Change of Variable for Riemann Stieltjes integral and Riemann Stieltjes
integrability

By Ng Tze Beng

Suppose the function g:[a,b] >R is a continuous function but with unbounded
variation. Let [c¢,d]=g([a,b]), Suppose f:[c,d]—R is a bounded real valued

function. Then we can define in the usual manner the Riemann Stieltjes integral
of the composition f og with g as the integrator.

The question is: When is the following change of variable,

[/ fogdg()=[*" fi | wemememmmememememnnneees (1)

g(a)

where the right-hand integral is assumed to be a Riemann integral, for the
Riemann Stieltjes integral holds?

The existence of the integral on the left-hand side of (1) does not necessary imply
the existence of the right hand integral, nor does the existence of the right hand
integral of (1) necessary imply the existence of the lefthand integral of (1).

However, if it is given that both integrals in (1) exist, then they are equal. This
is due to Michael Bensimhoun, who proved that if the HK stieltjes integral of the
left-hand side exists, then the right-hand side also exists as a HK integral. If fog
i1s Riemann Stieltjes integrable with respect to g, then it is HK integrable with
respect to g, this implies that the right-hand side exists as a HK integral and they
are equal.

When f'is continuous and g is continuous of bounded variation, then (1) holds.
(See Theorem 20 of “Limit of the Lebesgue Stieltjes Integral and Change of
Variable”.)

When g is increasing and continuous and f'is Borel, then (1) holds with the right
hand integral of the function fbeing Lebesgue integrable. (See Theorem 46 or
Corollary 61 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s
Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes
Integrals™.)

Example 1. There is a continuous function g:[a,b]— R of unbounded variation
and a Riemann integrable function f defined on the range of g such that fogis
not Riemann Stieltjes integrable with respect to g.



Define g to be the function on [0, 1] by g(x) =

Let f(x)=x. Then fis Riemann integrable on [0, 1].

Take any partition P:x,=0<x <x, <---<x, =1 with |P|<&. Then x, <5. We

1
may assume that x, = 5

LS 6 for some positive integer N. Take any K > 0.
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Zyy =0. Then Q:0<y,, <zy, <Vyiy < Zyi > Zva <Vy =X, 18 a subdivision of

> K . Partition the subinterval [0, x,]= {O, ﬁ} by division points
+

[0,x,]. Take a Riemann Stieltjes sum corresponding to this partition,

N

SL = Z gENg() —gz, )+ D g(B)gz)—gy)+ Z g )(g(x)—g(x.)) -

i=N+1

Let L=) g(n)(g(x)—g(x_)). Then forany K >2|L|. Take ¢& =y, for N<i<NI

and g =z for N+1<i<Nl. Then the Riemann sum
N1 1 M

SL=2 ——+2 gn)(g(x)-g(x ) >K .
2+l =

This shows that the Riemann sums is unbounded. Hence, the Rieman Stieltjes
integral J. ’ fog(x)dg(x)= I ’ g(x)dg(x) does not exists but fis Riemann integrable

on [g(a),g(b)]=[0,1] .

For a continuous function g:[a,b] > R of bounded variation there does not exist

a non-Riemann integrable bounded function f defined on the range of g such
that fogis Riemann Stieltjes integrable with respect to g.

This is a consequence of the following theorem.

Theorem 1. Suppose g:[a,p]— R is a continuous function of bounded
variation. Let J = g([a,b]) =[c,d] be the range of g. Assume that g is not a
constant function. Suppose f:[c,d]— R is a bounded Borel function. Ifthe



Riemann Stieltjes integral jb fog(x)dg(x) exist, then f1is Riemann integrable on
[c, d].
Proof.

Since fis bounded, f-g is Riemann Stieltjes integrable with respect to g on
[a, b] implies that f-g is Riemann Stieltjes integrable with respect to v,, the

total variation function of g. (See Chapter 14, Theorem 14.14, Real Analysis by
N. L. Carothers.)
Let D, , ={xe[a,b]: f - g is discontinuous at x} be the set of discontinuities of the

composite function fog.

Therefore, 4, (D,.,)=0. As v, is continuous, 4, (D,.,)=m*(v,(D,.,))=0, where

m* 1s the Lebesgue outer measure. (See Theorem 6 of “Lebesgue Stieltjes
Measure, de La Vallée Poussin’s Decomposition, Change of Variable,
Integration by Parts for Lebesgue Stieltjes Integrals”.) Therefore,

m*( g(Dfog)) =0. (See Theorem 16 in “Functions of Bounded Variation and

Johnson's Indicatrix”.) Suppose f1s non-Riemann integrable on the image of g.
Then, there is a set £ of positive measure such that £ c[c,d]-g(D,.,), where

[c,d] 1s the range of g, and f'is discontinuous at every point in E. Let F c[ec,d]

be the values of local constants of g. Then F is countable and is of zero
measure. We may assume that EnF=.

