Closed and bounded sets, Heine-Borel Theorem, Bolzano-Weierstrass Theorem, Uniform Continuity and Riemann Integrability

Ng Tze Beng

The aim of this note is to establish that any function that is continuously defined on a closed and bounded interval is also uniformly continuous. This is actually a consequence of the notion of compactness. We shall give explanation of some of the less familiar concepts involved.

Definition 1. A *metric space* (M, d) is a set *M* together with a metric function $d: M \times M \rightarrow \mathbf{R}$ satisfying the following: For all *x*, *y* and *z* in M,

1. $d(x, y) \ge 0$, 2. d(x, y) = 0 if and only if x = y, 3. d(x, y) = d(y, x) and 4. $d(x, y) \le d(x, z) + d(z, y)$.

Then for each r > 0, and each x in M, the open balls $B(x, r) = \{y \in M: d(y, x) < r\}$ are crucial in defining a new object. Any subset of M is said to be open if and only if it is a union of a family of open balls or if it is empty. We can easily show that this collection of all open sets form a topology on M, called the metric topology in the following sense.

Definition 2. A *topology* on a set X is a family **7** of subsets of X satisfying 1 - 2 - 1 = 1

- 1. $\emptyset, X \in \mathbf{7},$
- 2. If S is any subfamily of 7, then the union $\cup S = \cup \{ U : U \in S \} \in 7$,
- 3. If $U_1, U_2, \ldots, U_n \in \mathbf{7}$, then the finite intersection $U_1 \cap U_2 \cap \ldots \cap U_n \in \mathbf{7}$.

Example. 1. (**R**, *d*) with d(x, y) = |x - y|. 2. For integer n > 1, (**R**^{*n*},*d*) with the Euclidean metric $d(x, y) = \sqrt{\sum_{i=1,...,n} (x_i - y_i)^2}$

Definition 3. An *open cover* of a set A in **R** (topological space), is a family \mathcal{U} of open intervals (open sets) such that the union $\cup \mathcal{U} = \cup \{ U: U \in \mathcal{U} \} \supseteq A$.

Example. For each x in the closed interval [a, b] and for each natural number n, let B(x, 1/n) = (x-1/n, x+1/n). Then B(x, 1/n) is open. Then the family or collection of open sets $\mathcal{U} = \{ B(x, 1/2) : x \in [a, b] \}$ is an open cover for [a, b]. This collection is most effective when we can select a finite subset of \mathcal{U} which also covers [a, b]. It is indeed the case that we can do this but not for any other subsets of **R** and for any open cover. Hence the following definition.

Definition 4. A subspace A of a topological space X is *compact*, if and only if, any open cover \mathcal{C} of A have a finite subcover, that is, a finite subfamily (subset) \mathcal{B} of \mathcal{C} such that $A \subseteq \bigcup \{ U : U \in \mathcal{B} \}.$

A subset A of **R** is compact if and only if any open cover \mathcal{C} of A by open intervals has a finite subcover, that is a finite subfamily (subset) \mathcal{Z} of \mathcal{C} such that $A \subseteq \bigcup \{ U : U \in \mathcal{Z} \}$.

Example.

- 1. **R** (with usual metric topology) is not compact. Take for example $\mathcal{C} = \{(n, n+2): n \in \mathbb{Z}\}$. Then \mathcal{C} covers **R** but does not have a finite subcover.
- 2. $A = \{1, 1/2, 1/3, 1/n, \ldots\} \subseteq \mathbb{R}$ is not compact. Take $\mathcal{C} = \{(1/(n+1), 1/(n-1)): n \in \mathbb{Z}\} \cup (1/2, 3/2)$. \mathcal{C} covers A but does not have a finite subcover.
- 3. A = {0, 1, 1/2, 1/3, 1/n, ...}⊆ R is compact.
 Proof. Suppose *C* is an open cover covering A. Then 0 ∈ U for some U in *C*. Then since 1/n converges to 0 as n tends to infinity, there exists an integer N such that for all n > N, 1/n ∈ U. Now for n =1,..., N, 1/n ∈ Un. Hence {U₁,..., U_N, U} is a finite subfamily that covers A too.

The next notion is the notion of boundedness. A subset A of a metric space (M, d) is said to be *bounded*, if and only if, there exists a real positive number k such that d(x, y) < k for all x, y in A.

