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Suppose g: [a, b] → R is a function and  f : [c, d] → R  is another function.  Suppose the

range of g is contained in [c, d].  The change of variable formula is a formula of the following

form

                                         ---------------------------------  (A)¶
a

x
f (g(t))g∏(t)dx = ¶

g(a)

g(x)
f (t)dt

for any x in the interval [a, b].  This formula is usually used to find the integral   ¶
a

x
H(t))dt

whenever it is possible to express the integrand H(t) in the form of  f ( g(t) )g' (t), where f  is a

function whose primitive is known or  f  is equal almost everywhere to the derivative of an

absolutely continuous function.  The change of variable formula (A) requires that  f  be

Lebesgue integrable on the domain containing the range of  g  and that the function                  

 f ( g(t) )g' (t) be Lebesgue integrable on [a, x] for every x in [a, b].  Now assume that f  is

Lebesgue integrable on [c, d] and define F : [c, d] → R by   .  Then we canF(x) = ¶
c

x
f (t)dt

write (A) as

                                         --------------------------- (B)¶
a

x
f (g(t))g∏(t)dx = F(g(x)) − F(g(a))

for every x in [a, b].  Thus, (B) is equivalent to (A).   Assume that the function  f ( g(t) )g' (t)

is Lebesgue integrable on [a, b], hence on [a, x] for every x in [a, b].   By virtue of the left

hand side of (B) being an indefinite integral of a Lebesgue integrable function, the composite

function,  F ) g, is absolutely continuous on [a, b].   Conversely, suppose that  F ) g is

absolutely continuous on [a, b].  Then F ) g is of bounded variation and so has finite

derivatives almost everywhere on [a, b].  F , being an indefinite integral of  a Lebesgue

integrable function, is absolutely continuous and so is an N function and has finite derivatives

almost everywhere on [c, d].  If  g has finite derivative almost everywhere on [a, b], then by

Theorem 3 below, (F ) g )' (x) =  f  (g(x)) g'(x) almost every where on [a, b].  Consequently,

since  F ) g is absolutely continuous on [a, b],  f (g(x))g'(x) is Lebesgue integrable on [a, b]

and (B) holds.

Thus we have deduced the following theorem.

Theorem 1.  Suppose g: [a, b] → R is a function having finite derivatives almost everywhere

on [a, b] and  f : [c, d] → R is a Lebesgue integrable function such that the range of g is

contained in [c, d].  Let F : [c, d] → R be defined by  .  Then  f  (g(x)) g'(x) isF(x) = ¶
c

x
f (t)dt

Lebesgue integrable on [a, b] and  , if and only if,  F ) g is¶
a

b
f (g(x))g∏(x)dx = ¶

g(a)

g(b)
f (x)dx

absolutely continuous on [a, b].

Remark.  In the proof of the converse of Theorem 1, we make use of the fact that g has finite

derivatives almost everywhere on [a, b].   Question arises if there are functions  f  and g not

having finite derivatives almost everywhere on [a, b] such that F ) g is absolutely continuous

on [a, b] but (F ) g )' (x) ≠  f  (g(x)) g'(x) almost every where on [a, b].   

We shall need the next technical result regarding critical points in the inverse image of a set

of measure zero.

Theorem 2.  Suppose g has derivatives (finite or infinite) on a set E with m(g(E)) = 0.  Then

g' = 0 almost everywhere on E. 



Proof.

Let  B = { t ∈ E  : |g'(t)| > 0}.    Let Cn ={ t ∈ B  : |g'(t)| ≥ 1/n } and

       Bn ={ t ∈ B  : |g(s) − g(t)| ≥ |s − t|/n , |s − t| < 1/n } for positive integers n.

It is easy to see that B = ∪ Cn.  Note that for each x in Cn , there exists k such that x ∈ Bk .