Let G=g'(E). Then fog is discontinuous at every point in G. Therefore,
Gc D,, . This is impossible since this would imply ¢(G)=Ecg(D,.,) and
E c[c,d]-g(D,.,). Hence, fis Riemann integrable on [c, d].

Theorem 2. Suppose g:[a,b]— R is a continuous function of bounded
variation. Assume that g is not a constant function. Let J = g([a,b]) =[c,d] be the
range of g. Suppose 1 :[c,d]— R is a bounded Borel function.

Suppose g is absolutely continuous or f'is the pointwise limit of a uniformly
bounded sequence of continuous functions or fis a continuous function.

If the Riemann Stieltjes integral I ’ fog(x)dg(x) exist, then f1s Riemann

integrable on [¢, d] and [’ fog(x)dg(x)=[*" f(x)dx

g(a)

Proof.



Suppose the Riemann Stieltjes integral j ’ f o g(x)dg(x) exist. Then the Lebesgue
Stieltjes integral Ib fog(x)da, exists. By Theorem 1, fis Riemann integrable on

[c, d].

If g 1s absolutely continuous, then
[[1egda, =] 1ogtg (s,

where the right-hand side is a Lebesgue integral. By Theorem 8 of “Change of
Variables Theorems”, since f1is a bounded Lebesgue integrable function,

[ rogg@ax=["" f(nds,

as Lebesgue integrals. Since f'is Riemann integrable, by Theorem 1 Part (2) of
“Change of Variable Theorem for Riemann Integral”, fog(x)g'(x) i1s Riemann

integrable and J' ’ fog(x)g'(x)dx = J'g:b: f(x)dx as Riemann integrals. Hence,
a g(a

["fogdg(x)= jg((b)) f(x)dx as Riemann integrals.

If f'is continuous, then the change of variable as Riemann integrals holds. (See
Theorem 20 of “Limit of the Lebesgue Stieltjes Integral and Change of
Variable”.)

Suppose there exists a sequence of continuous function (f,) such that 7, tends

pointwise to fboundedly. Since f, is continuous. J'b £, 0 g(x)dg(x) = Ig((b)) £, (x)dx
a g(a

and so [ fog()dg(x)=lim | f, og(x)dg(x)=1lim [ g(”’)) £(x)dx = j“”(‘b)’ f(x)dx by the

Bounded Lebesgue Convergence Theorem.

This completes the proof.

For unbounded function f,; which is not Riemann integrable, you may have
equality as Lebesgue Stieltjes and Lebesgue integrals but not as Riemann Stieltjes
integral and Riemann integrals as in the following example.

Example 2. There is a continuous function g:[a,b]— R of bounded variation

and a non-Riemann integrable function f defined on the range of g such that
fogis Lebesgue Stieltjes integrable with respect to g.



4.3 T
Let ¢:[0,]]—> R be defined by g(x)={" (m}’ *>0 ind let £:[0.1]— R be
0, x=0
defined by f(x) = P x>0 . Then fis not bounded on [0, 1]. The function
0, x=0

is Lebesgue integrable and the integral is given by the improper Riemann
integral [ f(x)dt = lim [ f(@)de =lim F(1), where F:(0,1]> & is defined by

F(t)= Llf(x)dx = %(1 —1""). Observe that

1

1
——— x>0andx#— ,integer k >1
x*"*sin(£) 2k s

fg(x) =

0, x=00rx=L , integer k > 1
2k

Note that fog is not bounded on [0, 1], hence it is not Riemann integrable on
[0, 1]. Note that for any partition P:x,=0<x, <x, <:--<x, =1, for any Riemann

Stieltjes sum L= /o g(3)¢e g(x)~pog(x,), since lim|/g(x] =0, by a

suitable choice of 7,, we can make the Riemann Stieltjes sum L arbitrarily large.
Hence, fog is also not Riemann Stieltjes integrable with respect to g.
The function g is differentiable on [0, 1] and

, 4 sin* [ |- 2 2 sin? [ Z Jcos| X , x>0
g'(x)= 2x 2 2x 2x

0, x=0
Note that g’ is bounded and continuous on [0, 1]. Hence, it is Riemann
integrable on [0, 1].
Therefore, g is absolutely continuous on [0, 1] and

J' ’ fogx)da, = Ib f(g(x))g'(x)d(x) as Lebesgue Stieltjes integrals.

