 1.
n=0

∞

anbnxn = 1
6n xn 6

5 ! f (1)g(1)
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12. 3  Cauchy Product

Suppose   and  .  We now come to a product of powerf (x) =
n=0

∞

anxn g(x) =
n=0

∞

bnxn

series of  and  which when it converges gives the value of the product  
n=0

∞

anxn
n=0

∞

bnxn

f (x) g(x).

First we give the definition for series of constant terms.

Definition 9.  Suppose  and  are two series.   Then we define the Cauchy
n=0

∞

an
n=0

∞

bn

product of these two series to be the series , where
n=0

∞

cn

                                             .cn =
k=0

n
akbn−k

Theorem 10.  If   and  are absolutely convergent, then the Cauchy product 
n=0

∞

an
n=0

∞

bn

 is also absolutely convergent.  Moreover, if   and 
n=0

∞

cn
n=0

∞

an = A,
n=0

∞

bn = B
n=0

∞

cn = C,

then C = A B.

Proof.   We shall prove Theorem 10 when both an and bn are non-negative for all
integer n ≥ 0.   Suppose  and  are convergent.   Then the product, 

n=0

∞

an
n=0

∞

bn

                

   -- (1)
n=0

∞

an
n=0

∞

bn =
n=0

∞

an
k=0

∞

bk =nd∞lim
k=0

n
ak nd∞lim

j=0

n
bj = nd∞lim

k=0

n
ak nd∞lim

j=0

n
bj

Now for each integer n ≥ 0,  is convergent means  is convergent foran
k=0

∞

bk
k=0

∞

anbk

each integer n ≥ 0, or equivalently that  exists.  Since   is convergent an nd∞lim
j=0

n
bj

n=0

∞

an

 is convergent 
k=0

∞

ak nd∞lim
j=0

n
bj

and 

.  
k=0

∞

ak nd∞lim
j=0

n
bj =nd∞lim

k=0

n
ak nd∞lim

j=0

n
bj = nd∞lim

k=0

n
ak nd∞lim

j=0

n
bj

This explains the identity (1) above.   For each integer  n ≥ 0, let  .ln =
k=0

n
ak

k=0

n
bk

Thus by (1), ln  is convergent and converges to .
n=0

∞

an
n=0

∞

bn

Now          ln+1 =
k=0

n+1
ak

k=0

n+1
bk =

k=0

n
ak

k=0

n
bk +

k=0

n
ak bn+1 + an+1

k=0

n+1
bk

                                       ----------------------------  (2)= ln + an+1
k=0

n
bk + bn+1

k=0

n
ak

Consider the array
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a0b0| a0b1| a0b2| a0b3| a0b4 ££ a0bk a0bk+1 £

a1b0 a1b1| a1b2| a1b3| a1b4 ££ a1bk a1bk+1 £

a2b0 a2b1 a2b2| a2b3| a2b4 ££ a2bk a2bk+1 £

a3b0 a3b1 a3b2 a3b3| a3b4 ££ a3bk a3bk+1 £

a4b0 a4b1 a4b2 a4b3 a4b4 ££ a4bk a4bk+1 £

££££££££££££££££££££££££

akb0 akb1 akb2 akb3 akb4 ££ akbk akbk+1 £

ak+1b0 ak+1b1 ak+1b2 ak+1b3 ak+1b4 ££ ak+1bk ak+1bk+1 £

££££££££££££££££££££££££

We note from (2) that ln+1 is obtained from ln by adding the term, 

.an+1
k=0

n+1
bk + bn+1

k=0

n
ak

Note also that  ln is obtained by adding the terms in the n × n square in the above
array.   Hence    ( ln ) is convergent means the series obtained by summing up in
succession the terms in the k × k square by adding the next (2k+1) terms 

is convergent.  That is the series, starting with a0 b0, then add  ak
i=0

k
bi + bk

i=0

k−1
ai

, then add   and so on, is(a1b0 + a1b1 + a0b1) (a2b0 + a2b1 + a2b2 + b2a0 + b2a1)
convergent.   Since all the terms are non-negative, the series obtained from the above
by adding only one term at a time is convergent and converges to the same limit.  We
define this series as below by defining its terms.  We let d1 = a0 b0 , 

