Closed and bounded sets, Heine-Borel Theorem, Bolzano-Weierstrass Theorem,
Uniform Continuity and Riemann Integrability
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The aim of this note is to establish that any function that is continuously defined on a
closed and bounded interval is also uniformly continuous. This is actually a consequence of
the notion of compactness. We shall give explanation of some of the less familiar concepts
involved.

Definition 1. A metric space (M, d) is a set M together with a metric function
d : M x M — R satisfying the following: Forallx,yandzin M,

1. d(x,y)=0,

2. d(x,y)=0ifand only ifx = y,

3.d(x,y)=d(y,x) and

4. d(x,y)<d(x,z)+d(z,y).

Then for each > 0, and each x in M, the open balls B(x, r) = {y € M: d(y, x) <r} are
crucial in defining a new object. Any subset of M is said to be open if and only if it is
a union of a family of open balls or if it is empty. We can easily show that this
collection of all open sets form a topology on M, called the metric topology in the
following sense.

Definition 2. A topology on a set X is a family 7 of subsets of X satisfying

1. O, X €7,
2. If sis any subfamily of 7, then the unionu S=uU{U: Ue S}e 7,
3. IfU,U,, ..., U, € 7,then the finite intersection Uy "UoN ... " U, € 7.

Example. 1. (R, d)withd (x, y)=[x—|.
2. Forintegern > 1, (R" ,d) with the Euclidean metric
d(x, y) :\/( Zimtan (Xi—y)?)

Definition 3. An open cover of a set 4 in R (topological space), is a family 7 of
open intervals (open sets) such that the unionuwZ=0U{U: Ue %} D A.

Example. For each x in the closed interval [a, b] and for each natural number #, let
B(x, 1/n) = (x-1/n, x +1/n). Then B(x, 1/n) is open. Then the family or collection of open sets
% = { B(x, 1/2): x €[a, b]} is an open cover for [a, b]. This collection is most effective when
we can select a finite subset of % which also covers [a, b]. It is indeed the case that we can

do this but not for any other subsets of R and for any open cover. Hence the following
definition.

Definition 4. A subspace 4 of a topological space X is compact , if and only if, any

open cover ¢ of A have a finite subcover, that is, a finite subfamily (subset) & of ¢ such that
Ac V{U:Ue &}.
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A subset 4 of R is compact if and only if any open cover ¢ of A by open intervals
has a finite subcover, that is a finite subfamily (subset) #of ¢€ suchthatAc U{U:Ue &

}-
Example.

1. R (with usual metric topology) is not compact. Take for example € = {(n, n+2):
n € Z }. Then ¢ covers R but does not have a finite subcover.

2. A={1,1/2,1/3,1/n, ...} <R isnotcompact. Take ¢= {(/An+1), I/(n—-1)):n
e Z }u (1/2,3/2). € covers A but does not have a finite subcover.

3. A=40,1,1/2,1/3,1/n, ...} R is compact.
Proof. Suppose ¢ is an open cover covering A . Then 0 € U for some U in ¢.
Then since 1/ n converges to 0 as n tends to infinity, there exists an integer N such

that foralln > N, 1/n € U. Now forn =1,..., N, I/n € Un. Hence {U,, ..., Uy,
U} is a finite subfamily that covers A too.

The next notion is the notion of boundedness. A subset 4 of a metric space (M, d)
is said to be bounded, if and only if, there exists a real positive number & such that
d( x,y) <k forall x, y in 4.

Theorem 5 (Heine-Borel). A subset 4 of R is compact if and only if 4 is closed and
bounded.

Before we proceed with the proof. The following results will contribute to it and are
important and useful on their own merits

Theorem 6. A compact subset A4 of a metric space (M, d) is bounded.

Proof. We are going to use an open cover of A by open balls. A typical open ball
centred at x in 4 and of radious 6 > 0 is the set B(x, d) = {y € M: d(y, x) <d5}. For
each a in 4, let U(a) = B(a, 1) be the unit ball centred at a. Then ¢= {U(a):a € A}
is an open cover for 4. Since A is compact, ¢ has a finite subcover, say { U(a;) :i =1,
..,n}. Let k=max {d(a;,a;): 1<i,j<n}. Therefore, foranyx, yin 4, x € a;
and y € a; forsome 1<4, j<n, d(x,y)< d(x,a;)+ d(a;,a;)+d(a;,y)<2+k
and so 4 is bounded.