4x*xsin’ (f} —7x*? sin (;j cos (;j ,x>0 and x # i , integer k > 1
S(g(x)g'(x) = * * ¥

0,x=0 or x:i,integerkzl
2k

f(g(x)g'(x) 1s continuous [0, 1] and so it is Riemann integrable on [0, 1].
By Theorem 9 of “Change of Variables Theorems”,

jol f(g(x)-g'(x)dx = E((Ol:f(x)dx as Lebesgue integrals and L)l f(g(x)-g'(x)dx = %



However, fog is Riemann Stieltjes integrable with respect to g on [4,1] for any

k such that 0 < k <1 and J'kl fog(x)dg = Ikl f(x)dx. Therefore, if we define the
improper Riemann Stieltjes integral to be ]}11(1)1 J.kl feg(x)dg , then it is equal to the

improper Riemann integral, lim Ll f(x)dx.
k—0"

There is no non-Riemann integrable bounded function fsuch that for continuous
increasing function g on [a, b], fog 1s Riemann Stieltjes integrable with respect

to g.

Theorem 3. Suppose g:[a,h]— R is an increasing and continuous function. Let
J =g([a,b])=[c,d] be the range of g. Suppose f:[c,d]— R is a bounded Borel
function. Then fog is Riemann Stieltjes integrable with respect to g on [a, b]

implies that fis Riemann integrable on [c, d] and Ib fog(x)dg(x)= J'i(b: f(x)dx as
a g(a

Riemann integrals.

Proof.

Since fis bounded, fog 1s Riemann Stieltjes integrable with respect to g, if, and
only if, x (D, ,)=0,where D, is the set of discontinuities of fog. If g(a)=g(b)

,then g is a constant function and we have nothing to prove. Assume now
g(a)< g(b). Suppose g is continuous, then by Theorem 6 of “Lebesgue Stieltjes

Measure, de La Vallée Poussin’s Decomposition, Change of Variable, Integration
by Parts for Lebesgue Stieltjes Integrals”, u (D,.,)=m*(g(D,,)). Hence,

m*( g(Dfog)) =0. Let D, be the set of discontinuities of fon [c, d]. Let F be the

values of g where g is locally constant. Then F'is countable and so is a set of zero
Lebesgue measure. Let G=D,-F. Since g is continuous, g(G)cD,,.

Therefore m*(G) = m*( g( g’l(G))) =0. It follows that m*(D,)=0. Therefore, f'is
Riemann integrable on [c, d].

If fog is Riemann Stieltjes integrable with respect to g on [a, b], then it is

Lebesgue Stieltjes integrable with respect to g. Then by Theorem 46 of
“Lebesgue Stieltjes Measure, de La Vallée Poussin’s Decomposition, Change of
Variable, Integration by Parts for Lebesgue Stieltjes Integrals”,

I " fog(x)de(x) = J'g((b: f(x)dx as Lebesgue integrals. Hence, they are equal as
a g(a

Riemann integrals.



Theorem 4. Suppose g:[a,p]— R is a continuous function of bounded
variation. Let J =g([a,b])=[c,d], with ¢ <d, be the range of g. Suppose
f:[e,d]— R 1s a bounded Borel function. If the Riemann Stieltjes integral

j ’ fog(x)dg(x) exists, then fis Riemann integrable on [c, d] and
[ rogdg(=["" fen.

Proof.

By Theorem 1, the function f must be Riemann integrable on [c, d].

If f'is continuous, then fog is continuous and by Theorem 20 of “Limit of the
Lebesgue Stieltjes Integral and Change of Variable”, jb fegx)da, = Ij(t: S (x)dx
as Lebesgue integrals. Moreover, the Riemann Stieltjes integral f fog(x)dg(x)
is equal to the Lebesgue Stieltjes integral jj feg(x)dA, . Hence,

j " fog(x)de(x) = _[g((b)) f(x)dxas Riemann integrals and the change of variable
formula holds.
Now we suppose that f'is not necessarily continuous.

We shall approximate /by a sequence of continuous functions differing from f
by a set of Lebesgue measure tending to 0. Let £ be the set in [c, d], where f'is
continuous at every point in £ and the measure of the complement of £ is zero.
By the inner regularity of the Lebesgue measure, there exists a sequence of
compact sets K, suchthatk c E, K, c K, ,, and the Lebesgue measure

n+l

m(E-K,)< 1 , where we denote the Labesgue measure by m. By the Tietze
n

Extension Theorem, for each positive integer n, we can extend the restriction of
fto K,, to a continuous function f, on [c, d] such that

f,(®)|: x €[c,d]} <sup{|f(x)|: x€[c,d]}. Then we have, since f, is

sup {
continuous,

[ 1,0 gtdg(0 =" fxrax =7 1, (v

g(a)

By the Lebesgue Dominated Convergence Theorem, Ig((b)) £, (x)dx — I g((b)) f(x)dx
g(a g(a

since f, converges boundedly almost everywhere to f'and f'is integrable.



