
Chapter 11 The Elementary Functions.
 

The term "elementary function" refers to any function formed from a set of basic
functions by specified rules.  The set  of basic functions, which are themselves
elementary functions consists of polynomials, rational functions, power functions, the
exponential function and its inverse the natural logarithmic function, the
trigonometric and inverse trigonometric functions and the hyperbolic and inverse
hyperbolic functions.   To form other elementary functions, we are allowed to add,
subtract, multiply, divide and use the rule of composition.  So the rules are the rules
of arithmetic and the rule of composition.  If  f and g are elementary functions and if f
and g are composable, then the composite f ) g is also an elementary function.
Properties of polynomial and rational functions are well known and we shall not
repeat them here.  We shall now examine the most important of these elementary
functions, the exponential, logarithmic, sine and cosine functions.  We can now make
use of power series to define analytically the exponential function as well as the sine
and cosine functions.  We shall then define the natural logarithmic function as the
inverse of the exponential function.  We shall establish the well known properties of
these functions.

11.1 The Exponential and Logarithmic Functions.

The Exponential Function

Definition 1.   

We have assumed the exponential function is defined as the inverse of the natural
logarithmic function, ln(x) which is defined in terms of the Riemann integral.  That is,
the natural logarithmic function ln: (0, ∞) → R is defined by    for x > 0ln(x) = ¶1

x 1
t dt

and the exponential function, exp : R → (0, ∞)  is then defined as the inverse ln-1 : R
→ (0, ∞).   The properties of the exponential function are then deduced via the
properties of the natural logarithmic function.  (see for example, Chapter 10 of
Calculus, an Introduction by Ng Tze Beng ).  In Chapter 7 Example 2 (1) we give its
definition as power series for the first time.  In Chapter 7 Example 8(2) we establish
its radius of convergence.  In Example 9 Chapter 8 we establish its differentiability
and determine its derivative.  In Example 12 Chapter 8, we show that it is the solution
to the differential equation,  f ' = f  with initial condition f (0) = 1.   We shall now
show that the power series definition or analytic definition of the exponential function
is indeed the exponential function by proving all the properties it enjoys.   We shall
then define the natural logarithmic function as the inverse of the exponential function.

Define the exponential function, exp : R → (0, ∞) , by
                                   for any x in R.  exp(x) =

n=0

∞ 1
n! xn

We have by a simple ratio test shown that the power series converges for all x.   
Therefore, its radius of convergence is + ∞.  (See Theorem 18 or 19 Chapter 7 for a
formula for the radius of convergence. )By Theorem 10, Chapter 7, exp is continuous
on R.  
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Properties of Exponential Function.

By Theorem 11 Chapter 8 exp is differentiable and we can differentiate it term by
term.  Therefore,
                              exp ∏(x) =

n=0

∞ d
dx

1
n! xn =

n=1

∞ 1
n! nxn−1 =

n=1

∞ 1
(n − 1)! xn−1 =

n=0

∞ 1
n! xn

Thus, for all x in R,     
                                                    exp' (x) = exp(x).   ------------------------------------  (1)

We shall now establish its well known properties.

Let g(x) = exp(x)exp(−x) for all x in R.   Then by the Product Rule and Chain Rule,
for all x in R,
                   g'(x) = exp' (x) exp(−x) + exp(x) exp'(−x) (−1)
                            = exp(x) exp(−x) + exp(x) exp(−x) (−1) = 0,                              by (1)
Hence g(x) = a constant C for all x in R. (See Theorem 16 Chapter 4).  Therefore,
evaluating g at x = 0 gives us the constant  C = g(0) = exp(0) exp(−0) = 1.   Therefore,
for all x in R,
                                             exp(x) exp(−x) = 1 (> 0)     -------------------------------  (2)
Hence, exp(x) ≠ 0 for all x in R.   In particular exp(x) > 0.   This is because if x ≥ 0,
exp(x) > 0 by definition and if x < 0, exp(−x) > 0 and so by (2), exp(x) > 0.   It follows
then from (2) that  for all x in R,
                                                   --------------------------------------- (3)exp(−x) = 1

exp(x)
Since exp'(x) = exp(x) > 0 for all x in R, exp is strictly increasing on R (see Theorem
19 Chapter 4).  
Let y be a fixed point in R.  For each x in R, define  .  Then h ish(x) =

exp(x) exp(y)
exp(x + y)

differentiable on R and by the Quotient Rule, for each x in R,

                    h ∏(x) =
exp ∏(x) exp(y) exp(x + y) − exp(x) exp(y) exp ∏(x + y)

(exp(x + y))2

                             =
exp(x) exp(y) exp(x + y) − exp(x) exp(y) exp(x + y)

(exp(x + y))2 = 0

Thus h is a constant function, say h(x) = C for all x in R.  Therefore, 
   This means that for all x and for all y in R,C = h(0) =

exp(0) exp(y)
exp(0 + y) = 1.

