
Chapter 10 Weierstrass Approximation Theorem
Not all functions which are infinitely differentiable admit Taylor series expansion.
Even if a function has a Taylor series expansion about some point, the convergence of
the series may be extremely slow for computation.  But we can still approximate a
continuous function by a polynomial function or polynomial for short in other ways.
Computationally and ideally we would want to be able to obtain the best uniform
approximation of a continuous function by a polynomial of a given degree.  Usually
this is not possible.  Hence we seek an effective way to generate a polynomial
approximation using a finite set of points on an interval say [a, b], and that the
polynomials obtained as the number of points used increases should converge to the
given function on [a, b] or the best approximation to the given function on [a, b].   
Polynomials have been the main stay of numerical approximation, interpolation and
geometric modelling and the quadrupling of computing power over the last few years
have made polynomial approximation an extremely useful and powerful technique in
digital computation.  The starting point of finding the best polynomial approximation
is the Weierstrass Approximation Theorem.  It provides the basic assumption that
there is a best uniform approximation of a continuous function by a polynomial of a
given degree.  It does not tell us how to get it.  We shall present this basic result.  For
the topics on the characterization of best polynomial approximation, the use of
trigonometric polynomials and Chebyshev polynomials for the estimate of the error
function for the approximation, the intricate relation between the best approximation
on an interval and the best approximation on a mesh of points in the interval, the
reader is referred to "An Introduction to the Approximation of Functions" by
Theodore J.  Rivlin.
Classically this well known result of Weierstrass that any continuous function on a
closed and bounded interval can be approximated by a polynomial function is phrased
as the set of all polynomial functions defined on [a, b] is dense in the space of all
continuous functions defined on [a, b] with the uniform norm.   There is a
generalization, the Stone-Weierstrass Theorem, to more general subsets of a metric
space with the polynomials replaced by an appropriate family of functions and the
space is the space of all continuous function on a compact topological space with the
sup norm, which is known to be complete.
Theorem 1.  Weierstrass Approximation Theorem.
Let I be a closed and bounded interval.  Suppose  f : I  R is a continuous function.
Then for each  > 0, there exists a polynomial function p : I  R such that
                                           | f (x)  p(x) | <    for all x in I ,
or equivalently sup {| f (x)  p(x) |: x I}   .
One can give a proof along the lines of (1) that the polynomial functions form a
subalgebra that separates points of I, (2) that the closure of this subalgebra is a lattice
in C(I, R) the space of all continuous function on I with the sup norm and (3) using
the compactness of  I , (1) and (2) one can find a point on this lattice which is
arbitrarily near  f  .  This relies on compactness and argument involving finite
subcover of an open cover.  This shows the advantage of working in normed linear
spaces but is less constructive in nature.  We shall present a proof of the theorem due
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to Bernstein, using his polynomial sequences.   There are many interesting problems
that may be solved using Bernstein polynomials.
We shall prove a special case of Theorem 1 when I = [0, 1] first.   We now describe
the Bernstein polynomials. 
Let  f : [0,1]  R be a function.  Then for each integer n  0, we define the Bernstein
polynomial of degree n associated with  f  to be
                        Bn f x  k0

n f  kn  nk xk1  xnk

Theorem 2. 
Suppose  f : [0,1]  R is a continuous function.  Then for each  > 0, there exists a
polynomial function p : I  R such that

sup {| f (x)  p(x) |: x I}   .
More specifically, the sequence of Bernstein polynomial (Bn( f )) as defined above
converges uniformly to  f.
Before we proceed with the proof, we shall derive a series of identities which are
needed for the proof.  The binomial theorem states that for integer n  0,  
                                                             -----------------------  (A) (x  y)n  k  0

n nk xkynk

Hence from (A), for integer n  1,
                                                  -----------------------  (1)(x  y)n1  k  0

n1 n  1k xkynk1

Multiply (1) by nx, we obtain
                                        ------------------------- (2)nx(x  y)n1  k  0

