
Application of Riemann Integral

By Ng Tze Beng

Part 1.  Arc  Length

Take a function f : [a, b] → R defined on a closed and bounded interval [a, b].   Suppose  f  is continuous on

[a, b].  Then the graph of the function  f  is a curve in R2  and is usually said to be given by the equation y = f

(x) .  What is the length of this curve?    We can consider an estimate of the length by taking points on this

curve and take the length of a polygonal curve passing through theses points.   To do this we take a partition

∆ : a = x0 < x1 < x2 < … < xn = b  for the interval [a, b].  Let P0 be the point (x0 , f (x0)) and Pi = (xi , f (xi)).

Then the length of the  polygonal curve P0P1…Pn  is an approximation of the arc length P0Pn . 

The length of the polygonal curve P0P1…Pn  is  given  by

        |P0P1| + |P1P2| + £ + |Pn-1Pn|   or   .�
i=1

n

|P i−1P i|

Now, the length of each line segment |Pi-1Pi| is the length of the line joining (xi-1 , f (xi-1)) to   (xi , f (xi)).  Thus,

by the Pythagorean Theorem, 

                              .|P i−1P i| = (x i − x i−1)2 + ( f (x i) − f (x i−1))2

Therefore, the length of the polygonal curve P0P1…Pn  is  given  by

                                              ------------------      (1)�
i=1

n

(x i − x i−1)2 + ( f (x i) − f (x i−1))2

We define the arc length of the curve given by y = f (x), for  a ≤ x ≤ b to be the limit of all possible polygonal

approximation as given by (1), if it exists.   If it exists, the curve is called a rectifiable curve, otherwise it is

not.  Not all continuous curves on a closed and bounded domain  are rectifiable. 

We may thus write the arc length as

                                            -----------------    (2)
||�||d 0
lim �

i=1

n

(x i − x i−1)2 + ( f (x i) − f (x i−1))2

  

Figure 1.  Approximation by polygonal curve, n =11
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Here in (2) as usual, ||∆|| denotes the norm of the partition ∆, i.e., the maximum of  all the lengths of the

subintervals [xi-1 , xi] as defined by the partition ∆.

The  limit (2) does not seem to be easily computable or at all convenient as a calculable process.  We shall

rewrite (2) under additional condition, in a form that we can apply an integral formula.  That is, we shall

write (1), if  possible as a Riemann sum.

Now for each i,

                   (x i − x i−1)2 + ( f (x i) − f (x i−1))2 = 1 + (
f (x i) − f (x i−1)

x i − x i−1
)2 (x i − x i−1)

Suppose  now  f  is also differentiable on (a, b), then by the Mean Value Theorem, for each 1 ≤ i ≤ n there

exists η i  in (xi-1 , xi ) such that  

                                                   
f (x i) − f (x i−1)

x i − x i−1
= f ∏(� i)

because f  is continuous on [xi-1 , xi ] and differentiable on (xi-1 , xi ).    Thus, the length of the polygonal curve

P0P1…Pn  is  given  by

 

                             .  -------------------   (4)�
i=1

n

1 + ( f ∏(� i))
2 (x i − x i−1) =�

i=1

n

1 + ( f ∏(� i))
2 �x i

The expression (4) is then a Riemann sum for the function   with respect to the partition ∆ : a1 + ( f ∏(x))2

= x0 < x1 < x2 < … < xn = b.    Therefore,  if   is Riemann integrable on [a, b], then the limit (2)1 + ( f ∏(x))2

is then the Riemann integral 

                                            .            -------------------------------------   (5)¶
a

b
1 + ( f ∏(x))2 dx

If  f ' (x) is defined and Riemann integrable on [a, b], then   is Riemann integrable on [a, b]1 + ( f ∏(x))2

and the arc length is given by the integral formula (5).

Remark.

1.  Limit (2) exists, if and only if, there exists a constant K > 0 such that 

                                       �
i=1

n

f (x i) − f (x i−1) [ K

for any partition ∆ : a = x0 < x1 < x2 < … < xn = b for [a, b].   

