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L' Hôpital's Rule was actually discovered by John Bernoulli.  The rule with its various

versions is widely used.  As with the use of the Mean Value Theorem, a weaker version of the

Cauchy Mean Value Theorem suffices for the proof of  L' Hôpital's Rule.  In this note I shall

present a generalized version of the  L' Hôpital's Rule (Theorem 11 and Theorem 12).  The

converse of the rule is not true.  Some of the common misuse of the Rule arise from using the

converse, particularly so with the derivative.  First let us recall Theorem 1 from Darboux

Fundamental Theorem of Calculus.

Theorem 1.  If  f :[a, b] → R is differentiable on [a, b], then for any  u, v in [a, b] with

u < v,  there exists a point x and a point y in [u, v] such that   

                                                  ,f ∏(x) m
f (v) − f (u)

v − u m f ∏(y)

            or equivalently,  

                                        .f ∏(x)(v − u) m f (v) − f (u) m f ∏(y)(v − u)

The proof can be found in my article, “Do we need Mean Value Theorem to prove  f

'(x) = 0 on (a, b) implies that f  = constant on (a, b)?”.

L' Hôpital's Rule concerns the limit of a quotient of two functions that can be

expressed in terms of the limit of the quotient of their respective derivatives or derived

functions.   Important to this is that the derived function of the denominator function should

not have infinite number of change of sign near the point where the limit is to be taken.   Due

to the Intermediate Value Theorem for Derivatives, we can express this requirement simply

by stating that the derivative is non-zero around the point of limit.   We state this as a

convenient reference as Theorem 2.

Theorem 2.  Suppose  f  is differentiable on an interval I (not necessarily bounded).  If

the derived function  f '  is non-zero on I, then  f '  is  of  constant sign, i.e.,  for all x in

I,  f '(x) > 0  or for all x in I,  f '(x) < 0.

Proof.   Suppose  f ' is not of constant sign.  Then there exist x and y  in I such that  f

'(x) > 0 and f '(y) < 0.  Thus 0 is an intermediate value between  f '(x) and f '(y).

Therefore, by Darboux's Theorem (see Intermediate Value Theorem for the Derived
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Functions), there exists a point c between x and y such that  f '(x) = 0.  This contradicts

that f '  is non-zero on I and so  f '  must be of constant sign.

Our next theorem follows from Theorem 1 above.

Theorem 3.   Suppose  f   and g are two differentiable functions defined on the closed

and bounded interval [a, b].  Suppose that g'(x) ≠ 0 for all x in [a, b].  Then there exist

points p, q in [a, b] such that 

        .
f ∏(p)
g ∏(p) m

f (b) − f (a)
g(b) − g(a) m

f ∏(q)
g ∏(q)

Proof.    Define the function  h :[a, b]→ R by  

                                       h(x) = f (x)(g(b)−g(a)) − g(x)( f (b)− f (a)),

for x in the interval [a, b].  Since  f  and g are differentiable on [a, b],  h is also

differentiable on [a, b].  Thus, by Theorem 1, we can find points p and q in [a, b] such

that

.    --------------------- (1)h ∏(p) m
h(b) − h(a)

b − a
m h ∏(q)

Now since  h(a) = h(b) =  f (a)g(b) − g(a) f (b), we have then  h'( p) ≥ 0 ≥ h'(q).

Therefore, since h'(x) = f '(x)(g(b)−g(a)) − g'(x)( f (b)− f (a)), we get

 f '( p)(g(b)−g(a)) ≥ g'(p)( f (b)− f (a))  -------------- (2)

and

  f '( q)(g(b)−g(a)) ≤ g'(q)( f (b)− f (a)). --------------- (3).

            Now since g' (x) ≠ 0 for all x in [a, b], by Theorem 2, either g' (x) > 0 for all x in [a, b]

or g' (x) < 0 for all x in [a, b]. That means g is strictly increasing on [a, b] or g is

strictly decreasing on [a, b].    Hence, we conclude that if  g'(p) > 0, then g is strictly

increasing and so g(b)−g(a) > 0 and if  g'(p) < 0, then g is strictly decreasing and so

g(b)−g(a) < 0 and it follows from (2) that we get

.
f ∏(p)
g ∏(p) m

f (b) − f (a)
g(b) − g(a)

            If g'( p) > 0, then g'(q) > 0 since g' is of constant sign and so g(b)−g(a) > 0 and if g'( p)

< 0, then g'(q) < 0 for the same reason as before and so g(b)−g(a) < 0.   We obtain

similarly from (3),

.
f ∏(q)
g ∏(q) [

f (b) − f (a)
g(b) − g(a)

 Ng Tze Beng  2002 2



This completes the proof of Theorem 3.

The next theorem is the usual form of  L' Hôpital's Rule.   

Theorem 4  L' Hôpital's Rule.   Suppose  f and g are two functions that are

continuous on [a, b] and differentiable on (a, b).   Suppose  f (a) = g(a) = 0.   Suppose

that g' (x) ≠ 0 for all x in the open interval (a, b).   If   exists and is equal to
xda+
lim

f ∏(x)
g ∏(x)

L, then   exists and is also equal to L, i.e.,   if the limit
xda+
lim

f (x)
g(x) xda+

lim
f (x)
g(x) =

xda+
lim

f ∏(x)
g ∏(x)

on the right hand side exists.

