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We shall begin by examining the properties of the image under a function f  of a set in
which  f  has finite derivatives that are bounded by a constant.  The first property we
examine is the relation between the measure of  such a set and the measure of its
image.  We state this property in the next theorem.

This result appears in Saks monograph on the theory of the integral and there are a
number of proofs of the result.  But I shall present a proof using some finiteness
argument, a consequence of compactness and the triangle inequality.

Theorem 1.  Suppose  f : [a, b]  R is a function.  Suppose E is a subset of [a, b]
such that at each point x of E,  f  is differentiable and | f ' (x)|  K for some constant K
 0.  Then if m denotes the Lebesgue outer measure,
                                         m( f (E))  K m(E) .  ----------------------  (A)

Proof .   Now  E = { x  [a, b] : | f ' (x)|  K }   [a, b] and so E  has finite outer
measure.  If  E  is finite or denumerable, then the set  f (E) is at most denumerable and
so both m( f (E)) and m(E) are zero and we have nothing to prove since both sides of
the inequality are zero.  We shall now assume that E is uncountably infinite.  We may
assume that neither a nor b is in E since adding or subtracting any finite number of
points to E will not alter the inequality (A).   Since the set of isolated points of E is
countable, we may remove the set of isolated points from E without affecting the
conclusion of the theorem, since the measure of a countable set is zero.  We now
assume that E has no isolated points. 
For any  > 0, by the definition of outer measure, there exists an open set U in [a, b]
such thatU E and m(U)  m(E) + .  
Since for each e in E, | f ' (x)|  K , for  > o there exists a e > 0 such that

                                .0  x  e  e 
f x  f e

x  e  | f e|  

and so

                                .0  x  e  e 
f x  f e

x  e  | f e|    K  

Thus, we have,
                                 .   --------------  (1)x  e  e  f x  f e  K |x  e|
 
 Since U is open, we may choose e > 0 such that the open interval (e  e , e + e) 
U.   Denote (e  e , e + e) by I e .  Then inequality (1) says that  
                                    .     -----------------  (2)x  Ie  f x  f e  K |x  e|
Then the collection C  = { Ie : e   E} covers E and the union W =  {V : V   C} = 
{ I e : e   E}  U.  In particular, the union W  is open and so is a disjoint union of
countable number of open intervals, i.e., 
                                          ,W  Ui : i  B
where B the index set is a subset of the set N of  natural numbers and each Ui is an
open interval.  We shall show next that for each i in B,
                                     m( f (Ui  E))  (K+) m(Ui).--------------------------   (3)



Note that  Ui = { I e : e   Ui  E }.  Observe that each Ui is a path component of W.

Plainly for e   Ui  E , I e  Ui   and since I e  W and Ui is a path component of
W,  I e  Ui.  It follows that { I e : e   Ui  E }  Ui .  For any x in Ui , x  I e for
some e in E, since W =  { I e : e   E} and so I e  Ui   .  It follows, as in the
above argument, that I e  Ui and so e  Ui  E .  Thus,  x   I e  for some e  Ui  E,
that is, x  { I e : e   Ui  E } and so Ui   { I e : e   Ui  E }.  This proves that 
Ui = { I e : e   Ui  E }.
Now take any x < y in Ui .  Since Ui is an open interval, the closed and bounded
interval [x, y] is contained in Ui .  Now plainly the collection  B  = { I e : e   Ui  E }
is an open cover for [x, y].  Since [x, y] is compact, there exists a finite subcover say
                                          I1 , I2 ,   , In ,
where Ii = (ei  (ei),  ei + (ei)), for some ei in E and (ei) is as given in (1).  We
assume that the ei

 's are ordered in an increasing order.  Hence 
                          [x, y]  I1  I2    In

and e1 < e2 <   < en.
We may assume that x  I1 .  This is seen as follows.  If x  I1 , x must belong to I j

for some 1  j n  and x   Ii for  for 1 i < j.  Then [x, y]   Ii =   for 1 i < j.   It
follows that [x, y]  I j  Ij+1    In  and so we can rename if need be I j to be I1,
Ij+1 to be I2 and so on.   By a similar argument we may assume that y  In.  

We may assume that Ii   Ij for j  i.  If  Ii  I j, then the collection of the Ik 's without  
Ii  still covers [x, y] and so we can discard Ii and rename the Ij 's.