Theorem 5 (Heine-Borel). A subset A of **R** is compact if and only if A is closed and bounded.

Before we proceed with the proof. The following results will contribute to it and are important and useful on their own merits

Theorem 6. A compact subset A of a metric space (M, d) is bounded.

Proof. We are going to use an open cover of A by open balls. A typical open ball centred at x in A and of radious $\delta > 0$ is the set $B(x, \delta) = \{y \in M: d(y, x) < \delta\}$. For each a in A, let U(a) = B(a, 1) be the unit ball centred at a. Then $\mathcal{C} = \{U(a) : a \in A\}$ is an open cover for A. Since A is compact, \mathcal{C} has a finite subcover, say $\{U(a_i) : i = 1, ..., n\}$. Let $k = \max \{d(a_i, a_j) : 1 \le i, j \le n\}$. Therefore, for any x, y in A, $x \in a_i$ and $y \in a_j$ for some $1 \le i, j \le n$, $d(x, y) \le d(x, a_i) + d(a_i, a_j) + d(a_j, y) < 2 + k$ and so A is bounded.

Theorem 7. Any compact subset A of a metric (*Hausdorff*) space is closed. **Proof.** The proof uses the fact that any two distinct points x, y in a metric space can be separated in the sense that there are two disjoint open sets U and V with $x \in U$ and $y \in V$. We can take for instance, U = B(x, d(x, y)/2) and V = B(y, d(x, y)/2). This is the concept of a *Hausdorff space*. Let us fix an element y not in A. Then for each a in A, we have an open set U(a) and and an open set V(a) such that $a \in U(a), y \in U(a)$ and $U(a) \cap V(a) = \emptyset$. Then $\mathcal{C} = \{U(a) : a \in A\}$ is an open cover for A. Since A is compact \mathcal{C} has a finite subcover, say $\{U(a_i) : i = 1, ..., n\}$. Then if we let $U = \bigcup \{U(a_i) : i = 1, ..., n\}$ and $V = \cap \{V(a_i) : i = 1, ..., n\}$. Then U is a finite union of open sets and is therefore open and V is a finite intersection of open sets and is also open. Also $A \subseteq U$ and $U \cap V = \emptyset$. This is because $U \cap V \subseteq \bigcup \{U(a_i) \cap V : i = 1, ..., n\} \subseteq \bigcup$

© Ng Tze Beng 2001

 $\{U(a_i) \cap V(a_i) : i = 1, ..., n\} = \emptyset$. Hence V is an open set containing y and $V \subseteq$ complement of A since $V \cap A \subseteq U \cap V = \emptyset$. Hence each point y in the complement of A has an open set contained entirely in the complement of A, therefore the complement of A is a union of open sets and so is open. Therefore, A is closed. This completes the proof.

Proof of Theorem 5.

 (\Rightarrow) Suppose A is a compact subset of **R**. Then by Theorem 6, A is bounded and is closed by Theorem 7.

