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Suppose the function :[ , ]g a b →  is a continuous function but with unbounded 

variation.  Let [ , ] ([ , ])c d g a b= ,  Suppose :[ , ]f c d →  is a bounded real valued 

function.   Then we can define in the usual manner the Riemann Stieltjes integral 

of the composition f g  with g as the integrator. 

The question is: When is the following change of variable,  

                                   
( )

( )
( ) ( )

b g b

a g a
f g x dg x fdx=   ,  --------------------------- (1) 

where the right-hand integral is assumed to be a Riemann integral, for the 

Riemann Stieltjes integral holds? 

The existence of the integral on the left-hand side of (1) does not necessary imply 

the existence of the right hand integral, nor does the existence of the right hand 

integral of (1) necessary imply the existence of the lefthand integral of (1). 

However, if it is given that both integrals in (1) exist, then they are equal.   This 

is due to Michael Bensimhoun, who proved that if the HK stieltjes integral of the 

left-hand side exists, then the right-hand side also exists as a HK integral.  If f g  

is Riemann Stieltjes integrable with respect to g, then it is HK integrable with 

respect to g, this implies that the right-hand side exists as a HK integral and they 

are equal. 

When f is continuous and g is continuous of bounded variation, then (1) holds. 

(See Theorem 20 of “Limit of the Lebesgue Stieltjes Integral and Change of 

Variable”.) 

When g is increasing and continuous and f is Borel, then (1) holds with the right 

hand integral of the function f being Lebesgue integrable. (See Theorem 46 or 

Corollary 61 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s 

Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes 

Integrals”.) 

 

Example 1. There is a continuous function :[ , ]g a b →  of unbounded variation 

and a Riemann integrable function f defined on the range of g such that f g is 

not Riemann Stieltjes integrable with respect to g.    
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Define g to be the function on [0, 1] by 
sin ,  0 1

( ) 2

0,  0

x x
g x x

x

  
   

=  
 =

. 

Let ( )f x x= .   Then f is Riemann integrable on [0, 1].   

Take any partition 0 1 2: 0 1MP x x x x=     =  with P  . Then 1x  . We 

may assume that  1

1

2 1
x

N
= 

+
 for some positive integer N.  Take any K > 0.   

Then since 
0

1

2 1i i



= +
  is divergent, there exists an integer 1N N  such that 

1 1

2 1

N

i N

K
i=


+

 .  Partition the subinterval 
1

1
[0, ] 0,

2 1
x

N

 
=  + 

 by division points 

1 1 1 1 1
, , , , ,

2 1 1 2 1 2 1 1 2 2 2 1N N N N N

 
 

+ − + + 
.  Let 

1

2 1
iy

i
=

+
 and 

1

2
iz

i
=  for i > 0 and 

1 1 0Nz + = .   Then 1 1 1 1 1 1 1 1: 0 ,N N N N N NQ y z y z z y x− − +     =  is a subdivision of 

1[0, ]x .  Take a Riemann Stieltjes sum corresponding to this partition, 

      
1 1

1 1

1 2

( )( ( ) ( )) ( )( ( ) ( )) ( )( ( ) ( ))
N N M

i i i i i i i i i

i N i N i

SL g g y g z g g z g y g g x g x  + −

= = + =

= − + − + −   . 

Let 
1

2

( )( ( ) ( ))
M

i i i

i

L g g x g x −

=

= − .   Then for any 2K L . Take  i iy =  for 1N i N    

and  i iz =  for 1 1N i N+   .  Then the Riemann sum  

                     
1

1

2

1
( )( ( ) ( ))

2 1

N M

i i i

i N i

SL g g x g x K
i

 −

= =

= + − 
+

  . 

This shows that the Riemann sums is unbounded.   Hence, the Rieman Stieltjes 

integral ( ) ( ) ( ) ( )
b b

a a
f g x dg x g x dg x=  does not exists but f is Riemann integrable 

on [ ( ), ( )] [0,1]g a g b =  . 

  

For a continuous function :[ , ]g a b →  of bounded variation there does not exist 

a non-Riemann integrable bounded function f defined on the range of g such 

that f g is Riemann Stieltjes integrable with respect to g.  

This is a consequence of the following theorem. 

Theorem 1.  Suppose :[ , ]g a b →  is a continuous function of bounded 

variation.  Let ([ , ]) [ , ]J g a b c d= =  be the range of g. Assume that g is not a 

constant function.  Suppose :[ , ]f c d →  is a bounded Borel function.  If the 
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Riemann Stieltjes integral ( ) ( )
b

a
f g x dg x exist, then f is Riemann integrable on 

[c, d]. 

Proof. 

Since f is bounded, f g  is Riemann Stieltjes integrable with respect to g on    

[a, b] implies that f g  is Riemann Stieltjes integrable with respect to gv , the 

total variation function of g.  (See Chapter 14, Theorem 14.14, Real Analysis by 

N. L. Carothers.) 

Let { [ , ] :  is discontinuous at }f gD x a b f g x=   be the set of discontinuities of the 

composite function f g .  

Therefore, ( ) 0
gv f gD = .  As gv  is continuous, ( )( ) * ( ) 0

gv f g g f gD m v D = = , where 

m* is the Lebesgue outer measure. (See Theorem 6 of “Lebesgue Stieltjes 

Measure, de La Vallée Poussin’s Decomposition, Change of Variable, 

Integration by Parts for Lebesgue Stieltjes Integrals”.) Therefore, 

( )* ( ) 0f gm g D = . (See Theorem 16 in “Functions of Bounded Variation and 

Johnson's Indicatrix”.)   Suppose f is non-Riemann integrable on the image of g.  