Proof.    Since   , given ε > 0, there exists δ > 0 such that 
xda+
lim

f ∏(x)
g ∏(x) = L

a < x < a + δ  ⇒    --------   (4)
f ∏(x)
g∏(x) − L < �

2
e L − �

2
<

f ∏(x)
g ∏(x) < L + �

2

We may assume that a + δ ≤ b.  (If this is not the case, then we can obviously choose a

smaller δ > 0 such that δ ≤ b − a.)  For any fixed x  in the interval (a, a + δ), let y be

any point such that a < y < x.  For example, we can let  y = a + 1/n, where n is any

integer > N and N is some integer such that 1/N < x−a . Note that N exists by the

archimedean property of the real number system.  Then by Theorem 3, since g'(x) ≠ 0

on [y, x], for some point c in [ y, x], we have 

                                           .
f (x) − f (y)
g(x) − g(y) m

f ∏(c)
g ∏(c)

            Now since a < c < x < a + δ, by (4),  .  Thus, we have, for any y such
f ∏(c)
g ∏(c) > L − �

2

that a < y < x,  .   Therefore, since  f (a) = g(a) = 0,  by the
f (x) − f (y)
g(x) − g(y) > L − �

2

continuity of  f  and g at a,   .   
f (x)
g(x) =

f (x) − f (a)
g(x) − g(a) =

yda+
lim

f (x) − f (y)
g(x) − g(y) m L − �

2
> L − �

That means for all x such that a < c < x < a + δ,   .  Also by Theorem 3,
f (x)
g(x) > L − �

there exists a  point d in [ y, x],  such that   .  Then using (4) we
f (x) − f (y)
g(x) − g(y) [

f ∏(d)
g ∏(d)

have .   Again, using the continuity of  f  and g at a and the above
f (x) − f (y)
g(x) − g(y) [ L + �

2

inequality,    

                 .  
f (x)
g(x) =

f (x) − f (a)
g(x) − g(a) =

yda+
lim

f (x) − f (y)
g(x) − g(y) [ L + �

2
< L + �

 Ng Tze Beng  2002 3



We have thus proved that for any x with a <  x < a + δ ,  .   Hence,L − � <
f (x)
g(x) < L + �

.
yda+
lim

f (x)
g(x) = L

We now state the corresponding rule for the left limit.

Theorem 5  L' Hôpital's Rule.   Suppose  f and g are two functions that are

continuous on [a, b] and differentiable on (a, b).   Suppose  f (b) = g(b) = 0.   Suppose

that g' (x) ≠ 0 for all x in the open interval (a, b).   If   exists and is equal to
xdb−
lim

f ∏(x)
g ∏(x)

L, then   exists and is also equal to L, i.e.   if the limit
xdb−
lim

f (x)
g(x) xdb−

lim
f (x)
g(x) =

xdb−
lim

f ∏(x)
g ∏(x)

on the right hand side exists.

Remark.  

1. Combining Theorem 4 and Theorem 5 gives the limit version of the L' Hôpital's

Rule.

2. If the derivative of the denominator function, g'(x) changes sign infinitely often

near a, then g'(x) would take on the value zero infinitely often and  the quotient  f

'(x) /g'(x) would not be defined in any small interval containing a and we would

not be able to talk about the limit of  f '(x) /g'(x) at x = a.

Theorem 6.    Suppose  f  and g are functions differentiable at x for all x > K for some

positive constant K and that g'(x) ≠ 0 for all x > K.  Suppose  .  If
xd∞
lim f (x) =

xd∞
lim g(x) = 0

  exists and is equal to L, then   exists and is also equal to L.
xd∞
lim

f ∏(x)
g ∏(x) xd∞

lim
f (x)
g(x)

We shall give a direct proof without using the usual conversion that 

 and applying Theorem 4.
xd∞
lim h(x) =

td0+
lim h( 1

t ) = 0

Proof of Theorem 6.   Since  , given ε > 0, there exists a positive
xd∞
lim

f ∏(x)
g ∏(x) = L

number N > 0 such that 

  .  ---------------  (5)x > N e
f ∏(x)
g ∏(x) − L < �

2
e L − �

2
<

f ∏(x)
g ∏(x) < L + �

2
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We may assume that N > K.   If need be, we can always pick an N  that is bigger than

K.  Since g'(x) ≠ 0 for all x > K,  by Theorem 2,  g'(x)  is of constant sign for all x > K

and so we may assume that g(x) ≠ 0 for all x > K .  For a given fixed x > N, by

Theorem 3, for any y > x, there exists c in [x, y] such that

                                   
f (x) − f (y)
g(x) − g(y) [

f ∏(c)
g ∏(c)

and by (5),

                        .
f ∏(c)
g ∏(c) < L + �

2

Thus, for any x > N,   .    
f (x) − f (y)
g(x) − g(y) [ L + �

2

Hence,

.
f (x)
g(x) =

f (x) − 0

g(x) − 0
=

f (x) −
yd∞
lim f (y)

g(x) −
yd∞
lim g(y) =

yd∞
lim

f (x) − f (y)
g(x) − g(y) [ L + �

2
< L + �

Similarly, by Theorem 3 and (5), there exists d in [x, y], such that         

                               .  
f (x) − f (y)
g(x) − g(y) m

f ∏(d)
g ∏(d) m L − �

2

Therefore,

          .  
f (x)
g(x) =

f (x) − 0

g(x) − 0
=

f (x) −
yd∞
lim f (y)

g(x) −
yd∞
lim g(y) =

yd∞
lim

f (x) − f (y)
g(x) − g(y) m L − �

2
> L − �

Thus, we have shown that for all x > N, .   Hence,  .L − � <
f (x)
g(x) < L + �

xd∞
lim

f (x)
g(x) = L

As we can see, the proofs for Theorem 4 and 6 are similar.  The  next version will deal

with limit at − infinity.   The proof is exactly similar to that for Theorem 6 with

appropriate interpretation for the corresponding limit.

Theorem 7.    Suppose  f  and g are functions differentiable at x for all x < K for some

negative constant K and that g'(x) ≠ 0 for all x < K.  Suppose  .
xd− ∞
lim f (x) =

xd− ∞
lim g(x) = 0

If   exists and is equal to L, then   exists and is also equal to L.
xd− ∞
lim

f ∏(x)
g ∏(x) xd− ∞

lim
f (x)
g(x)
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The next version is the so called "/infinity or infinity/infinity" version of L' Hôpital's

rule.