Note that for K:OKn , m(E-K)=0. Let h, =f—f,. Then 2 ,(x)=0 forxin K,
m(x:hn(x);tO)Sl and |h,(x)|<2C, where C=sup{|/(x)|:x<[c,d]}. Note that
n
m([c,d]—Kﬂ)gl and m([c,d]-K)=0. Let H,=g'(K,). Wehave H cH, and
n

H:OHn =g '(K). [a,b]—H:ﬁ([a,b]—Hn):g_l([c,d]—K) and

n=l1 n=1

b b
[(f=1)eadg)=["h,og(rde()=],  hog(di,
=[, hegdi [ = hog(di, =0+[ = hog)da,
B -[[a,b]—H,, By o g(x)d A, = .[g*‘([c,d]—m) hy o g(X)d%, -

Now,

h,°g(x)dA,

<2C _[ ) du, , where v, is the total variation
g &g

Ig*l([c,d]—Kn)
function of g. Since g7'([c,d]-K,)=[a,b]-H, 2[a,b]-H,,,, g ([c.d]-K,) tends
to g'([c,d]-K). Therefore, _|'71

g

'(le.d]-K,)

du, tends to dy, . Since v, 1s

([le.d1-K,) g ' ([c.d]-K)

continuous and increasing, f du, = m(vg ( g’l([c,d]—K))). Now the

g ' [e.d]-K)
Lebesgue measure of g(g™'([c,d]-K)) =[c,d]-K is zero and so
m(vg (g7, d]—K))) =0. Thus, we have Ib(f—ﬁ)og(x)dg(x) —>0as 7 trends to

infinity. On the other hand,
[[(f=1)eedg@ =] fogdg()~ [ f,°g(x)dgx)

tends to j” fo g(x)dg(x)—j:(f)’ f(x)d(x). Therefore, j” fog(x)dg(x)= jj:: F)d(x) .

Theorem 5. Suppose g:[a,h] > R is an increasing continuous function. Let
J =g([a,b]) =[c,d] be the range of g. Suppose f:[c,d]— R is a bounded Borel
function.

(1) Suppose ¢:[c,d]— R is an increasing continuous function. Ifthe Riemann

Stieltjes integral Ib fog(x)d(¢-g)exist, then fis Riemann Stieltjes integrable

with respect to ¢ on [c, d] and J'b feg(xd(gog)=| D r(x)dg.

g(a)



(11) Suppose ¢:[c,d]— R s a function of bounded variation. Suppose fis
Riemann Stieltjes integrable with respect to ¢ on [c, d]. Then the Riemann

Stieltjes integral jb fog(x)d(¢og)exist and jh fogd(gog)=| g"’)’ F(x)dg.

g(a

If g is strictly increasing and continuous and if fog is Riemann Stieltjes
integrable with respect to ¢o g on [a, b], then fis Riemann Stieltjes integrable

with respect to ¢ on [c, d] and Ib fog(x)d(dog)= J'g(b: F(x)dé.

gla

(111) Suppose ¢:[c,d]— R s a continuous function of bounded variation.

_[ ’ fog(x)d(dog) exists if, and only if, Id f(x)d¢ exists.

If fog is Riemann Stieltjes integrable with respect to ¢o g on [a, b] or the
function f'is Riemann Stieltjes integrable with respect to ¢ on [c, d], then

[ rogd@oe)=["" r(xdp.

Remark.

Contrast this with the Lebesgue Stieltjes integral versions. (See Theorem 55,
Corollary 61, Corollary 62 of Lebesgue Stieltjes Measure, de La Vallee
Poussin’s Decomposition, Change of Variable, Integration by Parts for
Lebesgue Stieltjes Integrals. ).

Proof.

We assume that g(a) < g(b) for if g(a) = g(b), then we have nothing to prove.

(1) If the Riemann Stieltjes integral I ’ fog(x)d(4o g) exists, then it is equal to the

Lebesgue Stieltjes integral J'b feog(x)du,, and by Corollary 61 of “Lebesgue
Stieltjes Measure, de La Vallée Poussin’s Decomposition, Change of Variable,
Integration by Parts for Lebesgue Stieltjes Integrals”, Jb fog(x)du,, = E(f: fdu,
as Lebesgue Stieltjes integral. Since the Riemann Stieltjes integral

J.b feogx)d(¢-g)exist, u, (D, ,)=0,where D, isthe set of points where fog
is discontinuous. Since ¢o g is continuous, m*(¢o g(D,.,)) = p,.,(D,.,)=0. Let
D, be the set of points at which f'is discontinuous. We may assume that D, does
not meet the set of local constant values of g, which is countable and of
measure zero. Since g is continuous, g~'(D,) < D,.,. Therefore,

m*(¢og(g™'(D,)))=0. This means m*(#(D,))=0. Since ¢is continuous,

9



1, (D) =m*(p(D,))=0. Hence, f1is Riemann Stieltjes integrable with respect to

¢ on [c, d] and hence is also Lebesgue Stieltjes integrable with respect to ¢.