Then, there is a set E of positive measure such that [ , ] ( )f gE c d g D − , where 

[ , ]c d  is the range of g, and f is discontinuous at every point in E.  Let [ , ]F c d  

be the values of local constants of g.  Then F is countable and is of zero 

measure. We may assume that E F = .   

Let 1( )G g E−= .   Then f g  is discontinuous at every point in G.  Therefore, 

f gG D  .  This is impossible since this would imply ( ) ( )f gg G E g D=   and 

[ , ] ( )f gE c d g D − .  Hence, f is Riemann integrable on [c, d]. 

 

Theorem 2.  Suppose :[ , ]g a b →  is a continuous function of bounded 

variation. Assume that g is not a constant function. Let ([ , ]) [ , ]J g a b c d= =  be the 

range of g.  Suppose :[ , ]f c d →  is a bounded Borel function.  

Suppose g is absolutely continuous or f is the pointwise limit of a uniformly 

bounded sequence of continuous functions or f is a continuous function. 

If the Riemann Stieltjes integral ( ) ( )
b

a
f g x dg x exist, then f is Riemann 

integrable on [c, d] and 
( )

( )
( ) ( ) ( )

b g b

a g a
f g x dg x f x dx=   

Proof.  
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Suppose the Riemann Stieltjes integral ( ) ( )
b

a
f g x dg x exist. Then the Lebesgue 

Stieltjes integral ( )
b

g
a

f g x d exists.  By Theorem 1, f is Riemann integrable on 

[c, d]. 

If g is absolutely continuous, then 

                  ( ) ( ) ( )
b b

g
a a

f g x d f g x g x dx =  , 

where the right-hand side is a Lebesgue integral.  By Theorem 8 of “Change of 

Variables Theorems”, since f is a bounded Lebesgue integrable function, 

                           
( )

( )
( ) ( ) ( )

b g b

a g a
f g x g x dx f x dx =  , 

as Lebesgue integrals.  Since f is Riemann integrable, by Theorem 1 Part (2) of  

“Change of Variable Theorem for Riemann Integral”, ( ) ( )f g x g x  is Riemann 

integrable and 
( )

( )
( ) ( ) ( )

b g b

a g a
f g x g x dx f x dx =   as Riemann integrals.   Hence, 

( )

( )
( ) ( ) ( )

b g b

a g a
f g x dg x f x dx=   as Riemann integrals.  

If f is continuous, then the change of variable as Riemann integrals holds.  (See 

Theorem 20 of  “Limit of the Lebesgue Stieltjes Integral and Change of 

Variable”.)  

Suppose there exists a sequence of continuous function ( )nf  such that nf  tends 

pointwise to f boundedly.   Since nf  is continuous. 
( )

( )
( ) ( ) ( )

b g b

n n
a g a

f g x dg x f x dx=   

and so 
( ) ( )

( ) ( )
( ) ( ) lim ( ) ( ) lim ( ) ( )

b b g b g b

n n
a a g a g an n

f g x dg x f g x dg x f x dx f x dx
→ →

= = =     by the 

Bounded Lebesgue Convergence Theorem. 

This completes the proof. 

 

For unbounded function f, which is not Riemann integrable, you may have 

equality as Lebesgue Stieltjes and Lebesgue integrals but not as Riemann Stieltjes 

integral and Riemann integrals as in the following example.  

Example 2. There is a continuous function :[ , ]g a b →  of bounded variation 

and a non-Riemann integrable function f defined on the range of g such that 

f g is Lebesgue Stieltjes integrable with respect to g. 
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Let :[0,1]g →  be defined by 
4 3sin ,  0

( ) 2

0,       0

x x
g x x

x

  
  

=  
 =

 and let :[0,1]f → be 

defined by 1/3

1
,  0

( )

0,    0

x
f x x

x




= 
 =

 .  Then f is not bounded on [0, 1].    The function f 

is Lebesgue integrable and the integral is given by the improper Riemann 

integral 
1 1

0 0 0
( ) lim ( ) lim ( )

tt t
f x dt f x dt F t

+ +→ →
= =  , where : (0,1]F →  is defined by 

( )
1

2/33
( ) ( ) 1

2t
F t f x dx t= = − .   Observe that                       

                     
( )4/3

2

1 1
,   0 and  , integer 1

sin 2
( ( ))

1
0,     0 or  , integer 1

2

x

x x k
x k

f g x

x x k
k




  


= 
 = = 


 

Note that f g  is not bounded on [0, 1], hence it is not Riemann integrable on 

[0, 1].  Note that for any partition 0 1 2: 0 1nP x x x x=     = , for any Riemann 

Stieltjes sum 
1

1

( )( ( ) ( ))
n

i i i

i

L f g g x g x   −

=

= − , since 
0

lim ( )
x

f g x
+→

= , by a 

suitable choice of 1 , we can make the Riemann Stieltjes sum L arbitrarily large. 

Hence, f g  is also not Riemann Stieltjes integrable with respect to g.   

The function g is differentiable on [0, 1] and                

3 3 2 23
4 sin sin cos ,   0 

( ) 2 2 2 2

0,     0 

x x x
g x x x x

x

  


      
−        =      

 =

 

Note that g   is bounded and continuous on [0, 1].  Hence, it is Riemann 

integrable on [0, 1].   

Therefore, g is absolutely continuous on [0, 1] and 

                ( )( ) ( ) ( ) ( )
b b

g
a a

f g x d f g x g x d x =   as Lebesgue Stieltjes integrals.  