                                     exp(x+y) = exp(x) exp(y).         -------------------------------- (4)
Plainly, for x > 0,    Hence, by Theorem 46 (1) ofexp(x) = 1 + x + x2

2! + £ > x.
Chapter 3, exp(x) → ∞ as x → ∞ .   Therefore, by Theorem 47 (1) Chapter 3 

 as x → ∞ .   exp(−x) = 1
exp(x) d 0

Thus we have,
               exp(x) → ∞ as x → ∞    and  exp(x) → 0 as x →− ∞ .          ---------------  (5)
Similarly since  is convergent for any x in R, for x > 0 and for anyexp(x) =

n=0

∞ 1
n! xn

integer n ≥ 1,
                    

exp(x)
xn = 1

xn
n=0

∞ 1
n! xn = 1

xn + 1
xn−1 + 1

2!xn−2 + £ + 1
n! + x

(n + 1)! + £

                        
                                   > x

(n + 1)!
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Therefore, since  as x → ∞, by Theorem 46 (1) of Chapter 3, for anyx
(n + 1)! d ∞

integer n ≥ 1,                   
  as x → ∞.
exp(x)

xn d ∞

Because   and   by (5) and exp is a continuous functionxd∞
lim exp(x) = ∞ xd −∞

lim exp(x) = 0
on R, by the Intermediate Value Theorem, the range of the exponential function is (0,
∞).  We can deduce this as follows.  Let a be any point in (0, ∞).  Since 

, there exists a real number K > 0 such that x ≥ K ⇒ exp(x) > a.  Since xd∞
lim exp(x) = ∞

, there exists a real number L < 0 such that x ≤ L ⇒ exp(x) < a.xd −∞
lim exp(x) = 0
Therefore,  exp(L) < a < exp(K).   Since exp is continuous on the interval [L, K], by
the Intermediate Value Theorem (Theorem 13 Chapter 3), there exists a point x0 in (L,
K) such that exp(x0) = a.  Therefore, the range of exp is (0, ∞).

We summarize the above proceeding as follows.

Theorem 2.  The exponential function exp : R → (0, ∞) is a strictly increasing
differentiable bijective function satisfying the following properties,
(1)  exp' = exp
(2)  exp(x+y) = exp(x) exp(y)  for all x, y in R,
(3)    for all x in R,exp(−x) = 1

exp(x)
(4)   as x → ∞ for any integer n ≥ 0 and

exp(x)
xn d ∞

(5)  exp(x) → 0 as x →− ∞ .

The Natural Logarithmic Function

Definition 3.  Since exp is a bijective function it therefore has an inverse function        
  exp−1 : (0, ∞) → R defined by exp-1(x) = y ⇔ exp(y) = x.   Since exp is a strictly
increasing function its inverse is a strictly increasing continuous function (by
Theorem 23 of Chapter 3).  Moreover, since exp' is non-zero, by Theorem 34 Chapter
4 , exp−1  is differentiable and
                               since exp' = exp(exp−1 ) ∏(y) = 1

exp ∏(exp−1(y) = 1
exp(exp−1(y)

                                               = 1
y

for all y in (0, ∞).  We define the natural logarithmic function  ln: (0, ∞) → R to be
exp−1.   Hence  for y > 0.ln ∏(y) = 1

y

Properties of logarithmic Function.

Note that .  This is because given any real number K > 0, take L = expxd∞
lim ln(x) = +∞

(K).  Then since ln is strictly increasing for any x > L , ln(x) > ln(L) = ln (exp(K)) = K.
  Hence by Definition 41 Chapter 3 .  Now given any real number L <xd∞

lim ln(x) = +∞

0, let δ = exp(L) .   Then for any x such that 0 < x < δ ,  ln(x) < ln(δ) = ln(exp(L)) = L.
Thus, by Definition 40 Chapter 3 .

xd0+
lim ln(x) = −∞

Next we claim that for all x, y in (0, ∞),
                                             ln(x y) = ln(x) + ln(y)      ----------------------------------  (6)
We can show this by evaluating (6) on both sides by exp.
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                           exp(ln(x) + ln(y)) = exp(ln(x))exp(ln(y))     by  Theorem 2(2)
                                                        =  x y = exp(ln(x y)).
It follows that  ln(x y) = ln(x) + ln(y)  since exp is injective.
Using (6), we have that for any x > 0,  .  But ln(1) =    ln(1) = ln(x $ 1

x ) = ln(x) + ln( 1
x )

exp-1 (1) =0 and so for any x > 0,
                                                      ---------------------------------------- (7)ln( 1

x ) = − ln(x)
By L'Hôpital's Rule (Theorem 37 Chapter 4), we have that for any integer n ≥ 1,
                                               as x → ∞ .

ln(x)
xn d 0

Hence we have in summary:

Theorem 4.  The natural logarithmic function  ln: (0, ∞) → R is a strictly increasing
differentiable bijective function satisfying the following properties,
(1)   for x > 0,ln∏(x) = 1

x
(2)  ln(x y) = ln(x) + ln(y) for all x, y > 0,
(3)   for all x > 0,ln( 1

x ) = − ln(x)
(4)    as x → ∞ and 3 xd∞

lim ln(x) = +∞
xd0+
lim ln(x) = −∞

(5)     as x → ∞.
ln(x)
xn d 0

Since  is Riemann integrable on [1, x] for x ≥ 1 and on [x, 0] if 0 < x < 1, by the1
x