Theorem 7. Any compact subset 4 of a metric (Hausdorff) space is closed.

Proof. The proof uses the fact that any two distinct points x, y in a metric space can
be separated in the sense that there are two disjoint open sets U and V with x € U and
y €V. We can take for instance, U= B(x, d(x, y)/2) and V' =B(y, d(x, y)/2). This is
the concept of a Hausdorff space. Let us fix an element y not in 4. Then for each a
in 4, we have an open set U(a) and and an open set V(a) such that a € U(a), y € U(a)
and U(a) N V(a)=C. Then €= {U(a):a € A} is an open cover for 4. Since 4 is
compact ¢ has a finite subcover, say {U(a:) :i =1, ..., n}. Then ifwelet U= U {
Ua):i=1,..,n}and V= {Ma):i =1, ..., n}. Then Uis a finite union of open
sets and is therefore open and V is a finite intersection of open sets and is also open.
Also AcU andUnV=. Thisisbecause UNVc U {Ua)"V:i=1,..,n}cuU
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{U(a) @) :i =1, ..., n}= . Hence V' is an open set containing y and V'
complement of 4 since VN A< Un V=. Hence each point y in the complement
of A has an open set contained entirely in the complement of 4, therefore the
complement of 4 is a union of open sets and so is open. Therefore, 4 is closed. This
completes the proof.

Proof of Theorem 5.

(=) Suppose 4 is a compact subset of R. Then by Theorem 6, 4 is bounded and is
closed by Theorem 7.

(<) Suppose 4 is a closed and bounded subset of R. Then A4 < [a, b] for some
closed and bounded interval [a, b]. If we can show that [a, b] is compact, then 4
being a closed subspace of a compact space is therefore compact. (This is because any
open cover for 4 together with the complement of 4 constitute an open cover for [a,
b] and if [a, b] is compact there will be a finite subcover for A. ) Now let ¢ be open
cover for [a, b]. Define ¢ = sup { x € [a, b] : a finite subfamily of ¢ covers [a, x]}.
Obviously the set { x € [a, b] : a finite subfamily of & covers [a, x]} is not empty
since a belongs to it and is clearly bounded above by . Therefore, by the
completeness property of R, ¢ exists. Then ¢>a. Why? a € open set Uin ¢ since
¢ is an open cover for [a, b]. Therefore, there exists a &> 0 such that (¢ —3,a+3)
c U. Thusforanya<y<a+3, [a,y]cUandsoy € {x € [a, b] : a finite
subfamily of @ covers [a, x]}. Therefore, by the definition of supremum ¢ >y > a.
We shall show next that c = b. Now we have a < ¢ < b. Thus there exists an open
set Uin ¢ such that ¢ € open set U. Then there exists 6 > 0 such that (c —,c+ ) <
U. Take any d suchthatc—38 <d <c¢. Then [d, c] < U. Now since d < ¢, by the
definition of supremum, there exists a point z in { x € [a, b] : a finite subfamily of ¢
covers [a, x|} such that d <z <c. Hence there is a finite subfamily of ¢ covering
[a, z] and since [a, z] U [d, ¢] = [a, c] and [d, ¢] < U, this subfamily together with U
constitute a finite subfamily covering [a, c¢]. Hence, ¢ € { x € [a, b] : a finite
subfamily of @ covers [a, x]}. Hence, ¢ =b. This is because if ¢ < b, then as above
we can take a point e this time in (¢, b)(c—98,c+d)c U. Thusc<e<b and [c,
e] < U, and so since there is a finite subfamily of & covering [a, c] and U € ¢, this
subfamily and U constitute a finite subfamily covering [a, e]. Thuse € {x € [a, b] :
a finite subfamily of € covers [a, x]}. Therefore, ¢ = sup{ x € [a, b] : a finite
subfamily of @ covers [a, x]} > e contradicting ¢ < e. Hence c = b and so there is a
finite subfamily covering [a, b] (Why? Reason as above.) and so [a, b] is compact.
This completes the proof.

Theorem 8 (Bolzano-Weierstrass). Any bounded sequence in R has a convergent
subsequence.

