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If a function is defined by a Lebegsue Stieltjes integral and turns out that it is of 
bounded variation, then we can define another Lebesgue Stieltjes integral with it 
as the integrator.  More precisely, suppose : I    is an absolutely continuous 

function on the closed and bounded interval [ , ]I a b , where a < b.   Suppose g 

is a Borel measurable function on I.  Define : I  , by ( )
x

a
x gd     where 

  is the Lebesgue Stieljes measure associated with the function  .  Since   is 

absolutely continuous on I, by Theorem 26 of “Lebesgue Stieltjes Measure, de 
La Vallée Poussin’s Decomposition, Change of Variable, Integration by Parts 

for Lebesgue Stieltjes Integrals”, ( ) ( ) ( )
x x

a a
x gd g y y dy     .   It follows that 

 is absolutely continuous on I and therefore of bounded variation.   Suppose 
:f I   is a Borel measurable function. Then 

                ( ) ( ) ( ) ( ) ( ) ( ) ( )
x x x x

a a a a
fd f y y dy f y g y y dy f y g y d            . 

Hence, we have proved: 

Theorem 1.  Suppose : I    is an absolutely continuous function on the 

closed and bounded interval [ , ]I a b , where a < b.   Suppose g is a Borel 

measurable function on I.  Define : I  , by ( )
x

a
x gd     where   is the 

Lebesgue Stieljes measure associated with the function  .  Suppose :f I   is 
a Borel measurable function. Then 

                             ( ) ( )
x x

a a
fd f y g y d     . 

 

If a sequence of functions of bounded variation, whose total variation is 
uniformly bounded converges to a function, is the limiting function also of 
bounded variation and if so, does the sequence of Lebesgue Stieltjes integrals 
defined using the given sequence of functions as integrators converges to the 
Lebesgue Stieltjes integral with the limiting function as integrator? The answer 
is “yes”.  We state this answer as Theorem 2 below. 

 

Theorem 2.  Suppose  ng  is a sequence of functions defined on the closed and 

bounded interval [a, b] whose total variations are uniformly bounded by a 
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constant K, i.e., ( ,[ , ])nV g a b K , for all positive integer n and suppose the 

sequence  ng  converges to a finite function g at every point of [ , ].a b   Let f be a 

continuous function on [ , ].a b  Then g is of finite variation and  

lim
n

b b

g ga an
fd fd 


  . 

Proof. 

We note that since the function f is continuous on [a, b], the Riemann Stieltjes 
integrals of the function f with integrators g and kg  exist and are equal to their 

respective Lebesgue Stieltjes integrals.  Moreover, since f is continuous on [a, 
b], for any a d e f b    , the Rieman Stieltjes integrals,  

      
e f f

g g gd e d
RS fd RS fd RS fd       and  

k k k

e f f

g g gd e d
RS fd RS fd RS fd      . 

We shall show that the limiting function g is of finite variation. 

Let 0 1: nP a x x x b      be a partition of the closed interval [a, b].  Given 

any 0  , since the sequence  mg  converges to g pointwise, for each 0 k n  , 

there exists an integer 0kN   such that for 0 k n  , 

                   ( ) ( )
2k m k km N g x g x

n


      .      -------------------------- (1) 

Let  max : 0kN N k n     

Then it follows from (1) that for 0 k n   

                 ( ) ( )
2m k km N g x g x

n


     .   ------------------ (2) 

Suppose 1 k n  .   Then for m N  

       1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )k k k m k m k m k m k kg x g x g x g x g x g x g x g x           

                            1 1 1( ) ( ) ( ) ( ) ( ) ( )k m k m k m k m k kg x g x g x g x g x g x         

                            1( ) ( )
2 2m k m kg x g x

n n

 
    = 1( ) ( )m k m kg x g x

n


  . 

Therefore, 

                     1 1 1
1 1 1

( ) ( ) ( ) ( ) ( ) ( )
n n n

k k m k m k m k m k
k k k

g x g x g x g x g x g x
n

   
  

        
 

    

                                               ( ,[ , ])mV g a b K     . 
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Since 0   is arbitrary, ( ,[ , ])V g a b K . Hence, g is of bounded variation. 

We shall now show that lim
n

b b

g ga an
fd fd 


  .   For the rest of the proof, all 

integrals are Riemann Stieltjes integrals. 

We shall take an appropriate partition of the interval [a, b] and split the integrals 
into integrals on each sub intervals of the partition.   

We note that since f is continuous on [a, b], f is uniformly continuous on [a, b].  
Therefore, given any 0   , there exists 0   such that 

                                  ( ) ( )
3

x y f x f y
K

      .   --------------------- (3) 

Let 0 1: nP a x x x b     be a partition of [a, b] such that 

 1max :1k kP x x k n      . 