(\Leftarrow) Suppose A is a closed and bounded subset of **R**. Then $A \subset [a, b]$ for some closed and bounded interval [a, b]. If we can show that [a, b] is compact, then A being a closed subspace of a compact space is therefore compact. (This is because any open cover for A together with the complement of A constitute an open cover for [a, a]b] and if [a, b] is compact there will be a finite subcover for A.) Now let \mathcal{C} be open cover for [a, b]. Define $c = \sup \{x \in [a, b] : a \text{ finite subfamily of } \mathcal{C} \text{ covers } [a, x] \}$. Obviously the set $\{x \in [a, b] : a \text{ finite subfamily of } \mathcal{C} \text{ covers } [a, x] \}$ is not empty since *a* belongs to it and is clearly bounded above by *b*. Therefore, by the completeness property of **R**, c exists. Then c > a. Why? $a \in$ open set U in \mathcal{C} since \mathcal{C} is an open cover for [a, b]. Therefore, there exists a $\delta > 0$ such that $(a - \delta, a + \delta)$ $\subseteq U$. Thus for any $a < y < a + \delta$, $[a, y] \subseteq U$ and so $y \in \{x \in [a, b] : a \text{ finite}\}$ subfamily of \mathcal{C} covers [a, x]. Therefore, by the definition of supremum $c \ge v > a$. We shall show next that c = b. Now we have $a < c \le b$. Thus there exists an open set U in \mathcal{C} such that $c \in \text{open set } U$. Then there exists $\delta > 0$ such that $(c - \delta, c + \delta) \subseteq$ U. Take any d such that $c - \delta < d < c$. Then $[d, c] \subset U$. Now since d < c, by the definition of supremum, there exists a point z in $\{x \in [a, b] : a \text{ finite subfamily of } \mathcal{C}\}$ covers [a, x] such that $d < z \le c$. Hence there is a finite subfamily of \mathcal{C} covering [a, z] and since $[a, z] \cup [d, c] = [a, c]$ and $[d, c] \subseteq U$, this subfamily together with U constitute a finite subfamily covering [a, c]. Hence, $c \in \{x \in [a, b] : a \text{ finite}\}$ subfamily of \mathcal{C} covers [a, x]. Hence, c = b. This is because if c < b, then as above we can take a point *e* this time in $(c, b) \cap (c - \delta, c + \delta) \subseteq U$. Thus c < e < b and $[c, b] \cap (c - \delta, c + \delta) \subseteq U$. $e \subset U$, and so since there is a finite subfamily of \mathcal{C} covering [a, c] and $U \in \mathcal{C}$, this subfamily and U constitute a finite subfamily covering [a, e]. Thus $e \in \{x \in [a, b]:$ a finite subfamily of \mathcal{C} covers [a, x]. Therefore, $c = \sup\{x \in [a, b] : a \text{ finite}\}$ subfamily of \mathcal{C} covers $[a, x] \ge e$ contradicting c < e. Hence c = b and so there is a finite subfamily covering [a, b] (Why? Reason as above.) and so [a, b] is compact. This completes the proof.

Theorem 8 (Bolzano-Weierstrass). Any bounded sequence in **R** has a convergent subsequence.

We shall give a proof of this theorem that can be adapted to a proof for a bounded sequence in \mathbf{R}^n .

Proof. By the Heine -Borel Theorem (Theorem 5), A bounded sequence $\{a_n\}$ in **R** lies inside a compact set, a large closed interval [c, d] Let us use the following

notation for the sequence. Consider $\{a_n\}$ as the image of a function $a : \mathbf{N} \to \mathbf{R}$, where $a(n) = a_n$.