Fundamental Theorem of Calculus (see Theorem 42 Chapter 5), for any x > 0,
                    ,¶1

x 1
t dt = ¶1

x
ln ∏(t)dt = ln(x) − ln(1) = ln(x)

i.e.,                                                  .ln(x) = ¶1

x 1
t dt

This is the usual definition of natural logarithm function.   Gregory of St. Vincent was
aware of this possible definition of the logarithm and his pupil, the Belgian Jesuit A.
de Sarasa (1618-67) had observed that the area (the Riemann integral) can be
interpreted as logarithm in his Solutio Problematis a Mersenno Propositi (1649).
Newton too knew of this connection and included this relation in his Method of
Fluxions.   He expanded  by the binomial theorem and integrate term by term to1

1 + x
obtain
                                             ln(1 + x) = x − x2

2 + x3

3 − £

Of course since the radius of convergence is 1, we can only integrate term by term
within the interval of convergence.   More precisely,
                                 for   |x| < 11

1 + x = 1 − x + x2 − £ =
n=0

∞

(−1)nxn

The series on the right is convergent for |x| < 1 and diverges for |x| ≥ 1.    By Theorem
9 Chapter 9, we can integrate the power series term by term to obtain the integral 

 for |x| < 1 as a power series  .  By Abel's Theoremln(1 + x) = ¶0
x 1

1 + t dt
n=0

∞

(−1)n xn+1

n + 1
this power series gives the value of ln(2).  (See Example 21 Chapter 8 for details.)     

Powers.
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We first introduce the well known Euler constant e as exp(1).  Then for any integer n
≥ 1,
             e = exp(1) = exp(n $ 1

n ) = exp(
n times

1
n + £ + 1

n )

                                 by Theorem 2 (2).= exp( 1
n )

n

Therefore, we have for any integer n ≥ 1,
                                .exp( 1

n ) = e
1
n

Hence for any positive integers m and n , 
                 by Theorem 2 (2),exp( m

n ) = exp(
m times

1
n + £ + 1

n ) = exp( 1
n )

m

                             .                                  ------------------------------  (9)= e
1
n

m
= e

m
n

Also for any positive integers m and n, 
                 by Theorem 2 (3),exp( −m

n ) = 1
exp( m

n )

                                         by  (9)= 1
e m

n

                                            = e− m
n

It follows then that for any rational number q, 

                               exp(q) = e q                           ----------------------------------------(10)  
        

Definition 5.  

We shall now extend the usual definition of power to include irrational exponent.

Let a be a positive real number.  Define, for any real number x, the power

                                               ------------------------------------------ (11)ax = exp(x ln(a))

Then the assignment  is a continuous function on R because it is a compositionx x ax

of multiplication by ln(a) followed by exp.  

Note that if a = 1, then since ln(1) = 0,  ax  is a constant function taking the value 1. 

We shall show that this is the extension of the usual power for rational exponent.
Note that first of all, for any integer n ≥1 and any real number y > 0,

                                by  Theorem 4 (2)ln(y) = ln((y
1
n )n) =

n times

ln(y
1
n ) + ln(y

1
n ) + £ + ln(y

1
n )

                                   .   = n ln(y
1
n )

Hence, for any integer n ≥1 and any real number y > 0,

                                          .ln(y
1
n ) = 1

n ln(y)

Therefore, for any integers m, n ≥ 1 and y > 0,

                    ln(y
m
n ) =

m times

ln(y
1
n ) + ln(y

1
n ) + £ + ln(y

1
n )=

m times

1
n ln(y) + £ + 1

n ln(y)

                                             -----------------------------------  (12)= m $ 1
n ln(y) = m

n ln(y)
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For any integers m, n ≥ 1 and y > 0,

                        by Theorem 4 (3)ln(y− m
n ) = ln( 1

y
m
n

) = − ln(y
m
n )

                               by (12)= − m
n ln(y)

Note that for q = 0,    Therefore, for any rational number qln(yq) = ln(1) = 0 = 0 ln(y).
and y > 0,

                                    ln( yq ) = q ln(y)          --------------------------------------------  
(13)

Thus, for any rational q and a > 0,

                            exp(q ln(a)) = exp(ln(aq)) = aq

by  (13).

Observe that the right hand side is the usual meaning of power but the left hand side
is the new definition.  Therefore, the new definition coincides with the usual power
when q is rational.

Observe that this definition of power satisfies (13) as well.  That is, for any x in R and
any a > 0,

                         ln(ax ) = ln( exp(xln(a))) = x ln(a)        -------------------------------- (14)

We also have the following behaviour of the exponential function with respect to
power.              

For any real number r,

              exp (r x) = exp( r ln(exp(x)))       

                             = (exp(x))r .                                    --------------------------------- (15)

by the definition of power ( see (11).

Hence we have proved the following:

Proposition 6.   For any real numbers x and r, any a > 0 ,

(1)  ln(a x ) = x ln(a)

(2)  exp (r x) = (exp(x))r                                  

The significance of Proposition 6 is that the power in the statement is the extended
power function.

