Intermediate Value Theorem for the Derived Function (Darboux's Theorem)

Ng Tze Beng

The intermediate value theorem for continuous function is a very useful result. A lesser known result about differentiable function is that its derived function also has the intermediate value property.

Theorem 1. Let I be an open interval and suppose $f: I \rightarrow \mathbf{R}$ is a differentiable function. Let a, b be two points in I such that $a<b$. Suppose $f^{\prime}(a) \neq f^{\prime}(b)$. Then for any value γ strictly between $f^{\prime}(a)$ and $f^{\prime}(b)$, there is a point c in (a, b) such that $f^{\prime}(a)=\gamma$.

Proof. Let us define the following function $\mathrm{g}: I \rightarrow \mathbf{R}$ by $g(x)=f(x)-\gamma x$ for x in I. Then g is differentiable and $g^{\prime}(x)=f^{\prime}(x)-\gamma$. If we can show that g has either a relative maximum or a relative minimum at a point c in (a, b), then we are done. Consider the function $h:[a, b] \rightarrow \mathbf{R}$, the restriction of g to the closed interval, $[a, b]$. Then since g is differentiable, g is also continuous on $[a, b]$. Therefore, by the Extreme Value Theorem, the restriction of g, h attains both its maximum and minimum in $[a, b]$. We shall show that at least one of the absolute maximum or absolute minimum occurs in the interior of $[a, b]$. Suppose $h(a)$ is the maximum and $h(b)$ is the minimum. Then for all x in $[a, b], h(x) \leq h(a)$ and $h(x) \geq h(b)$. Hence for all x in $[a, b], f(x)-\gamma x \leq f(a)-\gamma$ a, that is, $f(x)-f(a) \leq \gamma x-\gamma a$. Therefore, for all x in $[a, b]$ and $x \neq a,(f(x)-f(a)) /(x-a) \leq \gamma$. Since f is differentiable at a, $f^{\prime}(a)=\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a} \leq \gamma$. Also we have for all x in $[a, b], f(x)-\gamma x \geq f(b)-\gamma$ b, that is, $f(b)-f(x) \leq \gamma b-\gamma x$. Consequently, for all x in $[a, b),(f(b)-f(x)) /(b$ $-x) \leq \gamma$ since $b-x>$ for $x<b$. Since f is differentiable at b, $f^{\prime}(b)=\lim _{x \rightarrow b^{-}} \frac{f(b)-f(x)}{b-x} \leq \gamma$. Therefore, we can conclude that $f^{\prime}(a)$ and $f^{\prime}(b)$ are both less than or equal to γ, contradicting that γ is strictly between $f^{\prime}(a)$ and $f^{\prime}(b)$. Similarly, if $h(a)$ is the minimum and $h(b)$ is the maximum, we can show in like manner that $f^{\prime}(a)$ and $f^{\prime}(b)$ are both greater than or equal to γ, giving a contradiction to that γ is strictly between $f^{\prime}(a)$ and $f^{\prime}(b)$. We have thus shown that one of the maximum or minimum of h must occur at a point c in (a, b). Since $h(c)$ is also a relative extremum and h is differentiable, $h^{\prime}(c)=f^{\prime}(c)-\gamma=0$ and so $f^{\prime}(c)=\gamma$. (See Theorem 6.1.2, Calculus, an introduction page 82.) This completes the proof.

Corollary 2. Let I be an open interval and suppose $f: I \rightarrow \mathbf{R}$ is a differentiable function. Then the image of the derived function of $f, f^{\prime}(I)$ is also an interval.

Proof. The proof is similar to Theorem 4.6.12 of Calculus, an introduction, page 53 that is the continuous image of an interval is an interval. Let $f^{\prime}(a) \neq f^{\prime}(b)$ be in $f^{\prime}(I)$. We may assume that $f^{\prime}(a)<f^{\prime}(b)$. Theorem 1 says that for any γ such that $f^{\prime}(a)<\gamma<f^{\prime}(b), \gamma \in f^{\prime}(I)$. Hence the interval $\left[f^{\prime}(a), f^{\prime}(b)\right] \subseteq f^{\prime}(I)$. Therefore, by the usual characterisation of an interval, $f^{\prime}(I)$ is an interval.

Remark. In the proof of Theorem 1 above, only the right derivative of f at x $=a$ and the left derivative of f at b is used. Thereofore, if the domain of f is
an interval I not necessarily open and if the derivative of f is appropriately defined as the right derivative or left derivative at the end point or end points of its domain I, then Theorem 1 holds true when I is just any interval.
Consequently, Corollary 2 is also true when the domain of f, I, is replaced by any interval, not necessarily open.