               

5/3 2 2/3 1
4 sin sin cos , 0 and  , integer 1

2 2 2 2
( ( )) ( )

1
0, 0  or  , integer 1  

2

x x x x x k
x x x k

f g x g x

x x k
k

  


      
−               = 

 = = 


 

( ( )) ( )f g x g x  is continuous [0, 1] and so it is Riemann integrable on [0, 1].    

By Theorem 9 of “Change of Variables Theorems”, 
1 (1)

0 (0)
( ( )) ( ) ( )

g

g
f g x g x dx f x dx =   as Lebesgue integrals and   

1

0

2
( ( )) ( )

3
f g x g x dx = . 
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However, f g  is Riemann Stieltjes integrable with respect to g on [ ,1]k  for any 

k such that 0 < k <1 and 
1 1

( ) ( )
k k

f g x dg f x dx=  .  Therefore, if we define the 

improper Riemann Stieltjes integral to be 
1

0
lim ( )

kk
f g x dg

+→
 , then it is equal to the 

improper Riemann integral, 
1

0
lim ( )

kk
f x dx

+→
 . 

 

There is no non-Riemann integrable bounded function f such that for continuous 

increasing function g on [a, b], f g  is Riemann Stieltjes integrable with respect 

to g. 

Theorem 3.  Suppose :[ , ]g a b →  is an increasing and continuous function.  Let 

([ , ]) [ , ]J g a b c d= =  be the range of g.  Suppose :[ , ]f c d →  is a bounded Borel 

function.  Then f g  is Riemann Stieltjes integrable with respect to g on [a, b] 

implies that f is Riemann integrable on [c, d] and 
( )

( )
( ) ( ) ( )

b g b

a g a
f g x dg x f x dx=   as 

Riemann integrals. 

Proof. 

Since f is bounded, f g  is Riemann Stieltjes integrable with respect to g, if, and 

only if, ( ) 0g f gD = , where f gD  is the set of discontinuities of f g .  If ( ) ( )g a g b=

,then g is a constant function and we have nothing to prove. Assume now 

( ) ( )g a g b .  Suppose g is continuous, then by Theorem 6 of “Lebesgue Stieltjes 

Measure, de La Vallée Poussin’s Decomposition, Change of Variable, Integration 

by Parts for Lebesgue Stieltjes Integrals”, ( )( ) * ( )g f g f gD m g D = .  Hence, 

( )* ( ) 0f gm g D = .  Let fD  be the set of discontinuities of f on [c, d].  Let F be the 

values of g where g is locally constant.  Then F is countable and so is a set of zero 

Lebesgue measure.  Let fG D F= − .  Since g is continuous, 1( ) f gg G D−  . 

Therefore ( )( )1*( ) * ( ) 0m G m g g G−= = .  It follows that *( ) 0fm D = .  Therefore, f is 

Riemann integrable on [c, d]. 

If f g  is Riemann Stieltjes integrable with respect to g on [a, b], then it is 

Lebesgue Stieltjes integrable with respect to g.  Then by Theorem 46 of 

“Lebesgue Stieltjes Measure, de La Vallée Poussin’s Decomposition, Change of 

Variable, Integration by Parts for Lebesgue Stieltjes Integrals”, 
( )

( )
( ) ( ) ( )

b g b

a g a
f g x dg x f x dx=   as Lebesgue integrals.  Hence, they are equal as 

Riemann integrals.  
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Theorem 4.  Suppose :[ , ]g a b →  is a continuous function of bounded 

variation.  Let ([ , ]) [ , ]J g a b c d= = , with c < d, be the range of g.  Suppose 

:[ , ]f c d →  is a bounded Borel function. If the Riemann Stieltjes integral 

( ) ( )
b

a
f g x dg x exists, then f is Riemann integrable on [c, d] and 

( )

( )
( ) ( ) ( )

b g b

a g a
f g x dg x f x dx=  . 

Proof. 

By Theorem 1, the function f must be Riemann integrable on [c, d].   

If f is continuous, then f g  is continuous and by Theorem 20 of “Limit of the 

Lebesgue Stieltjes Integral and Change of Variable”, 
( )

( )
( ) ( )

b g b

g
a g a

f g x d f x dx =   

as Lebesgue integrals.  Moreover, the Riemann Stieltjes integral ( ) ( )
b

a
f g x dg x

is equal to the Lebesgue Stieltjes integral ( )
b

g
a

f g x d .  Hence, 

( )

( )
( ) ( ) ( )

b g b

a g a
f g x dg x f x dx=  as Riemann integrals and the change of variable 

formula holds.  

Now we suppose that f is not necessarily continuous. 

We shall approximate f by a sequence of continuous functions differing from f 

by a set of Lebesgue measure tending to 0.  Let E be the set in [c, d], where f is 

continuous at every point in E and the measure of the complement of E is zero.  