Thus, | " fog(x0)d(gog)= J'g(h)) f(x)d¢ as Riemann Stieltjes integrals.

e
(i1).

Let J'd f(x)dg = J.:j)) f(x)d¢=L. Then given any ¢>0, there exists a § >0 such
that for any partition P:y,=c<y <y, <--<y,=d for [c, d] with|P| <&, any

Riemann Stieltjes sum, with any & €[y, ,,v,],

> AP P ) -1 <e.

Since g is continuous on [a, b], there exists &, >0 such that |g(x)—g(y)|<J
whenever |x—y|<d,. Let Q:x,=a<x <x,<:--<x,=b be any partition for [a, b]
with |0 <.

Suppose now g is strictly increasing and continuous.

Then P:g(x,)=g(a)=c<g(x)<g(x,)<---<g(x,)=g(b)=d is a partition for [c, d]
with ||P|<&. Therefore, for any 7, e[x, ,,x],

> o8 ) gx) dogl, ))—L‘ S WD S CAEY

This implies that the Riemann Stieltjes integral I ’ fog(x)d(gog)exists and

[[rogd@o)=["" rdg.

g(a

If g is just increasing and continuous, the proof is a little more delicate. Let
f * fo)dg = j g(b)) f(x)d¢=L. Then given any &>0, there exists a 5 >0 such that

g(a

for any partition P:y, =c<y, <y, <--<y,=d for [c, d] with|P|< &, any

Riemann Stieltjes sum, with any & <[y, ,, 1,

> SENG) 0 )L <z

Since g is continuous on [a, b], there exists &, >0 such that |g(x)—g(y)| <&
whenever [x—y|<¢,. Let Q:x,=a<x <x,<---<x,=b be any partition for [a, b]
with |0 <.

10



Then g(x,)=g(a)=c<g(x)<g(x,)<---<g(x,)=g(b)=d . This gives rise to a
partition PB:g(z,)=g(a)=c<g(z)<g(z,)<--<g(z,)=gb)=d,with m<nand

|B|<&. Consider the Riemann sum Zm: fogm Yog(z)—pog(z.,)) with
=
n €lzz].
We shall show that this is a Riemann Stieltjes sum for the integral Ld f(x)dé .
Note that {z,z,,-,z,} < {x,x,,~,x,}. SUPPOSE z,_, <x, <X, <--<x,<z.

Then if g(z._)<g(x), g(x)=gx.)="g(x)=2(z), gz)=g(x)<g(x,,), z, =x,
and z_, =x,_,. Moreover, |g(z,)—g(z.,)|=|g(x,)—g(x,)| <5 .

fogNpog(z)—pog(z.)) = [(gn)NH(g(z) - $(g(z.))
= [ (g N(@(g(x,) ~dg(x D) = (g NHg(x)) - Hg(x,.))

Note that
Fgm))P(g(z))-d(g(z.) = f(gn NHg(x N=Pg(x, ) +dg(x; ;) —Hg(x, )+

+P(g(x.,)) —P(g(x,.) +d(g(x,) —d(g(x,) —d(g(x, )
n, elx,_.x,]. Since g(x,)=g(x,)="-g(x,)=g(z), g(n/) lies between
g(x_)) and g(x,), g(ﬂi') =g(m,) for some n €[x1,%,] and

Sogm )@og(z)~pog(z.)) = f(g))NP(g(x))~#(g(x, ) -

If g(z.)=g(x),1l.e, z, =x,, then g(x)=g(x.,)= --g(x;)<gl(z),
g(x)=g(x.)=-<g(z)=2(x.1), 7 =x,, and |g(z) - &(z.,)| =|g(x,.)) - g(x))| < 5.

fog ) pog(z))~¢og(z.)) = f (g NP(g(z)) - d(g(z,.,)
= [ NP(g(x,.)) - #e(x)) = (g Ng(x,.,) ~H(g(x)))) , where

77[' € [ZH,Z[] = [Xk,XjH] .
Since g(x,) = g(x,,)) =--g(x,) < g(z,) = g(x,,,), (1) lies between
g(x_/) and g(xj+1) > 8(77[') = g(njﬂ) for some N €lx;x,,].