Theorem 8.    Suppose  f and g are two functions that are differentiable on (a, b) and

that g' (x) ≠ 0 for all x in the open interval (a, b).   If  g' (x) > 0, then assume 

.  If  g' (x) < 0, then assume .  If   exists and is
xda+
lim g(x) = −∞

xda+
lim g(x) = ∞

xda+
lim

f ∏(x)
g ∏(x)

equal to L, then   exists and is also equal to L.  Here L may be ±∞.
xda+
lim

f (x)
g(x)

Proof.   The proof requires a careful handling of the limit.   Firstly, assume that L is

finite.

Since   , given ε > 0, there exists a δ > 0  with δ < b −a such that 
xda+
lim

f ∏(x)
g ∏(x) = L

             . --------   (6)a < x < a + � e
f ∏(x)
g ∏(x) − L < �

4
e L − �

4
<

f ∏(x)
g∏(x) < L + �

4

Fixed a point y in (a, a + δ).   Then by Theorem 3 and (6),  for any  x such that

a < x < y,  there exists points c and d in [x, y] such that 

.L − �
4

<
f ∏(c)
g ∏(c) [

f (x) − f (y)
g(x) − g(y) [

f ∏(d)
g∏(d) < L + �

4

Hence, for any x such that a < x < y,

.  --------------  (7)L − �
4

<
f (x) − f (y)
g(x) − g(y) < L + �

4

Note that since g'(x) ≠ 0 for all x in (a, b), by Theorem 2,  g is strictly monotonic on

(a, b) , i.e., g is either strictly increasing or strictly decreasing on (a, b).  

We shall assume, without loss of generality, that g' (x) > 0 on (a, b) and so g is strictly

increasing on (a, b). (The proof for the case g' (x) < 0 on (a, b) is similar.) 

Since  , we may assume that g(x) < 0 for any x in (a, a + δ).  Thus, there
xda+
lim g(x) = −∞

exists a δ1 > 0 such that for all x in (a, a + δ1),  .  Thus, let η = min(δ, δ1).
f (y)
g(x) < �

4

We may write for any x in (a, a + η),

f (x) − f (y)
g(x) − g(y) $

g(x) − g(y)
g(x) =

f (x)
g(x) −

f (y)
g(x)

                                                                .  =
f (x) − f (y)
g(x) − g(y) $ 1 −

g(y)
g(x)

The main step of our argument is to show for x sufficiently near a, 

         . -------- (8)L − �
4

1 −
g(y)
g(x) <

f (x)
g(x) −

f (y)
g(x) < L + �

4
1 −

g(y)
g(x)
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Now for x in (a, a + η), define .  Observe that since g(y) and g(x) areG(x) = 1 −
g(y)
g(x)

of the same sign, G(x) < 1 for x in (a, a + η).  Since  , we have that 
xda+
lim g(x) = −∞

.  Hence,  .   Therefore, there exists η1 with η >η1 > 0 such
xda+
lim

1
g(x) = 0

xda+
lim G(x) = 1

that 

a < x < a + η1 ⇒ |G(x) − 1| < min(1/2, ε/(2(1+|L|)).  Hence, letting ε1 = min(1/2,

εεεε/(2(1+|L|)), we have that 

                    a < x < a + η1 ⇒ 1 − ε/2 < 1− ε1 <G(x) < 1.         --------------- (9)

Note that ε1 ≤ 1/2 so that for x, such that a < x < a + η1, G(x) > ½ > 0.   Thus, from (7)

we get, for x such that a < x < a + η1,

                 . --------------  (10)(L − �
4

)G(x) <
f (x)
g(x) −

f (y)
g(x) < (L + �

4
)G(x)

But now   since G(x) < 1.  Also from (9), we have, if L ≥ 0, then
�
4

G(x) < �
4

        L − ε/2 < L − |L| ε1 ≤ L − L ε1 ≤ L .G(x) ≤ L .

If  L ≤ 0, then again from (9), we have,  

       L + ε/2 > L + |L| ε1 ≥ L − L ε1 ≥ L .G(x) ≥ L .

Consequently, it follows that for x such that a < x < a + η1 ,

                           L − ε/2 <  L .G(x) < L + ε/2.

Thus, it follows from (8) and (10) and the above inequality that for x such that a < x <

a + η1,

 ,
f (x)
g(x) −

f (y)
g(x) < LG(x) + �

4
G(x) < L + �

2
+ �

4
= L + 3

4
�

and   .L − 3
4
� = L − �

2
− �

4
< LG(x) − �

4
G(x) <

f (x)
g(x) −

f (y)
g(x)

Let now δ ' = η1 .  We have thus shown that for all x such that a < x < a + δ ' ,

  
f (x)
g(x) <

f (y)
g(x) + L + 3

4
� < L + 3

4
� + 1

4
� = L + �

            .
f (x)
g(x) >

f (y)
g(x) + L − 3

4
� > − 1

4
� + L − 3

4
� = L − �

and thus for all x such that a < x < a + δ ' ,

                                                                    .
f (x)
g(x) − L < �

This means  .
xda+
lim

f (x)
g(x) = L
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Suppose now L = + ∞.   

Then given any K > 0, there exists δ  > 0  with δ < b −a such that                                    

                     . ----------------------------   (11)a < x < a + � e
f ∏(x)
g ∏(x) > 2(K + 1)

As explained above, we may assume that g(x) < 0 for all x in (a, a+δ ).  As above, fix a

point y in (a, a + δ).   Then by  Theorem 3 and (11),  for any x such that a < x < y,  

there exists a point c in [x, y] such that 

                        .  --------------------------  (12)
f (x) − f (y)
g(x) − g(y) m

f ∏(c)
g ∏(c) > 2(K + 1)

As in the argument for the case L is finite, there exists a δ 1 > 0 such that for all x in (a,

a + δ1),     Taking η = min(δ, δ1).  We may write for any x in (a, a + η),
f (y)
g(x) < 1.