This is because if x is in Cn then either |g'(x)| ≥ 1/n when g'(x) is finite, or |g'(x)| is infinite.  If

g'(x) is finite, then there exists δ > 0 such that 

                                        
g(s) − g(x)

s − x − |g ∏(x)| < 1
2n

for  0 < |s − x| < δ.  Take any integer k such that k > 2n and 1/k < δ.  Then we have 

                        0 < |s − x| < 1/k  ⇒     .  
g(s) − g(x)

s − x > |g∏(x)| − 1
2n
m

1
2n
m

1
k

This means that x ∈ Bk .  If  |g'(x)| is infinite, then there exists δ > 0 such that 

                                        
g(s) − g(x)

s − x > 1

for  0 < |s − x| < δ.  In this case, just take any positive integer k such that 1/k < δ.  Then we

have 

                                0 < |s − x| < 1/k  ⇒     .  
g(s) − g(x)

s − x > 1 m
1
k

Hence, x ∈ Bk .  This implies that  Β  = ∪ Cn ⊆ ∪ Bn  ⊆ B and so Β  = ∪ Bn. .  We shall show

that the measure of B is 0 by showing that the measure of  Bn is zero.  Fix an integer n  and

consider any interval I of length 1/n and its intersection with Bn ,  A = I∩ Bn .  We claim that

the measure of A is zero.  Since m(g(E)) = 0, m(g(B)) = 0 and so m(g(A)) = 0.  Given any         

ε > 0, cover g(A) by a countable union of  disjoint interval Ik such that g(A) =∪ Ik and  ∑ m(Ik)

< ε.  Let Ak =g−1(Ik)∩A .  Then A  = ∪ Ak and  

                                  .    -------------------  (1)m(A) [ �m(Ak) [ � sup{|s − t | : s, t c Ak}
Note here that  exists because Ak is bounded as A is bounded.  Observesup{|s − t | : s, t c Ak}

that  Ak ⊆ I∩ Bn ⊆ I and I is an interval of length less than 1/n and so for any s, t in Ak , |s − t|

< 1/n .   Thus, by the definition of Bn , for s, t in Ak , |s − t| ≤ n |g(s) − g(t)|.  Hence,

   sup{|s − t | : s, t c Ak} [ n sup{|g(s) − g(t)| : s, t c Ak} [ n m(Ik)

as g(Ak) ⊆ Ik .  It then follows from (1) that 

                                          .m(A) [ n�m(Ik) < n�

Since ε is arbitrary, we conclude that m(A) = 0.  We can cover Bn by a countable number of

non-overlapping intervals I, each of length < 1/n.  Thus, by the above argument, the measure

of Bn is less than the sum of measure of sets of  measure zero and so is of measure zero.  It

follows that the measure of B is 0.  Therefore, g' = 0 almost everywhere on E.

Theorem 3.  Suppose F has finite derivatives almost everywhere on [c, d] and g and F ) g

have finite derivatives almost everywhere on [a, b].  It is assumed that the range of g is

contained in [c, d].  Suppose F is an N-function, i.e., F maps sets of measure zero to sets of

measure zero.  Then  (F ) g )'  = ( f  )g ) g'  almost everywhere on [a, b], where F' = f  almost

everywhere on [c, d], that is to say, the chain rule holds almost everywhere on [a, b].

Proof.   Let  Z = {x ∈ [c, d]:  F'(x) does not exist or F'(x) = ± ∞ or  F'(x) ≠ f (x)}.  

Since F has finite derivative almost everywhere on [c, d], the set {x ∈ [c, d]:  F'(x) does not

exist or F'(x) = ± ∞} has measure zero.  Also as F' = f  almost everywhere on [c, d], the set {x

∈ [c, d]: F'(x) ≠ f (x)} has measure zero. Consequently, the measure of Z, m(Z) = 0.
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Consider the preimage S = g −1(Z) of Z.   Let  T =[a, b] − S be the complement of S in [a, b].

Then for any t in T,  g(t) ∉ Z and so F' (g(t)) exists, is finite and F'(g(t) = f (g(t)).