We may also assume that Ii  Ii +1  for 1  i n 1.  We explain this as follows.   
Starting with I1 , suppose  I1  I2  =.  It follows that e1 + (e1) < e2  (e2).  Then
since [x, y] is path connected,  I1  { Ij : 1< j  n}  implies for some 2 < j  n, I1

 Ij  . Then ej (ej) < e1 + (e1) < e2  (e2).  Hence, (ej)  > ej e2 + (e2) >
(e2) and so ej + (ej) > e2 + (e2).  Hence, I2  Ij .  This contradicts that I2  Ij .
 Therefore,  I1  I2  .  This means e1 + (e1) > e2  (e2).  We can repeat the same
argument to show that Ii  Ii +1  for i > 1.  For instance, take next the interval, 

.  Since I2   I1, e2 + (e2) > e1 + (e1) and so 
e1e1e2e2

2 , y

.  As I1  I2  ,  so that 
e1e1e2e2

2  e2  e2 e2  e2  e1  e1
.  Hence  but not in I1.e2  e2  e1  e1 

e1e1e2e2
2

e1e1e2e2
2  I2

Then { Ij : 2 j  n} covers . If it does not cover ,
e1e1e2e2

2 , y
e1e1e2e2

2 , y

then there exists k such that  and k  { Ij : 2  j  n} and so k e1e1e2e2
2  k  y

I1 . This means k < e1 + (e1).  But since I2   I1, e2 + (e2) > e1 + (e1) so that we
have  contradicting k < e1 + (e1).  Hence,{ Ij : 2 j  n}k  e1e1e2e2

2  e1  e1
covers .  By repeating the above argument on the interval,  

e1e1e2e2
2 , y

 instead of [x, y] and the cover { Ij : 2 j  n}, we can show that I2 
e1e1e2e2

2 , y

I3 .   Thus, continuing the argument in this way, we have that Ii  Ii +1  for 1  
i n 1.
Therefore, we may assume that we have a sequence of points x1, x2, , xn - 1 such that
                                   e1 < x1 < e2 < x2 <   < en - 1 < xn - 1 < en 
and xi  Ii  Ii +1 for 1  i n 1.  Therefore, by (2) and the triangle inequality.
 f x  f y  f x  f e1  f e1  f x1  f x1  f e2  f e2  f x2
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 f xn2  f en1  f en1  f xn1  f xn1  f en  f en  f y
  K   x  e1  e1  x1  x1  e2  e2  x2 
            xn2  en  en1  xn1  xn1  en  en  y 
  K   x  e1  e1  en  en  y 
 (K+) m( I1  I2    In ) (K+) m( Ui).

Hence, the diameter of  f (Ui)  (K+) m( Ui).  It follows that m( f (Ui  E))  (K+)
m(Ui).  This proves (3).
Then using (3), we see that        
                m f E  m( f Ui E : i  B) 

iB
m f Ui E

                
iB
K  mUi  K  mW  K  mU

                . K  mE  
Since  is arbitrary, we conclude that  .m f E  KmE

Theorem 2.  Suppose  f : [a, b]  R is a measurable function.  Suppose E is any 
measurable subset such that  f ' (x) exists finitely for every x in E.  Then

 ,m f E  
E

f 

where m is the Lebesgue outer measure.
Proof.   Since f  is measurable and finite on [a, b], its Dini derivatives are measurable.
(Banach Theorem). Consequently,  f '  is measurable on E  and so | f ' | is
measurable on E.  Suppose now g = | f ' | is bounded on E, by a positive integer K, i.e.,
| f ' (x)| < K for each x in E.  For any positive integer n and integer i =1,2, ,2n K, let  

.    Define   for each positive integer n.En, i  g1 i  1
2n , i

2n  E gn  
i  1

2n K
i  1
2n En, i

Then ( gn ) is a sequence of simple functions converging pointwise to g on E.  In
particular, 
                                                 . 