Then   

   
1 1 11 1 1

( ) ( ) ( ) ( )
k k k

k k k

n n nb x x x

g g k g k ga x x x
k k k

f d f x d f x f x d f x d   
    

         .      ---------(4)  

 And for each positive integer m, 

  
1 1 11 1 1

( ) ( ) ( ) ( )
k k k

m m m m
k k k

n n nb x x x

g g k g k ga x x x
k k k

f d f x d f x f x d f x d   
    

         . --------- (5) 

(5) – (4) gives: 

   
1 11 1

( ) ( ) ( ) ( )
k k

m m
k k

n nb b x x

g g k g k ga a x x
k k

f d f d f x f x d f x f x d   
  

          

                             
1 11 1

( ) ( )
k k

m
k k

n nx x

k g k gx x
k k

f x d f x d 
  

      

                               
1 11 1

( ) ( ) ( ) ( )
k k

m
k k

n nx x

k g k gx x
k k

f x f x d f x f x d 
  

       

                                 1 1
1 1

( ) ( ) ( ) ( ) ( ) ( )
n n

k m k m k k k k
k k

f x g x g x f x g x g x 
 

      

                               
1 11 1

( ) ( ) ( ) ( )
k k

m
k k

n nx x

k g k gx x
k k

f x f x d f x f x d 
  

       

                                 1 1
1 1

( ) ( ) ( ) ( ) ( ) ( )
n n

k m k k k m k k
k k

f x g x g x f x g x g x 
 

     . 
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Then,    
1 11 1

( ) ( ) ( ) ( )
k k

m m
k k

n nb b x x

g g k g k ga a x x
k k

f d f d f x f x d f x f x d   
  

          

                                          1 1
1 1

( ) ( ) ( ) ( ) ( ) ( )
n n

k m k k k m k k
k k

f x g x g x f x g x g x 
 

     . 

Let M be the maximum value of ( )f x  on [a, b].  Then on account of (3) and 

Theorem 3 below,  

1 1
1 1

[ , ] [ , ]
3 3m m

n nb b

g g g k k g k ka a
k k

f d f d V x x V x x
K K

    
 

      

                                1 1
1 1

( ) ( ) ( ) ( )
n n

m k k m k k
k k

M g x g x M g x g x 
 

       

                               [ , ] [ , ]
3 3mg gV a b V a b

K K

 
   

                                  1 1
1 1

( ) ( ) ( ) ( )
n n

m k k m k k
k k

M g x g x M g x g x 
 

      

                             1 1
1 1

2
( ) ( ) ( ) ( )

3

n n

m k k m k k
k k

M g x g x M g x g x


 
 

       . ------ (6) 

For 0 k n  , ( ) ( )m k kg x g x .  Therefore, for 0 k n   there exists an integer 

0kN   such that  

                                    ( ) ( )
6k m k km N g x g x

nM


    .   --------------------- (7) 

Let  max : 0kN N k n   .  It follows from (6) and (7) that 

              
1 1

2

3 6 6m

n nb b

g ga a
k k

m N f d f d M M
nM nM

    
 

         . 

It follows that lim
n

b b

g ga an
fd fd 


  . 

Remark.  Theorem 2 is known as Helly’s Second Theorem. 

 

Theorem 3.  Suppose :[ , ]g a b    is a function of bounded variation defined on 
the closed and bounded interval [ , ]I a b .   Suppose :f I    is a continuous 

function defined on I.  Then ( ) ( , )
b

ga
fd M f V g I  , where ( )M f is the maximum 

value of f  on I and ( , )V g I is the total variation of g on I. 
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Proof.  
b b b

g P Na a a
fd fd fd      , where P and N are the positive and negative 

variation functions of g.  Then,   

 
b b b b b

g P N P Na a a a a
fd fd fd f d f d             

              ( ) ( ) ( ) ([ , ]) (( , ]) ( ) ( , )
b b

P Na a
M f d M f d M f P a b N la b M f V g I       . 

 

We present another proof of Theorem 2 using the Helly Selection Theorem. 

 

Helly Selection Theorem.  A uniformly bounded sequence of increasing 
functions defined on a closed and bounded interval [a, b] contains a 
subsequence which converges at every point of [a, b] to an increasing function. 

 

Proof of Theorem 2. 

Suppose  ng  is a sequence of functions defined on the closed and bounded 

interval [a, b] whose total variations are uniformly bounded by a constant K, 
i.e., ( ,[ , ])nV g a b K .  Suppose the sequence  ng  converges pointwise at every 

point of [a, b] to a function g on [a, b]. 

