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 The aim of this note is to establish that any function that is continuously defined on a

closed and bounded interval is also uniformly continuous.  This is actually a consequence of

the notion of compactness.  We shall give explanation of some of the less familiar concepts

involved. 

Definition 1.  A metric space (M, d) is a set M together with a metric function             

d : M × M → R satisfying the following:  For all x , y and z in M,

1.  d ( x, y ) ≥ 0,

2.  d ( x, y ) = 0 if and only if x =  y,

3.  d ( x, y ) = d ( y, x )  and

4.  d ( x, y ) ≤ d ( x, z ) + d ( z, y ) .

Then for each r > 0, and each x in M, the open balls B(x, r) = {y ∈ M: d( y, x) < r} are

crucial in defining a new object.  Any subset of M is said to be open if and only if it is

a union of a family of open balls or if it is empty.  We can easily show that this

collection of all open sets form a topology on M, called the metric topology  in the

following sense.

Definition 2.    A topology on a set X is a family T of subsets of X satisfying

1.   ∅,  X  ∈ T ,

2.   If  S is any subfamily of T , then the union ∪ S = ∪{ U: U ∈  S }∈ T ,

3.   If  U1 , U2 ,  … , Un   ∈  T , then the finite intersection U1 ∩U2∩  … ∩ Un ∈ T.

Example.  1.  (R,  d) with d (x,  y) = |x − y|.

2.   For integer n > 1, (R n ,d) with the Euclidean metric                                

    d (x,  y) =√( ∑ i = 1,…, n (x i − y i)
 2 )

Definition 3.  An open cover of  a set A in R (topological space), is a family  U of

open intervals (open sets)  such that the union ∪ U = ∪{ U: U ∈  U } ⊇ A.

Example.  For each x in the closed interval [a, b] and for each natural number n, let

B(x, 1/n) = (x-1/n, x +1/n). Then  B(x, 1/n) is open. Then the family or collection of open sets  

U = { B(x, 1/2): x ∈[a, b]} is an open cover for [a, b].   This collection is most effective when

we can select a finite subset of  U  which also covers [a, b].  It is indeed the case that we can

do this but not for any other subsets of R and for any open cover.  Hence the following

definition.

Definition 4.   A subspace A of a topological space X is compact , if and only if, any

open cover C of  A have a finite subcover, that is, a finite subfamily (subset) B of  C  such that

A ⊆  ∪{ U: U ∈  B }. 
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A subset A of R  is compact if and only if any open cover C of  A by open intervals

has a finite subcover, that is a finite subfamily (subset) B of  C  such that A ⊆  ∪{ U: U ∈  B

}.

Example. 

1. R (with usual metric topology) is not compact.   Take for example C = {(n, n+2):

n ∈ Z    }.  Then C covers R but does not have a finite subcover.  

2. A = {1, 1/2, 1/3, 1/ n,   …} ⊆ R  is not compact.  Take C = {(1/(n+1), 1/(n −1)): n

∈ Z }∪ (1/2,3/2).  C covers A but does not have a finite subcover.  

3. A = {0, 1, 1/2, 1/3, 1/ n,   …}⊆ R  is compact.   

Proof.   Suppose  C  is an open cover covering A .  Then 0 ∈ U for some U in C.

 Then since 1/ n converges to 0 as n tends to infinity, there exists an integer N such

that for all n > N, 1/n ∈ U.  Now for n =1,…, N,  1/n ∈ Un .   Ηence {U1, … , UN ,

U} is a finite subfamily that covers A too.

The next notion is the notion of boundedness.  A subset A of a metric space (M, d)

is said to be bounded, if and only if, there exists a real positive number k such that

d( x, y) < k for all x, y in A.

Theorem 5 (Heine-Borel).  A subset A of R is compact if and only if A is closed and

bounded.   

Before we proceed with the proof.  The following results will contribute to it and are

important and useful on their own merits

Theorem 6.   A compact subset A of a metric space (M, d) is bounded. 

Proof.   We are going to use an open cover of A by open balls.  A typical open ball

centred at x in A and of radious δ > 0  is  the set B(x, δ) = {y ∈ M: d( y, x) < δ}.   For

each a in A,  let U(a) = B(a, 1) be the unit ball centred at a.   Then  C = {U(a) : a ∈ A}

is an open cover for A.  Since A is compact, C  has a finite subcover, say { U(ai) :i =1,

…, n}.  Let  k = max {d( a i , a j ):  1≤ i, j ≤ n }.  Therefore, for any x, y in A,  x ∈ a i

and  y ∈ a j for some 1≤ i, j ≤ n,  d( x, y) ≤  d( x , a i ) +  d( a i , a j ) + d( a j , y ) < 2 + k  

and so A is bounded.

Theorem 7.  Any compact subset A of a metric (Hausdorff) space is closed.