n1 n n  1k xk1ynk1

Now,   and son n  1k  n n  1!
k!n  1  k!  k  1 n!k  1!n  1  k!  k  1 nk  1

from (2), we have
                     nx(x  y)n1  k  0

n1 n n  1k xk1ynk1  k  0
n1 k  1 nk  1 xk1ynk1

                                k  1
n k nk xkynk  k  0

n k nk xkynk

Evidently, the above equality is true when n = 0 and so we have that for any integer n 0,
                                                       ---------------------  (B)nx(x  y)n1  k  0

n k nk xkynk

From (B) for integer n  1,
                                          ------------------  (3)n  1x(x  y)n2  k  0

n1 k n  1k xkynk1

Multiply (3) by nx, we obtain similarly,
             nn  1x2(x  y)n2  k  0

n1 kn n  1k xk1ynk1  k  0
n1 kk  1 nk  1 xk1ynk1

                                    . k 1
n k  1k nk xkynk  k 0

n k  1k nk xkynk

Plainly, the above equality also holds when n = 0, and so we have for any integer n 
0,                             
                                             ------------  (C)nn  1x2(x  y)n2  k 0

n k  1k nk xkynk
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Note that the identities (A), (B) and (C) contain the same factor .nk xkynk

Let   .   rkx  nk xkynk

Now, taking y to be 1  x, so that x + y =1, we let   rkx  nk xkynk  nk xk1  xnk

.  We obtain from (A),  .  That is, for any integer n  0,   1  x  yn  k  0
n rkx

                                                                    -------------------------------  (D)1  k  0
n rkx

Similarly from (B), we obtain, for any integer n  0 
                                                                  ------------------------------ (E)nx  k  0

n k rkx
and from (C) we obtain, for any integer n  0
                                                          ---------------------(F)nn  1x2  k 0

n k  1k rkx
Then for any integer n  0,
          k 0

n k  nx2 rkx  k 0
n n2x2 rkx  2nx k 0

n k rkx  k 0
n k2 rkx

           n2x2
k 0

n rkx  2nx k 0
n k rkx  k 0

n k  1k  k rkx
                  n2x2  2nx nx  nx  nn  1x2  nx1  x
by (D), (E) and (F).
Therefore, for any integer n  0,
                                                      .              ------------ (G)k 0

n k  nx2 rkx  nx1  x
We now proceeds to the proof of Theorem 2.
Proof of Theorem 2.
Since  f  is continuous and [0, 1] is compact, by Theorem 7 Chapter 3 the image f  
([0,1] ) is compact and so by the Heine-Borel Theorem (see Theorem 43 Chapter 2) f
([0, 1]) is closed and bounded.  Therefore, there exists a real number M > 0 such that
                                      | f (x) |  M for all x in [0,1].
Given  > 0, since  f  is uniformly continuous on [0, 1] (see Theorem 29 Chapter 3),  
there exists  > 0 such that for all x, y in [0, 1],
                                           |x  y| <   | f (x) f (y)| < -------------  (1)
We now estimate how close the Bernstein polynomial Bn( f ) is to  f  for integer n  1.
             f x  Bn f x  f x  k0

n f  kn  nk xk1  xnk

                                        f x  k0
n f  kn rkx

                                           using identity (D)  f x k0
n rkx  k0

n f  kn rkx
                                  .            -------------------   (2) k0

n f x  f  kn  rkx
We next examine the sum on the right of (2) according to whether   or |x  kn | 

 , where  is given in (1).|x  kn |
If  , then by (1), |x  kn | 
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                                                        .                 -------------------- (3)f x  f  kn   2
Suppose now .   Then  .  Hence|x  kn | |nx  k| n
                                  f x  f  kn  | f x|  | f  kn | 2M
                                                                                --------------------- (4)2M nx  k2

n2 2
because . |nx  k|

n 1
Therefore, for any x in [0,1] and for 0  k  n .
                                        .              ---------------  (5)f x  f  kn  2  2M

2 x  kn
2

(We add the term  so that we can combine (3) and (4) in one inequality for2simplicity.)
    