Let  and n nP N  be the positive and negative variation of functions ng .  Then 

( ) ( ) ( ) ( )n n n ng x g a P x N x    and the total variation function of ng is given by 

( ) [ , ] ( ) ( )g g n nV x V a x P x N x   .  The function ( ) ( )n ng a P x  is an increasing function, 

Note that ( ) ( ) ( ) ( ) ( ) ( ) ( [ , ]) ( )n n n n n n n ng a P x g a P x N x g a V g a b g a K        .   

Since the sequence  ( )ng a is convergent, it is bounded, that is there exists a 

constant C > 0 such that  ( )ng a C  for all positive integer n.  Hence, 

( ) ( )n ng a P x C K   for all positive integer n.  Thus, the sequence  ( ) ( )n ng a P x

is uniformly bounded.  Therefore, by the Helly selection Theorem it has a 
subsequence  ( ) ( )

k kn ng a P x  which converges pointwise to an increasing 

function *( )P x .  By replacing the sequence  ng  with the subsequence  
kng we 

may assume that ( ) ( ) ( ) ( )n n n ng x g a P x N x    and the sequence  ( ) ( )n ng a P x

converges pointwise to *( )P x .  Similarly, since the sequence  ( )nN x is 
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uniformly bounded by K, it has a convergent subsequence  ( )
knN x  converging 

pointwise to an increasing function *( )N x on [a, b].  By replacing the sequence 

 ng  with the subsequence  
kng , we may assume that 

( ) ( ) ( ) ( )n n n ng x g a P x N x    converges pointwise to g, the sequence  ( ) ( )n ng a P x

converges pointwise to an increasing function *( )P x  and the sequence  ( )nN x  

converging pointwise to an increasing function *( )N x on [a, b].  It follows that 

the limiting function ( ) *( ) *( )g x P x N x   is a function of bounded variation 

whose total variation is bounded by C+2K.   

If :[ , ]f a b    is a continuous function, then as in the proof of Theorem 1 but 

not using Theorem 3, we can show that ( ) *lim
n

b b

P g a Pa an
fd fd 

  and that 

*lim
n

b b

N Na an
fd fd 


  . Therefore,  

 ( ) ( )lim lim lim
n n n n n n n

b b b b

g P g a N P g a Na a a an n n
fd fd fd fd       

       

                 ( ) * * * *lim lim
n n n

b b b b b b

P g a N P N P N ga a a a a an n
fd fd fd fd fd fd       

           .    

Now we shall investigate the relaxation of the condition of Theorem 1.   

We shall do this in stages. 

Theorem 4. 

Suppose : I    is an increasing function on the closed and bounded interval 

[ , ]I a b , where a < b.   Suppose   is right continuous or left continuous.  

Suppose g is a Borel measurable non-negative function on I.  Define : I  , 

by ( )
x

a
x gd     where   is the Lebesgue Stieljes measure associated with the 

function  .   Suppose :[ , ]f a b    is a Borel measurable function.  Then 

                                               
b b

a a
fd fgd      

Proof.  Suppose   is right continuous.  Then by Theorem 45 of “Lebesgue 
Stieltjes Measure, de La Vallée Poussin’s Decomposition, Change of Variable, 
Integration by Parts for Lebesgue Stieltjes Integrals”, 

                           
( )

( )
( ) ( )

x x

a a
x gd g y dy



 
      , 
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where   is the generalised left continuous inverse of   defined in Definition 38 

of the above cited article.  Note that  is an increasing left continuous function 
on J, where [ ( ), ( )]J a b   is the smallest interval containing the image of  .   

Let : J   be defined by 
( )

( ) ( )
y

a
y g t dt


    .   Then   is absolutely 

continuous and increasing on J.  Then ( ) ( )x x    .  

                                       
b b

a a
fd fd      . 

By Theorem 58 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s 
Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes 
Integrals”, 

                                    
( )

( )
( )

b b

a a
fd f y d



 
      ,  

where   is the generalised left continuous inverse of  . 

Since   is absolutely continuous,  
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

b b b b

a a a a
f y d f y y dy f y g y dy f x g x d

  

  
                  . 

Suppose   is left continuous.  Then by Theorem 45 of “Lebesgue Stieltjes 

Measure, de La Vallée Poussin’s Decomposition, Change of Variable, 
Integration by Parts for Lebesgue Stieltjes Integrals”, 

                           
( )

( )
( ) ( )

x x

a a
x gd g y dy



 
      , 

where   is the generalised right continuous inverse of   defined in Definition 
38 of the above cited article.  Note that   is an increasing right continuous 

function on J, where [ ( ), ( )]J a b   is the smallest interval containing the image 

of  .   