, d2 = a1b0, d3 = a1b1, d4 = a0b1
 d5 = a2b0, d6 = a2b1, d7 = a2b2, d8 = b2a0, d9 = b2a1

and in general, 
                dk2+i = akbi−1, for i = 1,£, k + 1, dk2+i = bkai−(k+1), for i = k + 1,£, 2k.
Hence, for integer n ≥ 1,

                                               --------------------------- (3)ln =
k=0

n
ak

k=0

n
bk =

k=1

(n+1)2

dk

Since ( ln ) is convergent and since it is non-negative and monotone increasing, it is
bounded above.   The n-th partial sum for each integer n ≥ 1
                                            sn =

k=1

n
dk

is also bounded above.  This can be deduced as follows.

                                  sn =
k=1

n
dk [

k=1

n2

dk = ln−1 [nd∞lim ln

Since ( sn ) is monotone increasing and bounded above, by the Monotone
Convergence Theorem (Theorem 15 Chapter 2), ( sn ) is convergent.  Then any
subsequence of ( sn ) is convergent and converges to the same limit (see Proposition
19 Chapter 3).  By (3), for each integer n ≥ 1,   .  Therefore,sn2 = ln−1

Chapter 12 Arithmetic of Power Series
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                                   nd∞lim sn2 =nd∞lim ln =nd∞lim
k=0

n
ak

k=0

n
bk = AB

It follows that .   This means   .   Now we examine the series  nd∞lim sn = AB
n=1

∞

dn = AB

.  Recall that  .  Let  be the n-th partial sum for
n=0

∞

cn
n=0

∞

cn =
n=0

∞

k=0

n
akbn−k tn =

k=0

n
ck

each integer n ≥ 0.
Then, t0 = d0 =a0 b0  and

                                ------------------- (4)tn+1 =
k=0

n
ck + cn+1 =

k=0

n
ck +

k=0

n+1
akbn+1−k

Let  be the series obtained from  without the bracketing.  
n=0

∞

gn
n=0

∞

cn =
n=0

∞

k=0

n
akbn−k

Since each ai bj  corresponds uniquely to some dk and conversely each dk corresponds
uniquely to some ai bj , by (4),  is a rearrangement of  .  Therefore, since 

n=0

∞

gn
n=1

∞

dn

 is (absolutely) convergent ,    (see Tut 10 Question 1 and
n=1

∞

dn
n=0

∞

gn =
n=1

∞

dn = AB.

solution).   Now  is obtained from   by group the terms in
n=0

∞

cn =
n=0

∞

k=0

n
akbn−k

n=0

∞

gn

brackets without altering the order of the terms.  Therefore,  

.  (See Tut 10 Question 2 and solution.)   This
n=0

∞

cn =
n=0

∞

k=0

n
akbn−k =

n=0

∞

gn = AB

proves the theorem for the case when an ,bn are non-negative for all integer n ≥ 0.
In general, if  and  are absolutely convergent, then  and  are

n=0

∞

an
n=0

∞

bn
n=0

∞

an
n=0

∞

bn

convergent.  It follows that , where dn is defined as before, is absolutely
n=1

∞

dn

convergent, because by the above argument  is convergent and converges to 
n=1

∞

dn

.  Let   be the series obtained from 
n=0

∞

an
n=0

∞

bn
n=0

∞

gn
n=0

∞

cn =
n=0

∞

k=0

n
akbn−k

without the bracketing.   Then as noted and observed before,  is a rearrangement
n=0