By the inner regularity of the Lebesgue measure, there exists a sequence of 

compact sets nK  such that nK E , 1n nK K +  and the Lebesgue measure 

1
( )nm E K

n
−  , where we denote the Labesgue measure by m.  By the Tietze 

Extension Theorem, for each positive integer n, we can extend the restriction of 

f to nK , to a continuous function nf  on [c, d] such that 

   sup ( ) : [ , ] sup ( ) : [ , ]nf x x c d f x x c d   .   Then we have, since nf  is 

continuous,              

                    
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

b g b g b

n n n
a g a g a

f g x dg x f x dx f x dx= =    

By the Lebesgue Dominated Convergence Theorem, 
( ) ( )

( ) ( )
( ) ( )

g b g b

n
g a g a

f x dx f x dx→  , 

since nf  converges boundedly almost everywhere to f and f is integrable. 
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Note that for 
1

n

n

K K


=

= , ( ) 0m E K− = .  Let n nh f f= − .  Then ( ) 0nh x =  for x in nK , 

1
( : ( ) 0)nm x h x

n
    and ( ) 2nh x C , where  sup ( ) : [ , ]C f x x c d=  .  Note that 

1
([ , ] )nm c d K

n
−    and ([ , ] ) 0m c d K− = .  Let 1( )n nH g K−= .  We have 1n nH H + and 

1

1

( )n

n

H H g K


−

=

= = .  ( ) 1

1

[ , ] [ , ] ([ , ] )n

n

a b H a b H g c d K


−

=

− = − = −  and 

   ( )
[ , ]

( ) ( ) ( ) ( ) ( )
n n

b b

n n n g
a a H a b H

f f g x dg x h g x dg x h g x d
 −

− = =    

                                   
[ , ] [ , ]

( ) ( ) 0 ( )
nn n n

n g n g n g
H a b H a b H

h g x d h g x d h g x d  
− −

= + = +    

                                   
1[ , ] ([ , ] )

( ) ( )
n n

n g n g
a b H g c d K

h g x d h g x d 
−− −

= =  . 

Now, 
1 1([ , ] ) ([ , ] )

( ) 2
g

n n
n g v

g c d K g c d K
h g x d C d 

− −− −
  , where gv  is the total variation 

function of g.  Since  ( )1

1[ , ] [ , ] [ , ]n n ng c d K a b H a b H−

+− = −  − , ( )1 [ , ] ng c d K− −  tends 

to  1([ , ] )g c d K− − .  Therefore,  
1 ([ , ] ) g

n
v

g c d K
d

− −  tends to 
1 ([ , ] ) gv

g c d K
d

− − .   Since gv  is 

continuous and increasing, ( )( )1

1

([ , ] )
([ , ] )

gv g
g c d K

d m v g c d K
−

−

−
= − .  Now the 

Lebesgue measure of 1( ([ , ] )) [ , ]g g c d K c d K− − = − is zero and so 

( )( )1([ , ] ) 0gm v g c d K− − = .  Thus, we have ( ) ( ) ( ) 0
b

n
a

f f g x dg x− → as n trends to 

infinity.  On the other hand,   

             ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b b

n n
a a a

f f g x dg x f g x dg x f g x dg x− = −    

tends to 
( )

( )
( ) ( ) ( ) ( )

b g b

a g a
f g x dg x f x d x−  .   Therefore, 

( )

( )
( ) ( ) ( ) ( )

b g b

a g a
f g x dg x f x d x=  . 

 

Theorem 5.  Suppose :[ , ]g a b →  is an increasing continuous function.  Let 

([ , ]) [ , ]J g a b c d= =  be the range of g.  Suppose :[ , ]f c d →  is a bounded Borel 

function.  

(i) Suppose :[ , ]c d → is an increasing continuous function.  If the Riemann 

Stieltjes integral ( ) ( )
b

a
f g x d g exist, then f is Riemann Stieltjes integrable 

with respect to   on [c, d] and 
( )

( )
( ) ( ) ( )

b g b

a g a
f g x d g f x d =  . 
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(ii) Suppose :[ , ]c d → is a function of bounded variation.  Suppose f is 

Riemann Stieltjes integrable with respect to   on [c, d].  Then the Riemann 

Stieltjes integral ( ) ( )
b

a
f g x d g exist and  

( )

( )
( ) ( ) ( )

b g b

a g a
f g x d g f x d =  . 

If g is strictly increasing and continuous and if f g  is Riemann Stieltjes 

integrable with respect to g on [a, b], then f is Riemann Stieltjes integrable 

with respect to   on [c, d] and  
( )

( )
( ) ( ) ( )

b g b

a g a
f g x d g f x d =  .  

(iii) Suppose :[ , ]c d → is a continuous function of bounded variation.  

( ) ( )
b

a
f g x d g exists if, and only if, ( )

d

c
f x d  exists. 

If f g  is Riemann Stieltjes integrable with respect to g  on [a, b] or the 

function f is Riemann Stieltjes integrable with respect to   on [c, d], then 
( )

( )
( ) ( ) ( )

b g b

a g a
f g x d g f x d =  . 

Remark. 

Contrast this with the Lebesgue Stieltjes integral versions.  (See Theorem 55, 

Corollary 61, Corollary 62 of Lebesgue Stieltjes Measure, de La Vallée 

Poussin’s Decomposition, Change of Variable, Integration by Parts for 

Lebesgue Stieltjes Integrals. ). 

Proof. 

We assume that ( ) ( )g a g b  for if ( ) ( )g a g b= , then we have nothing to prove. 

(i)  If the Riemann Stieltjes integral ( ) ( )
b

a
f g x d g exists, then it is equal to the 

Lebesgue Stieltjes integral ( )
b

g
a

f g x d   and by Corollary 61 of  “Lebesgue 

Stieltjes Measure, de La Vallée Poussin’s Decomposition, Change of Variable, 

Integration by Parts for Lebesgue Stieltjes Integrals”,  
( )

( )
( )

b g b

g
a g a

f g x d fd  = 

as Lebesgue Stieltjes integral.   Since the Riemann Stieltjes integral 

( ) ( )
b

a
f g x d g exist, ( ) 0g f gD = , where  f gD  is the set of points where f g  

is discontinuous.  Since g is continuous, *( ( )) ( ) 0f g g f gm g D D = = .   Let 

fD  be the set of points at which f is discontinuous. We may assume that fD does 

not meet the set of local constant values of g, which is countable and of   

measure zero.  Since g is continuous, 1( )f f gg D D−  .  Therefore, 

1*( ( ( ))) 0fm g g D − = . This means *( ( )) 0fm D = . Since  is continuous, 



10 
 

( ) *( ( )) 0f fD m D = = .  Hence, f is Riemann Stieltjes integrable with respect to 

  on [c, d] and hence is also Lebesgue Stieltjes integrable with respect to  .  