Hence, fog(n/ )¢°g(z)—¢°g(z.)) = (g1, N &(x..)) —Hg(x))) -

11



Therefore, i f(em)H)(P(g(z,))—#(g(z_,))) is a Riemann Stieltjes sum for the

i=1

partition P, with |B]<¢.

Thus, Zn:f 0 g(n)(@og(x,)Pog(x, )= if (g(, )(#(g(z) ~$(g(z,,))is a Riemann
Stieltjes sum for the partition £, with |B|<&.

Therefore,

) °g<ﬂf><¢og<x,-wog<xf1»—’;‘:

> F(2 N#e() Hel ) -L<e.

This shows that the Riemann Stieltjes integral jb fog(x)d(4og)exists and

g(b)

[ fogmd@og) =" rdp.

g(a)

Suppose now g is strictly increasing and continuous. Then g has a continuous
inverse 7:[c,d]—[a,b]. Suppose fog is Riemann Stieltjes integrable with

respect to gogon [a, b]. Let J' ’ fog(x)d(¢og)=M . fog is Riemann Stieltjes

integrable with respect to ¢ g implies that for any £>0 , there existsa §>0
such that for any partition, Q:x,=a<x, <x, <---<x, =b, with |0| <5 , for any

Riemann Stieltjes sum Zn: Sogn)gog(x)—pog(x,. ) for any 7, €[x_.,x] ,

i=1

<é&.

Zn:f og(n)pog(x,)—pog(x,_)—M

Since 7 is uniformly continuous, there exists &, >0 such that
o= <8 =n@)-n(B)|<5.

Take P:y,=c<y <y,<--<y,=d apartition for [c, d] with |P|<&,. Then

Ol:x,=a<x, <x,<--<x, =b, where x, =7(y,), 1s a partition for [a, b], with

|01 < 5. Note that g(x,)=y,. Take any Riemann Stieltjes sum with respect to

the parttition P, Z f(END()—4(y,.,)), where & e[y, ,,».]. Then there exists

i=1

n, €[x,,.x,] such that & =g(n,). Therefore,

1

i FE) @) () = Z S (g )(P(g(x) —h(g(x.,)).

12



It follows that [3° /(€)6() 40, »—M\ _

> /(20 Hx) g )~ M| <z

This shows that f'is Riemann Stieltjes integrable with respect to ¢ and

g(b)

g(a)
(iii)

Write ¢=¢(a)+ P— N, where P and N are the positive and negative variation

fdp=M = fog(x)d(gog).

functions of ¢. Then P and N are continuous. If Ib fog(x)d(do g) exists then
[[fog@d(Pog) and [ fog(x)d(Nog) exist. By Part (i),
[[rogaPog)=["" fx)ap and [ fogd(Nog)=["" f(x)aN .

g(a)

g(b)

g(a)

f@dg=["" reoap-["" rexan

g(a)

=['fogd(Pog)-| fog@dNog)=[ fog(d(pog).
If is Riemann Stieltjes integrable with respect to ¢ on [c, d], then by part (i1)
[ 1ogmd(pog) existsand [ fog(id(gog)=["" f(x)dg.

g(a)

The next result dispenses with the condition of being strictly increasing for the
function g in Theorem 5 part (i1).

Theorem 6. Suppose g:[a,b] —> R is an increasing continuous function. Let
J =g([a,b]) =[c,d] be the range of g. Suppose ¢:[c,d]— R1is a function of
bounded variation. Suppose f :[c,d]— R1is a bounded Borel function. Then

g(b)

[[1og@d@pog)=]"" rag,

g(a)

whenever fog is Riemann Stieltjes integrable with respect to ¢ogon [a, b] or
/ 1s Riemann Stieltjes integrable with respect to ¢ on [c, d].

Proof.

Note that ¢- g is a function of bounded variation on [a, b].

By Corollary 62 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s
Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes
Integrals”,
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[ rogadz., =["" faz,

4
as Lebesgue Stieltjes integrals.
If fis Riemnn Stieltjes integrable with respect to ¢ on [c, d], then by Theorem 5
Part (i1), fog 1s Riemann Stieltjes integrable with respect to ¢og on [a, b].
Hence, 1o g 1s Lebesgue Stieltjes integrable with respect to ¢o g on [a, b]. Note
that 1 is Lebesgue Stieltjes integrable with respect to ¢. Hence,

[[rogd@eg)=[" rx)ap

g(a)
Suppose fog i1s Riemann Stieltjes integrable with respect to ¢og on [a, b].
Then fog is Riemann Stieltjes integrable with respect to v, , on [a, b].