∞

gn

of  .   Since   is absolutely convergent,  
n=1

∞

dn
n=1

∞

dn

                                             .
n=0

∞

gn =
n=1

∞

dn

We have observed above that   Hence .   Now from (3)
n=0

∞

cn =
n=0

∞

gn.
n=0

∞

cn =
n=1

∞

dn

                          .s(n+1)2 =
k=1

(n+1)2

dk = ln =
k=0

n
ak

k=0

n
bk

Therefore,    .  Since we already knew       nd∞lim s(n+1)2 =nd∞lim ln =nd∞lim
k=0

n
ak

k=0

n
bk = AB

( sn ) is convergent,    .   Hence, .  
n=1

∞

dn =nd∞lim sn =nd∞lim s(n+1)2 = AB
n=0

∞

cn =
n=1

∞

dn = AB

Note that for each integer n ≥ 0,  .  We have already shown that cn [
k=0

n
ak bn−k

is convergent.  It follows then by the Comparison test that   is
n=0

∞

k=0

n
ak bn−k

n=0

∞

cn

convergent and so  is absolutely convergent.
n=0

∞

cn
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If    and  are conditionally convergent, it need not follow that the Cauchy
n=0

∞

an
n=0

∞

bn

product  is convergent.  See the following example:
n=0

∞

cn

Example 11.  Let   and  be two series where
n=0

∞

an
n=0

∞

bn

     a0 = a1 = b0 = b1 = 0 and  for integer n ≥ 2.an = bn = (−1)n 1
ln(n)

By the Alternating Series Test,   and  are convergent.  Since  for
n=0

∞

an
n=0

∞

bn
1

ln(n) > 1
n

integer n ≥ 2 and is divergent, by the Comparison Test  is divergent.
n=1

∞ 1
n n=2

∞ 1
ln(n)

Hence   and  are conditionally convergent.
n=0

∞

an
n=0

∞

bn

c0 = c1 = c2 = c3 = 0 and for integer n > 3,

     .cn =
k=0

n
akbn−k = (−1)n 1

ln(2) ln(n − 2) + 1
ln(3) ln(n − 3) +£ + 1

ln(n − 2) ln(2)
Thus, for n even and > 3,  .   By application of L'Hôpital's Rule (seecn m

n − 3
(ln(n − 2))2

remark after Example 39 Chapter 4),   ,  Therefore, by then − 3
(ln(n − 2))2 d ∞

Comparison test, c2n → ∞ .
Similarly for n odd and > 3,  .  Hence the series   cannotcn [ − n − 3

(ln(n − 2))2 d −∞
n=0

∞

cn

converge.

12.4 Multiplication of Power Series

Theorem 12.  Suppose  has radius of convergence R1 and f1(x) =
n=0

∞

anxn

 has radius of convergence R2 .  Then the product  f (x) = f 1 (x) f 2 (x)f 2(x) =
n=0

∞

bnxn

is represented by a power series
                                      ,  where ,

n=0

∞

cnxn cn =
k=0

n
akbn−k

in the interval (−R, R), where R = min(R1 , R2)

Proof.   Let  x be in the interval (−R, R).  Then x ∈ (−R1 , R1 ) and x ∈ (−R2, R2 ).   
Therefore, and  are absolutely convergent (see Theorem 4 Chapter 7).   

n=0

∞

anxn
n=0

∞

bnxn

Then by Theorem 10, the Cauchy product of these two series, 

                      , where ,
n=0

∞

dn dn =
k=0

n
(akxk)(bn−kxn−k) =

k=0

n
akbn−k xn

is absolutely convergent.   That is, if for each integer ≥ 0, then cn =
k=0

n
akbn−k

n=0

∞

cnxn

is absolutely convergent.  Moreover, the Cauchy product,

                            .
n=0

∞

cnxn =
n=0

∞

anxn
n=0

∞

bnxn = f 1(x) f 2(x)
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Hence  is absolutely convergent for |x| < R.
n=0

∞

cnxn

Example 13.  We can express as a power series for |x| < 1.      
ln(1 + x)

1 + x
First we note that  and  for |x| < 1.  That is,1

1 + x =
n=0

∞

(−1)nxn ln(1 + x) = −
n=1

∞

(−1)n xn

n
the radius of convergence for both series is 1.  Therefore, by Theorem 12, for |x| < 1,    
                           

,
ln(1 + x)

1 + x = −
n=1

∞

xn
k=1

n
(−1)n−k (−1)k

k = −
n=1

∞

(−1)nxn
k=1

n 1
k =

n=1

∞

(−1)n+1Hnxn

where .Hn =
k=1

n 1
k

12. 5.  Quotient of Power Series.