Observe that we have the following inequality, 

   �
i=1

n

f (x i) − f (x i−1) [�
i=1

n

(x i − x i−1)2 + ( f (x i) − f (x i−1))2 [�
i=1

n

x i − x i−1 +�
i=1

n

f (x i) − f (x i−1)

                                 .[ b − a +�
i=1

n

f (x i) − f (x i−1)

If the limit (2) exists, then by the first part of the inequality,    is bounded by    �
i=1

n

f (x i) − f (x i−1)

.  Conversely, if    
||�||d 0
lim �

i=1

n

(x i − x i−1)2 + ( f (x i) − f (x i−1))2 �
i=1

n

f (x i) − f (x i−1) [ K

for any partition ∆ : a = x0 < x1 < x2 < … < xn = b for [a, b], by the second part of the inequality,  

  is bounded  by K + b − a  and so the limit exists.�
i=1

n

(x i − x i−1)2 + ( f (x i) − f (x i−1))2
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This condition is the definition of  f  being of bounded variation on [a, b].  (Ref:  my article on the  Calculus

web, Monotone function, Function of bounded variation and the Fundamental Theorem of Calculus.)  

2.  If  f ' (x) is defined and  is Riemann integrable on  [a, b], then   is Riemann(f ∏(x))2 1 + ( f ∏(x))2

integrable on [a, b].  (Ref:  Theorem 2 in my article on Calculus web, Composition and Riemann

integrability.)  In this case the arc length is given by the integral  formula (5).  This is true, in particular,

when  f ' is defined and continuous on  [a, b].

3.  If  f  is absolutely continuous on [a, b], even though  f ' (x) may not be defined everywhere on  [a, b], the

arc length formula (5) still holds but with Riemann integral replaced by Lebesgue integral. (For the

definition of absolute continuity, see my article "Change of Variable or substitution in Riemann and

Lebesgue Integration" ).  The definition of Lebesgue integral is more advanced and a good reference will be

the book "Real analysis" by Royden.   It is enough to note that some Lebesgue integral is given by an

improper Riemann integral.  (see Example 2 below).  Also, if  f  is differentiable everywhere on [a, b] and      

  f ′  is Lebesgue integrable, then f  is absolutely continuous on [a, b].

4.  In general, if f  is continuous and of bounded variation, then the arc length is given by the arc length

formula (5), with Riemann integral replaced by Lebesgue integral plus another term which is the total

variation of a singular function g associated with  f .   Indeed g  is given by the function  f (x) − F(x), where  

  and the integral here is the Lebesgue integral. F(x) = ¶
a

x
f ∏(x)dx

Example 1.   Let f (x) = x2 .   Then the graph of  f  is the parabola with equation y = x2 . The length L of the

part of the parabola from (0,0) to (1,1) is given by the Riemann integral,

                                                

                                .L = ¶
0

1
1 + ( f ∏(x))2 dx = ¶

0

1
1 + 4x2 dx

Now                       , where ,¶ 1 + 4x2 dx = ¶ 1 + tan2(�) dx x =
1
2

tan(�)

                                  = ¶ 1 + tan2(�) 1
2

sec2(�)d� =
1
2

¶ sec3(�)d�

                                  =
1
4

(tan(�) sec(�) + ln | tan(�) + sec(�)|) + C

                                  .=
1
4

(2x 1 + 4x2 + ln |2x + 1 + 4x2 |) + C

Therefore,  .L = ¶
0

1
1 + 4x2 dx =

1
4

(2x 1 + 4x2 + ln |2x + 1 + 4x2 |)
0

1

=
1
2 5 +

1
4 ln(2 + 5 )

Note that in this example, the derived function  f '  is continuous on [0, 1].

Example 2.  Consider the unit circle defined by x2 + y2 =1.  The arc length L of the minor arc from (0,1) to

(1,0) is a quarter of the circumference of the circle.  We shall calculate this using our integral formula.   Let 

  Then the length of L is given by the integral,f (x) = 1 − x2 .