We shall give a proof of this theorem that can be adapted to a proof for a bounded
sequence in R".

Proof. By the Heine -Borel Theorem (Theorem 5), A bounded sequence {a,} in R
lies inside a compact set, a large closed interval [c, d] Let us use the following
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notation for the sequence. Consider {a,} as the image of a functiona : N — R,
where a(n) = a, .
If the image A = a (N) is finite, then there must exist an element y in a (N) such that
a”' (y) is infinite. Therefore {g;:j € a™" (y)} is a convergent constant subsequence.
We now consider the case A4 is infinite. Then of course 4 is contained in [c, d].
Consider now the set of accumulation point A’ of A in R. A point x in R, is an
accumulation point of A, if any open set containing x contains a point of A4 distinct
from x. Claimthat 4A’'# & . Suppose 4'= . That means each point x in [c, d] has
an open set U, such that U, N A is finite. Then the family of open sets {U,: x € [c,
d] } covers [c, d]. Since [c, d] is compact by the Heine-Borel Theorem, this family
has a finite sub family {U, ,i=1, ..., n} such that [c¢,d] c U, wU,L ... U U,.
Therefore, A c 4 N [c,d] < (UnA) (U A)o ... (U A). But (Un A)
V(U A)u ... U (Un A)is aunion of finite set and so is finite. Hence 4 being a
subset of a finite set must be finite. We have thus arrived at a contradiction since we
have started with an infinite 4. Take a pointx in 4". Then we shall construct a
sequence {x;} in 4 such thatx; # x; fori#j and {x,;} converges to x as j tends to
infinity. A consequence of this is that x is in [c, d]. Take x; in B(x, 1) such that x, #
x and so d (x; , x) > 0. This point x, exists by definition of accumulation point. As we
shrink the Ball B(x, 1/ n), we shall exclude the point x, . For instance there exists an
integer n,such that 1/n, < d (x;, x), then by virtue of x being an accumulation point
of A, there exists x, in B(x, 1/ n,) such that x, # x and so d(x,, x) > 0. Obviously x, #
x; for otherwise if x, = x; then d(x,, x;) =0 and we have d (x; , x)<d (x1,x ) + d(x2,
x)<0+1/n,= 1/n, contradicting 1/n, < d (x,x). In this way, there exists
such that 1/ n;<d (x2,x), x2,x1 & B(x, 1/ ns) and there exists x; in B(x, 1/n;) such
that x; # x. So inductively, we find integers / < n,<n; ... and pointsx;,x;, X3, ...
such that x; € B(x, 1/n;), x; # x; fori #j. Then obviously {x;} converges to x as j
tends to infinity since for any open set U containing x there exists an integer J such
that x € B(x, 1/n,) c U. Therefore, for allj > J, x; € B(x, 1/n,;) < B(x, 1/n;) < U.
Now based on this sequence we are going to construct a subsequence of {a,}
converging to x. Start with x; , consider a ™' (x;). Choose i; ina™ (x;). Then a(i)) =
x1. Next observe that since not all a ™' (x;) for j > 1 can be bounded above by i
because otherwise a ~'({x; : j > 1}) would be finite which implies that {x; : j > 1} is
finite contradicting that {x; : j > 1} is infinite since the sequence {x,} is a sequence of
distinct terms. Thus there isa j, > 1 such that a™!(x;,) is not bounded by i;. There
exists i, in a”!(x;,) such that i, > i, and a(i») =x;,. Nextnotall a™ (x)) forj >, can
be bounded above by i,. So there exists j; > j» such that a~!(x;,) is not bounded by
i». So there exists i; in a~!(x;,) such that is > i, and a(is) = x;,. In this way we obtain
a subsequence {x;, :n =1, -,00} of {x;} and this subsequence is equal to the
subsequence {a;, :n=1,"",0}of {a,}. That means a;, =x;, forn=1,2, ... . Since
{x;} converges to x, any subsequence of it also converges to x. Hence, {x;,}
converges to x. Therefore, {a;, } also converges to x. This completes the proof.

Remark. The Bolzano-Weierstrass Theorem for bounded sequence in R " follows
the same proof above by replacing R by R, [c, d] by a large closed disk or ball and
using the Heine-Borel Theorem for R”".