E
gn  E

g

By Theorem 1,   for integer i =1,2, ,2n K,  Thus,m f En, i  i
2n mEn, i

              m f E  m f 
i  1

2nK

En, i  
i  1

2nK i
2n mEn, i

                                                         
i  1

2nK
i  1
2n mEn, i  1

2n 
i  1

2nK

mEn, i

                                                        .   -----------------------  (1) 
E

gn  1
2n mE

Therefore,   .  Since,  and  ,m f E 
n  lim 

E
gn  1

2n mE 
E

gn  E
g 1

2n mE  0

we conclude that 
                                              .m f E  

E
g

We now consider the case when g is unbounded.  For each integer k > 1, let 
  Ek  g1([k  1, k))  E.

Then it is obvious that E is a disjoint union of the Ek's.  Note that on E k ,  g is
bounded by k.   Hence, by what we have just shown, for each integer k > 0,  

.  Therefore,m f Ek  Ek
g

                             .m f E  
k  1



m f Ek  
k  1




Ek

g  
E

g  
E

f 

This completes the proof of Theorem 2.  

We have some easy consequences of the above theorems.
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Theorem 3.  Suppose  f  is defined and finite on [a, b].  Suppose E = {x  [a, b]:  f  is
differentiable at x and  f ' (x) = 0}.  Then m( f (E)) = 0. 
Proof.  By Theorem 1, m( f (E))  1/n m(E)  for any positive integer n.   Therefore,      
 m( f (E)) = 0.  

Recall a set is called a null set if its measure is zero.

Theorem 4.  Suppose  f : [a, b]  R has a finite derivative at every point of [a, b].
Then  f  maps null sets onto null sets.
Proof.  Suppose E is a null set in [a, b].  Then by Theorem 2, 
                           .m f E  

E
f   0

Hence m( f (E)) = 0.  This proves the theorem.

Theorem 5.  Suppose  f : [a, b]  R has a finite derivative at every point of [a, b] and
f '  is Lebesgue integrable on [a, b].  Then for every closed and bounded interval [c, d]
in [a, b],

                                 .
c

d
f   | f d  f c|

Proof.  Since  f  is continuous on [a, b], | f (d)  f (c)|  m( f ([c, d])).  Since  f  is
differentiable at every point of [c, d],  by Theorem 2,

                          .m f c, d  c,d f   
c

d
f 

It follows that   .| f d  f c|  
c

d
f 

We can apply Theorem 5 to the next result.

Theorem 6.  Suppose  f : [a, b]  R has a finite derivative at every point of [a, b] and
f '  is Lebesgue integrable on [a, b].  Then  f  is absolutely continuous.       
Proof.  Since  f ' is Lebesgue integrable, | f ' | is also Lebesgue integrable on [a, b].   
For each positive integer n, let gn = min( | f ' |, n).  Then each gn is Lebesgue
integrable on [a, b] and the sequence ( gn ) converges pointwise to | f ' |.   In particular,
for each n, |gn |= gn  | f ' |  and so by the Lebesgue Dominated Convergence Theorem,

                                                  .
a

b
gn  a

b
f 

Hence, given any  > 0, there exists a positive integer N such that 

                                   .      n  N  
a

b
f   

a

b
gn  2

 It follows that

                                     .    -------------------------- (1)n  N  0  
a

b
( f   gn )  2

Now take .  Suppose [ai , bi], i = 1, 2, , k are non-overlapping intervals in [a,  
2N

b].   If  , then
i  1

k

|bi  ai|  

               by Theorem 5,
i  1

k

| f bi  f ai|  
i  1

k


ai

bi
f 

                                            
i  1

k


ai

bi ( f   gN )  
i  1

k


ai

bi
gN

                                         
a

b
( f   gN )  

i  1

k


ai

bi
N
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a

b
( f   gN ) N 

i  1

k

|bi  ai|

                                         ,  by (1). 2  N  2  2  
This shows that  f  is absolutely continuous on [a, b].

Remark.  Theorem  6 is Theorem 8.21 in Rudin's Real and Complex Analysis in an
equivalent formulation.

More generally we may relax the requirement of everywhere differentiability but we
need to impose the requirement that  f  maps null sets to null sets.  This is a necessary
condition for absolute continuity.