We can now use this to write exponential function in a more convenient form.

Observe,

                    ---------- (16)exp(x) = exp(x $ 1) = exp(x $ ln(exp(1)) = exp(x $ ln(e)) = ex

Thus, the properties of the exponential function can then be stated simply as follows:

For all, x, y and r in R, 
       1.   ex+y = ex ey 
       2.   e−x = 1

ex
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       3.    (ex)r = er x

and
       4.   d

dx ex = ex

       5.     as x → ∞ for any integer n ≥ 0 andex

xn d ∞

       6.   ex  → 0 as x → − ∞ .

Hence ex is a very convenient notation for the exponential function.

Other logarithmic function
Note that if a > 0 and a ≠ 1,  then the multiplication by ln(a) is a bijective function
from R onto R.   Let Ma : R → R  denote this multiplication map, i.e.,  Ma (x) = ln(a)
x  for x in R.   Hence if a > 0 and a ≠ 1,  

 for x in R.  Therefore, the powerax = exp(x ln(a)) = exp(Ma(x)) = exp )Ma(x)
function ax  is equal to  , a composite of two bijective functions and so isexp )Ma
bijective.   The logarithmic function to the base a, is defined as the inverse of the
power function ax .   If we denote logarithmic function to the base a  by loga :(0, ∞) →
R, then

                                       loga = (Ma)−1 ) exp−1

and  for x > 0 since the inverse ofloga(x) = (Ma)−1 ) exp−1(x) = (Ma)−1(ln(x)) =
ln(x)
ln(a)

multiplication by ln(a) is division by ln(a).  Therefore, loga has similar properties as
the natural logarithmic function.

11. 2 The Sine and Cosine Functions.

We now give an analytic definition of the sine and cosine functions and show that
they coincide with the usual trigonometric ratios and prove their periodicity.

We define sine and cosine by the following power series.

              sin(x) = x − x3
3! + x5

5! + £ + (−1)n x2n+1

(2n + 1)! + £

                                                 -------------------------------------  (1)=
n=0

∞

(−1)n x2n+1

(2n + 1)!

and       .  cos(x) = 1 − x2

2! + x4

4! + £ + (−1)n x2n

(2n)! + £

                                                       -------------------------------------  (2)=
n=0

∞

(−1)n x2n

(2n)!
Both series have radius of convergence equal to + ∞ by a simple ratio test (see
Example 8(6) of Chapter 7).  By Theorem 10 Chapter 7 both series define continuous
functions on R.  Thus sine and cosine functions are continuous on R.    Now for any x
in R,          
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                      .cos(−x) =
n=0

∞

(−1)n (−x)2n

(2n)! =
n=0

∞

(−1)n x2n

(2n)! = cos(x)

Thus cosine is an even function.   Also we have for any x in R,          
                

.sin(−x) =
n=0

∞

(−1)n (−x)2n+1

(2n + 1)! =
n=0

∞

(−1)n (−1)x2n+1

(2n + 1)! = −
n=0

∞

(−1)n x2n+1

(2n + 1)! = − sin(x)

It follows that sine is an odd function.
By Theorem 11 Chapter 8, we can differentiate both sine and cosine functions term by
term.  We obtain easily, that for all x in R,

                        --------------  (3)sin ∏(x) =
n=0

∞

(−1)n (2n + 1)x2n

(2n + 1)! =
n=0

∞

(−1)n x2n

(2n)! = cos(x)

and                cos ∏(x) =
n=1

∞

(−1)n 2nx2n−1

(2n)! =
n=1

∞

(−1)n x2n−1

(2n − 1)!
                                   -------- (4)=

n=0

∞

(−1)n+1 x2n+1

(2n + 1)! = −
n=0

∞

(−1)n x2n+1

(2n + 1)! = − sin(x)

The Fundamental Identities 

We shall establish the usual identities for the sine and cosine functions.
Define g: R → R by g(x) = sin2(x) + cos2(x) for x in R.   Then it follows from (3) and
(4) and the Chain Rule that for all x in R,
                     g'(x) = 2sin(x)cos(x) + 2cos(x)(−sin(x)) = 0.       
Hence, by Theorem 16 Chapter 4, g(x) = C for all x in R for some constant C.   
Evaluating g at x = 0,  C = g(0) = 0 + 12 = 1.  Therefore, g(x) =1 for all x in R.  Thus
we have established that for all x in R,
                                               sin2(x) + cos2(x) = 1.    ------------------------------------   
(5)
Next we shall derive the addition formulae.
Let a be a point in R.   Define h :R → R by h(x) = sin(x)cos(a−x)+cos(x)sin(a−x) for
x in R.   Then h is differentiable on R and for all x in R, by the Product Rule, Chain
Rule, (3) and (4), we have 
 h'(x) = cos(x)cos(a−x)+sin(x)(−sin(a−x))(−1)−sin(x)sin(a−x)+cos(x)cos(a−x)(−1) = 0.
 