                                      , where .L = ¶
0

1
1 + ( f ∏(x))2 dx f ∏(x) =

−x

1 − x2

Note that f '(x) is not defined at x = 1.  The integral above is an improper integral.   The arc length is thus

given by            

                                                                               L = ¶
0

1
1 +

x2

1 − x2 dx = ¶
0

1 1

1 − x2
dx =

td 1−
lim ¶

0

t 1

1 − x2
dx

                             .=
td 1−
lim [sin−1(x)]0

t
=

td 1−
lim sin−1(t) = sin−1(1) =

�
2
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An explanation is in order here.  We can also think of the minor arc from (0,1) to (1,0), as the limit of the arc

from  as t tends to 1 from the left.  Thus the arc length L is then the limit of the arc length(0, 1) to (t, 1 − t2 )

of the minor arc from  which is given by  since  f '  is continuous on [0, t]  (0, 1) to (t, 1 − t2 ) ¶
0

t 1

1 − x2
dx

for  0 < t < 1.  (See Remark 2.)  

Note also that  f '  is Lebesgue integrable on [0, 1] and  f  can be expressed as an indefinite (Lebesgue)

 integral of  f '  and so f  is absolutely continuous and by remark 3, the arc length is given by the integral

formula (5) involving the Lebesgue integral of  on [0, 1], which is the improper integral of 1

1 − x2

 on [0,1] and equals  
1

1 − x2

�
2

.

Part 2.  Volume of solid of revolution.

Suppose  f : [a, b] → R  is defined on a closed and bounded interval [a, b].  We take the region bounded by

the curve  y = f (x), the x-axis , the lines x = a and x = b and form the solid obtained by revolving this region

about the x-axis.   This solid is called the solid of revolution.

As in part 1, we take a partition ∆ : a = x0 < x1 < x2 < … < xn = b for the interval [a, b].  For  1 ≤ i ≤ n,

consider the solid disk Di or cylinder formed by revolving the rectangular area of width (xi − xi-1 ) and length  

 | f (xi)|.  This is a circular disk or solid cylinder of radius | f (xi)| and thickness (xi − xi-1 ).  Therefore, the

volume of this disk Di is   Hence, an approximation to the volume of the solid of� ( f (x i))
2(x i − x i−1).

revolution is the sum of the volumes of these solid disks Di ,1 ≤ i ≤ n.   This is  

                     � ( f (x1))2(x1 − x0) + � ( f (x2))2(x2 − x1) + £ + � ( f (xn))2(xn − xn−1)

                     .=�
i=1

n

� ( f (x i))
2(x i − x i−1) =�

i=1

n

� ( f (x i))
2�x i

Therefore, the volume of the solid of revolution is the limit,

                                                          .  ---------------------------    (6)
||�||d 0
lim �

i=1

n

� ( f (x i))
2�x i
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Figure 2  Solid of revolution with disks
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Here as usual ||∆|| denotes the norm of the partition ∆, i.e., the maximum of all the lengths of the subintervals

[xi-1 , xi] as defined by the partition ∆.  Note that   is a Riemann sum for the function �
i=1

n

� ( f (x i))
2�x i

 with respect to the partition ∆.  It follows that if ( f (x))2  is Riemann integrable on [a, b], then the� ( f (x))2

volume of the solid of revolution is given by the Riemann integral, 

                                                                .    ------------------------------  (7).¶
a

b
�( f (x))2dx

Of course, if  f (x) is Riemann integrable on [a, b], then ( f (x))2 is Riemann integrable on [a, b].  In

particular, if  f  is continuous on [a, b], it is then Riemann integrable on [a, b] and so the volume of the solid

of revolution is given by (7).

Example 3.   Let y = x2  be the parabola.  Then the volume of the solid of revolution obtained by rotating the

region bounded by the parabola, the x-axis and the line x =1 is given by

                                           ,  where  f (x ) = x2 ,  a= 0, b=1,       ¶
a

b
�( f (x))2dx

                                           .               = ¶
0

1
�x4dx = � 1

5
x5

0

1

=
�
5

                         

Part 3.  Area of surface of revolution.

Suppose   f : [a, b] → R  is defined on a closed and bounded interval [a, b].   Suppose  f  is a non-negative

function.  Then the surface of revolution is obtained by rotating the graph of  f  or y = f (x) about the x-axis.