Using (2) and the fact that rk(x)  0 for all x in [0,1] and 0  k  n, we get         
          f x  Bn f x  k0

n f x  f  kn  rkx
                                      k0

n f x  f  kn  rkx
                                                             by inequality (5)k0

n
2  2M

2 x  kn
2 rkx

                                       2 k0
n rkx  2M

2 k0
n x  kn

2rkx
                                                                    by identity (D) 2  2M

2n2 k0
n (nx  k)2rkx

                                                                                by identity (G) 2  2M
2n2 nx1  x

                                        2  2M
2n x1  x

                                                        2  2M
2nbecause x(1x) < 1 for x in [0,1].

Hence, for any x in [0,1] and any n  1,
                                                                ---------------  (6)f x  Bn f x  2  2M

2n
Since ,  there exists a positive integer N such that2M

2n 0
.n N 2M

2n  4It then follows from (6) that   
                                  for all x in [0,1].n N f x  Bn f x  2  4  34Hence,   
                     .     n N sup f x  Bn f x : x 0, 1 34 
This shows that  Bn( f   f  uniformly on [0,1].   We may take the polynomial
function p to be BN( f  ) and   .  This completes thesup f x  px : x 0, 1 
proof of Theorem 2.
Proof of Theorem 1.    
Suppose I = [a, b] a closed and bounded interval and  f : I  R is a continuous
function.  Let g : [0,1][a, b] be the bijective linear map defined by g(t) = a + t(ba)
for t in [0,1].  Then g is continuous, g(0) = a and g(1) = b.   Since f  is continuous, the
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composite  f  g : [0,1]R is also continuous.  Hence by Theorem 2, for any  > 0,
there exists a positive integer N such that for any integer n  N, the Bernstein
polynomial Bn (f  g) satisfies   
                                 for all x in [0, 1].    -----------------  (1).f gx  Bn f gx 
Now g is a continuous injective map and so g has a continuous inverse function. (see
Theorem 23 Chapter 3).  Indeed the inverse function g-1 :[a, b] [0, 1] is given by

  for  t in [a, b] .g1t  t  ab  aThus by (1) for all t in [a, b],  
.f t  BN f gg1t 

Hence
                                       for all t in [a, b].f t  BN f g t  ab  a  
Since BN (f  g) is a polynomial function,  is a polynomialp t  BN f g t  ab  a function in t and | f (t)  p(t) | <  for all t in I ,
If we let , thenqnt  Bn f g t  ab  a 
                             qnt  Bn f g t  ab  a   k0

n f g kn  nk  t  ab  a k1   t  ab  a nk

                             k0
n f g kn  nk t  ab  a

k b  tb  a
nk

                              . k0
n f a  kn b  a nk t  ab  a

k b  tb  a
nk

It follows from (1) that qn  f  uniformly on [a, b].
Remark.
1. The Weierstrass Approximation Theorem uses the uniform continuity of  f  which

depends on the compactness of the interval [a, b].  In general, any continuous
function defined on a non-compact interval (or domain) need not be uniformly
continuous.  Since the only compact intervals of R are the closed and bounded
interval by the Heine-Borel Theorem, we cannot hope to extend the approximation
result to any continuous function to the whole of R.  However, in practice, we use
the approximation theorem in a closed and bounded interval containing the region
of interest.

2. A more general result is the Stone-Weierstrass Theorem for compact metric
spaces.  There is still the more general Theorem in the space of all continuous real
valued function on a Hausdorff topological space with the compact open topology.
 For the metric space version, assume A is a compact metric space,  let C(A, R) be
the set of all continuous real valued functions on A with the sup metric.  Let 
C(A, R) be such that it is an algebra, i.e.,  f , g  and   R implies that, f + g,   
f g, and  f  .  If    contains 1, the constant function and is separating, i.e., for
all a, b in A , a  b implies that there exists a function  f  in   such that  f ( a)  f
(b),  then   is dense in C(A, R), i.e., the closure of   in C(A, R) is C(A, R).  This
gives an approximation on more abstract compact metric spaces other than the
closed and bounded interval in R.  Note that when A is compact, the space C(A, R)
with the compact open topology and that with the sup metric coincide.
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Example of an application of the Weierstrass Theorem.  
Here is an application of the Weierstrass Approximation Theorem.