Therefore, h is a constant function, i.e., h(x) = D for all x in R for some constant D.
Evaluating h at x = 0, we get D = h(0) = sin(0)cos(a)+cos(0)sin(a) = sin(a).
Therefore, we have that for any a in R and all x in R,
                              sin(a) = sin(x)cos(a−x)+cos(x)sin(a−x).  ---------------------------- (6)
Let a = x + y so that a − x = y.   We then obtain from (6)  the addition formula for
sine, that for all x, y in R,
                                sin(x + y) = sin(x)cos(y)+cos(x)sin(y).   ---------------------------  
(7)
Now fix y and differentiating both sides of (7) with respect to x, regarding both sides
of (7) as functions of (x), we obtain
                               cos(x + y) = cos(x)cos(y) − sin(x)sin(y)  ---------------------------  
(8)
the addition formula for cosine.

Definition of  π
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Before we show the periodicity of sine and cosine function, we need to introduce an
important number π.  We shall give a definition that is function theoretic in nature,
basically from the cosine function itself.

Recall cos(0) =1.  We claim that cos(2) < 0.   
         cos(2) =

n=0

∞

(−1)n 22n

(2n)!

                     = 1 − 2 + 16
24 − 26

n=3

∞

(−1)n−1 22n−6

(2n)!
                     = − 1

3 − 26 1
6! (1 − 22

7 $ 8 ) + 24

10! (1 − 22

11 $ 12 ) + £

                     = − 1
3 − 26

k =1

∞

(−1)2k 24k−4

(4k + 2)! +
k=1

∞

(−1)2k+1 24k−2

(4k + 4)!

                      .= − 1
3 − 26

k =1

∞ 24k−4

(4k + 2)! (1 − 22

(4k + 3)(4k + 4) ) < 0

Thus, since cosine is continuous on [0, 2], by the Intermediate Value Theorem
(Theorem 13 Chapter 3), cosine has a zero somewhere between 0 and 2.   Following
Richard Baltzer (1818-1887), we define π  by defining  to be the smallest positive2
zero of the cosine function (defined by its power series), i.e.,
                                   .2 = inf{x : x > 0 and cos(x) = 0}
We note that .  This is because by the definition of infimum, there exists acos( 2 ) = 0
sequence ( xn) in {x: x > 0 and cos(x) = 0} such that .  ( For instance, for anyxn d 2
integer n ≥ 1, there exists xn in {x: x > 0 and cos(x) = 0} such that    2 [ xn < 2 + 1

n
since  is the infimum of {x: x > 0 and cos(x) = 0}).  Therefore, by the continuity of2
cosine at  ,2
                                .cos( 2 ) =nd∞

lim cos(xn) =nd∞
lim 0 = 0

Next using the identity (5), we have then,   Thus sin2( 2 ) = 1 − cos2( 2 ) = 1.
.   Now cos(x) is positive on .  We can deduce this as follows:sin( 2 ) = 1or −1 [0, 2 )

Suppose there exists a point y in  such that cos(y) ≤ 0.   Then by the[0, 2 )
Intermediate Value Theorem there exists a point x such that  such that0 < x [ y < 2
cos(x) = 0.   Hence   since  is the infimum of {x: x > 0 and cos(x) = 0}).  This, 2 [ x 2
contradicts that .x < 2
Therefore, as sin'(x) = cos(x) > 0 in , sin(x) is strictly increasing on .  It[0, 2 ) [0, 2 ]
follows that, .  Hence .  We have thus established thatsin( 2 ) > sin(0) = 0 sin( 2 ) = 1
                                            and .             ------------------------  sin( 2 ) = 1 cos( 2 ) = 0
(9)
By (7),  .   And by induction, for any integer n ≥ 1,sin( ) = 2 sin( 2 ) cos( 2 ) = 0

 and  .   Thus for any integer n, sin(n ) = 0 sin(−n ) = − sin(n ) = 0
                                                   .                         ---------------------------sin(n ) = 0
(10)
Note that by (8)      ------------------cos( ) = cos( 2 + 2 ) = cos2( 2 ) − sin2( 2 ) = −1
(11)
Next we have that for any integer n,       
                                              .          ---------------------------- (12)sin((2n + 1) 2 ) = (−1)n
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We shall prove (12) by induction on the non-negative n.  For n = 0 , 
 so (12) is true for n = 0.   Assume it is true for n ≥sin((2n + 1) 2 ) = sin( 2 ) = 1 = (−1)0

0.  Then
                  sin((2n + 3) 2 ) = sin((2n + 1) 2 + )
                                                    by (7)= sin((2n + 1) 2 ) cos( ) + cos((2n + 1) 2 ) sin( )
                                                                               by (10) and= sin((2n + 1) 2 )(−1)
(11)                                                                = (−1)n(−1) = (−1)n+1

by induction hypothesis.
Hence   is true for all integer n ≥ 0.   Now for integer n ≤ −1,sin((2n + 1) 2 ) = (−1)n

  .   sin((2n + 1) 2 ) = − sin(−(2n + 1) 2 ) = − sin((2(−n − 1) + 1) 2 ) = −(−1)−n−1 = (−1)n