Thus, 
( )

( )
( ) ( ) ( )

b g b

a g a
f g x d g f x d =   as Riemann Stieltjes integrals. 

(ii).   

Let 
( )

( )
( ) ( )

d g b

c g a
f x d f x d L = =  .  Then given any 0  , there exists a 0   such 

that for any partition 0 1 2: nP y c y y y d=     =  for [c, d] with P  , any 

Riemann Stieltjes sum, with any 1[ , ]i i iy y − , 

                           1

1

( )( ( ) ( ))
n

i i i

i

f y y L   −

=

− −  . 

Since g is continuous on [a, b], there exists 1 0   such that ( ) ( )g x g y −   

whenever 
1x y −  .   Let  0 1 2: nQ x a x x x b=     =  be any partition for [a, b] 

with 
1Q  .  

Suppose now g is strictly increasing and continuous.  

Then 0 1 2: ( ) ( ) ( ) ( ) ( ) ( )nP g x g a c g x g x g x g b d= =     = =  is a partition for [c, d] 

with P  .  Therefore, for any 1[ , ]i i ix x − , 

           1 1

1 1

( )( ( ) ( )) ( ( ))( ( ) ( ))
n n

i i i i i i

i i

f g g x g x L f g y y L      − −

= =

− − = − −    . 

This implies that the Riemann Stieltjes integral  ( ) ( )
b

a
f g x d g exists and 

( )

( )
( ) ( ) ( )

b g b

a g a
f g x d g f x d =  .  

If g is just increasing and continuous, the proof is a little more delicate. Let 
( )

( )
( ) ( )

d g b

c g a
f x d f x d L = =  .  Then given any 0  , there exists a 0   such that 

for any partition 0 1 2: nP y c y y y d=     =  for [c, d] with P  , any 

Riemann Stieltjes sum, with any 1[ , ]i i iy y − , 

                           1

1

( )( ( ) ( ))
n

i i i

i

f y y L   −

=

− −  . 

Since g is continuous on [a, b], there exists 1 0   such that ( ) ( )g x g y −   

whenever 1x y −  .   Let  0 1 2: nQ x a x x x b=     =  be any partition for [a, b] 

with 1Q  .   
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Then 0 1 2( ) ( ) ( ) ( ) ( ) ( )ng x g a c g x g x g x g b d= =     = = . This gives rise to a 

partition  1 0 1 2: ( ) ( ) ( ) ( ) ( ) ( )mP g z g a c g z g z g z g b d= =     = = , with  m n and  

1P  .  Consider the Riemann sum  
1

1

( )( ( ) ( ))
m

i i i

i

f g g z g z   −

=

 − with

1[ , ]i i iz z −
  .  

We shall show that this is a Riemann Stieltjes sum for the integral ( )
d

c
f x d . 

Note that 1 2 1 2{ , , , } { , , , }m mz z z x x x .  Suppose 1 1i k k j iz x x x z− +     .  

Then if 1( ) ( )i kg z g x−  , 1( ) ( ) ( ) ( )k k j ig x g x g x g z+= = = , 1( ) ( ) ( )i j jg z g x g x +=  , i jz x=   

and 1 1i kz x− −= .  Moreover, 1 1( ) ( ) ( ) ( )i i k kg z g z g x g x − −− = −  . 

1 1( )( ( ) ( )) ( ( ))( ( ( )) ( ( )))i i i i i if g g z g z f g g z g z     − −
 − = −  

               1 1( ( ))( ( ( )) ( ( ))) ( ( ))( ( ( )) ( ( )))i j k i k kf g g x g x f g g x g x     − −
 = − = − , 

Note that 

1 1 2 2( ( ))( ( ( )) ( ( ))) ( ( ))( ( ( )) ( ( )) ( ( )) ( ( ))i i i i j j j jf g g z g z f g g x g x g x g x       − − − −
 − = − + − +  

                  1 1 1( ( )) ( ( )) ( ( )) ( ( )) ( ( )))k k k k kg x g x g x g x g x    + + −+ − + − −   

1[ , ]i k jx x −
  .  Since 1( ) ( ) ( ) ( )k k j ig x g x g x g z+= = = , ( )ig    lies between  

1( )kg x −  and ( )kg x , ( ) ( )i kg g  = for some 1[ , ]k k kx x − and  

            1 1( )( ( ) ( )) ( ( ))( ( ( )) ( ( )))i i i k k kf g g z g z f g g x g x     − −
 − = − . 

If 1( ) ( )i kg z g x− = ,i.e., 1i kz x− = , then 1( ) ( ) ( ) ( )k k j ig x g x g x g z+= =  , 

1 1( ) ( ) ( ) ( )k k i jg x g x g z g x+ += =  = , 1i jz x +=  and 1 1( )) ( ) ( )) ( )i i j jg z g z g x g x − +− = −  . 