              . ----------------------- (13)
f (x)
g(x) −

f (y)
g(x) =

f (x) − f (y)
g(x) − g(y) $ 1 −

g(y)
g(x)

Then for , there exists η1, with  η > η1 > 0 such that G(x) = 1 −
g(y)
g(x)

                           a < x < a + η1 ⇒ |G(x) − 1| < ½   ⇒ G(x) > ½ .

Thus, from (12), for x such that a < x < a + η1 ,

                 . 
f (x)
g(x) −

f (y)
g(x) =

f (x) − f (y)
g(x) − g(y) $G(x) > K + 1

Therefore, for x such that a < x < a + η1 ,

                                 .
f (x)
g(x) > K + 1 +

f (y)
g(x) > K + 1 − 1 = K

This proves that .
xda+
lim

f (x)
g(x) = ∞

The proof for the case when L = − ∞ is similar.

 

The next theorem is the infinity version of  Theorem 4.

Theorem 9.   Suppose  f and g are two functions that are continuous on [a, b] and

differentiable on (a, b).   Suppose  f (a) = g(a) = 0.   Suppose that g' (x) ≠ 0 for all x in

the open interval (a, b).   If  , then   .
xda+
lim

f ∏(x)
g ∏(x) = ∞

xda+
lim

f (x)
g(x) = ∞

Proof.    Since , given any K > 0, there exists δ > 0 such that
xda+
lim

f ∏(x)
g ∏(x) = ∞
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                                  --------------  (11)a < x < a + � e
f ∏(x)
g ∏(x) > K.

Take a fixed x in the interval (a, a + δ).   Then for any y such that a < y < x,  by

Theorem 3, there exists a point c in (y, x), such that   .  But by
f (x) − f (y)
g(x) − g(y) m

f ∏(c)
g ∏(c)

(11),   and so .   
f ∏(c)
g ∏(c) > K

f (x) − f (y)
g(x) − g(y) > K

Hence, 

                 . 
f (x)
g(x) =

f (x) − 0

g(x) − 0
=

f (x) −
yda+
lim f (y)

g(x) −
yda+
lim g(y) =

yda+
lim

f (x) − f (y)
g(x) − g(y) m K

This is true for any x in (a, a + δ ).  Therefore,  .
xda+
lim

f (x)
g(x) = ∞

Remark.  The corresponding results or conclusions for the left limit and limit hold as

well as for the case when the limit is − ∞.  

There is a more complicated version of L' Hôpital's rule.   This deals with the version,

where  f ' (x)/g'(x)  is not defined around the point x = a, nevertheless after appropriate

"cancellation"  f '(x)/g'(x)  does have limit at the point a.   Our previous theorem cannot

handle this case simply because f ' (x) / g'(x) is not defined in any neighbourhood of the point

a.   First we need a refined version of Theorem 3.

Theorem 10.   Suppose  f   and g are two differentiable functions defined on the

closed and bounded interval [a, b].  Furthermore, suppose that the derivatives of  f and

g satisfy  f '(x) = k(x)ϕ (x) and g'(x) = k(x)ψ(x) for all x in  [a, b].  Suppose ψ(x) and  

k(x) satisfy anyone of the following conditions.

1. ψ(x) > 0 for all x in [a, b] and that k(x) > 0 except possibly for a set N of zero

measure in [a, b] and k(x) = 0 for x in N. 

2. ψ(x) < 0 for all x in [a, b] and that k(x) < 0 except possibly for a set N of zero

measure in [a, b] and k(x) = 0  for x in N.

3. ψ(x) > 0 for all x in [a, b] and that k(x) < 0 except possibly for a set N of zero

measure in [a, b] and k(x) = 0  for x in N.

4. ψ(x) < 0 for all x in [a, b] and that k(x) > 0 except possibly for a set N of zero

measure in [a, b] and k(x) = 0  for x in N.

 Ng Tze Beng  2002 9



Then there exist points p, q in [a, b] such that

.
�(p)
�(p) m

f (b) − f (a)
g(b) − g(a) m

�(q)
�(q)

Proof.    We shall prove only the case, where condition 1 is satisfied.  The other three

cases are proved similarly.  Define the function  h :[a, b]→ R by  h(x) = f

(x)(g(b)−g(a)) − g(x)( f (b) − f (a)) for x in the interval [a, b].  Since  f  and g are

differentiable on [a, b],  h is also differentiable on [a, b].  Note that  h(a) = h(b) = f

(a)g(b) − g(a) f (b).   By Theorem 1, there exist p and q in [a, b] such that

.h ∏(p) m
h(b) − h(a)

b − a
= 0 m h ∏(q)

Therefore, since h'(x) = f '(x)(g(b)−g(a)) − g'(x)( f (b)− f (a)), we get

      h'(p) = k( p)[ϕ(p)(g(b)−g(a)) −ψ(p)( f (b)− f (a))] ≥ 0 --------------- (12)

and

          h'(q) = k(q)[ϕ(q)(g(b)−g(a)) −ψ(q)( f (b)− f (a))] ≤ 0 ---------------- (13)

If  k(p) > 0, then since ψ(p) > 0 and g(b)−g(a) > 0 (because g is strictly increasing as

we shall show below), from (12) we obtain .   If  h'(p) = 0 and
�(p)
�(p) m

f (b) − f (a)
g(b) − g(a)

k(p) > 0,  then we obtain .  We need not use Theorem 1 here as
�(p)
�(p) =

f (b) − f (a)
g(b) − g(a)

the following claim will show.  

We claim that there exists p in [a, b] − N such that h'(p) ≥ 0  and  k(p) > 0.

Note that the condition that ψ(x) > 0 for all x in [a, b] and that k(x) > 0 except possibly

for a set N of zero measure in [a, b] and k(x) = 0 for x in N implies that g'(x) = k(x)

ψ(x) > 0 except perhaps possibly for x in N, which is a set of zero measure, and g'(x) =

0 for x in N.   Hence g'(x) ≥ 0 for all x in [a, b].  Then g is non decreasing in [a, b].   