This shows that (12) is true for all integer n.
Observe then that for any integer n, 
                                                     by (8)cos(n + 2 ) = cos(n ) cos( 2 ) − sin(n ) sin( 2 )
                                              = 0                          = cos(n ) $ 0 − 0 $ sin( 2 )
by  (9) and (10).
That is, for any integer n,                       
                                                                      ------------------------  (13)cos(n + 2 ) = 0

Starting from (12),
              by (7)(−1)n = sin((2n + 1) 2 ) = sin(n + 2 ) = sin(n ) cos( 2 ) + cos(n ) sin( 2 )
                         = 0 + cos(n ) = cos(n )
by (9).
Thus, for any integer n,
                                                 cos(nπ) = (−1)n .       -----------------------------------  (14)
      
Therefore, for any x in R and for any integer n, 
    by (7) , (14) and (10)sin(x + 2n ) = sin(x) cos(2n ) + cos(x) sin(2n ) = sin(x)(−1)2n

                      = sin(x)                                              ------------------------------------  (15)
and
   by (8) , (14) and (10)cos(x + 2n ) = cos(x) cos(2n ) − sin(x) sin(2n ) = cos(x)(−1)2n

                      = cos(x)                                            -------------------------------------  (16)
Thus, we have established the periodicity of the sine and cosine functions.  To show
that the period is 2π, it is sufficient to show that the zero's of sine and cosine are
precisely those given by (10) and (13).

Lemma 7.  The points in the set  are the only zero's of the cosine{n + 2 : n c Z}
function.

Proof.  Suppose cos(a) = 0 and for some integer k,  .   Then  k + 2 < a < (k + 1) + 2
.    It follows that− 2 < a − (k + 1) < 2

                               by  (8)cos(a − (k + 1) ) = cos(a) cos((k + 1) ) + sin(a) sin((k + 1) )
                                                                   by  (14) and (10)= cos(a)(−1)k+1 + sin(a) $ 0
                                          = 0.
But by definition of  , there are no zero's of cosine in  and since cosine is2 [0, 2 )
even, i.e., cos(−x) = cos(x) for all x, there are no zero's of cosine in  .  This(− 2 , 0]
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means there are no zero's of cosine in   .   We have just shown that (− 2 , 2 )
 and  is a zero of cosine thus giving rise to a− 2 < a − (k + 1) < 2 a − (k + 1)

contradiction.  This means that a must be of the form for some integer k.   Wek + 2
have already shown that the points in the set  are zero's of cosine (see{n + 2 : n c Z}
(13)) and so these points are the only zero's of cosine.

Lemma 8.  The points in the set  are the only zero's of the sine function.{n : n c Z}

Proof.  
If sin(a) = 0, then     Therefore, bycos(a + 2 ) = cos(a) cos( 2 ) − sin(a) sin( 2 ) = 0.
Lemma 7 ,  for some integer k.  Hence, a = k π for some integer k.a + 2 = k + 2
Thus, any zero of the sine function must be of the form k π for some integer k.  But by
(10) the points in the set  are zero's of the sine function and so are{n : n c Z}
precisely the zero's of the sine function.

Lemma 9.  The sine function sin: R → R is strictly increasing on  and[− 2 , 2 ]

strictly decreasing on .[ 2 , 3
2 ]

Proof.   We have previously shown that cos(x) > 0 for x in  and since cos is[0, 2 )
even, it follows that cos(x) > 0 in .  Therefore, cos(x) > 0 for x in .(− 2 , 0] (− 2 , 2 )
Hence, sin'(x) = cos(x) > 0 for x in .  Since sin(x) is continuous on ,(− 2 , 2 ) [− 2 , 2 ]
by Theorem 19 Chapter 4, sin(x) is strictly increasing on .  This proves the[− 2 , 2 ]
first assertion.  Now since  and there are no zero's of sin(x) in (0, π),sin( 2 ) = 1 > 0
sin(x) > 0 for x in (0, π).  [ If there exists a point y such that 0< y < π and sin(y) < 0,
then by the Intermediate Value Theorem, there is a point y0 between y and   such2
that sin(y0) = 0 contradicting that there are no zero's of sin(x) in (0, π).  Thus sin(x) >
0 for all x in (0, π). ] Hence   cos( 2 + x) = cos( 2 ) cos(x) − sin( 2 ) sin(x) = − sin(x) < 0

for all x in (0, π).  This means that sin' (x)  = cos(x) < 0 for all x such that .2 < x < 3
2

 Hence by Theorem 19 Chapter 4, sin(x) is strictly decreasing on  .[ 2 , 3
2 ]

Lemma 10.  The cosine function cos: R → R is strictly decreasing on  and[0, ]
strictly increasing on .[− , 0]

Proof.  We have shown in the proof of Lemma 9 that sin(x) > 0 for x in (0, π).
Therefore, cos'(x) = −sin(x) < 0 for x in (0, π).   Thus since cosine is a continuous
function, by Theorem 19 Chapter 4, cos(x) is strctly decreasing on [0, π].   Since
sin(x) is an odd function, for x in (−π, 0) sin(x) = −sin(−x) < 0.  Therefore, cos' (x) =
−sin(x) > 0 for x in  (−π, 0).  We deduce similarly that cos(x) is strictly increasing on 

