Injectivity and Monotonicity of Continuous Function
Have you ever wonder if a function is injective, then it is (strictly) monotonic.
Obviously, if we do not assume that the function is continuous, then a simple piecewise
function can be constructed to give a counterexample. If continuity is assumed and the
domain is an interval, then the answer is affirmative. That means injectivity and (strict)
monotonicity is equivalent.

Let us recall some definition. Let / be an interval.

Definition 1. A function f: 1 — R is injective if for any x, y in I, f (x) = f (y) implies
that x = y.

Definition 2. A function f: 1 — R is (strictly) monotonic if it is either (strictly)
increasing or (strictly) decreasing. That means for allx >y in I, either f(x) > f(y) or f(x) < f
).

We state our assertion as follows.

Theorem 3. If /is an interval and f: / — R is continuous and injective, then f is
(strictly) monotonic.

First we shall prove the following observation. For the ease of exposition, we shall
use 'monotonic' interchangebly with 'strictly monotonic' and 'increasing' with 'strictly
increasing'.

Proposition 4. Suppose / is an interval and /: / — R is continuous and injective.
Then for any x, y and z in I with x <y <z either f(x) < f(y) < f(z) or f(x)> f(y)> f(2).
Hence we have:
O Iff)<fOorfx)< fl2)orf(y)< f(2),then f(x) < f(y) < f(2).
(i) If f(x)> fO)orf(x)> f(z) orf(y)> f(2), then f(x)> f(¥)> f(2).

Proof. Suppose x <y <z. Then (x, y)N\(y, z) = . Since f is injective, this implies that
F(C, )N f((y, 2)) =D. We have then the following possibilities regarding f'(x), f(y) and
f@):

Case (1) f(x)<f()and f(y) < f(2).

Case (2) f(x)<f()and f(y)> f(2).

Case 3) f(x)> f(v)and f(y) < f(2).

Case (4) f(x)> f(v)and f(y)> f(2).

Then by the IntermediateValue Theorem, since / is an interval, we have the following
conclusions according to each case above:

(D) (f(), fO) <=/ ((x, ) and (f (), f(2)) < S (O 2));

2) (f(), fO) =/ ((x, ) and (f(2), f() < [ (O 2));

3) (SO, f(0)) =/ ((x, ) and (f (), f(2)) < [ (O 2));

4 (SO, f(0)) =/ ((x, ) and (f(2), f() < [ (O 2)).

Case (2) implies that (/' (x), f(¥)) N (f(2), f(¥) = (max(f(x), f(2)),/())*<. But
(@), SN (Sf@, SO (NS, 2) =D and so (f(x), f(1)) N (@), fO)=
@ contradicting (£ (x), f(¥)) N (f(2), f(¥)) = D. Thus Case (2) is not possible.

Similarly, case (3) implies that ( f'(y), f(x)) N (f (), f(2)) = (f (), min(f(x), f(z))*D.

But (f(n), f(x)) N (fO), f@)< [ N[ (1, 2) =D and so (f (), fx)) N (fO), f
(2)) = D contradicting (f(v), f(x)) N (f (), f(z)) #D. Thus Case (3) is not possible.
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Therefore, we are left with cases (1) and (4). Thatis to say ,f(x) < f(y) < f(z) or f(x)> f
(¥) > f(z). This completes the proof of the proposition.

Proof of Theorem 3.

Suppose for some x;, x, in / with x; < x, , we have that f'(x;) <f(x2). We shall show

that then f" is (strictly) increasing, i.e., for any y, z in I with y <z, f(y) <f(2).
If x; =y and x, =z, then we have nothing to show since f (x;) <f(x,). If only one ofy orz is
equal to either x; or x, , then by Proposition 4 part (i) f(y) <f(z). It remains to see the same
conclusion can be reached when y and z are distinct from both x; or x,. By the total ordering
on R, we have the following six possibilities:

Case (1) y<z<x <xy

Case (2) y<x1<z<xy;

Case (3) y<x1 <x»<z;

Case (4) x1 <y<z<xy;

Case (5) x1 <y<x, <z

Case (6) x; <xp<y<z.

For cases (1), (2) and (3), applying Proposition 4 Part (i), we obtained f'(y) <f(x))
using the inequality y < x; < x, and the supposition f(x;) <f(x2). Applying Proposition 4
Part (i) again, we have then f(y) <f(z) since f(y) <f(x:) and either y <x; <zor y <z <x.

For cases (4) and (5) since x; <y <x, and f'(x1) <f(x2), applying Proposition 4 Part
(1), we get f(v) <f(x2). Then applying Proposition 4 Part (i) again, we get f(y) <f(z) since
we now have f(v) <f(x,) and either y <z <x; ory<x, <z.

For case (6) Applying Proposition 4 part (i) gives us f (x2) <f(v). Therefore, applying
again Proposition 4 Part (i), we get /' (v) <f(z) since x, <y <z. Hence f is (strictly)
increasing.

Similarly, if we have f(x;) > f'(x2), we can show that for any y, z in / with y <z, we
have that /' (y) > f(z). We only have to reverse the inequality in the images in the above
proceeding and use Proposition 4 Part (ii) instead of Part (i). This means that f is (strictly)
decreasing.

Therefore, f is (strictly) monotonic. This completes the proof of Theorem 3.

Example of a discontinuous function which is injective but not monotonic.

Define g : R -> R by g(x) =x if x is rational and g(x) = —x if x is irrational. Then g is not
continuous and g is injective but not monotonic.
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