1 1( )( ( )) ( )) ( ( ))( ( ( )) ( ( )))i i i i i if g g z g z f g g z g z     − −
 − = −  

           1 1( ( ))( ( ( )) ( ( ))) ( ( ))( ( ( )) ( ( )))i j k i j jf g g x g x f g g x g x     + +
 = − = − , where  

1 1[ , ] [ , ]i i i k jz z x x − +
  = . 

Since 1 1( ) ( ) ( ) ( ) ( )k k j i jg x g x g x g z g x+ += =  = , ( )ig    lies between  

( )jg x  and 1( )jg x + , 1( ) ( )i jg g  +
 = for some 1 1[ , ]j j jx x + + . 

Hence, 1 1 1( )( ( ) ( )) ( ( ))( ( ( )) ( ( )))i i i j j jf g g z g z f g g x g x     − + +
 − = − . 
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Therefore, 
1

1

( ( ))( ( ( )) ( ( )))
m

i i i

i

f g g z g z   −

=

 −  is a Riemann Stieltjes sum for the 

partition 1P  with 
1P  . 

Thus, 
1 1

1 1

( )( ( ) ( )) ( ( ))( ( ( )) ( ( )))
n m

i i i i i i

i i

f g g x g x f g g z g z     − −

= =

− = −  is a Riemann 

Stieltjes sum for the partition 1P  with 
1P  . 

Therefore,   

        1 1

1 1

( )( ( ) ( )) ( ( ))( ( ( )) ( ( )))
n m

i i i i i i

i i

f g g x g x L f g g z g z L      − −

= =

− − = − −   . 

This shows that the Riemann Stieltjes integral  ( ) ( )
b

a
f g x d g exists and 

( )

( )
( ) ( ) ( )

b g b

a g a
f g x d g f x d =  .   

Suppose now g is strictly increasing and continuous. Then g has a continuous 

inverse :[ , ] [ , ]c d a b → .  Suppose f g  is Riemann Stieltjes integrable with 

respect to g on [a, b].  Let ( ) ( )
b

a
f g x d g M = .  f g  is Riemann Stieltjes 

integrable with respect to g implies that for any  0   , there exists a 0   

such that for any partition, 0 1 2: nQ x a x x x b=     = , with Q   , for any 

Riemann Stieltjes sum  1

1

( )( ( ) ( ))
n

i i i

i

f g g x g x   −

=

−  for any 1[ , ]i i ix x −  , 

1

1

( )( ( ) ( ))
n

i i i

i

f g g x g x M   −

=

− −  . 

Since   is uniformly continuous, there exists 1 0   such that 

1 ( ) ( )       −   −  . 

Take  0 1 2: mP y c y y y d=     =  a partition for [c, d] with 
1P  .  Then  

0 1 21: mQ x a x x x b=     = , where ( )i ix y= , is a partition for [a, b], with 

1Q  . Note that ( )i ig x y= .   Take any Riemann Stieltjes sum with respect to 

the parttition P,  1

1

( )( ( ) ( ))
n

i i i

i

f y y   −

=

− , where 1[ , ]i i iy y − . Then there exists 

1[ . ]i i ix x −  such that  ( )i ig = .  Therefore, 

                1 1

1 1

( )( ( ) ( )) ( ( )( ( ( ) ( ( ))
n n

i i i i i i

i i

f y y f g g x g x     − −

= =

− = −  . 
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It follows that 1 1

1 1

( )( ( ) ( )) ( ( )( ( ( ) ( ( ))
n n

i i i i i i

i i

f y y M f g g x g x M      − −

= =

− − = − −   . 

This shows that f is Riemann Stieltjes integrable with respect to   and 

( )

( )
( ) ( ) ( )

g b b

g a a
f x d M f g x d g = =  . 

(iii)  

Write ( )a P N = + − , where P and N are the positive and negative variation 

functions of  .  Then P and N are continuous.  If ( ) ( )
b

a
f g x d g exists then 

( ) ( )
b

a
f g x d P g  and ( ) ( )

b

a
f g x d N g  exist.   By Part (i), 

( )

( )
( ) ( ) ( )

b g b

a g a
f g x d P g f x dP=   and 

( )

( )
( ) ( ) ( )

b g b

a g a
f g x d N g f x dN=  . 

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

g b g b g b

g a g a g a
f x d f x dP f x dN = −    

                  ( ) ( ) ( ) ( ) ( ) ( )
b b b

a a a
f g x d P g f g x d N g f g x d g= − =   . 

If f is Riemann Stieltjes integrable with respect to   on [c, d], then by part (ii)   

( ) ( )
b

a
f g x d g  exists and 

( )

( )
( ) ( ) ( )

b g b

a g a
f g x d g f x d =  . 

 

The next result dispenses with the condition of being strictly increasing for the 

function g in Theorem 5 part (ii).  

Theorem 6.  Suppose :[ , ]g a b →  is an increasing continuous function.  Let 

([ , ]) [ , ]J g a b c d= =  be the range of g.  Suppose :[ , ]c d → is a function of 

bounded variation.  Suppose :[ , ]f c d → is a bounded Borel function.  Then 

                          
( )

( )
( ) ( ) ( )

b g b

a g a
f g x d g f x d =  , 

whenever f g  is Riemann Stieltjes integrable with respect to g on [a, b] or 

f  is Riemann Stieltjes integrable with respect to  on [c, d]. 

Proof.   

Note that g is a function of bounded variation on [a, b]. 

By Corollary 62 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s 

Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes 

Integrals”,  
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( )

( )
( ) ( )

b g b

g
a g a

f g x d f x d  =   

as Lebesgue Stieltjes integrals.  

If f is Riemnn Stieltjes integrable with respect to   on [c, d], then by Theorem 5 

Part (ii), f g  is Riemann Stieltjes integrable with respect to g  on [a, b].  