.[− , 0]

Lemma 11.  The range of the sine and cosine function is [−1, 1].
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Proof.   Since for all x in R, sin2(x) + cos2(x) = 1,  |sin(x)|, |cos(x)| ≤ 1 for all x in R.
Therefore, for all x in R, −1 ≤ sin(x) ≤ 1 and −1 ≤ cos(x) ≤ 1 .   Now because  

,  and that sin(x) is continuous on , by thesin( 2 ) = 1 sin(− 2 ) = −1 [− 2 , 2 ]
Intermediate Value Theorem, for any y in [−1, 1] there exists a point x0 in [− 2 , 2 ]
such that sin(x0) = y.  This means the range of sin(x) is [−1, 1].  Similarly, since cos(0)
= 1 and cos(π) = −1, by the Intermediate Value Theorem, the range of cos(x) is also
[−1, 1]. 

Now,   and by Lemma 9, there is no point x in sin(− 2 ) = sin(2 − 2 ) = sin( 3
2 ) = −1

 with sin(x) = −1, the period of sine function is precisely  by(− 2 , 3
2 ) 3

2 − (− 2 ) = 2
(15).  Similarly, since cos(−π) = cos(−π+2π) = cos(π) = −1 and by Lemma 10, there is
no point in (−π, π) with value equals to −1, the period of the cosine function is
precisely 2π by (16).   Thus we have shown that the sine and cosine functions defined
analytically satisfy the same fundamental identities as the trigonometric sine and
cosine functions. We shall show that indeed they are the same.

Relation with the Trigonometric Ratio

We have observed that the sine function restricted to the interval  is strictly[− 2 , 2 ]
increasing and maps  onto [−1, 1].  Therefore, its inverse function,[− 2 , 2 ]
                              sin−1 : [−1, 1] d [− 2 , 2 ]
is also strictly increasing and continuous.   Since sin'(x) = cos(x) ≠ 0 for x in ,(− 2 , 2 )
by Theorem 34 Chapter 4, sin-1 is differentiable on (−1, 1) and
                         (sin−1)∏(x) = 1

sin∏(sin−1(x))
= 1

cos(sin−1(x))
                                          = 1

1 − sin2(sin−1(x))
                                                       ---------------------------  (17)= 1

1 − x2

for |x| < 1.
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Now consider the unit circle centred at the origin in the Cartesian plane R2 .    

     
     
The equation of the upper circle is given by  .   Fix an xf (x) = 1 − x2 ,−1 [ x [ 1
such that 0 < x < 1.  Consider the arc length P0P1 , where P0 = (0, 1) and P1 is the point
(x, f (x)).  This is the limit of the length of  the polygonal curve P0Q1Q2…P1 as the
norm of the partition ∆ of [0, x] gets smaller, where partition ∆ is given by ∆ : 0 = x0 <
x1 < x2 < … < xn = x  for the interval [0, x], Qi = (xi , f (xi)), 0 ≤ i ≤ n and P0 = Q0 and
Qn = P1.  Then the length of the polygonal curve Q0Q1…Qn  is an approximation of the
arc length P0P1.  It is given by
                                    |Q0Q1| + |Q1Q2| + £ + |Qn-1Qn|   or   .

i=1

n
|Qi−1Qi |

Now the length of each line segment |Qi-1Qi| is the length of the line joining (xi-1 , f
(xi-1)) to   (xi , f (xi)).  Thus by the Pythagorean Theorem, 

                              ,  1 ≤ i ≤ n.|Qi−1Qi| = (xi − xi−1)2 + ( f (xi) − f (xi−1))2

Therefore, the length of the polygonal curve Q0Q1…Qn  is then given  by

                                              
i=1

n
(xi − xi−1)2 + ( f (xi) − f (xi−1))2

                                  =
i=1

n
1 + (

f (xi) − f (xi−1)
xi − xi−1 )2 (xi − xi−1)

                                     ---------------------------- (18)=
i=1

n
(1 + ( f ∏( i))2 ) (xi − xi−1)

                                                
for some  by the Mean Value Theorem (Theorem 15 Chapter 4).i c [xi−1, xi]
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The expression (18) is then a Riemann sum for the function  with1 + ( f ∏(t))2

respect to the partition ∆ : 0 = x0 < x1 < x2 < … < xn = x.   Therefore, as the norm of the
partition  tends to 0, the expression (18) tends to the|| || = max{|xi − xi−1| : 1 [ i [ n}
Riemann integral          (See Theorem 36 Chapter 5) provided  ¶0

x
1 + ( f ∏(t))2 dt

 is Riemann integrable on [0, x].   Thus the arc length P0P1 is given by1 + ( f ∏(t))2

the Riemann integral 

                                            .  ¶0

x
1 + ( f ∏(t))2 dt

Now,  for  0 ≤ t < 1,    and so  is Riemannf ∏(t) = −t
1 − t2

1 + ( f ∏(t))2 = 1
1 − t2

integrable on [0, x] for 0 ≤ x < 1 since it is continuous on  [0, x].  Hence the arc length
P0P1 is given by
                        by (17)¶0

x 1
1 − t2

dt = ¶0

x
(sin−1) ∏(t)dt

                                            = sin-1(x) − sin-1(0)     
                                                             by Darboux Fundamental Theorem of Calculus  
                                                             (Theorem 32 Chapter 5) 
                                            = sin-1(x).
Now parametrize the angle θ subtended by the arc P0P1 at the centre of the unit circle
by the arc length P0P1, then for 0 ≤ x < 1, 
                                                         ------------------    (19)= ¶0

x 1
1 − t2

dt = sin−1(x)