We now consider division of power series.  Plainly it is sufficient to study the
quotient of a power series   since 1/

n=0

∞

anxn

                                    ,n=0

∞
bnxn

n=0

∞
anxn

=
n=0

∞

bnxn $ 1

n=0

∞
anxn

for if we can represent as a power series we can then obtain the Cauchy1

n=0

∞
anxn

product with  by Theorem 12.
n=0

∞

bnxn

Let  .   Suppose has radius of convergence R > 0.  We considerf (x) =
n=0

∞

anxn
n=0

∞

anxn

first the case that f (x) ≠ 0 at least in a neighbourhood containing 0.   Hence the
leading coefficient a0 ≠ 0.  We may assume that a0 = 1.   This is seen as follows.  We
can write
                                 .

n=0

∞

anxn = a0
n=0

∞ an
a0 xn

The series  have the same radius of convergence R while the
n=0

∞

anxn and
n=0

∞ an
a0 xn

leading coefficient of  is 1.  Then 
n=0

∞ an
a0 xn

                                         .1

n=0

∞
anxn

= 1
a0 $

1

n=0

∞ an
a0 xn

We seek a power series  such that .   Hence for such a
n=0

∞

bnxn 1

n=0

∞
anxn

=
n=0

∞

bnxn

solution, we have

 .
n=0

∞

anxn $
n=0

∞

bnxn = 1

Hence by the definition of Cauchy product, 
                                                

n=0

∞

cnxn = 1
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and so we have the equations 
                                  c0 = 1
and                            cn = 0 for all integer n ≥ 1.   
That means,

                        ,cn =
k=0

n
akbn−k =

⎧ 

⎩ 
⎨ 

1, n = 0,
0, n m 1

That is,

                             ---------------------------------------  (A)

b0 = 1
b1 = −a1b0

b2 = −(a1b1 + a2b0)
§

bn = −
k=1

n
akbn−k

⎫ 

⎭ 

⎬ 

⎪ 

⎪ 

⎪ 

⎪ 

⎪ 

⎪ 

In this way we define a formal inverse  to  .
n=0

∞

bnxn
n=0

∞

anxn

Theorem 14.  Suppose   is a power series with a0 = 1 and with a non-zero
n=0

∞

anxn

radius of convergence R.  Then the formal inverse of  as given by (A)f (x) =
n=0

∞

anxn

is a power series expansion for with a non-zero radius of convergence.  That is,1
f (x)

                                             ,1
f (x) =

n=0

∞

bnxn

where the bn's are determined recursively by (A).

Proof.    It is sufficient to show that has a non-zero radius of convergence.
n=0

∞

bnxn

Note that by assumption, f (0) = a0 = 1 ≠ 0.  Since the radius of convergence of 
 is positive, by continuity f (x) ≠ 0 in a neighbourhood of 0.   Thus    is at

n=0

∞

anxn 1
f (x)

least defined in a neighbourhood of 0.
We shall give some estimate of bk's to use the Cauchy Hadamard formula to show that
the formal inverse   has a positive radius of convergence.

n=0

∞

bnxn

Let r be any real number such that 0 < r < R.  Then  is convergent.   Therefore,
n=0

∞

anrn

an rn → 0.   (See Proposition 10 Chapter 6).  Therefore, the sequence ( anrn ) is
bounded and so there exists a constant M ≥ 1 such that
                                 | an rn | ≤  M  for integer n ≥ 0.
Hence, for integer n ≥ 0,
                                              -------------------------------------  (1)|an| [ M

rn

Then using (1), we get,
         |b0 | = 1 ≤ M,
         |b1 | = |a1 b0| = |a1| ≤ M/r ,
          |b2| = |(a1b1 + a2b0)| [ |a1b1| + |a2b0| [ M

r
M
r + M

r2 M = 2 M2

r2

          |b3| [ |a1b2| + |a2b1| + |a3b0| [ M
r $ 2 M2

r2 + M
r2 $

M
r + M

r3 $M [ 22 M3

r3
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We claim that     for any integer n ≥ 0.  Evidently from the above it is true|bn| [ 2n Mn