Now since g has finite derivatives almost everywhere on [a, b], for any t in [a, b], either g'(t)

exists finitely or t belongs to a set of measure zero.  Thus, we need to consider only those t in

[a, b], where g'(t) exists finitely.  

Suppose t is in T and g is differentiable at t (finitely).  Then F is differentiable at g(t) and so

by the usual chain rule,  (F ) g )' (t) = F' (g(t)) g' (t) =  f (g(t)) g' (t).  This means (F ) g )'  = ( f

 )g ) g'  almost everywhere on T.  

Now we consider the chain rule on S.  Since g(S) ⊆ Z , m(g(S)) = 0.  Then since g is

differentiable (finitely) almost everywhere on S, by considering points in S, where g is

differentiable finitely, by Theorem 2, g'  = 0 almost everywhere on S.  Hence ( f  )g ) g'  = 0

almost everywhere on S.  Since F is an N  function, m(F ) g(S) ) = 0.  As  F ) g  has finite

derivatives almost everywhere on [a, b], F ) g  is differentiable almost everywhere on S.

Therefore, by Theorem 2, (F ) g)' = 0 almost everywhere on S.  It follows that (F ) g )'  = ( f  

)g ) g' (=0) almost everywhere on S.

Thus, we have shown that (F ) g )'  = ( f  )g ) g'  almost everywhere on S and on T and so (F )

g )'  = ( f  )g ) g' almost everywhere on [a, b].  This completes the proof.

Suppose  f : [c, d] → R is  Lebesgue integrable and the range of g is contained in [c, d].  Let   

F : [c, d] → R be defined by  .  Then F is absolutely continuous and so is an NF(x) = ¶
c

x
f (t)dt

function and also a function of bounded variation and thus has finite derivatives almost

everywhere on [c, d].  If g and F ) g  are of bounded variation, then (F ) g )'  = ( f  )g ) g'

almost everywhere on [a, b] by Theorem 3.  We record this conclusion below.

Corollary 4.  Suppose  f : [c, d] → R is  Lebesgue integrable, g is a function of bounded

variation whose range is contained in [c, d].  Let F : [c, d] → R defined by  .F(x) = ¶
c

x
f (t)dt

If F ) g is of bounded variation, then (F ) g )'  = ( f  )g ) g' almost everywhere on [a, b].  

Note that if  f : [c, d] → R is  Lebesgue integrable, then  is an N function andF(x) = ¶
c

x
f (t)dt

has finite derivatives almost everywhere on [c, d].  Thus, by Theorem 3, we have the

following simple deduction of the chain rule holding almost everywhere on [a, b].

Corollary 5.  If  g and F ) g have finite derivatives almost everywhere on [a, b] and F is

absolutely continuous, then the chain rule holds almost everywhere on [a, b].

Corollary 6.   If g is monotone, F ) g has finite derivatives almost everywhere on [a, b] and F

is absolutely continuous, then the chain rule holds almost everywhere on [a, b].

We have relied on some results concerning absolutely continuous functions.   For

convenience we state the result here as the next theorem.
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Theorem 7.  Suppose F is an absolutely continuous function on [a, b].

Then (i) F is a continuous function of bounded variation,

        (ii) F is an N function, i.e., it maps sets of measure zero to sets of measure zero,

       (iii)  F is differentiable (finitely) almost everywhere and F' is Lebesgue integrable.   

Moreover, (i) and (ii) implies that F is absolutely continuous (Banach-Zarecki).

If  F is continuous and satisfies (ii) and (iii), then F is absolutely continuous.

In particular, F is absolutely continuous, if and only if, it is the indefinite integral of its

derivative.  Thus, the indefinite integral of a Lebesgue integrable function is always

absolutely continuous.

A very good reference for this theorem is the article "On Absolutely Continuous Functions" ,

(The American Mathematical Monthly vol 72 (1963), pp. 831-841) by Dale Varberg.

Now we can prove easily the next theorem.

Theorem 8.  Suppose g: [a, b] → R is an absolutely continuous function and  let  f : [c, d] →

R be a bounded Lebesgue integrable function such that the range of g is contained in [c, d].   