This is because if there exist x < y in [a, b] such that g(x) > g(y), then by Theorem 1,

there exists a point z in [x, y] such that   contradicting g'(z) ≥ 0.g ∏(z) [
g(y) − g(x)

y − x < 0

Next we claim that g is strictly increasing.  Suppose there exist x < y in [a, b] such that

g(x) = g(y).  Then for all z in [x, y], g(z) = g(x).  This is because if there exists z in [x,

y] such that g(z) ≠ g(x), then since g is non decreasing g(z) > g(x), and so g(z) > g(y) =

g(x), contradicting g(z) ≤  g(y).  Therefore,  g is constant on [x, y] and so g'(x) = 0 on

[x, y] implying that [x, y] ⊆ N and so since the measure of [x, y] is y − x > 0 , the

measure of N is non-zero, contradicting the assumption that the measure of N is zero.

 Ng Tze Beng  2002 10



The crucial property we use here is that N does not contain any non trivial open

interval.  This shows that g is strictly increasing. 

Suppose on the contrary that for all x in [a, b] either h'(x) < 0 or k(x) = 0.   This means

h'(x) < 0 except for points in the set N  of measure zero where h'(x) = 0 there.

Therefore, h'(x) ≤ 0.  This implies that h is decreasing.  But h(a) = h(b) implies that h

is constant on [a, b] and so h'(x) = 0 contradicting h'(x) < 0 for x outside N.  Hence,

there exists p  in [a, b] − N such that h'(p) ≥ 0  and  k(p) > 0.

This proves the claim.  Hence there exists  p  in [a, b] such that .
�(p)
�(p) m

f (b) − f (a)
g(b) − g(a)

Similarly,  if  k(q) > 0, then since ψ(q) > 0 and g(b)−g(a) > 0, from (13) we obtain 

.   We need not use Theorem 1 here but all the same it is good to
�(q)
�(q) [

f (b) − f (a)
g(b) − g(a)

see that it can give us some partial answer.  We now claim that there exists q in [a,

b]− N such that h'(q)≤ 0  and  k(q) > 0.   Note that when k(q) = 0 then h'(q) = 0.

Suppose on the contrary such a q does not exist, then for all x in [a, b]− N, h'(x) > 0.

This means h is increasing on [a, b].  But h(b) = h(a) implies that h is constant on [a,

b].  Consequently, h'(x) = 0 for all x in [a, b], contradicting h'(x) > 0 for x in [a, b]− N.

Hence, exists q in [a, b]− N such that h'(q)≤ 0  and  k(q) > 0.  This proves the claim.  It

then follows from the claim that there exists q in [a, b] such that ϕ(q)(g(b)−g(a))

−ψ(q)( f (b)− f (a)) ≤ 0.  This means .
�(q)
�(q) [

f (b) − f (a)
g(b) − g(a)

This proves Theorem 10.

Theorem 11  Generalized L' Hôpital's Rule.   Suppose  f and g are two functions

that are continuous on [a, b] and differentiable on (a, b).   Suppose  f (a) = g(a) = 0.

Furthermore, suppose that the derivatives of  f and g satisfy f '(x) = k(x)ϕ(x) and g'(x) =

k(x)ψ(x)  for all x in (a, b).  Suppose ψ(x) and  k(x) satisfy any one of the following

conditions.

1. ψ(x) > 0 for all x in (a, b)  and that k(x) > 0 except possibly for a set N of zero

measure in (a, b)  and  k(x) = 0  for x in N. 

2. ψ(x) < 0 for all x in (a, b)  and that k(x) < 0 except possibly for a set N of zero

measure in (a, b)  and  k(x) = 0  for x in N.

3. ψ(x) > 0 for all x in (a, b)  and that k(x) < 0 except possibly for a set N of zero

measure in (a, b)  and  k(x) = 0  for x in N.
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4. ψ(x) < 0 for all x in (a, b)  and that k(x) > 0 except possibly for a set N of zero

measure in (a, b)  and  k(x) = 0 for x in N.

If   exists and is equal to L, then   exists and is also equal to L, i.e.  
xda+
lim
�(x)
�(x) xda+

lim
f (x)
g(x)

 if the limit on the right hand side exists.
xda+
lim

f (x)
g(x) =

xda+
lim
�(x)
�(x)

Proof.   The proof is similar to the proof of Theorem 4.  This time round we use

Theorem 10.  Since   , given ε > 0, there exists δ > 0 such that 
xda+
lim
�(x)
�(x) = L

 .      --------   (14)a < x < a + � e L − �
2

<
�(x)
�(x) < L + �

2

We may assume that a + δ ≤ b.  For any fixed x in the interval (a, a + δ), let y be any

point such that a < y < x.  Then by Theorem 10, applied to the interval [ y, x], for some

point c in [ y, x], we have 

                       .
f (x) − f (y)
g(x) − g(y) m

�(c)
�(c)

Note that by assumption, the conditions for Theorem 10 are met on [ y, x] ⊆ (a, b).       

Now since a < c < x < a + δ , by (14),  .    Thus we have, for any y such
�(c)
�(c) > L − �

2

that a < y < x,  .   Therefore,  since  f (a) = g(a) = 0,  by the
f (x) − f (y)
g(x) − g(y) > L − �

2

continuity of  f  and g at a,   .   
f (x)
g(x) =

f (x) − f (a)
g(x) − g(a) =

yda+
lim

f (x) − f (y)
g(x) − g(y) m L − �

2
> L − �

That means for all x such that a < x < a + δ,   .  Also by Theorem 10, there
f (x)
g(x) > L − �

exists a point d in [ y, x],  such that   .  Then using (14) we have 
f (x) − f (y)
g(x) − g(y) [

�(d)
�(d)

.   Again using the continuity of  f  and g at a and the above
f (x) − f (y)
g(x) − g(y) [ L + �

2

inequality,    

                      .  
f (x)
g(x) =

f (x) − f (a)
g(x) − g(a) =

yda+
lim

f (x) − f (y)
g(x) − g(y) [ L + �

2
< L + �

We have thus proved that for any x with a <  x < a + δ ,  .   Hence,L − � <
f (x)
g(x) < L + �

.
yda+
lim

f (x)
g(x) = L

Remark.  
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1. Taking k(x) to be the non zero constant function gives Theorem 4.