If the image A = a (N) is finite, then there must exist an element y in a (N) such that $a^{-1}(y)$ is infinite. Therefore $\{a_j : j \in a^{-1}(y)\}$ is a convergent constant subsequence. We now consider the case A is infinite. Then of course A is contained in [c, d]. Consider now the set of *accumulation* point A' of A in **R**. A point x in **R**, is an accumulation point of A, if any open set containing x contains a point of A distinct from x. Claim that $A' \neq \emptyset$. Suppose $A' = \emptyset$. That means each point x in [c, d] has an open set U_x such that $U_x \cap A$ is finite. Then the family of open sets $\{U_x : x \in [c, c]\}$ d] covers [c, d]. Since [c, d] is compact by the Heine-Borel Theorem, this family has a finite sub family $\{U_n, i = 1, ..., n\}$ such that $[c, d] \subseteq U_1 \cup U_2 \cup ... \cup U_n$. Therefore, $A \subseteq A \cap [c, d] \subseteq (U_1 \cap A) \cup (U_2 \cap A) \cup \ldots \cup (U_n \cap A)$. But $(U_1 \cap A)$ $\cup (U_2 \cap A) \cup \ldots \cup (U_n \cap A)$ is a union of finite set and so is finite. Hence A being a subset of a finite set must be finite. We have thus arrived at a contradiction since we have started with an infinite A. Take a point x in A'. Then we shall construct a sequence $\{x_i\}$ in A such that $x_i \neq x_j$ for $i \neq j$ and $\{x_i\}$ converges to x as j tends to infinity. A consequence of this is that x is in [c, d]. Take x_1 in B(x, 1) such that $x_1 \neq a_2$ x and so $d(x_1, x) > 0$. This point x_1 exists by definition of accumulation point. As we shrink the Ball B(x, 1/n), we shall exclude the point x_1 . For instance there exists an integer n_2 such that $1/n_2 < d(x_1, x)$, then by virtue of x being an accumulation point of A, there exists x_2 in $B(x, 1/n_2)$ such that $x_2 \neq x$ and so $d(x_2, x) > 0$. Obviously $x_2 \neq x$ x_1 for otherwise if $x_2 = x_1$ then $d(x_2, x_1) = 0$ and we have $d(x_1, x) \le d(x_1, x_2) + d(x_2, x_2)$ $x > 0 + 1/n_2 = 1/n_2$ contradicting $1/n_2 < d(x_1, x)$. In this way, there exists n_3 such that $1/n_3 < d(x_2, x)$, $x_2, x_1 \notin B(x, 1/n_3)$ and there exists x_3 in $B(x, 1/n_3)$ such that $x_3 \neq x$. So inductively, we find integers $l < n_2 < n_3 \dots$ and points x_1, x_2, x_3, \dots such that $x_i \in B(x, 1/n_i)$, $x_i \neq x_i$ for $i \neq j$. Then obviously $\{x_i\}$ converges to x as j tends to infinity since for any open set U containing x there exists an integer J such that $x \in B(x, 1/n_j) \subseteq U$. Therefore, for all j > J, $x_i \in B(x, 1/n_j) \subseteq B(x, 1/n_j) \subseteq U$. Now based on this sequence we are going to construct a subsequence of $\{a_n\}$ converging to x. Start with x_1 , consider $a^{-1}(x_1)$. Choose i_1 in $a^{-1}(x_1)$. Then $a(i_1) =$ x_1 . Next observe that since not all $a^{-1}(x_j)$ for j > 1 can be bounded above by i_1 because otherwise $a^{-1}(\{x_i : j > 1\})$ would be finite which implies that $\{x_i : j > 1\}$ is finite contradicting that $\{x_i : j > 1\}$ is infinite since the sequence $\{x_i\}$ is a sequence of distinct terms. Thus there is a $j_2 > 1$ such that $a^{-1}(x_{j_2})$ is not bounded by i_1 . There exists i_2 in $a^{-1}(x_{i_2})$ such that $i_2 > i_1$ and $a(i_2) = x_{i_2}$. Next not all $a^{-1}(x_i)$ for $j > j_2$ can be bounded above by i_2 . So there exists $j_3 > j_2$ such that $a^{-1}(x_{j_3})$ is not bounded by i_2 . So there exists i_3 in $a^{-1}(x_{j_3})$ such that $i_3 > i_2$ and $a(i_3) = x_{j_3}$. In this way we obtain a subsequence $\{x_{i_n} : n = 1, \dots, \infty\}$ of $\{x_i\}$ and this subsequence is equal to the subsequence $\{a_{i_n}: n = 1, \dots, \infty\}$ of $\{a_n\}$. That means $a_{i_n} = x_{i_n}$ for $n = 1, 2, \dots$. Since $\{x_i\}$ converges to x, any subsequence of it also converges to x. Hence, $\{x_{i_n}\}$ converges to x. Therefore, $\{a_{i_n}\}$ also converges to x. This completes the proof.

Remark. The Bolzano-Weierstrass Theorem for bounded sequence in \mathbf{R}^n follows the same proof above by replacing \mathbf{R} by \mathbf{R}^n , [c, d] by a large closed disk or ball and using the Heine-Borel Theorem for \mathbf{R}^n .

2. We can use the Bolzano-Weierstrass Theorem to prove the Extreme Value Theorem.

A consequence of the compactness of the domain on continuity.

Uniform Continuity

We shall stick to the one variable case. Let D be a subset of **R**.

Definition 9. A function $f: D \to \mathbf{R}$ is said to be *uniformly continuous* if given $\varepsilon > 0$, there exists a $\delta > 0$ such that for any x, y in $D, |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$.

The next result is a consequence of the closed and bounded interval being a compact set of \mathbf{R} .

Notice that uniform continuity implies continuity.

Theorem 9. If the function $f: [a, b] \rightarrow \mathbf{R}$ is continuous, then it is also uniformly continuous.

