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Let ( ) ln(1 )xF x e= − .  Observe that F(x) is only defined when xe  is less than 1, 

that is, when x < 0.  Thus, the domain of F(x) is the interval ( ,0)− .  Thus, an 

appropriate antiderivative of F(x) would have ( ,0)−  as its domain. 

Note that F(x) is just a composite of ln(1−x) and ex.  We shall begin by 

examining the function ln(1 )x−  and its power series expansion.  It is easy to 

show that 
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and that the power series on the right-hand side converges uniformly on any 

closed interval in the interval (−1, 1) and so it converges uniformly on [0, ]R  for 

0 < R <1.  Consider the function, 
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= − , H(x) is continuous at x =0.   Moreover, for 0 1x  , 
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Note that this power series converges uniformly on [0, ]R  for 0 < R <1.  

Therefore, we can integrate H(x) term by term from 0 to R for 0 < R <1.   

Thus, for 0 1x   , 
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uniformly on [0, 1].  
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Now, let 
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( ) ln(1 ) ( )xL x e F x = − =  for x < 0 and so L(x) is the anti-derivative of F(x). 

Now, 
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