Suppose  f  is a continuous function defined on [0, 1].  Suppose  f  satisfy that  
 for all integer n  0.  Then f  is identically the 0 constant function.0

1 f xxndx  0
By Theorem 2, the sequence of Bernstein polynomial ( Bn( f ) ) converges
uniformly to  f.  By the supposition  .  Since  f  is0

1 f xBn f xdx  0
continuous and so  f  is bounded on [0, 1], it follows that  f Bn( f ) converges
uniformly to  f 2 .  Therefore,  either by Theorem 7 Chapter 8 or Theorem 1
Chapter 9,         
                            .   0

1 f 2xdx nlim 0
1 f xBn f xdx  0

Therefore, since  f 2  0,   implies that f 2  is identically the zero0
1 f 2xdx  0

function on [0, 1].  It follows that  f  is identically zero.
Exercises 3
1.  Prove that if  f  is increasing on [0, 1], then the Bernstein polynomial Bn( f ) is also

increasing on [0, 1].
2.  Show that if  f is continuous on [0, 1], then there is a sequence of polynomial

functions  pn(x)  such that  .  [Hint:  use Weierstrassf x  n1 pnx
Approximation Theorem.]    

3.   Suppose  f  is continuous on [0, 1].   Prove that if   for n = 0, 1, 2,0
1 f xxndx  0

 , then  f  is identically 0.
4.  Prove that the function  f : (a, b)  R defined by  f (x) = 1/(b  x) cannot be
     approximated uniformly by polynomials on (a, b).
5.  Prove that the function  f : R  R defined by  f (x) = ex  cannot be  approximated
     uniformly by polynomials on R.
6.   Suppose  f :[0, 1]  R is bounded.  Modify the proof of Theorem 2 to show that if

  f :[0, 1]  R is continuous at x0 in [0, 1], then Bn( f  )(x0)  f (x0).   Hence, or
otherwise, show that if  f  is continuous on a closed interval A  in [0, 1], then Bn( f)(x) converges to  f  uniformly on A.  

    [Hint show that if  f  is continuous at x0 , then given any  > 0 there is a
neighbourhood B of x0 in [0, 1], i.e. the intersection of an open interval containing
x0 with [0, 1] and an integer N such that for all integer n  N  and for all  x in B,  
|Bn( f  )(x)  f (x) | <  .  If  A  is compact and  f  is continuous at each point of  A,
obtain a covering of  A by such neighbourhoods and use compactness to deduce
uniform convergence on A. ]

7.   Suppose f  is continuous on [0, 1].   Prove that if   for0
1 f x(xn11  x2 ) dx  0

all integers n  1,  then  f   is a linear function.
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8.   Suppose f  is continuous on [0, 1] and   for any function g : [0,0
1 f xg xdx  0

1]  R which is continuously twice differentiable on  [0,1] and equal to zero in
neighbourhoods of the points 0 and 1.  Prove that  f  is a linear function. 

9.   Suppose  f :[a, b]  R is continuous, prove that
                                            .xlim a

b f t sinxtdt  0
10.  Without using integration, prove that any continuous function on the closed and 
       bounded interval [a, b] has an anti-derivative on [a, b].
11.   Suppose  f :[0, 1]  R is continuous.  Prove that if   f :[0, 1]  R is

differentiable at x0 in [0, 1], then (Bn( f  ))(x0)  f (x0).  
12.  Suppose  f :[0, 1]  R is continuous.  Prove that if   f  is continuously

differentiable on [0, 1],  then (Bn( f  ))(x)  f (x) uniformly on [0,1 ] as  n  .
Moreover,  if  f  is C r, i.e., r-times continuously differentiable on [0, 1],  then    
(Bn( f  ))(r) (x)  f (r) (x) uniformly on [0,1 ] as  n  .
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