2. We can replace N by a set that is at most countably infinite, which is more

acceptable for reader uncomfortable or not familiar with measure theory.

3. We can replace N by a set, which is no where dense (i.e., it does not contain any

non trivial open interval) so that N would include sets like Cantor sets of positive

measure as well as any set of zero measure.

4. Theorem 11 also holds if we replace the limit by the left limit at the point b.  The

proof is exactly the same.

Example.   

1. Take for example the functions   and �(x) =
 

 
 

cos2( 1
x ) sin(x), x ! 0

0, x = 0

.  Then both λ(x) and γ(x) are continuous functions�(x) =
 

 
 

cos2( 1
x )x, x ! 0

0, x = 0

defined on R.  Define   and   for each x in R.   Thisf (x) = ¶
0

x
�(t)dt g(x) = ¶

0

x
�(t)dt

is well defined since both λ(x) and γ(x) are Riemann integrable over any bounded

closed interval.   Since by the Fundamental Theorem of Calculus,  f '(x) = λ(x) and

g'(x) = γ(x) and since   for only countably infinite number of x in anycos2( 1
x ) = 0

neighbourhood of 0, by Theorem 11,    Note that we
xd0+
lim

f (x)
g(x) =

xd0+
lim

sin(x)
x = 1.

cannot apply Theorem 4, the usual version of L' Hôpital's Rule directly.

2. Take for example the functions   and f (x) =
 

 
 

sin3( 1
x )x4, x ! 0

0, x = 0

.  Then both  f (x) and γ(x) are continuous functions�(x) =
 

 
 

sin2( 1
x ) sin(x), x ! 0

0, x = 0

defined on R.  Define  for each x in R.   This is well defined sinceg(x) = ¶
0

x
�(t)dt

both λ(x) and γ(x) are Riemann integrable over any bounded closed interval.  By

the Fundamental Theorem of Calculus, g'(x) = γ(x) =  for x > 0.  sin2( 1
x ) sin(x)

Now 

. f ∏(x) = −3 sin2( 1
x ) cos( 1

x )x2 + 4x3 sin3( 1
x ) = sin2( 1

x )x −3 cos( 1
x )x + 4x2 sin( 1

x )

  
xd0+
lim

x −3 cos( 1
x )x + 4x2 sin( 1

x )

sin(x) =
xd0+
lim

x
sin(x) xd0+

lim −3 cos( 1
x )x + 4x2 sin( 1

x ) = 0
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 because   and   by the Squeeze
xd0+
lim

x
sin(x) = 1

xd0+
lim −3 cos( 1

x )x + 4x2 sin( 1
x ) = 0

Theorem. Thus, by Theorem 11,    
xd0+
lim

f (x)
g(x) =

xd0+
lim

x −3 cos( 1
x )x + 4x2 sin( 1

x )

sin(x) = 0.

Next we state the corresponding infinity version of  Theorem 11.

Theorem 12.    Suppose  f and g are two functions that are differentiable on (a, b).

Suppose  .  Furthermore, suppose that the derivatives of  f and g satisfy  
xda+
lim g(x) = !∞

f '(x) = k(x)ϕ(x) and g'(x) = k(x)ψ(x)  for all x in  (a, b).  Suppose ψ(x) and  k(x) satisfy

anyone of the following conditions.

1. ψ(x) > 0 for all x in (a, b) and that k(x) > 0 except possibly for a set N of zero

measure in (a, b) and k(x) = 0  for x in N.  Suppose .
xda+
lim g(x) = −∞

2. ψ(x) < 0 for all x in (a, b) and that k(x) < 0 except possibly for a set N of zero

measure in (a, b) and k(x) = 0  for x in N.  Suppose .
xda+
lim g(x) = −∞

3. ψ(x) > 0 for all x in (a, b) and that k(x) < 0 except possibly for a set N of zero

measure in (a, b) and k(x) = 0  for x in N.  Suppose .
xda+
lim g(x) = ∞

4. ψ(x) < 0 for all x in (a, b) and that k(x) > 0 except possibly for a set N of zero

measure in (a, b) and k(x) = 0  for x in N.  Suppose . 
xda+
lim g(x) = ∞

If   exists and is equal to L, then   exists and is also equal to L, i.e.  
xda+
lim
�(x)
�(x) xda+

lim
f (x)
g(x)

 if the limit on the right hand side exists or equal to ±∞. 
xda+
lim

f (x)
g(x) =

xda+
lim
�(x)
�(x)

Remark.  The proof of Theorem 12 is the same as that for Theorem 8.  We use here

Theorem 10 instead of  Theorem 3.  We also have the corresponding Theorem for the

left limit at x = b.

Proof of Theorem 12.

We prove the theorem when condition (1) is satisfied.  The proof for the other 3 cases

are similar.