Therefore, fog is Lebesgue Stieltjes integrable with respect to ¢- g and also
with respect to v, , on [a, b]. Let ¢=¢(c)+P-N, where P and N are the

positive and negative variations functions of ¢. Let D, , be the set of
discontinuities of fog. Then u, (D,.,)=p(D;.)=uy(D;.) =2, (D;,)=0.

We now proceed with the special case that ¢ 1s an increasing function so that
we can apply the result to the functions P and N and give the desire conclusion.

If g 1s an increasing function and ¢ an increasing function, by the proof of

Theorem 48 in “Lebesgue Stieltjes Measure, de La Vallée Poussin’s
Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes
Integrals”, for any Borel set B in [a, b], u,,(B)=u,(v"(B)), where v is the

generalized inverse of g. Note that v is an increasing left continuous function.

Let D, be the set of discontinuities of /. We may assume that D, does not meet
the set of local constant values of g for this set is countable and is x, null. As g
is continuous, g™ (D,)c D,., .

Since g is increasing and continuous, then

Hy (7 (D) =,V (g7(D,)) = ,(D,) . The last equality is the consequence of
the fact that g is the left inverse of v because g is also continuous.

Thus, if g is increasing and continuous and fog is Riemann Stieltjes integrable
with respect to ¢o g on [a, b], then x4, (g7(D,))=0 and so u,(D,)=0. Thus, we
can conclude that if g is increasing and continuous and ¢ 1s increasing and if
fog 1s Riemann Stieltjes integrable with respect to ¢o g on [a, b], then fis
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Riemann Stieltjes integrable with respect to ¢ on [c, d] and so

[[rogad@o)=["" rdg.

g(a

Now if ¢ 1s of bounded variation, then ¢=(g(c)+P)—-N, where P and N are the

positive and negative variation functions of ¢ and they are increasing functions.

By what we have just shown, f'is Riemann Stieltjes integrable with respect to P
and N on [c, d]. Hence, fis Riemann Stieltjes integrable with respect to ¢ on
[c,d].

Therefore, [ fog(x)d(Pog)= jgg::: S0P, [ fog@d(Nog)=[" f(x)an and

g(a)

[[fegdpog)=] fog@dPog)+| fogx)d(Neg)

g(b)

—[*” foap+ jgg(f)’ f(x)dN =

g(a) g(a

g(b)

) S(x)d¢

Therefore, it follows that if g 1s increasing and continuous, ¢1s of bounded
variation and if o g 1s Riemann Stieltjes integrable with respect to ¢-g on [a,
b], then fis Riemann Stieltjes integrable with respect to ¢ on [c, d] and

[[reogd@eg)=[" rag.

g(a)

Theorem 7. Suppose g:[a,b] > R is a continuous function. Let

J =g([a,b]) =[c,d] be the range of g. Assume that ¢ <d. Suppose ¢:[c,d] >R 1is
a continuous function of bounded variation, ¢- g is a function of bounded
variation and f :[c,d]— R 1s a bounded Borel function.

If fog 1s Riemann Stieltjes integrable with respect to ¢- g on [a, b], then fis
Riemann Stieltjes integrable with respect to ¢ on [c, d].

Proof.

If 7ogis Riemann Stieltjes integrable with respect to ¢- g on [a, b], then it is
Riemann Stieltjes integrable with respect to the total variation function of ¢o g,
V,..» o0 [a, b]. Therefore, H, (D;.)=0, where D, is the set of discontinuities
of fegon [a, b]. Since ¢- g is continuous, v, 1s also continuous. Therefore,
m* (V. (D )=, (D;,)=0. Hence, m*(¢-g(D,.,))=0. (See Theorem 16 of

“Functions of Bounded Variation and Johnson's Indicatrix.) LetD, be the set
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of discontinuities of the function /. We may assume that D, does not meet the
set of local constant values of g. As g is continuous, g™(D,) < D,.,. Therefore,
m*(¢og(g”(D,))=0. Thatis, m*(#(D,))=0. As ¢ is a function of bounded

variation, by Theorem 1 of “Functions of Bounded Variation and Johnson's
Indicatrix”, m*(v,(D,))=0. As v, is continuous, H, (D )=m*(v,(D,))=0.

Therefore, m*(P(D,))=m*(N(D,)) =0, where P and N are the positive and
negative variation functions of ¢. Note that u,(D,)=pu,(D,)=0. Hence, fis

Riemann Stieltjes integrable with respect to P and N on [c, d] and consequently,
fis Riemann Stieltjes integrable with respect to g¢on [c, d].