Proof. The most important result we use here is the compactness of [a, b]. That means we are going to produce a family of open cover of [a, b]. Since f is continuous at each x in [a, b], given $\varepsilon > 0$, there exists a $\delta(x) > 0$ (δ here may depend on x) such that for any y in [a, b], $|y - x| < \delta(x) \Rightarrow |f(y) - f(x)| < \varepsilon/2$. This means whenever y is in the open set $B(x, \delta(x)) = \{z: |z - x| < \delta(x)\} \cap [a, b]$ then $|f(y) - f(x)| < \varepsilon/2$. Therefore the collection $\mathcal{C} = \{B(x, \delta(x)/2): x \in [a, b]\}$ is an open cover for [a, b]. Since [a, b] is compact by the Heine-Borel Theorem (Theorem 5), \mathcal{C} has a finite subcover say $\mathfrak{T} = \{B(x_1, \delta(x_1)/2), B(x_2, \delta(x_2)/2), \dots, B(x_n, \delta(x_n)/2)\}$. Take any x, y in [a, b] such that $|y - x| < \delta$. Since \mathfrak{T} covers $[a, b], x \in B(x_k, \delta(x_k)/2)$ for some $1 \le k \le n$. Therefore, $|f(x_k) - f(x)| < \varepsilon/2$ ———— (1) Now, let us see how far away from x_k is y. $|y - x_k| = |y - x + x - x_k| \le |y - x| + |x - x_k| < \delta + \delta(x_k)/2 \le \delta(x_k)/2 + \delta(x_k)/2 = \delta(x_k)$.

Hence $y \in B(x_k, \delta(x_k))$ and we have $|f(y) - f(x_k)| < \varepsilon/2$.

Therefore, $|f(y) - f(x)| = |f(y) - f(x_k) + f(x_k) - f(x)|$ $\leq |f(y) - f(x_k)| + |f(x_k) - f(x)| \text{ by the triangle inequality}$ $< \varepsilon/2 + \varepsilon/2 = \varepsilon \text{ by (1) and (2) above.}$

Hence, f is uniformly continuous.

This notion of uniform continuity proves useful to tell us that any continuous function on a closed and bounded interval is Riemann integrable.

----- (2)

Theorem 10. If the function $f: [a, b] \rightarrow \mathbf{R}$ is continuous, then it is Riemann integrable on [a, b].

Proof. If $f: [a, b] \to \mathbf{R}$ is continuous, then it is also uniformly continuous. Therefore given any $\varepsilon > 0$, there exists $\delta > 0$ such that for all x, y in [a, b], $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon/(b-a)$. ------ (3)

© Ng Tze Beng 2001

Let $P: a = x_0 < x_1 < x_2 < ... < x_n = b$ be a partition with norm $||P|| < \delta$ that is, $||P|| = \max\{|x_i - x_{i-1}| : i = 1, ..., n\} < \delta$. For i = 1, ..., n, let $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}$. Then since f is continuous on $[x_{i-1}, x_i]$, for each i, by the Extreme Value Theorem, $M_i = f(c_i)$ for some c_i in $[x_{i-1}, x_i]$. Similarly, for each i = 1, ..., n, let $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}$. Then again by the Extreme Value Theorem, for each i = 1, ..., n, there exists d_i in $[x_{i-1}, x_i]$ such that $m_i = f(d_i)$. Then the upper Riemann sum with respect to P is

$$U(P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1}) = \sum_{i=1}^{n} f(c_i)(x_i - x_{i-1})$$

and the lower Riemann sum with respect to P is

$$L(P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1}) = \sum_{i=1}^{n} f(d_i) (x_i - x_{i-1})$$

Then the difference,

$$U(P) - L(P) = \sum_{i=1}^{n} (f(c_i) - f(d_i))(x_i - x_{i-1}) = \sum_{i=1}^{n} |f(c_i) - f(d_i)|(x_i - x_{i-1})$$

$$< \sum_{i=1}^{n} \frac{\varepsilon}{b-a}(x_i - x_{i-1}). \text{ by (3) since } |c_i - d_i| \le ||P|| < \delta, \ 1 \le i \le n$$

Therefore, $U(P) - L(P) < \frac{\varepsilon}{b-a} \sum_{i=1}^{n} (x_i - x_{i-1}) = \frac{\varepsilon}{b-a} (x_n - x_0) = \varepsilon$.

Hence, Riemann's condition holds and so by Theorem 1 in *Riemann Integral and Bounded function*, f is Riemann integrable. This completes the proof.