For x =1, the arc length of the quarter circle P0P2 is given by the improper Riemann
integral,

                            ¶0

1 1
1 − t2

dt =
xd1−
lim ¶0

x 1
1 − t2

dt

                                                   =
xd1−
lim sin−1(x)

                                                   = sin-1 (1)   since sin-1 is continuous at x = 1,
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                                                                                              --------------------- (20)= 2
Thus from (19) and (20) we see that 
                                         x = sin(θ), 0 ≤ θ ≤  .2
Thus,   = the trigonometric ratio.   Note that, if y denotes fsin( ) = x

1 =
opposite

hypotenuse
(x), then
                 , y = f (x) = 1 − x2 = 1 − sin2( ) = cos2( ) = cos( )
since 0 ≤ θ ≤   so that cos(θ) ≥ 0.2
Hence,  , the familiar trigonometric ratio.cos( ) =

y
1 =

adjacent
hypotenuse

Remark.  Our definition of π introduced via  as the smallest positive number for2
which cos(x) = 0 is due to Richard Baltzer at Giessen, who was a friend of Kronecker.
Edmund Landau (1877-1938) advocated and published this approach in his Göttingen
lectures and his Einführung in die Differentialrechnung und Integralrechnung (Verlag
Nordorff, Groningen) (1934).  This approach was attacked as un-German and he was
dismissed on racial ground.  This surely was a disgraceful episode full of injustice of
that time and place and has nothing to do with mathematics.  The number π  has been
a source of mystique and intrigue.  For instance the House of Representative of the
State of Indiana in USA unanimously passed in 1897 an "Act introducing a new math
for all", which proposed two values for π, 4 and 3.2.  Fortunately, the senate of
Indiana postponed "indefinitely" the adoption of this act.

All the trigonometric functions for complex argument are much more richer.
Restricting to real θ, we have the following remarkable formula of Euler,
                                   .ei = cos( ) + i sin( )

We can easily deduce this identity from the complex exponential series, 
n=0

∞ 1
n! zn

which converges for all z in C.   Substituting iθ for z and noting that 
n=0

∞ 1
n! (i )n

converges if and only if the real and imaginary parts converge we can easily derive
the right hand side of the identity.  A particularly beautiful equation emerges from
this identity, namely,
                                              , ei + 1 = 0
linking five of the most important numbers in mathematics.

Exercises 12.

1.   Prove that  ex ≥ 1 + x for any x in R.   When does strict inequality hold?  Show
that the equation   2ex = (1 + x)2  has exactly one solution in R.   

2.  Evaluate the following limits without the use of  L'Hôpital's rule.  

     (a)     (b)     (c)    (d)   .
xd0
lim 1 − e(x3)

x2 sin(x) xd0
lim x

sin(x) xd0
lim

1 − cos(x)
x2 xd0

lim
x − sin(x)

x3

3.  Prove that the following equation has exactly one solution in R.

e2x + cos(x) + x = 0.

4.  Find the maximum and minimum points of the set {sin(x) + cos(x) : x ∈ R}.
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5.  Let a and b be such that a2 + b2 = 1.  Prove that there exists exactly one number x
in the interval [0, 2π)  such that  cos(x) = a and sin(x) = b.

6.  Show that for a > 0,  nd∞
lim n(a1/n − 1) = ln(a).

7.  Using Mean Value Theorem show that there is a number c in the open interval (1,
e)

      such that  1 = ln (e) − ln(1) = (e − 1) /c.   Hence deduce that e > 2.

8.  Using the definition of the derivative of the natural logarithm, show that

              .n d ∞
lim

ln(1 + 1
n ) − ln(1)

1
n

=n d ∞
lim n ln(1 + 1

n ) = 1

9.  Using the definition of  power and the continuity of the exponential function show
that                                     .n d ∞

lim 1 + 1
n

n
= e

10.  Using only the definition of derivative , prove that

       (a)   and (b) .
xd0
lim

sin(x)
x = 1

xd0
lim

cos(x) − 1
x = 0

11.  Show that the Kepler's equation x = a sin(x) + b , |a| < 1  has exactly one solution
in R.

12.  Which is the larger number, eπ or π e ?  Justify your answer without using tables
or calculators.  (Hint:  Consider x − e ln(x). )

13.  Suppose  g is a function defined for all x > 0 and satisfies  g(xy) = g(x) + g(y) for
all x, y > 0 and that .  Show that g(x) = ln(x) for all x > 0.

x d 0
lim

g(1 + x)
x = 1
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