Let : J   be defined by 
( )

( ) ( )
y

a
y g t dt


    .   Then   is absolutely 

continuous and increasing on J.  Then ( ) ( )x x    .  

                                       
b b

a a
fd fd      . 

By Theorem 59 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s 
Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes 
Integrals”, 
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( )

( )
( )

b b

a a
fd f y d



 
      ,  

where   is the generalised right continuous inverse of  . 

Since   is absolutely continuous,  
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

b b b b

a a a a
f y d f y y dy f y g y dy f x g x d

  

  
                  . 

 

Remark.  The requirement that the function g be non-negative can be lifted.  
This requirement implies that the function ( )y  is increasing and continuous so 
that we can apply Theorem 58 or Theorem 59 of “Lebesgue Stieltjes Measure, 
de La Vallée Poussin’s Decomposition, Change of Variable, Integration by 
Parts for Lebesgue Stieltjes Integrals”. 

 

Theorem 5. 

Suppose : I    is an increasing function on the closed and bounded interval 

[ , ]I a b , where a < b.   Suppose   is right continuous or left continuous.  
Suppose g is a Borel measurable function on I.  Define : I  , by 

( )
x

a
x gd     where   is the Lebesgue Stieljes measure associated with the 

function  .   Suppose :[ , ]f a b    is a Borel measurable function.  Then 

                                               
b b

a a
fd fgd      

Proof.   

Suppose   is right continuous.   

Then by Theorem 45 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s 
Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes 
Integrals”, 

                           
( )

( )
( ) ( )

x x

a a
x gd g y dy



 
      , 

where   is the generalised left continuous inverse of   defined in Definition 38 

of the above cited article.  Note that  is an increasing left continuous function 
on J, where [ ( ), ( )]J a b   is the smallest interval containing the image of  .   
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Let : J   be defined by 
( )

( ) ( )
y

a
y g t dt


    .   Then   is absolutely 

continuous on J and so is a function of bounded variation.  Then ( ) ( )x x     
is a function of bounded variation.  

                                       
b b

a a
fd fd      . 

By Theorem 64 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s 
Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes 
Integrals”, as   is absolutely continuous, 

                                    
( )

( )
( ) ( )

b b

a a
fd f y y d



 
       ,  

where   is the generalised left continuous inverse of  . 

Therefore, 
( )

( )
( ) ( ) ( ) ( )

b b b

a a a
fd f y g y dy f x g x d



 
            . 

Suppose   is left continuous.   

Then by Part (ii) of Theorem 45 of “Lebesgue Stieltjes Measure, de La Vallée 
Poussin’s Decomposition, Change of Variable, Integration by Parts for 
Lebesgue Stieltjes Integrals”, 

                           
( )

( )
( ) ( )

x x

a a
x gd g y dy



 
      , 

where   is the generalised right continuous inverse of   defined in Definition 
38 of the above cited article.  Note that  is an increasing right continuous 

function on J, where [ ( ), ( )]J a b   is the smallest interval containing the image 

of  .   

Let : J   be defined by 
( )

( ) ( )
y

a
y g t dt


    .   Then   is absolutely 

continuous on J and so is a function of bounded variation.  Then ( ) ( )x x     

is a function of bounded variation.  

                                       
b b

a a
fd fd      . 

By Theorem 64 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s 
Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes 
Integrals” and as   is absolutely continuous, 

      
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

b b b b

a a a a
fd f y y d f y g y dy f x g x d

 

  
                  , 
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We extend the result of Theorem 5, when the function : I   is a function of 

bounded variation. 

Corollary 6. 

Suppose : I    is a function of bounded variation on the closed and bounded 

interval [ , ]I a b , where a < b.   Suppose   is right continuous or left 

continuous.  Suppose g is a Borel measurable function on I.  Define : I  , 

by ( )
x

a
x gd     where   is the Lebesgue Stieljes measure associated with the 

function  .   Suppose :[ , ]f a b    is a Borel measurable function.  Then 

                                               
b b

a a
fd fgd     . 

Proof.   Let V  be the total variation of  .   Then V  and V   are both 

increasing functions.   

Suppose   is right continuous.  It follows that V  is right continuous.  Hence, 

1 V   and 2 V   are both right continuous.  Note that 1 2     Then 

1 2
( )

x x x

a a a
x gd gd gd          is a difference of two functions of bounded 

variation and so is of bounded variation.  Let 
11( )

x

a
x gd    and 

22 ( )
x

a
x gd    . 