Hence, f g  is Lebesgue Stieltjes integrable with respect to g  on [a, b].  Note 

that f  is Lebesgue Stieltjes integrable with respect to  .  Hence, 
( )

( )
( ) ( ) ( )

b g b

a g a
f g x d g f x d =   

Suppose f g  is Riemann Stieltjes integrable with respect to g  on [a, b].  

Then f g  is Riemann Stieltjes integrable with respect to g  on [a, b]. 

Therefore, f g  is Lebesgue Stieltjes integrable with respect to g  and also 

with respect to g  on [a, b].  Let ( )c P N = + − , where P and N are the 

positive and negative variations functions of  . Let f gD  be the set of 

discontinuities of f g .  Then ( ) ( ) ( ) ( ) 0
f gv f g P f g N f g f g f gD D D D   = = = = .  

We now proceed with the special case that   is an increasing function so that 

we can apply the result to the functions P and N and give the desire conclusion. 

If g is an increasing function and   an increasing function, by the proof of 

Theorem 48 in “Lebesgue Stieltjes Measure, de La Vallée Poussin’s 

Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes 

Integrals”, for any Borel set B in [a, b], 1( ) ( ( ))g B v B   −= , where   is the 

generalized inverse of g.  Note that   is an increasing left continuous function. 

Let fD  be the set of discontinuities of f.  We may assume that fD  does not meet 

the set of local constant values of g for this set is countable and is 


  null.  As g 

is continuous, 1( )f f gg D D−  .  

Since g is increasing and continuous, then 
1 1 1( ( )) ( ( ( ))) ( )g f f fg D v g D D    − − −= = .  The last equality is the consequence of 

the fact that g is the left inverse of   because g is also continuous.  

Thus, if g is increasing and continuous and f g  is Riemann Stieltjes integrable 

with respect to g  on [a, b], then 1( ( )) 0g fg D
− =  and so ( ) 0fD = .  Thus, we 

can conclude that if g is increasing and continuous and  is increasing and if 

f g  is Riemann Stieltjes integrable with respect to g  on [a, b], then f is 
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Riemann Stieltjes integrable with respect to   on [c, d] and so 
( )

( )
( ) ( ) ( )

b g b

a g a
f g x d g f x d =  .   

Now if   is of bounded variation, then ( )( )c P N = + − , where P and N are the 

positive and negative variation functions of   and they are increasing functions.  

By what we have just shown, f is Riemann Stieltjes integrable with respect to P 

and N on [c, d].  Hence, f is Riemann Stieltjes integrable with respect to  on 

[ , ]c d . 

Therefore, 
( )

( )
( ) ( ) ( )

b g b

a g a
f g x d P g f x dP=  , 

( )

( )
( ) ( ) ( )

b g b

a g a
f g x d N g f x dN=  and 

( ) ( ) ( ) ( ) ( ) ( )
b b b

a a a
f g x d g f g x d P g f g x d N g = +    

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

g b g b g b

g a g a g a
f x dP f x dN f x d= + =    

Therefore, it follows that if g is increasing and continuous,  is of bounded 

variation and if f g  is Riemann Stieltjes integrable with respect to g  on [a, 

b], then  f is Riemann Stieltjes integrable with respect to   on [c, d] and 
( )

( )
( ) ( ) ( )

b g b

a g a
f g x d g f x d =  . 

                

Theorem 7.  Suppose :[ , ]g a b →  is a continuous function.  Let 

([ , ]) [ , ]J g a b c d= =  be the range of g.  Assume that c < d. Suppose :[ , ]c d → is 

a continuous function of bounded variation, g  is a function of bounded 

variation and :[ , ]f c d → is a bounded Borel function.   

If f g  is Riemann Stieltjes integrable with respect to g  on [a, b], then f is 

Riemann Stieltjes integrable with respect to   on [c, d]. 

 

Proof.   

If f g is Riemann Stieltjes integrable with respect to g  on [a, b], then it is 

Riemann Stieltjes integrable with respect to the total variation function of g ,  

g , on [a, b].  Therefore, ( ) 0
g f gD


 = , where f gD  is the set of discontinuities 

of f g on [a, b].  Since g is continuous, g is also continuous.  Therefore, 

*( ( )) ( ) 0
f gg f g f gm D D  = = .  Hence, *( ( )) 0f gm g D = .  (See Theorem 16 of 

“Functions of Bounded Variation and Johnson's Indicatrix.)  Let fD  be the set 
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of discontinuities of the function f.  We may assume that fD  does not meet the 

set of local constant values of g. As g is continuous, 1( )f f gg D D−  .  Therefore, 

1*( ( ( ))) 0fm g g D − = .  That is, *( ( )) 0fm D = .  As   is a function of bounded 

variation, by Theorem 1 of “Functions of Bounded Variation and Johnson's 

Indicatrix”, *( ( )) 0fm D = .  As   is continuous, ( ) *( ( )) 0f fD m D
  = = . 

Therefore, *( ( )) *( ( )) 0f fm P D m N D= = , where P and N are the positive and 

negative variation functions of  .  Note that ( ) ( ) 0P f N fD D = = . Hence, f is 

Riemann Stieltjes integrable with respect to P and N on [c, d] and consequently, 

f is Riemann Stieltjes integrable with respect to  on [c, d]. 