rn

for n = 0,1,2 and 3.  Assuming that the claim is true for k = 0, 1,2, …, n-1, we shall
show that it is true for k = n.   
By (A), 
                  by (1) and the induction hypothesis    bn [

k=1

n
ak bn−k [

k=1

n M
rk $

2n−kMn−k

rn−k

                      [ 1
rn

k=1

n
2n−kMn+1−k [ 1

rn
k=1

n
2n−kMn

                      [ Mn

rn
k=1

n
2n−k [ 2n Mn

rn

Hence, by mathematical induction for any integer n ≥ 0.|bn| [ 2n Mn

rn

Therefore, for all integer n ≥ 1,  .  It follows that |bn| 1
n [ 2 M

r sup{|bn| 1
n : n m k} [ 2 M

r
for integer k ≥ 1.   Therefore, .  By Theorem 19 Chapter 7 (Cauchy

nd∞
lim sup bn|

1
n [ 2 M

r

Hadamard Formula), the radius of convergence of   is given by
n=0

∞

bnxn

                                           .1

nd∞
lim sup bn | 1

n
m r

2M > 0

In practice we can obtain the coefficients bn's by long division and for region of
convergence estimate of M for a particular r need to be sought.

We now come to the case when the leading coefficient a0 =0 so that  f (0) = 0.  We
can find the reciprocal 1/ f (x) as a power series in a deleted neighbourhood of 0.   

Suppose   and p is an integer ≥ 1 and a0 ≠ 0.  Suppose f (x) hasf (x) = xp
n=0

∞

anxn

radius of convergence R > 0.   Then for x ≠ 0 and x in (−R, R),
                                             .

f (x)
xp =

n=0

∞

anxn

Note that has the same radius of convergence R > 0.   By Theorem 14, the
n=0

∞

anxn

formal quotient of  ,  
n=0

∞

anxn

                                         1

n=0

∞
anxn

=
n=0

∞

bnxn

has radius of convergence R' > 0.     Therefore, by Theorem 12,
                   
                                              

f (x)
xp

n=0

∞

bnxn = 1

for x ≠ 0 and x in (−R2, R2), where R2 = min (R, R').  Then in (−R2, R2) − {0},
                             1

f (x) = 1
xp

n=0

∞

bnxn = b0
xp + b1

xp−1 +£ + bp +
k=1

∞

bp+kxk

In view of Theorem 14, division of power series   can be performed as forming
f (x)
g(x)

the product of  f (x) and 1/g(x) and is equivalent to formal power series division.  
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Example 15.   Find the first few terms of by power series division.  Recall
sin(x)
cos(x)

from Chapter 11,
         sin(x) = x − x3

3! + x5

5! + £ + (−1)n x2n+1

(2n + 1)! + £

                                              =
n=0

∞

(−1)n x2n+1

(2n + 1)!

        .  cos(x) = 1 − x2

2! + x4

4! + £ + (−1)n xn

(2n)! + £

                                                   =
n=0

∞

(−1)n x2n

(2n)!
We perform long division as follows:

            

x + 1
3 x2 + 2

15 x5 + 17
315 x7 + 62

2835 x9

1 − x2

2! + x4

4! − x6

6! + £ | x − 1
6 x3 + 1

5! x5 − 1
7! x7 + 1

9! x9 + £

x − 1
2 x3 + 1

4! x5 − 1
6! x7 + 1

8! x9 + £

1
3 x3 − 4

5! x5 + 6
7! x7 − 8

7! x9 + £

1
3 x3 − 1

6 x5 + 6
4!3 x7 − 8

6!3 x9 + £

2
15 x5 − 4

315 x7 + 1
2268 x9 + £

2
15 x5 − 1

15 x7 + 1
180 x9 + £

17
315 x7 − 29

5670 x9 + £

17
315 x7 − 17

630 x9 + £

62
2835 x9 + £

Therefore,   
sin(x)
cos(x) = x + 1

3 x2 + 2
15 x5 + 17

315 x7 + 62
2835 x9 +£

Remark.  
Is the composition of two power series expandable as a power series function?  The
answer is "yes".  But the proof will require analytic function theory.  If the power
series function  satisfies that f ' (x0 ) ≠ 0,  then by continuity f ' (xf (x) =