Firstly, we prove the case when  is finite.
xda+
lim
�(x)
�(x) = L
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Since   , given ε > 0, there exists δ > 0  with δ < b −a such that 
xda+
lim
�(x)
�(x) = L

             . --------   (15)a < x < a + � e
�(x)
�(x) − L < �

4
e L − �

4
<
�(x)
�(x) < L + �

4

Fixed a point y in (a, a + δ).   Then by Theorem 10 and (15),  for any  x such that

a < x < y,  there exists points p and q in [x, y] such that 

.L − �
4

<
�(p)
�(p) [

f (x) − f (y)
g(x) − g(y) [

�(q)
�(q) < L + �

4

Hence, for any  x such that a < x < y,

.  --------------  (16)L − �
4

<
f (x) − f (y)
g(x) − g(y) < L + �

4

Note that since g'(x) = k(x)ψ(x) > 0 for x in (a, b) − N and g'(x) = 0 for x in N,  g is

increasing on (a, b).  We claim that g is strictly increasing in (a, b).  If  there exists c, d

in (a, b) such that c < d but g(c) = g(d), then g(x) is constant in [c , d ] and so g'(x) = 0

for x in (c, d) and so (c, d) ⊆ N.  As measure of N is zero and measure of (c, d) = d − c

> 0,  (c, d) ⊄ N.  This contradicts (c, d) ⊆ N.  Therefore, g is strictly increasing on (a,

b).   In this case,  , we may assume that g(x) < 0 for any x in (a, a + δ).
xda+
lim g(x) = −∞

As , there exists a δ1 > 0 such that for all x in (a, a + δ1),    
xda+
lim g(x) = −∞

f (y)
g(x) < �

4
.

Thus, let η = min(δ, δ1).  We may write for any x in (a, a + η),

f (x) − f (y)
g(x) − g(y) $

g(x) − g(y)
g(x) =

f (x)
g(x) −

f (y)
g(x)

                                                                .  =
f (x) − f (y)
g(x) − g(y) $ 1 −

g(y)
g(x)

The main step of our argument is to show for x sufficiently near a, 

  .  ------ (17)L − �
4

1 −
g(y)
g(x) <

f (x)
g(x) −

f (y)
g(x) < L + �

4
1 −

g(y)
g(x)

Now for x in (a, a + η), define .  Since  , we have that G(x) = 1 −
g(y)
g(x) xda+

lim g(x) = −∞

.  Hence,  .   Therefore, there exists η1, with  η >η1 > 0, such
xda+
lim

1
g(x) = 0

xda+
lim G(x) = 1

that a < x < a + η1 ⇒ |G(x) − 1| < min(1/2, ε/(2(1+|L|)).  Hence, letting ε1 = min(1/2,

ε/(2(1+|L|)), we have that 

                   a < x < a + η1 ⇒ 1 − ε/2 < 1− ε1 < G(x) < 1.  --------------- (18)

Note that ε1 ≤ ½  so that for x, such that a < x < a + η1, G(x) > ½ > 0.   Thus, from (16)

we get, for x such that a < x < a + η1,
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                 . --------------  (19)(L − �
4

)G(x) <
f (x)
g(x) −

f (y)
g(x) < (L + �

4
)G(x)

But now   since G(x) < 1.  Also from (18), we have, if L ≥ 0, then
�
4

G(x) < �
4

                         L − ε/2 < L − |L| ε1 ≤ L − L ε1 ≤ L .G(x) ≤ L.

If  L ≤ 0, then again from (18) we have,  

                        L + ε/2 > L + |L| ε1 ≥ L − L ε1 ≥ L .G(x) ≥ L .

Consequently, it follows that for x such that a < x < a + η1,

                           L − ε/2 <  L .G(x) < L + ε/2.

Thus, it follows from (18), (19) and the above inequality that for x such that a < x < a

+ η1,

 ,
f (x)
g(x) −

f (y)
g(x) < LG(x) + �

4
G(x) < L + �

2
+ �

4
(1) = L + 3

4
�

and   .L − 3
4
� = L − �

2
− �

4
(1) < LG(x) − �

4
G(x) <

f (x)
g(x) −

f (y)
g(x)

Let now δ ' = η1.  We have thus shown that for all x such that a < x < a + δ ' ,

  
f (x)
g(x) <

f (y)
g(x) + L + 3

4
� < L + 3

4
� + 1

4
� = L + �

and

            .
f (x)
g(x) >

f (y)
g(x) + L − 3

4
� > L − 3

4
� − 1

4
� = L − �

Hence, for all x such that a < x < a + δ ' ,

                                                                    .
f (x)
g(x) − L < �

This means  .
xda+
lim

f (x)
g(x) = L

Suppose now .   
xda+
lim
�(x)
�(x) = L = +∞

Then given any K > 0, there exists δ > 0  with δ < b −a such that 

                                             ----------------------------   (20)a < x < a + � e
�(x)
�(x) > 2(K + 1)

As above fix a point y in (a, a + δ).   Then by  Theorem 10 and (20),  for any  x such

that a < x < y,  there exists a point c in [x, y] such that 

                        .  --------------------------  (21)
f (x) − f (y)
g(x) − g(y) m

�(c)
�(c) > 2(K + 1)
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As in the argument for the case L is finite, there exists a δ1 > 0 such that for all x in (a,

a + δ1),     Taking η = min(δ, δ1).  We may write for any x in (a, a + η),
f (y)
g(x) < 1.

              . ----------------------- (22)
f (x)
g(x) −

f (y)
g(x) =

f (x) − f (y)
g(x) − g(y) $ 1 −

g(y)
g(x)

Then for , there exists η1, with η > η1 > 0, such that G(x) = 1 −
g(y)
g(x)

                           a < x < a + η1 ⇒ |G(x) − 1| < ½   ⇒ G(x) > ½ .  ---------  (23)

Thus, from (21), (22) and (23), for x such that a < x < a + η1,

                 . 
f (x)
g(x) −

f (y)
g(x) =

f (x) − f (y)
g(x) − g(y) $G(x) > K + 1

Therefore, for x such that a < x < a + η1,

                                 .
f (x)
g(x) > K + 1 +

f (y)
g(x) > K + 1 − 1 = K

This proves that .
xda+
lim

f (x)
g(x) = ∞

The case when L = − ∞ is similar.

Remark.  

