## Injectivity and Monotonicity of Continuous Function

Have you ever wonder if a function is injective, then it is (strictly) monotonic. Obviously, if we do not assume that the function is continuous, then a simple piecewise function can be constructed to give a counterexample. If continuity is assumed and the domain is an interval, then the answer is affirmative. That means injectivity and (strict) monotonicity is equivalent.

Let us recall some definition. Let $I$ be an interval.
Definition 1. A function $f: I \rightarrow \mathbf{R}$ is injective if for any $x, y$ in $I, f(x)=f(y)$ implies that $x=y$.

Definition 2. A function $f: I \rightarrow \mathbf{R}$ is (strictly) monotonic if it is either (strictly) increasing or (strictly) decreasing. That means for all $x>y$ in $I$, either $f(x)>f(y)$ or $f(x)<f$ (y).

We state our assertion as follows.
Theorem 3. If $I$ is an interval and $f: I \rightarrow \mathbf{R}$ is continuous and injective, then $f$ is (strictly) monotonic.

First we shall prove the following observation. For the ease of exposition, we shall use 'monotonic' interchangebly with 'strictly monotonic' and 'increasing' with 'strictly increasing'.

Proposition 4. Suppose $I$ is an interval and $f: I \rightarrow \mathbf{R}$ is continuous and injective. Then for any $x, y$ and $z$ in $I$ with $x<y<z$ either $f(x)<f(y)<f(z)$ or $f(x)>f(y)>f(z)$. Hence we have:
(i) If $f(x)<f(y)$ or $f(x)<f(z)$ or $f(y)<f(z)$, then $f(x)<f(y)<f(z)$.
(ii) If $f(x)>f(y)$ or $f(x)>f(z)$ or $f(y)>f(z)$, then $f(x)>f(y)>f(z)$.

Proof. Suppose $x<y<z$. Then $(x, y) \cap(y, z)=\varnothing$. Since $f$ is injective, this implies that $f((x, y)) \cap f((y, z))=\varnothing$. We have then the following possibilities regarding $f(x), f(y)$ and $f(z)$ :
Case (1) $f(x)<f(y)$ and $f(y)<f(z)$.
Case (2) $f(x)<f(y)$ and $f(y)>f(z)$.
Case (3) $f(x)>f(y)$ and $f(y)<f(z)$.
Case (4) $f(x)>f(y)$ and $f(y)>f(z)$.
Then by the IntermediateValue Theorem, since $I$ is an interval, we have the following conclusions according to each case above:
(1) $(f(x), f(y)) \subseteq f((x, y))$ and $(f(y), f(z)) \subseteq f((y, z))$;
(2) $(f(x), f(y)) \subseteq f((x, y))$ and $(f(z), f(y)) \subseteq f((y, z))$;
(3) $(f(y), f(x)) \subseteq f((x, y))$ and $(f(y), f(z)) \subseteq f((y, z))$;
(4) $(f(y), f(x)) \subseteq f((x, y))$ and $(f(z), f(y)) \subseteq f((y, z))$.

Case (2) implies that $(f(x), f(y)) \cap(f(z), f(y))=(\max (f(x), f(z)), f(y)) \neq \varnothing$. But $(f(x), f(y)) \cap(f(z), f(y)) \subseteq f((x, y)) \cap f((y, z))=\varnothing$ and so $(f(x), f(y)) \cap(f(z), f(y))=$ $\varnothing$ contradicting $(f(x), f(y)) \cap(f(z), f(y)) \neq \varnothing$. Thus Case (2) is not possible.
Similarly, case (3) implies that $(f(y), f(x)) \cap(f(y), f(z))=(f(y), \min (f(x), f(z))) \neq \varnothing$. $\operatorname{But}(f(y), f(x)) \cap(f(y), f(z)) \subseteq f((x, y)) \cap f((y, z))=\varnothing$ and so $(f(y), f(x)) \cap(f(y), f$ $(z))=\varnothing$ contradicting $(f(y), f(x)) \cap(f(y), f(z)) \neq \varnothing$. Thus Case (3) is not possible.

Therefore, we are left with cases (1) and (4). That is to say, $f(x)<f(y)<f(z)$ or $f(x)>f$ $(y)>f(z)$. This completes the proof of the proposition.

## Proof of Theorem 3.

Suppose for some $x_{1}, x_{2}$ in $I$ with $x_{1}<x_{2}$, we have that $f\left(x_{1}\right)<f\left(x_{2}\right)$. We shall show that then $f$ is (strictly) increasing, i.e., for any $y, z$ in $I$ with $y<z, f(y)<f(z)$.
If $x_{1}=y$ and $x_{2}=z$, then we have nothing to show since $f\left(x_{1}\right)<f\left(x_{2}\right)$. If only one of $y$ or $z$ is equal to either $x_{1}$ or $x_{2}$, then by Proposition 4 part (i) $f(y)<f(z)$. It remains to see the same conclusion can be reached when $y$ and $z$ are distinct from both $x_{1}$ or $x_{2}$. By the total ordering on $\mathbf{R}$, we have the following six possibilities:

Case (1) $y<z<x_{1}<x_{2}$;
Case (2) $y<x_{1}<z<x_{2}$;
Case (3) $y<x_{1}<x_{2}<z$;
Case (4) $x_{1}<y<z<x_{2}$;
Case (5) $x_{1}<y<x_{2}<z$;
Case (6) $x_{1}<x_{2}<y<z$.
For cases (1), (2) and (3), applying Proposition 4 Part (i), we obtained $f(y)<f\left(x_{1}\right)$ using the inequality $y<x_{1}<x_{2}$ and the supposition $f\left(x_{1}\right)<f\left(x_{2}\right)$. Applying Proposition 4 Part (i) again, we have then $f(y)<f(z)$ since $f(y)<f\left(x_{1}\right)$ and either $y<x_{1}<z$ or $y<z<x_{1}$.

For cases (4) and (5) since $x_{1}<y<x_{2}$ and $f\left(x_{1}\right)<f\left(x_{2}\right)$, applying Proposition 4 Part (i), we get $f(y)<f\left(x_{2}\right)$. Then applying Proposition 4 Part (i) again, we get $f(y)<f(z)$ since we now have $f(y)<f\left(x_{2}\right)$ and either $y<z<x_{2}$ or $y<x_{2}<z$.

For case (6) Applying Proposition 4 part (i) gives us $f\left(x_{2}\right)<f(y)$. Therefore, applying again Proposition 4 Part (i), we get $f(y)<f(z)$ since $x_{2}<y<z$. Hence $f$ is (strictly) increasing.

Similarly, if we have $f\left(x_{1}\right)>f\left(x_{2}\right)$, we can show that for any $y, z$ in $I$ with $y<z$, we have that $f(y)>f(z)$. We only have to reverse the inequality in the images in the above proceeding and use Proposition 4 Part (ii) instead of Part (i). This means that $f$ is (strictly) decreasing.
Therefore, $f$ is (strictly) monotonic. This completes the proof of Theorem 3.

## Example of a discontinuous function which is injective but not monotonic.

Define $g: \mathbf{R} \rightarrow \mathbf{R}$ by $\mathrm{g}(x)=x$ if $x$ is rational and $\mathrm{g}(x)=-x$ if $x$ is irrational. Then g is not continuous and g is injective but not monotonic.