n=0

∞

an(x − x0)n

) ≠ 0 for some neighbourhood of x0 and so by Darboux Theorem (Theorem 47 Chapter
4) in that neighbourhood either  f ' (x ) > 0 or f ' (x ) < 0.  Therefore, in a small
neighbourhood of x0 , f (x) is either strictly increasing or strictly decreasing.  Hence  f
(x) is injective in some interval containing x0 .  Therefore, its inverse f −1 exists in that
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interval.   The question we can ask is whether the inverse function is representable as
powers of ( y− f (x0)).   The answer is ‘yes’ but the proof would require an invariance
of domain result.

12.6  Analytic Function

We have seen that not all infinitely differentiable functions can be expandable as a
power series,  (See Example 13 Chapter 8).  For  manipulation of function by power
series, we need to ascertain if the function to be manipulated has a power series
expansion, i.e., if it is analytic.  The next theorem gives a necessary and sufficient
condition for a function to be analytic at the origin.  This gives another criterion for
analyticity in addition to Theorem 15 of Chapter 8.

Theorem 16.   Suppose the function  f   is defined in a neighbourhood of the origin.
Then  f  is analytic at the origin if and only if  f  is infinitely differentiable and that
there exists a real number r > 0 and  a real number K > 0 such that 
                                  f (n)(x) [ r K n!

(r − |x|)n+1

for  − r < x < r.

Proof.    Suppose  f  is analytic at the origin.  Then  f  has a power series expansion in
some interval say (−R, R) containing the origin.  That is to say,
                                         f (x) =

n=0

∞

anxn

for all |x| < R.  
Then  by Theorem 11 of Chapter 8, we can differentiate  f (x) termwise any number of
times in the interval (−R, R) and 
                         f (n)(x) = dn

dxn
k=0

∞

akxk =
k=0

∞

ak
dn

dxn xk

                                    =
k=0

∞

ak
dn

dxn xk

                                    =
k=n

∞

akk(k − 1)£(k − (n − 1))xk−n

                     
                                                ----------------------------------  (1)=

k=n

∞

ak
k!

(k − n)! xk−n

for all |x| < R.  Let constant r > 0 be such that 0 < r < R.   Then      isf (r) =
n=0

∞

anrn

absolutely convergent.  Therefore,  is convergent and so for each integer n ≥
n=0

∞

anrn

0, 
                                .          ---------------------------------------   (2)anrn [

k=0

∞

akrk

Let .   Then from (1) we obtain by the triangle inequality, K =
k=0

∞

akrk

                            f (n)(x) [
k=n

∞

akxk−n k!
(k − n)!

                                           [
k=n

∞

ak
xk−n

rk−n rk−n k!
(k − n)!

                                           .[
k=n

∞

akrk k!
(k − n)! $

1
rn

|x|
r

k−n

Chapter 12 Arithmetic of Power Series

13
© Ng Tze Beng



Therefore, for |x| < r,

                                    f (n)(x) [
k=n

∞

akrk k!
(k − n)! $

1
rn

|x|
r

k−n

                                                         by (2)           [
k=n

∞

K k!
(k − n)! $

1
rn

|x|
r

k−n

                                                  [ K
rn

k=n

∞ k!
(k − n)!

|x|
r

k−n
= K n!

rn
k=n

∞ k!
(k − n)!n!

|x|
r

k−n

                                                  [ K n!
rn

k=n

∞ k
n

|x|
r

k−n

                                                     ------------------------ (3)= K n!
rn 1 −

|x|
r

−(n+1)

since   so that .    We deduce this seriesx
r < 1

k=n

∞ k
n

|x|
r

k−n
= 1 −

|x|
r

−(n+1)

expansion as a special case of the following:
First note that    for  |x| < 1.   Then by Theorem 11 Chapter 8, we can1

