
Injectivity and Monotonicity of Continuous Function

Have you ever wonder if a function is injective, then it is (strictly) monotonic.

Obviously, if we do not assume that the function is continuous, then a simple piecewise

function can be constructed to give a counterexample.  If continuity is assumed and the

domain is an interval, then the answer is affirmative.  That means injectivity and (strict)

monotonicity is equivalent.

Let us recall some definition.  Let  I be an interval.

Definition 1.   A function  f : I → R is injective if for any x, y in I, f (x) = f (y) implies

that x = y.  

Definition 2.   A function  f : I → R is (strictly) monotonic if it is either (strictly)

increasing or (strictly) decreasing.  That means for all x > y in I,  either f (x) > f (y) or f (x) <  f

(y).

We state our assertion as follows.

Theorem 3.  If  I is an interval and f : I → R is continuous and injective, then  f  is

(strictly) monotonic.

First we shall prove the following observation.  For the ease of exposition, we shall

use 'monotonic' interchangebly with 'strictly monotonic' and 'increasing' with 'strictly

increasing'.

Proposition 4.  Suppose I is an interval and f : I → R is continuous and injective.

Then for any x, y and z in I with  x < y < z  either  f (x) <  f (y) <  f (z) or  f (x) >  f (y) >  f (z).

Hence we have:

(i)    If  f (x) <  f (y) or f (x) <   f (z) or f (y) <   f (z), then  f (x) <  f (y) <  f (z).

(ii)   If  f (x) >  f (y) or f (x) >   f (z) or f (y) >  f (z),  then  f (x) >  f (y) >  f (z).

Proof.   Suppose x < y < z.   Then (x, y)∩(y, z) = ∅.  Since  f  is injective, this implies that 

 f ((x, y))∩ f ((y, z)) = ∅.  We have then the following possibilities regarding  f (x),  f (y) and    

f (z):

Case (1)   f (x) <  f (y) and  f (y) <  f (z).

Case (2)   f (x) <  f (y) and  f (y) >  f (z).

Case (3)   f (x) >  f (y) and  f (y) <  f (z).

Case (4)   f (x) >  f (y) and  f (y) >  f (z).

Then by the IntermediateValue Theorem, since I is an interval, we have the following

conclusions according to each case above:

(1)  ( f (x),  f (y) ) ⊆ f ((x, y)) and ( f (y),  f (z)) ⊆  f ((y, z));

(2)  ( f (x),  f (y) ) ⊆ f ((x, y)) and ( f (z),  f (y)) ⊆  f ((y, z));

(3)  ( f (y),  f (x) ) ⊆ f ((x, y)) and ( f (y),  f (z)) ⊆  f ((y, z));

(4)  ( f (y),  f (x) ) ⊆ f ((x, y)) and ( f (z),  f (y)) ⊆  f ((y, z)).

Case (2) implies that  ( f (x),  f (y) ) ∩ ( f (z),  f (y)) = (max(f (x),   f (z)), f (y))≠ ∅.  But 

( f (x),  f (y) ) ∩ ( f (z),  f (y))⊆  f ((x, y))∩ f ((y, z)) = ∅ and so ( f (x),  f (y) ) ∩ ( f (z),  f (y)) =

∅ contradicting ( f (x),  f (y) ) ∩ ( f (z),  f (y)) ≠ ∅.  Thus Case (2) is not possible.

Similarly, case (3) implies that ( f (y),  f (x) ) ∩ ( f (y),  f (z)) = ( f (y), min(f (x),   f (z)))≠ ∅.

But ( f (y),  f (x) ) ∩ ( f (y),  f (z))⊆  f ((x, y))∩ f ((y, z)) = ∅ and so ( f (y),  f (x) ) ∩ ( f (y),  f

(z)) = ∅ contradicting ( f (y),  f (x) ) ∩ ( f (y),  f (z)) ≠ ∅.  Thus Case (3) is not possible.
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Therefore, we are left with cases (1) and (4).  That is to say , f (x) <  f (y)  <  f (z)  or  f (x) >  f

(y) >  f (z).  This completes the proof of the proposition.

Proof of Theorem 3.   

Suppose for some x1, x2 in I with x1 < x2 , we have that f (x1) < f (x2).  We shall show

that then  f  is (strictly) increasing, i.e., for any y, z in I with y < z , f (y) < f (z).

If  x1 = y and  x2 = z, then we have nothing to show since f (x1) < f (x2).  If only one of y or z is

equal to either x1 or x2 , then by Proposition 4 part (i)  f (y) < f (z).  It remains to see the same

conclusion can be reached when y and z are distinct from both x1 or x2.  By the total ordering

on R, we have the following six possibilities:

Case (1)  y < z < x1 < x2;

Case (2)  y < x1 < z < x2;

Case (3)  y < x1 < x2 < z;

Case (4)  x1  < y < z < x2 ;

Case (5)  x1  < y < x2 < z;

Case (6)  x1  < x2 < y < z.

For cases (1), (2) and (3), applying Proposition 4 Part (i), we obtained  f (y) < f (x1)

using the inequality y < x1 < x2 and the supposition  f (x1) < f (x2).   Applying Proposition 4

Part (i) again, we have then  f (y) < f (z)  since f (y) < f (x1) and either y < x1 < z or  y < z < x1. 

For cases (4) and (5) since x1  < y < x2  and f (x1) < f (x2), applying Proposition 4 Part

(i), we get  f (y) < f (x2).   Then applying Proposition 4 Part (i) again, we get  f (y) < f (z)  since

we now have f (y) < f (x2) and either y < z < x2  or y < x2 < z.

For case (6) Applying Proposition 4 part (i) gives us f (x2) < f (y).  Therefore, applying

again Proposition 4 Part (i), we get f (y) < f (z) since x2 < y < z.  Hence  f  is (strictly)

increasing. 

Similarly, if we have f (x1) > f (x2), we can show that for any y, z in I with y < z, we

have that f (y) > f (z).  We only have to reverse the inequality in the images in the above

proceeding and use Proposition 4 Part (ii) instead of Part (i).  This means that  f  is (strictly)

decreasing.

Therefore,  f  is (strictly) monotonic.  This completes the proof of Theorem 3.

Example of a discontinuous function which is injective but not monotonic.

Define g : R → R by  g(x) = x if x is rational and g(x) = −x if x is irrational.  Then  g is not

continuous and g is injective but not monotonic.
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