Then we have the following equality for Lebesgue integrals.

                      .¶
a

b
f (g(x))g∏(x)dx = ¶

g(a)

g(b)
f (x)dx

Proof.  The function F : [c, d] → R defined by  is absolutely continuous.   F(x) = ¶
c

x
f (x)dx

Since  f  is bounded, F is also Lipschitz.  Therefore, F — g is absolutely continuous on [a, b]

(see Proposition 21 of my article "Change of variable or substitution in Riemann and

Lebesgue integration”).  Then Theorem 8 follows from Theorem 1.

Remark.  Theorem 8 is Theorem 31 of “Change of Variable or Substitution in Riemann and

Lebesgue Integration”, where I have proved this using a weaker version of Theorem 2 and

Theorem 3 for absolutely continuous functions instead of functions having only finite

derivatives almost everywhere.  

If we drop the condition that f  be bounded, we then have the following theorem.

Theorem 9.  Suppose g: [a, b] → R is an absolutely continuous function and   f : [c, d] → R

is a Lebesgue integrable function such that the range of g is contained in [c, d] and (  f — g ) g '

 is Lebesgue integrable on [a, b].  Then we have the change of variable formula for Lebesgue

integral,

                      .¶
a

b
f (g(x))g∏(x)dx = ¶

g(a)

g(b)
f (x)dx

Proof.   Write  f  as  f  +  −  f  − , where  f  + and  f  − are the positive and negative parts of  f ,

i.e.,  f  +(x) = max{0, f (x)} and  f  − (x) = − min{0, f (x)}.  Then  f  is Lebesgue integrable, if

and only if,  f  +  and  f  − are Lebesgue integrable.  For each positive integer n ,  f +
n = min {n,  f

 +} is Lebesgue integrable and f +
n converges pointwise to f +  on [c, d].  Obviously, each f +

n is

bounded.  Similarly,  f  −
n = min {n,  f  −} is Lebesgue integrable on [c, d] and converges

pointwise to  f  − on [c, d].  It follows that hn = f +
n  −  f  −

n  is bounded, Lebesgue integrable

and converges pointwise to  f + −  f  − =  f .  Then by Theorem 8, ( hn )g ) g'  is Lebesgue

integrable on [a, b] and

                                       .  ----------------------   (1)¶
a

b
hn(g(x))g∏(x)dx = ¶

g(a)

g(b)
hn(x)dx
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Since ( hn )g ) g' converges pointwise to ( f  )g ) g' , which is Lebesgue integrable, by the

Lebesgue Dominated convergnce Theorem, the left hand side of (1) ¶
a

b
hn(g(x))g∏(x)dx

converges to .  Also since hn converges pointwise to   f  and  f  is Lebesgue¶
a

b
f (g(x))g∏(x)dx

integrable, by the Lebesgue Dominated Convergence Theorem again,   converges¶
g(a)

g(b)
hn(x)dx

to .  Consequently, .¶
g(a)

g(b)
f (x)dx ¶

a

b
f (g(x))g∏(x)dx = ¶

g(a)

g(b)
f (x)dx

Corollary 10.  Suppose g: [a, b] → R is an absolutely continuous function and   f : [c, d] →

R is a Lebesgue integrable function such that the range of g is contained in [c, d] and (  f — g )

g '  is Lebesgue integrable on [a, b].  Then F — g is absolutely continuous on [a, b]

Theorem 11.  Suppose g: [a, b] → R is of bounded variation on [a, b] and   f : [c, d] → R is a

Lebesgue integrable function such that the range of g is contained in [c, d] and  F — g  is

absolutely continuous on [a, b], where F is defined as above.  Then we have the change of

variable formula for Lebesgue integral.

                      .¶
a

b
f (g(x))g∏(x)dx = ¶

g(a)

g(b)
f (x)dx

Proof.  Since g is of bounded variation on [a, b],  g has finite derivatives almost everywhere

on [a, b].  The theorem then follows from Theorem 1.
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