1 − x =
k=0

∞

xk

differentiate the function termwise any number of times in the interval (-1, 1).    
Therefore, for any integer n ≥ 0 and for |x| <1, 
                           dn

dxn
1

1 − x = dn

dxn
k=0

∞

xk =
k=0

∞ dn

dxn xk

                                            =
k=n

∞

k(k − 1)£(k − (n − 1))xk−n

                                             =
k=n

∞ k!
(k − n)! xk−n

Hence,                       .n!
(1 − x)n+1 =

k=n

∞ k!
(k − n)! xk−n

It follows that              
                                   ------------------  (4)1

(1 − x)n+1 =
k=n

∞ k!
(k − n)!n! xk−n =

k=n

∞ k
n xk−n

for |x| < 1 and any integer n ≥ 0.
                  
It follows from (3) that  

 f (n)(x) [ K n!
rn 1 −

|x|
r

−(n+1)

= K n!
rn

r
r − |x|

(n+1)

= r K n!
(r − |x|)n+1

for |x| < r and any integer n ≥ 0.
Now for the proof of the converse statement.  Suppose  f  is infinitely differentiable
and that there exists real numbers r > 0 and K > 0 such that for |x| < r and integer n ≥
0, 
                           .f (n)(x) [ r K n!

(r − |x|)n+1

By Theorem 44 Chapter 4, the Lagrange form of the remainder for the Taylor
expansion for f around the origin is given by
                                Rn(x) = 1

(n+1)! xn+1f (n+1)( )
for some  η between 0 and x.  Therefore for |x| < r/2, 

                      for some  η between 0 and x.Rn(x) = 1
(n + 1)! xn+1f (n+1)( )

                                  [
r K (n + 1)!
(r − | |)n+2

1
(n + 1)! xn+1 = r K

(r − | |)n+2 xn+1

                                             since  |η| ≤ |x| [ r K
(r − |x|)n+2 x n+1
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                                   ----------------------- (5)= r K
(r − |x|)

x
(r − |x|)

n+1

Now because |x| < r/2,   and so  as n →∞ .  Hence itx
(r − |x|) < 1 x

(r − |x|)

n+1

d 0

follows from (5) that .    Therefore, f  is analytic on the interval .Rn(x) d 0 (− r
2 , r

2 )
This completes the proof.

Exercises 17.

1.   By squaring the left hand side of   and using the Cauchy product of   1
1 − x =

n = 0

∞

xn

      the right hand side with itself show that   for |x| < 1.1
(1 − x)2 =

n = 0

∞

(n + 1)xn

2.   By using power series multiplication (Cauchy product), compute the first few         
      terms in the expansion about x = 0 of the following:
     (a)  cos2(x)    (b) e x ln(1+ x)  (c)  (sin − 1(x) )2  (d)  sin(x) sin −1(x)
     (e)  ex cos(x)  (f)  sin(x) cosh (x)

3.   By using division of power series find the first few terms in the expansion about    
         x = 0 of the following functions.
      (a)     (b)      (c)       (d)       (e)  .

cos(x)
1 + sin(x)

x
ex − 1

ex

1 − x2
1

cosh(x)
cos(x)
cosh(x)

4.  The Bernoulli numbers Bn are defined by  .   Prove thatx
ex − 1 =

n = 0

∞ Bn
n! xn

      B2k+1  = 0 for k = 1,2,3, …  and that B1 = −1/2 , B2 = 1/6,  B4 = −1/30, Β6 = 1/42 and
       B8 = −1/30 .

5.   Show that     , where the Bn 's are defined in               1
ex + 1 = −

n = 0

∞ Bn
n! (2n − 1)xn−1

       question 4  above.

6.   Show by using Cauchy product that
                1

1 − x ln( 1
1 − x ) =

n = 1

∞

1 + 1
2 + 1

3 + £ + 1
n xn

     and state the range for which it is valid. 

7.   Show that  for |x| < 1,
                   .2

n = 0

∞

xn cos(n )
n = 0

∞

xn sin(n ) =
n = 0

∞

xn(n + 1) sin(n )
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