2. We can use the Bolzano-Weierstrass Theorem to prove the Extreme Value
Theorem.
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A consequence of the compactness of the domain on continuity.
Uniform Continuity
We shall stick to the one variable case. Let D be a subset of R.

Definition 9. A function f: D — R is said to be uniformly continuous if given
€ > 0, there exists a & > 0 such that forany x, yin D, [x —y| <3 = | f(x) = f () | <e.

The next result is a consequence of the closed and bounded interval being a compact
set of R.

Notice that uniform continuity implies continuity.

Theorem 9. If the function f: [a, b] — R is continuous, then it is also uniformly
continuous.
Proof. The most important result we use here is the compactness of [a, b]. That
means we are going to produce a family of open cover of [¢, b]. Since f is
continuous at each x in [a, b], given € > 0, there exists a 5(x) > 0 (& here may depend
on x) such that for any y in [a, b], |y — x| <0(x) = | f(y) —f (x) | <&/2. This means
whenever y is in the open set B(x, d(x)) = {z: |z — x| <d(x)}[a, b] then |f(y)—f(x)
| <&/2. Therefore the collection @ = {B(x, d(x)/2): x € [a, b] } is an open cover for
[a, b] . Since [a, b] is compact by the Heine-Borel Theorem (Theorem 5), ¢ has a
finite subcover say &= {B(x1, 6(x1)/2), B(x2, 8(x2)/2), ..., B(x,, 6(x,)/2),}, where n is
some positive integer. Now let = min { 8(x;)/2, 3(x2)/2), ..., 8(x,)/2)}. Take any x,
yin[a, b] such that | y — x| <38. Since & covers [a, b], x € B(x, d(xx)/2) for some 1 <
k<n.
Therefore, |f(x:)—f(x)|<e/2 (1)
Now, let us see how far away from x; is y.
|yv—xd=|y—x+x—xd<|y—x|+|x—xd <3+ x:)/2 <O(xx)/2 + 6 x)/2 = S xx).
Hence y € B(xi, 6(xx)) and we have

f(y)—f)|<e2. 2)
Therefore,

S =SOI=1f(»)=fx)+ f(x)=f() ]
S |f(y)=f@o) | +1f(xe)—f(x)| by the triangle inequality
< &2 + &2 =¢ by (1)and (2) above.

Hence, f is uniformly continuous.

This notion of uniform continuity proves useful to tell us that any continuous function
on a closed and bounded interval is Riemann integrable.

Theorem 10. If the function f: [a, b] > R is continuous, then it is Riemann
integrable on [a, b].

Proof. If f:[a, b] — R is continuous, then it is also uniformly continuous.
Therefore given any € > 0, there exists 6 > 0 such that for all x, y in [a, b],

k=) <d=1f(0)-f() | <e/b-a). €)
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Let P:a=x)<x1 <x<...<x,= b be a partition with norm ||P|| < J that is,

[IP||= max{ |jx;-xu|:i=1,...,n}<d.Fori=1,...,nlet M,=sup{f(x):x e

[x:1, x:]}. Then since f is continuous on [x., x; |, for each i, by the Extreme Value

Theorem, M ; = f(c;) for some ¢; in [x .1, x; ]. Similarly, foreachi =1, ..., n, let
=inf{ f(x) : x € [xs1, x; ]}. Then again by the Extreme Value Theorem, for eachi

=1, ..., n, there exists d; in [x .1, x; | such that m;=f(d;). Then the upper Riemann

sum w1th respect to Pis

U(P) —ZM(.X, xll) Zf(c)(xl Xi— 1)
and the lower Rlemann sum with respect to P1is

L(P) = 2 mi(xX; —Xi-1) = Z;,f(di)(xi —Xi1).

Then the dlfference
U(P) - L(P) —Z(f(C) —fd))xi—xi1) = 2 |f(ci) —f(d|Cxi —xi-1)
<2 = —xi1). by 3) since|c; - di| <||P|| <5, 1<i<n.

Therefore, U(P) — L(P) < b—fa ;(xi —Xi1)= b—fa (xn —x0) =¢.

Hence, Riemann's condition holds and so by Theorem 1 in Riemann Integral and
Bounded function, f is Riemann integrable. This completes the proof.
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