Proof.    The proof uses the fact that any two distinct points x, y in a metric space can

be separated in the sense that there are two disjoint open sets U and V with x ∈ U and

y ∈V.   We can take for instance,  U = B(x, d(x, y)/2) and V =B(y, d(x, y)/2).  This is

the concept of a Hausdorff space.  Let us  fix an element y not in A.   Then for each a

in A, we have an open set U(a) and and an open set V(a) such that a ∈ U(a), y ∈ U(a)

and U(a) ∩ V(a) = ∅.    Then  C = {U(a) : a ∈ A} is an open cover for A.   Since A is

compact C  has a finite subcover, say {U(ai) :i =1, …, n}.   Then  if we let U = ∪ {

U(ai) :i =1, …, n} and V = ∩ {V(ai) :i =1, …, n}.   Then U is a finite union of open

sets and is therefore open and V is a finite intersection of open sets and is also open.

Also  A ⊆ U  and U ∩ V = ∅.   This is because U ∩ V ⊆ ∪ {U(ai)∩V :i =1, …, n}⊆ ∪
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{U(ai)∩ V(ai) :i =1, …, n}= ∅. Hence V is an open set containing y and V ⊆
complement of A since V ∩ A ⊆ ⊆ ⊆ ⊆ U ∩ V = ∅.   Hence each point y in the complement

of A has an open set contained entirely in the complement of A, therefore the

complement of A is a union of open sets and so is open.  Therefore, A is closed. This

completes the proof.

Proof of  Theorem 5.     

 (⇒)  Suppose A is a compact subset of R.  Then by Theorem 6, A is bounded and is

closed by Theorem 7.

(⇐)  Suppose A is a closed and bounded subset of R.  Then A ⊆ [a, b] for some

closed and bounded interval [a, b].   If we can show that [a, b] is compact, then A

being a closed subspace of a compact space is therefore compact. (This is because any

open cover for A together with the complement of A constitute an open cover for [a,

b] and if [a, b] is compact there will be a finite subcover for A. )  Now let C  be open

cover for [a, b].   Define c = sup { x ∈ [a, b] : a finite subfamily of C covers [a, x]}.

Obviously the set  { x ∈ [a, b] : a finite subfamily of C covers [a, x]} is not empty

since a belongs to it and is clearly bounded above by b.  Therefore, by the

completeness property of R,  c exists.  Then  c > a.  Why?  a ∈ open  set U in C  since

C  is  an open cover for [a, b].  Therefore,  there exists a δ > 0 such that (a − δ, a + δ )

⊆ U.  Thus for any a < y < a + δ,  [a, y] ⊆ U and so y ∈ { x ∈ [a, b] : a finite

subfamily of C covers [a, x]}.  Therefore, by the definition of supremum c ≥ y > a.   
We shall show next that c = b.   Now we have a < c ≤ b.   Thus there exists an open

set U in C  such that c ∈ open set U.  Then there exists δ > 0 such that (c − δ, c + δ ) ⊆
U .  Take any d  such that c − δ < d < c.  Then [d, c] ⊆  U.   Now since d < c, by the

definition of supremum, there exists a point z in { x ∈ [a, b] : a finite subfamily of C

covers [a, x]} such that  d < z ≤ c .   Hence there is a finite subfamily of  C covering

[a, z] and since [a, z] ∪  [d, c] = [a, c] and [d, c] ⊆  U, this subfamily together with U

constitute a finite subfamily covering  [a, c].  Hence, c  ∈ { x ∈ [a, b] : a finite

subfamily of C covers [a, x]}.  Hence,  c = b.   This is because  if  c < b, then as above

we can take a point e this time in  (c , b)∩(c − δ, c + δ ) ⊆ U.  Thus c < e < b  and  [c,

e] ⊆  U, and so since there is a finite subfamily of  C covering [a, c] and U ∈ C ,  this

subfamily and U constitute a finite subfamily covering [a, e].  Thus e  ∈ { x ∈ [a, b] :

a finite subfamily of C covers [a, x]}.  Therefore,  c = sup{ x ∈ [a, b] : a finite

subfamily of C covers [a, x]} ≥ e contradicting  c < e .    Hence c = b and so there is a

finite subfamily covering [a, b] (Why?  Reason as above.) and so [a, b] is compact.

This completes the proof.

Theorem 8  (Bolzano-Weierstrass).    Any bounded sequence in R has a convergent

subsequence.

We shall give a proof of this theorem that can be adapted to a proof for a bounded

sequence in Rn .

 Proof.   By the Heine -Borel Theorem (Theorem 5),  A bounded sequence {a n} in R

lies inside a compact set, a large closed interval [c, d]  Let us use the following
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notation for the sequence.  Consider {a n} as the image of a function a : N  → R,

where a(n) =  a n .

