Anti-derivative of $ln(1-e^{x})$

By Ng Tze Beng

Let $F(x) = \ln(1-e^x)$. Observe that $F(x)$ is only defined when e^x is less than 1, that is, when $x < 0$. Thus, the domain of $F(x)$ is the interval $(-\infty, 0)$. Thus, an appropriate antiderivative of $F(x)$ would have $(-\infty, 0)$ as its domain.

Note that $F(x)$ is just a composite of $ln(1-x)$ and e^x . We shall begin by examining the function $ln(1-x)$ and its power series expansion. It is easy to show that

$$
\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} + \dots = -\sum_{n=0}^{\infty} \frac{1}{1+n} x^{n+1} \text{ for } |x| < 1
$$

and that the power series on the right-hand side converges uniformly on any closed interval in the interval $(-1, 1)$ and so it converges uniformly on $[0, R]$ for $0 < R < 1$. Consider the function,

$$
H(x) = \begin{cases} \frac{\ln(1-x)}{x}, & \text{for } 0 < x < 1, \\ -1, & \text{for } x = 0 \end{cases}
$$

Since $\lim_{x \to 0^+} \frac{\ln(1-x)}{x} = -1$ *x* $\rightarrow 0^+$ x $\frac{f(x)}{f(x)} = -1$, $H(x)$ is continuous at $x = 0$. Moreover, for $0 \le x < 1$,

$$
H(x) = \begin{cases} -\sum_{n=0}^{\infty} \frac{1}{1+n} x^n, & \text{for } 0 < x < 1, \\ -1, & \text{for } x = 0 \end{cases} = \begin{cases} -\sum_{n=0}^{\infty} \frac{1}{1+n} x^n, & \text{for } 0 < x < 1, \\ -1, & \text{for } x = 0 \end{cases} = -\sum_{n=0}^{\infty} \frac{1}{1+n} x^n.
$$

Note that this power series converges uniformly on $[0, R]$ for $0 < R < 1$. Therefore, we can integrate $H(x)$ term by term from 0 to R for $0 < R < 1$.

Thus, for $0 \leq x < 1$,

$$
G(x) = \int_0^x H(t)dt = -\sum_{n=0}^\infty \frac{1}{(1+n)^2} x^{n+1} = -\sum_{n=1}^\infty \frac{1}{n^2} x^n.
$$

 $G'(x) = H(x)$ for $0 \le x < 1$

Since $-\sum_{n=1}^{\infty} \frac{1}{n^2}$ 1 *ⁿ n x n* ∞ $-\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$ converges at $x = 1$, the power series $-\sum_{n=1}^{\infty} \frac{1}{n^2}$ 1 ⁿ *n x n* œ $-\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$ converges uniformly on [0, 1]. $G(1) = \lim_{x \to 0} \int_{0}^{x} H(t) dt = -\lim_{x \to 0} \sum_{n=0}^{\infty} \frac{1}{x^{n+1}} = -\sum_{n=0}^{\infty} \frac{1}{n^2} = -\frac{\pi^2}{n^2}$ $\sum_{n=1}^{\infty}$ 1 $\sum_{n=0}^{\infty}$ $(1+n)^2$ $\sum_{n=1}^{\infty}$ n^2 $1 = \lim_{h \to 0} \int_0^x H(t) dt = -\lim_{h \to 0} \sum_{n=0}^{\infty} \frac{1}{h^{n+1}} = -\sum_{n=0}^{\infty} \frac{1}{n+1}$ $(1+n)^2$ $\qquad \qquad \frac{1}{n-1}n^2$ 6 $\frac{x}{n}$ $x \rightarrow 1$ $\bullet \circ$ $x \rightarrow 1$ $\overline{n=0}$ $(1+n)$ \overline{n} $G(1) = \lim_{x \to \infty} \left[H(t)dt \right] = -\lim_{x \to \infty} \sum_{x \in \mathcal{X}} f(x)dt$ $n \rightarrow n$ π − [−] \sum_{n+1}^{∞} 1 \sum_{n+1}^{∞} → → = ⁼ $=\lim_{x\to 1^-}\int_0^x H(t)dt=-\lim_{x\to 1^-}\sum_{n=0}^{\infty}\frac{1}{(1+n)^2}x^{n+1}=-\sum_{n=1}^{\infty}\frac{1}{n^2}=-\frac{\pi}{6}.$ Now, let $L(x) = G(e^x) = -\sum_{n=1}^{\infty} \frac{1}{n^2}$ $f(x) = G(e^x) = -\sum_{n=0}^{\infty} \frac{1}{n^x} e^{nx}$ *n* $L(x) = G(e^x) = -\sum_{k=0}^{\infty} e^{ix}$ *n* $^{\circ}$ $=G(e^x)=-\sum \frac{1}{2}e^{nx}$, for $x \le 0$.

 $\lambda(x) = G'(e^x)e^x = H(e^x)e^x = \frac{\ln(1-e^x)}{x}e^x = \ln(1-e^x)$ *x* $L'(x) = G'(e^x)e^x = H(e^x)e^x = \frac{\ln(1-e^x)}{e^x}e^x = \ln(1-e^x)$ *e* $f(x) = G'(e^x)e^x = H(e^x)e^x = \frac{\ln(1-e^x)}{x}e^x = \ln(1-e^x)$ for $x < 0$. Thus, $L'(x) = \ln(1 - e^x) = F(x)$ for $x < 0$ and so $L(x)$ is the anti-derivative of $F(x)$. Now,

$$
\int_{-\infty}^{x} \ln(1-e^{t})dt = \left[G(e^{t})\right]_{-\infty}^{x} = G(e^{x}) - \lim_{t \to -\infty} G(e^{t}) = G(e^{x}) - G(0) = G(e^{x}) \text{ for } x < 0.
$$

$$
\int_{-\infty}^{0} \ln(1-e^{t})dt = \lim_{x \to 0^{-}} \int_{-\infty}^{x} \ln(1-e^{t})dt = \lim_{x \to 0^{-}} G(e^{x}) = G(1) = -\frac{\pi^{2}}{6}.
$$

21/11/2024 Ng Tze Beng