Theorem 8. Suppose g:[a,b]— R is a continuous function, the range of g,
g([a,b])=J =[c,d] and ¢ <d. Suppose ¢:J — R is a continuous function of
bounded variation, ¢og is of bounded variation and f:J — R is a bounded
Borel function. Suppose fogis Riemann Stieltjes integrable with respect to
#ogon [a, b]. Then the function fis Riemann Stieltjes integrable with respect to

¢ on [c, d] and Ib fog(x)d(gog) = _[ ““ £(x)d¢ as Riemann Stieltjes integrals.

g(a)
Proof.

By Theorem 7, f'is Riemann Stieltjes integrable with respect to ¢on [c, d].

Let E=[c,d]1-D,. Then fis continuous at every point of £ and
#,, (e, d]-E) = ptp([e,d]- E) = uy([c,d]- E) =0. As H, 1s a positive Radon

measure, by the inner regularity of 4, , there exists a sequence (K,) of compact

setin [c, d] such that XK, c E, K, cK,,, and y, (E-K,) L m particular,
n
1 1 1
up(E—K,,)<;,ﬂN(E—Kn)<; and ﬂv¢([c,d]—Kn)<;-

By the Tietze Extension Theorem, for each positive integer n, we can extend the
restriction of fto K, , to a continuous function f, on [c, d] such that

sup{ f,,(x)| (X € [c,d]} < sup{|f(x)| RS [c,d]} . Since f, is continuous, by Theorem

20 of “Limit of the Lebesgue Stieltjes Integral and Change of Variable”,

b g(b)
L foog(x)dA,, = L(a) f(x)d A, .
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By the Dominated Convergence Theorem, as f, converges boundedly to f
almost everywhere with respect to x4, and u, and fis Lebesgue Stieltjes
integrable with respect to x, and , ,J'g((b)) f.(x)d p, > jg((b)) f(x)du, and

gla g(a

g(b)

g(a)

g(b)

£, py - |

g(a)

S(x)dp, . Therefore, | “ £ (0)d A, - | “* f(x)dA,. Hence,
g(a) g(a)
[ frogdr, > [ rdz, .

Let K:OKn. Then u, (E-K)=0. Let 4,=f-f, . Then #,(x)=0 forxin K,

n=1

u, (x:h (x)#0)< 1 and |1, (x)| <2C, where C=sup{|f(x)|:xe[c,d]}. Note that
¢ n

ﬂv¢([cad]—Kn)Sl and #, ([c,d]-K)=0. Since ¢ 1s continuous, v, 1s also
n
continuous and so m*(v,([c,d]-K)) = #, ([c,d]-K)=0. Hence,

m*(P([c,d]-K)) = ,([c,d]-K)=0and m*(N([c,d]-K)) = u,([c,d]-K)=0. Note
that m*(¢([c,d]-K))=0. Let H, =g (K,). Wehave H cH,  and

n+l

H=0Hﬂ =g '(K). Then [a,b]—H:ﬁ([a,b]—Hn):g’l([c,d]—K) and

n=1 n=1

[[(£=1)e gz, = hog(x)da,, = e g()dz,,

I H,([a,b]-H,

= IH,, h,og(x)d ., + J[a,bH,” h,og(x)dA,, =0+ j[a,b],H,, h, o g(x)d A,
_ hn o g(x)dﬂ%og = .fg"([c,d]fK")h” o g(x)dﬂwog

e b1,

Now,

hog(dA,,|S2C]  dp, . e (1)

I g ' ([c.d]-K,) (e.d1-K,)

Since g '([c,d]-K,)=[a,b]-H, 2[a,b]-H,,,, g ([c.d]-K,) tends to

L . .
g '([c,d]-K). Therefore, L;I([ du, tends to .[gfl([c,d]fmd/‘m‘ Since v, is

vpe *(V¢og (g*l([c, d] —K))) ;

c.d-K,)

continuous and increasing, I du

g ([e,d1-K)
Now, m*(gog(g™'([c,d]-K)))=m*(¢([c,d]-K))=0. Since ¢$og is a continuous
function of bounded variation, m*(v¢og (g7'(c.d]1-K ))) =0. Hence,

du,, tendsto 0. It follows from (1) that |

g ' ([c.d]-K,

J.g’1 ([c.d1-K,) )h” °8(N)d Ay tends to

0 and so Ib(f—ﬁl)og(x)d/1¢og tends to 0.

On the other hand,
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[[(f=1)oedA, =[ fogda,, ~ [ f,o8()dA,,

tendsto [ fog(x)di,, - g(“’: fdA, . Therefore, ['fog(nda,, =jg((b: fda,. It
a g(a a gla

g(b)

follows that jb feog(x)d(gog)=| " d¢ as Riemann Stieltjes integrals.

g(a)

Remark. Taking g to be the identity function on [a, b], we get Theorem 4 as a
special case of Theorem 8.
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