If  the image A = a (N) is finite, then there must exist an element y in a (N) such that    

 a −1 (y) is infinite.  Therefore  {aj : j ∈ a −1 (y)} is a convergent constant subsequence.   

We now consider the case A is infinite.  Then of course A is contained in [c, d].   

Consider now the set of accumulation point A' of A in R.  A point  x in R,  is an  

accumulation point of  A, if any open set containing x contains a point of A distinct

from x.  Claim that A' ≠ ∅ .   Suppose A' = ∅.  That means each point x in  [c, d]  has

an open set U x  such that U x ∩ Α  is finite.  Then the family of open sets {U x : x ∈  [c,

d] } covers [c, d].   Since [c, d] is compact by the Heine-Borel Theorem, this family

has a finite sub family {Un , i = 1, … , n} such that  [c, d] ⊆ U1 ∪U2∪  … ∪ Un .

Therefore,  A ⊆ A ∩ [c, d] ⊆ (U1∩ A) ∪(U2∩ A)∪  … ∪ (Un∩ A).  But (U1∩ A)

∪(U2∩ A)∪  … ∪ (Un∩ A) is  a union of finite set and so is finite.  Hence A being a

subset of a finite set must be finite. We have thus arrived at a contradiction since we

have started with an infinite A.  Take a point x in A' .  Then we shall construct a

sequence {x j} in A such that xi  ≠  x j  for i ≠ j  and {x j} converges to x as j tends to

infinity.   A consequence of this is that x is in  [c, d].  Take x1  in B(x, 1) such that x1 ≠
x and so d (x1 , x) > 0. This point x1 exists by definition of accumulation point.  As we

shrink the Ball B(x, 1/ n), we shall exclude the point x1 . For instance there exists an

integer n 2 such that 1/ n 2 <   d (x1 , x) , then by virtue of x being an accumulation point

of A, there exists x2 in B(x, 1/ n 2) such that x2 ≠ x  and so d(x2 , x) > 0.  Obviously x2 ≠
x1  for otherwise if x2 = x1  then  d(x2 , x1) = 0 and we have d (x1 , x)≤ d (x1 , x2 ) + d(x2 ,

x) < 0 + 1/ n 2 =  1/ n 2  contradicting 1/ n 2 <   d (x1 , x).   In this way, there exists n 3  

such that 1/ n 3 < d (x2 , x) ,  x2 , x1 ∉ B(x, 1/ n 3) and there exists x3 in B(x, 1/ n 3)  such

that x3 ≠ x.  So inductively, we find integers 1 <  n 2 < n 3 …   and  points x1 , x2 , x3 , …
such that xj ∈ B(x, 1/ n j),  x i  ≠  x j  for i ≠ j.   Then obviously {x j} converges to x as j

tends to infinity since for any open set U containing x there exists an integer J such

that x ∈ B(x, 1/ nJ) ⊆ U.  Therefore, for all j > J,  xj ∈ B(x, 1/ n j) ⊆ B(x, 1/ nJ) ⊆ U.

Now based on this sequence we are going to construct a subsequence of {a n}

converging to x.  Start with x1 , consider a −1 (x1).  Choose i1 in a −1 (x1).  Then a(i1) =

x1.  Next observe that since not all a −1 (xj) for j > 1 can be bounded above by  i1  

because otherwise a −1({xj : j > 1}) would be finite which implies that {xj : j > 1} is

finite contradicting that {xj : j > 1} is infinite since the sequence {x j} is a sequence of

distinct terms.  Thus there is a  j2  > 1 such that  is not bounded by  i1.   Therea−1(x j2 )
exists i2 in  such that  i2 >  i1 and  a(i2) = .   Next not all a −1 (xj) for j > j 2 cana−1(x j2 ) x j2

be bounded above by  i2 .   So there exists  j3 >  j 2  such that  is not bounded bya−1(x j3 )
 i2.  So there exists  i3 in  such that i3 >  i2 and a(i3) = .  In this way we obtaina−1(x j3 ) x j3

a subsequence   of {x j} and this subsequence is equal to the{x jn : n = 1,£,∞}
subsequence  of {a n}.  That means  for n = 1, 2, … .  Since{a in : n = 1,£,∞} a in = x jn

{x j} converges to x, any subsequence of it also converges to x.  Hence, {x jn}
converges to x.  Therefore,  also converges to x.  This completes the proof.{a in }

Remark.   The Bolzano-Weierstrass Theorem for bounded sequence in R n  follows

the same proof above by replacing R by R n, [c, d] by a large closed disk or ball and

using the Heine-Borel Theorem for  Rn.

2.   We can use the Bolzano-Weierstrass Theorem to prove the Extreme Value

Theorem. 
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A consequence of the compactness of the domain on continuity.

Uniform Continuity

We shall stick to the one variable case.   Let D be a subset of R.