Take a partition ∆ : a = x0 < x1 < x2 < … < xn = b for the interval [a, b].  We can approximate the area of this

surface of revolution by the sum total of the area of bands Bi obtained by rotating the line segment joining

(xi-1 , f (xi-1)) to (xi , f (xi )) for i =1 to i = n.  Each of these bands is a frustum of a cone.  We shall first

determine the area of a frustum of a cone before we examine the approximation.  
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Figure 4 shows a cone with a band B.  If we slice the cone along a slant edge VQ we get the band in a sector

of a disk with radius VQ which is ( l + l2 ) and subtended by an angle θ as shown in Figure 5.  
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Here the angle  and so  .  Therefore, the area of the band B is given by� =
2�r1

l + l2
=

2�r2

l2
l2r1 = r2(l + l2)

 

                  . ------ (8)
�

2�
(�(l + l2)2 − �l2

2) = �(l + l2)r1 − �l2r2 = �(lr1 + r2(l + l2)) − l2r2) = �l(r1 + r2)

Now we apply formula (8) to our band Bi determined by rotating Pi-1Pi  about the x-axis, with r1 = f (xi),  r2 =  

f (xi-1)  and .  We have that the area of Bi. is given by         l = (x i − x i−1)2 + ( f (x i) − f (x i−1))2

                                      .�( f (x i) + f (x i−1)) (x i − x i−1)2 + ( f (x i) − f (x i−1))2

Thus, assuming that  f (x) ≥ 0 on [a, b], an approximation to the area of the surface of revolution is,

                �
i=1

n

area of B i =�
i=1

n

�( f (x i) + f (x i−1)) (x i − x i−1)2 + ( f (x i) − f (x i−1))2

                                   . -----------------  (9)=�
i=1

n

�( f (x i) + f (x i−1)) 1 + (
f (x i) − f (x i−1)

x i − x i−1
)2 (x i − x i−1)

Suppose f  is differentiable on (a, b).  Then by the Mean Value Theorem, for each 1 ≤ i ≤ n, there exists η i  

in (xi-1 , xi ) such that   

                                                     .
f (x i) − f (x i−1)

x i − x i−1
= f ∏(� i)

And so (9) becomes

                      .      --------------------    (10)�
i=1

n

�( f (x i) + f (x i−1)) (1 + ( f ∏(� i))2
�x i

If  f  is continuous and  is Riemann integrable on [a, b], (10)  may be “approximated” by (1 + ( f ∏(x))2

                                                .  -----------------------------   (11)�
i=1

n

2� f (� i) (1 + ( f ∏(�i))2
�x i

Thus, (11) is a Riemann sum for the function  .   Since, by assumption, both  f (x) and2� f (x) (1 + ( f ∏(x))2

 are Riemann integrable, the function  is Riemann integrable.   (1 + ( f ∏(x))2
2� f (x) (1 + ( f ∏(x))2

Therefore,

                         .
||�||d 0
lim �

i=1

n

2� f (� i) (1 + ( f ∏(� i))2
�x i = ¶

a

b
2� f (x) 1 + ( f ∏(x))2 dx

Hence, if we have that  f (x)  is continuous and non-negative on [a, b] and if either  f ' is defined and

continuous on [a, b] or f '  is Riemann integrable on [a, b], then the area of the surface of revolution obtained

by rotating the curve y = f (x) about the x-axis is given by

                                                         .  --------------------------   (12)S = ¶
a

b
2� f (x) 1 + ( f ∏(x))2 dx

We shall explain after the following examples what we meant by (10) can be approximated by (11).

Example 4.   Find the area of the surface of revolution obtained by rotating the curve  y = x2 , 0 ≤ x ≤ 1,

about the x-axis.  

The function is  f (x) = x2 . Obviously,  f  is continuous on [0, 1],  f  is differentiable on [0,1 ] and  f ' (x) = 2x

is continuous on [0, 1].   Therefore, the surface area is given by (12) as,

                             . -----------------   (13)S = ¶
0

1
2� f (x) 1 + ( f ∏(x))2 dx = 2� ¶

0

1
x2 1 + 4x2 dx
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Thus, we need to determine the Riemann integral (13).  