1. Note that the requirement that k(x) does not change sign infinitely often is

necessary.  Consider the following functions.  

   for x > 0 and  .   Then obviously f (x) = ¶
0

1
x

cos2(t)dt g(x) = f (x)esin( 1
x )

.  Then   for all x > 0 and so  
xd0+
lim f (x) =

xd0+
lim g(x) = ∞

f (x)
g(x) = 1

esin( 1
x )

 does not exist simply because  does not exist.
xd0+
lim

f (x)
g(x) =

xd0+
lim

1

esin( 1
x ) xd0+

lim sin( 1
x )

Now  and f ∏(x) = − cos2( 1
x ) 1

x2 g ∏(x) = − cos2( 1
x ) 1

x2 esin( 1
x ) − f (x)esin( 1

x ) cos( 1
x ) 1

x2

and so if  we were to take   and after "canceling" k(x) from both  k(x) = − cos( 1
x ) 1

x2

f '(x) and g'(x) we would obtain the quotient of   f '(x) by g'(x) as  

.  Then  .   But we
cos( 1

x )

cos( 1
x )esin( 1

x ) + f (x)esin( 1
x ) xd0+

lim
cos( 1

x )

cos( 1
x )esin( 1

x ) + f (x)esin( 1
x )

= 0

certainly cannot conclude that .
xd0+
lim

f (x)
g(x) = 0

2. The corresponding results for Theorem 11 and Theorem 12 for limit at ∞ or − ∞

hold.  
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Some Misuse of L' Hôpital's Rule.

We must remember that L' Hôpital's Rule is a theorem.  Most theorems have a set of

conditions and a set of implications.  Some theorems give implication in both

direction.  L' Hôpital's Rule gives an implication in one direction.   Only when the

limit   exists, then we can make deduction about the limit ,
xda+
lim

f ∏(x)
g ∏(x) xda+

lim
f (x)
g(x)

provided the initial condition is fulfilled.  On the other hand, when  exists, it
xda+
lim

f (x)
g(x)

does not necessarily follow that  should exist.  Put it another way, if 
xda+
lim

f ∏(x)
g ∏(x)

does not exist, it is not necessary that does not exist.
xda+
lim

f ∏(x)
g ∏(x) xda+

lim
f (x)
g(x)

Example 1.  ,  g(x) = sin(x).    Then f (x) =
 

 
 

cos( 1
x )x2, x ! 0

0, x = 0

.   But g'(x) = cos(x) and .  
xd0
lim

f (x)
g(x) =

xd0
lim

cos( 1
x )x2

sin(x) =
xd0
lim

x
sin(x) xd0

lim cos( 1
x )x = 1 $ 0 = 0

.  Therefore, for x ≠ 0 and −π/2 < x < π/2f ∏(x) =
 

 
 

2x cos( 1
x ) + sin( 1

x ), x ! 0

0, x = 0

.    Thus,  does not exist simply because  
f ∏(x)
g ∏(x) =

2x cos( 1
x )

cos(x) +
sin( 1

x )
cos(x) xd0

lim
f ∏(x)
g ∏(x)

 does not exist and  .
xd0
lim

sin( 1
x )

cos(x) xd0
lim

2x cos( 1
x )

cos(x) = 0

Example 2.    ,  g(x) = sin(x).    Then f (x) =
 

 
 

x cos( 1
x ), x ! 0

0, x = 0 xd0
lim

f (x)
g(x) =

xd0
lim

x cos( 1
x )

sin(x)

does not exist because  and  does not exist.   Note that 
xd0
lim

x
sin(x) = 1

xd0
lim cos( 1

x )

  and g'(x) = cos(x) and so .f ∏(x) = cos( 1
x ) + 1

x sin( 1
x ), x ! 0

f ∏(x)
g ∏(x) =

cos( 1
x )

cos(x) +
1
x sin( 1

x )
cos(x)

Therefore,  does not exist simply because  is bounded say for all x ≠ 0
xd0
lim

f ∏(x)
g ∏(x)

cos( 1
x )

cos(x)

in a small neighbourhood of 0 and   is unbounded for all x ≠ 0 in any small
1
x sin( 1

x )
cos(x)

neighbourhood of 0.  Logically, if the conditions, that  and that
xda
lim f (x) =

xda
lim g(x) = 0

g'(x) ≠ 0 for x in a small open interval containing a except possibly at a, are satisfied,

then  does not exist implies that  does not exist.  This is just the
xda
lim

f (x)
g(x) xd0

lim
f ∏(x)
g ∏(x)
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contra positive equivalent statement for L' Hôpital's Rule.  The above example is just

an illustration of this fact. 

Example 3.     It is very tempting to use L' Hôpital's Rule for differentiation.  By

definition of the derivative of a function   f  at x = a, 

 if and only if the limit exists.  That means thatf ∏(x) =
xda
lim

f (x) − f (a)
x − a xda

lim
f (x) − f (a)

x − a

only if the limit  exists, then we can say that the derivative  f '(a)  
xda
lim

f (x) − f (a)
x − a

exists.  Suppose we apply L' Hôpital's Rule to the limit .  Then we can
xda
lim

f (x) − f (a)
x − a

only say that if the limit  exists at a, then  f   is differentiable at x = a.   But
xda
lim

f ∏(x)
1

we cannot say in general that if   does not exist at x = a , then   f   is not  
xda
lim f ∏(x)

differentiable at x = a.  This is because that a function  f  can be differentiable at x = a

but its derived function need not be continuous at x = a.   Take

.   Then  .   Indeed  f  isf (x) =
 

 
 

cos( 1
x )x2, x ! 0

0, x = 0
f ∏(x) =

 

 
 

2x cos( 1
x ) + sin( 1

x ), x ! 0

0, x = 0

differentiable at x = 0, because by
xd0
lim

f (x) − f (0)
x − 0

=
xd0
lim

cos( 1
x )x2

x =
xd0
lim cos( 1

x )x = 0

the Squeeze Theorem and so  f ' (0) = 0.   But  does not exist.
xd0
lim f ∏(x)
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