 

Theorem 8.  Suppose :[ , ]g a b →  is a continuous function, the range of g,

([ , ]) [ , ]g a b J c d= =  and c < d.  Suppose : J →  is a continuous function of 

bounded variation, g  is of bounded variation and :f J →  is a bounded 

Borel function.  Suppose f g is Riemann Stieltjes integrable with respect to 

g on [a, b]. Then the function f is Riemann Stieltjes integrable with respect to 

  on [c, d] and 
( )

( )
( ) ( ) ( )

b g b

a g a
f g x d g f x d =   as Riemann Stieltjes integrals. 

Proof.   

By Theorem 7, f is Riemann Stieltjes integrable with respect to  on [c, d]. 

Let [ , ] fE c d D= − .  Then f is continuous at every point of E and  

([ , ] ) ([ , ] ) ([ , ] ) 0P Nc d E c d E c d E


  − = − = − = .  As 


  is a positive Radon 

measure, by the inner regularity of 


 , there exists a sequence ( )nK   of compact 

set in [c, d] such that nK E , 1n nK K +  and 
1

( )nE K
n

 −  .  In particular,  

1
( )P nE K

n
 −  ,

1
( )N nE K

n
 −   and  

1
([ , ] )nc d K

n
 −  . 

By the Tietze Extension Theorem, for each positive integer n, we can extend the 

restriction of f to nK , to a continuous function nf  on [c, d] such that 

   sup ( ) : [ , ] sup ( ) : [ , ]nf x x c d f x x c d   .  Since nf  is continuous, by Theorem 

20 of “Limit of the Lebesgue Stieltjes Integral and Change of Variable”, 

                     
( )

( )
( ) ( )

b g b

n g n
a g a

f g x d f x d  =  . 
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By the Dominated Convergence Theorem, as  nf   converges boundedly to f 

almost everywhere with respect to P  and N  and f is Lebesgue Stieltjes 

integrable with respect to P  and N  ,
( ) ( )

( ) ( )
( ) ( )

g b g b

n P P
g a g a

f x d f x d →   and  

( ) ( )

( ) ( )
( ) ( )

g b g b

n N N
g a g a

f x d f x d →  .  Therefore, 
( ) ( )

( ) ( )
( ) ( )

g b g b

n
g a g a

f x d f x d  →  .  Hence, 

( )

( )
( ) ( )

b g b

n g
a g a

f g x d f x d  →  .  

Let 
1

n

n

K K


=

= .  Then ( ) 0E K


 − = .   Let n nh f f= −  . Then ( ) 0nh x =  for x in nK , 

1
( : ( ) 0)nx h x

n
     and ( ) 2nh x C , where  sup ( ) : [ , ]C f x x c d=  .  Note that 

1
([ , ] )nc d K

n
 −    and ([ , ] ) 0c d K


 − = .  Since   is continuous,   is also 

continuous and so *( ([ , ] )) ([ , ] ) 0m c d K c d K
  − = − = .  Hence,  

*( ([ , ] )) ([ , ] ) 0Pm P c d K c d K− = − = and *( ([ , ] )) ([ , ] ) 0Nm N c d K c d K− = − = .  Note 

that *( ([ , ] )) 0m c d K − = .  Let 1( )n nH g K−= .  We have  1n nH H + and 

1

1

( )n

n

H H g K


−

=

= = .  Then ( ) 1

1

[ , ] [ , ] ([ , ] )n

n

a b H a b H g c d K


−

=

− = − = −  and  

( )
( )[ , ]

( ) ( ) ( )
n n

b b

n g n g n g
a a H a b H

f f g x d h g x d h g x d    
 −

− = =    

                             
[ , ] [ , ]

( ) ( ) 0 ( )
n n n

n g n g n g
H a b H a b H

h g x d h g x d h g x d    
− −

= + = +    

                             
1[ , ] ([ , ] )

( ) ( )
n n

n g n g
a b H g c d K

h g x d h g x d  
−− −

= =  . 

Now,                 
1 1([ , ] ) ([ , ] )

( ) 2
g

n n
n g v

g c d K g c d K
h g x d C d

 
− −− −

  .   ------------ (1) 

Since  ( )1

1[ , ] [ , ] [ , ]n n ng c d K a b H a b H−

+− = −  − , ( )1 [ , ] ng c d K− −  tends to  

1([ , ] )g c d K− − .  Therefore,  
1 ([ , ] ) g

n
v

g c d K
d




− −  tends to 
1 ([ , ] ) gv

g c d K
d




− − .   Since gv  is 

continuous and increasing, ( )( )1

1

([ , ] )
* ([ , ] )

gv g
g c d K

d m v g c d K
 

−

−

−
= − .  

Now, 1*( ( ([ , ] ))) *( ([ , ] )) 0m g g c d K m c d K − − = − = .  Since  g  is a continuous 

function of bounded variation,  ( )( )1* ([ , ] ) 0gm v g c d K

− − = .   Hence, 

1 ([ , ] ) g
n

v
g c d K

d



− − tends to 0.  It follows from (1) that 

1 ([ , ] )
( )

n
n g

g c d K
h g x d − −  tends to 

0 and so ( ) ( )
b

n g
a

f f g x d −  tends to 0. 

On the other hand,   
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             ( ) ( ) ( ) ( )
b b b

n g g n g
a a a

f f g x d f g x d f g x d    − = −    

tends to  
( )

( )
( )

b g b

g
a g a

f g x d fd  −  .  Therefore,  
( )

( )
( )

b g b

g
a g a

f g x d fd  =  .  It 

follows that 
( )

( )
( ) ( )

b g b

a g a
f g x d g fd =   as Riemann Stieltjes integrals. 

Remark.  Taking g to be the identity function on [a, b], we get Theorem 4 as a 

special case of Theorem 8. 
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