Note that 

                      , where 2x = tan(θ).¶ x2 1 + 4x2 dx =
1
8

¶ tan2(�) sec3(�)d�

Now by integration by parts, it can be shown that 

   

¶ tan2(�) sec3(�)d� = ¶ tan(�) sec2(�)(sec(�) tan(�))d�

                               = tan(�)sec3(�) −¶ sec(�)(sec4(�) + 2tan2(�)sec2(�))d�

                               = tan(�)sec3(�) −¶ sec5(�)d�− 2 ¶ tan2(�)sec3(�))d�

                               = tan(�) sec3(�) − ¶ sec3(�)(1 + tan2(�)d� − 2 ¶ tan2(�) sec3(�))d�

                               = tan(�) sec3(�) − ¶ sec3(�)d� − 3 ¶ tan2(�) sec3(�))d�

                               − tan(�) sec3(�) − ¶ sec3(�)d� − 3 ¶ tan2(�) sec3(�))d�

                               .= tan(�) sec3(�) −
1
2

sec(�) tan(�) −
1
2

ln | tan(�) + sec(�)| − 3 ¶ tan2(�) sec3(�))d�

Therefore, 

                        .¶ tan2(�) sec3(�)d� =
1
4

tan(�) sec3(�) −
1
8

sec(�) tan(�) −
1
8

ln | tan(�) + sec(�)| + C

Thus, 

¶ x2 1 + 4x2 dx =
1
32

tan(�) sec3(�) −
1
64

sec(�) tan(�) −
1
64

ln | tan(�) + sec(�)| + C∏

                            =
1
16

x(1 + 4x2) 1 + 4x2 −
1
32

x 1 + 4x2 −
1
64

ln |2x + 1 + 4x2 | + C
∏

                           .=
1
4

x3 1 + 4x2 +
1
32

x 1 + 4x2 −
1
64

ln |2x + 1 + 4x2 | + C ∏

Hence, the surface area,

              S = 2� ¶
0

1
x2 1 + 4x2 dx

               = 2� 1
4

x3 1 + 4x2 +
1
32

x 1 + 4x2 −
1
64

ln |2x + 1 + 4x2 |
0

1

               .=
9
16

5 −
1
32

ln(2 + 5 ) �

Example 5.   Find the area of the surface  of revolution obtained by rotating the curve  , 0 ≤ x ≤y = 1 − x2

1, about the x-axis.

Let   Then   for  0 ≤ x <1 and  f  is not differentiable at x = 1. Then thef (x) = 1 − x2 . f ∏(x) =
−x

1 − x2

surface area is the left limit of the surface area St of that part of curve with 0 ≤ x < t rotated 2π radians about

the x-axis, as t tends to 1 on the left.

By formula (12), St  is given as below:

                  S t = ¶
0

t
2� f (x) 1 + ( f ∏(x))2 dx = 2� ¶

0

t
1 − x2 1 +

x2

1 − x2 dx

                       .= 2� ¶
0

t
dx = 2�t

Therefore, the surface area is    .   
td 1−
lim S t =

td 1−
lim 2�t = 2�

As a consequence the surface are of the unit ball is 4π .  

Remark. Why (10) can be "approximated" by (11).     

         

We shall assume that f   is continuous and non-negative on [a, b] ,  f  is differentiable on [a, b] and  f '  is

Riemann integrable on [a, b].   Thus, it follows that  is Riemann integrable on [a, b].   The(1 + ( f ∏(x))2

curve  y = f (x) , a ≤ x ≤ b,  is rectifiable and the arc length is given by  .  Note thatL = ¶
a

b
1 + ( f ∏(x))2 dx

since  f  is continuous on [a, b], it is uniformly continuous on [a, b].   Hence, we have for any ε > 0, there

exists δ1 > 0 such that

                                                 .         -------------     (14)|x − y| < �1 e | f (x) − f (y)| <
�

8(1 + L)
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Thus, for each  i  from 1 to n , if  ||∆|| < δ1 , we have then that 

                                                  | f (x i) − f (� i)| <
�

8(1 + L)

and also that .   This is because   and  that | f (x i−1) − f (� i)| <
�

8(1 + L)
| x i − � i| [ | x i − x i−1| [ ||�|| < �1

.   It follows that| x i−1 − � i| [ | x i − x i−1| [ ||�|| < �1

                           .    -----------  (15)2 f (� i) −
�

4(1 + L)
< f (x i) + f (x i−1) < 2 f (� i) +

�
4(1 + L)

Therefore,

                2 f (� i) (1 + ( f ∏(� i))2
−

�
4(1 + L)