Definition 9.    A function  f : D → R is said to be uniformly continuous  if  given      
ε > 0, there exists a δ > 0 such that for any x, y in D, |x − y| < δ ⇒ | f (x) − f (y) | < ε.

The next result is a consequence of the closed and bounded interval being a compact

set of R.

Notice that uniform continuity implies continuity.

Theorem 9.   If the function  f : [a, b] → R is continuous, then it is also uniformly

continuous. 

Proof.   The most important result we use here is the compactness of [a, b].  That

means we are going to produce a family of open cover of [a, b].  Since  f  is

continuous at each x in [a, b], given ε > 0, there exists a δ(x) > 0 (δ here may depend

on x) such that for any  y in [a, b], | y − x| < δ(x) ⇒ | f ( y) − f (x) | < ε/2.  This means

whenever y is in the open set B(x,  δ(x)) = {z:  |z − x| < δ(x)}∩[a, b] then  | f ( y) − f (x)

| < ε/2.   Therefore the collection C = {B(x,  δ(x)/2): x ∈ [a, b] } is an open cover for

[a, b] .  Since [a, b] is compact by the Heine-Borel Theorem (Theorem 5),  C  has a

finite subcover say B =  {B(x1, δ(x1)/2), B(x2, δ(x2)/2), …, B(xn, δ(xn)/2),}, where n is

some positive integer.   Now let δ = min { δ(x1)/2,  δ(x2)/2), …, δ(xn)/2)}.  Take any x,

y in [a, b] such that | y − x| < δ.   Since B  covers [a, b], x ∈ B(xk, δ(xk)/2) for some  1 ≤
k ≤ n.  

Therefore,   | f ( xk ) − f (x) | < ε/2               −−−−−−−−−−−−−−  (1)
Now, let us see how far away from xk  is y.

| y − xk| = | y −x + x − xk| ≤ | y −x | + | x − xk| < δ + δ( xk)/2 ≤ δ( xk)/2 + δ( xk)/2 = δ( xk).

Hence y ∈ B(xk, δ(xk)) and we have

                | f ( y ) − f (xk) | < ε/2 .           −−−−−−−−−−−−−−  (2)
Therefore,

 | f ( y ) − f (x)| = | f ( y ) − f (xk) +   f ( xk ) − f (x) | 

≤  | f ( y ) − f (xk) | + | f ( xk ) − f (x) | by the triangle inequality

<  ε/2  +  ε/2  = ε  by (1) and (2) above.

Hence,  f  is uniformly continuous. 

This notion of uniform continuity proves useful to tell us that any continuous function

on a closed and bounded interval is Riemann integrable.

Theorem 10.    If the function  f : [a, b] → R is continuous, then it is Riemann

integrable on [a, b].

Proof.    If   f : [a, b] → R is continuous, then it is also uniformly continuous.   

Therefore given any ε > 0, there exists δ > 0 such that for all x, y in [a, b], 

|x − y| < δ ⇒ | f (x) − f (y) | < ε/(b−a).      −−−−−−−−−−−−   (3)
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Let  P : a = x0 < x1 < x2 < … < xn = b be a partition with norm ||P|| < δ that is, 

 ||P|| =  max{ |xi - xi-1 | : i = 1, … , n }< δ. For i = 1, … , n, let M i = sup{ f (x) : x ∈    

[x i-1 , xi ]}.  Then since  f  is continuous on  [x i-1 , xi ], for each i, by the Extreme Value

Theorem, M i = f (ci) for some ci  in [x i-1 , xi ].  Similarly, for each i = 1, … , n, let        

m i = inf{ f (x) : x ∈ [x i-1 , xi ]}.  Then again by the Extreme Value Theorem, for each i

= 1, … , n,  there exists di  in [x i-1 , xi ] such that  mi = f (di).  Then the upper Riemann

sum with respect to P is

U(P) =�
i=1

n

M i(x i − x i−1) =�
i=1

n

f (c i)(x i − x i−1)

and the lower Riemann sum with respect to P is

.L(P) =�
i=1

n

m i(x i − x i−1) =�
i=1

n

f (d i)(x i − x i−1)

Then the difference, 

U(P) − L(P) =�
i=1

n

( f (c i) − f (d i))(x i − x i−1) =�
i=1

n

| f (c i) − f (d i)|(x i − x i−1)

              .  by (3) since |ci - di| ≤ ||P|| < δ, 1≤ i ≤ n .<�
i=1

n
�

b − a
(x i − x i−1)

Therefore, U(P) − L(P) <   .
�

b − a �i=1

n

(x i − x i−1) = �

b − a
(xn − x0) = �

Hence, Riemann's condition holds and so by Theorem 1 in Riemann Integral and

Bounded function,  f  is Riemann integrable.  This completes the proof.
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