Hence,  

                             
1 2 1 2

b b b b

a a a a
fd fd fd fd             . ------------------ (1) 

By Theorem 5, 
1 1

b b

a a
fd fgd     and 

2 2

b b

a a
fd fgd     .    It follows from (1) 

that          

           
1 2 1 2 1 2

b b b b b b

a a a a a a
fd fd fgd fgd fgd fgd                      . 

Suppose   is left continuous.  It follows 1 V   and 2 V   are both left 

continuous.  It follows similarly as above that 
b b

a a
fd fgd     . 

 

More generally we have 

Corollary 7. 

Suppose : I    is a function of bounded variation on the closed and bounded 

interval [ , ]I a b , where a < b.   Suppose   is the difference or sum of two 
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increasing functions 1 2 and   .  Suppose 1 2 and    are both right continuous or left 

continuous or  1  is right continuous and 2 is left continuous or 1  is left 

continuous and 2 is right continuous.  Suppose g is a Borel measurable function 

on I.  Define : I  , by ( )
x

a
x gd     where   is the Lebesgue Stieljes 

measure associated with the function  .   Suppose :[ , ]f a b    is a Borel 

measurable function.  Then 

                                               
b b

a a
fd fgd     . 

 

The proof of Corollary 7 is similar to that of Corollary 6 and is omitted. 

 

We now only require the function : I   to be of bounded variation. 

Theorem 8.  Suppose : I    is a function of bounded variation on the closed 

and bounded interval [ , ]I a b , where a < b.   Suppose g is a Borel measurable 

function on I.  Define : I  , by ( )
x

a
x gd     where   is the Lebesgue 

Stieltjes measure associated with the function  .   Suppose :[ , ]f a b    is a 

Borel measurable function.  Then 

                                               
b b

a a
fd fgd     . 

Proof.   As detailed in the proof of Corollary 62 of “Lebesgue Stieltjes Measure, 
de La Vallée Poussin’s Decomposition, Change of Variable, Integration by 
Parts for Lebesgue Stieltjes Integrals”, an increasing function on the interval [a, 
b] can be decomposed as a sum of increasing continuous function, increasing 
right continuous function and an increasing left continuous function.  More 
precisely, an increasing function   on [a, b] can be written as 

                              ac c ls rs      ,  

where ac  is an absolutely continuous increasing function with ( ) ( )ac x x    

almost everywhere on [a, b], c  is a continuous increasing singular function, 

i.e., ( ) 0c x   almost everywhere, ls  is a right continuous increasing saltus 

type function and  rs  is a left continuous increasing function. Let a ac c    . 

Then a  is an increasing continuous function.  Thus, a ls rs     .  
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Suppose : I    is a function of bounded variation. Then 1 2    , where 

1 2 and    are increasing functions. Then  
1 2

( )
x x x

a a a
x gd gd gd          .  Let 

11( )
x

a
x gd    and 

22 ( )
x

a
x gd    . Hence,  

                             
1 2 1 2

b b b b

a a a a
fd fd fd fd             . 

Now 1 ,1 ,1 ,1a ls rs      is a sum of continuous increasing function, left 

continuous increasing function and right continuous increasing function. 

Therefore, by Corollary 7, 
1 1

b b

a a
fd fgd     .   Similarly, we deduce that 

2 2

b b

a a
fd fgd     .   It follows that  

                         
1 2 1 2

b b b b

a a a a
fd fd fd fd              

                                     
1 2 1 2

b b b

a a a
fgd fgd fgd            

                                     
b

a
fgd   .  

Remark.   In the proof of Theorem 8, we have that 

              1 2    , 1 ,1 ,1 ,1a ls rs      and 2 ,2 ,2 ,2a ls rs     . 

Thus,               

                    ,1 ,1 ,1 ,2 ,2 ,2a ls rs a ls rs          

                          ,1 ,2 ,1 ,2 ,1 ,2a a ls ls rs rs          

is a sum of right continuous function of bounded variation and left continuous 
function of bounded variation.  Let 3 ,1 ,2 ,1 ,2a a ls ls       and 4 ,1 ,2rs rs    .  

Then 3 4    .  Let 
33( )

x

a
x gd    and 

44 ( )
x

a
x gd    . Then  

3 4 3 4( ) ( ) ( )
x x x

a a a
x gd gd gd x x             .  By Corollary 6,  

                     
3 3

b b

a a
fd fgd     and 

4 4

b b

a a
fd fgd     .   

Therefore, 

            
3 4 3 4 3 4

b b b b b b

a a a a a a
fd fd fd fd fgd fgd                     

                       
3 4

b b

a a
fgd fgd      . 
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This gives another proof of Theorem 8. 