(1 + ( f ∏(� i))2

                  < ( f (x i) + f (x i−1)) (1 + ( f ∏(� i))2

                 . < 2 f (� i) (1 + ( f ∏(� i))2
+

�
4(1 + L)

(1 + ( f ∏(�i))2

And so we have,

          2 �
i=1

n

f (� i) (1 + ( f ∏(�i))2
�x i −

�
4(1 + L) �i=1

n

(1 + ( f ∏(� i))2
�x i

           <�
i=1

n

( f (x i) + f (x i−1)) (1 + ( f ∏(� i))2

            .  ----------------  (16)< 2�
i=1

n

f (� i) (1 + ( f ∏(� i))2
�x i +

�
4(1 + L) �i=1

n

(1 + ( f ∏(� i))2
�x i

Since ,  there exists δ2 > 0 such that L = ¶
a

b
1 + ( f ∏(x))2 dx

                  .  ||�|| < �2 u L
2

= L −
L
2

<�
i−1

n

(1 + ( f ∏(� i))2
�x i < L +

L
2

=
3L
2

Therefore,              . ---------------------   (17)
�

4(1 + L) �i−1

n

(1 + ( f ∏(� i))2
�x i <

3L�
8(1 + L)

<
�
2

Thus, if   , we have then from (16) and (17) that||�|| < � = min(�1, �2)

2�
i−1

n

f (� i) (1 + ( f ∏(�i))2
�x i −

�
2

<�
i−1

n

( f (x i) + f (x i−1)) (1 + ( f ∏(� i))2
�x i

                                                         .   ----------------  (18)< 2�
i−1

n

f (� i) (1 + ( f ∏(� i))2
�x i +

�
2

This means that given any ε > 0,  there exists a δ > 0 such that for any partition ∆ : a = x0 < x1 < x2 < … < xn

= b for [a, b] with ||∆|| < δ,

 

              �
i−1

n

( f (x i) + f (x i−1)) (1 + ( f ∏(� i))2
�x i − 2 �

i−1

n

f (� i) (1 + ( f ∏(� i))2
�x i <

�
2

Hence,   can be "approximated" by  .   �
i−1

n

( f (x i) + f (x i−1)) (1 + ( f ∏(� i))2
�x i 2 �

i−1

n

f (� i) (1 + ( f ∏(�i))2
�x i

Consequently,   can be "approximated" by  �
i−1

n

�( f (x i) + f (x i−1)) (1 + ( f ∏(� i))2
�x i

.2� �
i−1

n

f (� i) (1 + ( f ∏(�i))2
�x i

Now we proceed to show that the integral formula (12) gives the surface area.  

By our assumption that  f  is continuous and differentiable on [a, b] and  f '  is Riemann integrable on [a, b],  

the function   is Riemann integrable on [a, b].  Hence the integral exists.  Suppose  2 f (x) 1 + ( f ∏(x))2
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 .   Then by the definition of the Riemann integral, for any ε > 0, there exists a¶
a

b
2 f (x) 1 + ( f ∏(x))2 dx = M

δ3 > 0  such that for any partition ∆ : a = x0 < x1 < x2 < … < xn = b for [a, b],  

 

                ------------------  (19)||�|| < �3 u M −
�
2

< �
i−1

n

2 f (� i) (1 + ( f ∏(�i))2
�x i < M +

�
2

Now we take .  Then by (18) and (19), for any partition ∆ : a = x0 < x1 < x2 < … < xn = b for� = min(�1, �2, �3)

[a, b],

               ,||�|| < �u M − � < �
i−1

n

( f (x i) + f (x i−1)) (1 + ( f ∏(� i))2
�x i < M + �

or equivalently,

                 .||�|| < �u �
i−1

n

( f (x i) + f (x i−1)) (1 + ( f ∏(� i))2
�x i − M < �

This means

            .
||�||d 0
lim �

i=1

n

( f (x i) + f (x i−1)) (1 + ( f ∏(� i))2
�x i = M = ¶

a

b
2 f (x) 1 + ( f ∏(x))2 dx

Thus,  .
||�||d 0
lim �

i=1

n

�( f (x i) + f (x i−1)) (1 + ( f ∏(� i))2
�x i = ¶

a

b
2� f (x) 1 + ( f ∏(x))2 dx
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