Theorem 7. Suppose  f : [a, b]  R is continuous and f '  exists almost everywhere
and is Lebesgue integrable on [a, b].  Suppose  f  maps null sets to null sets.  Then  f  
is absolutely continuous.       
Proof.   Let E   [a, b] be the subset where f ' exists at each point so that the measure
of [a, b]  E is zero.  Then |  f '  | = g almost everywhere, where g(x) = | f ' (x)| for x in
E and g(x) = 0 for x outside E.   Then there exists an increasing sequence of simple
functions (gn) converging pointwise to g almost everywhere and 

                                           .
a

b
gn  a

b
f   

a

b
g

Thus, given any  > 0, there exists a positive integer N such that 

                      .      ----------------  (1)n  N  
a

b
g  

a

b
gn  

a

b
(g  gn )  2

Suppose [ai , bi], i = 1, 2, , k are non-overlapping intervals in [a, b].  Let 
Ei ={x  [ai , bi]:  f ' (x) exists.}.  Then since  f  maps null sets to null sets and m([ai ,
bi]Ei) = 0, m( f ([ai , bi]) = m( f (Ei)).   By Theorem 2,   and so form f Ei  Ei

f 

each i,  
                                     .       ------------------------  (2)m f ai, bi  Ei

f 

Since  f  is continuous,  f  is also continuous on [ai , bi] and so by continuity,
                | f (bi )  f (ai )|  m( f  ([ai , bi]) ) for each i = 1, 2, , k.  
Therefore, by (2) we have,   

                            
i  1

k

| f bi  f ai|  
i  1

k


Ei

f   
i  1

k


Ei

g

                                                    , since m([ai , bi]Ei) = 0, 
i  1

k


ai

bi
g

                                                     
i  1

k


ai

bi (g  gN )  
i  1

k


ai

bi
gN

                                                      
a

b
(g  gN )  

i  1

k


ai

bi
K,

                                                                  where K > 0 is an upper bound for gN ,

                                                      . 2 K 
i  1

k

|bi  ai|

                                                                                  ------------------------------- (3).

Take ,   It follows from (3) that if   , then  
2K 

i  1

k

|bi  ai|  

                                 .
i  1

k

| f bi  f ai|  2 K 
2K  
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This shows that  f  is absolutely continuous.

As a corollary we have the Banach Zarecki Theorem.

Theorem 8 (Banach Zarecki) .  Suppose  f : [a, b]  R is continuous and is a
function of bounded variation.  Suppose  f  maps null sets to null sets.  Then  f  is
absolutely continuous.       
Proof.  Since  f  is of bounded variation,  f  is differentiable almost everywhere and  f '
is Lebesgue integrable.  Therefore, by Theorem 7,  f  is absolutely continuous.    
           
Remark.  It is easy to see that if  f  is absolutely continuous on [a, b], then  f  is
continuous and of bounded variation on [a, b].  Any function of bounded variation on  
  [a, b] is the difference of two increasing functions (see for instance Theorem 13 of  
"Monotone functions, function of bounded variation , fundamental theorem of
Calculus").  Since any increasing function on [a, b] is differentiable almost
everywhere on [a, b] and its derived function is Lebesgue integrable on [a, b], any
function of bounded variation is therefore, differentiable almost everywhere on [a, b]
and its derivative is Lebesgue integrable on [a, b].  So  if  f  is absolutely continuous
on [a, b], then  f  is differentiable almost everywhere on [a, b] and  f '  is Lebesgue
integrable on [a, b].  If  f  is absolutely continuous on [a, b], then  f  maps null sets in
[a, b] to null sets (see for instance Proposition 9 of my article "Change of variable or
substitution in Riemann and Lebesgue Integration"). Thus the converse of Theorem 7
and Theorem 8 are also true.

With a little thought we shall derive the following theorem.

Theorem 9.  Suppose  f : [a, b]  R is absolutely continuous and  f ' (x) = 0 almost
everywhere  on [a, b].  Then  f  is a constant function.
Proof.  It is enough to show that the range of  f  has measure zero.  Let E = {x  [a, b]
f ' (x) = 0}.  Then m( [a, b] E) = 0.  By Theorem 3, m( f (E)) = 0.  Since  f  is
absolutely continuous, it maps null sets to null sets (see Proposition 9 of my article
"Change of variable or substitution in Riemann and Lebesgue Integration").  It
follows that m( f ([a, b] E)) = 0.   Therefore,  m ( f ([a, b]))   m( f (E)) + m( f ([a, b]
E)) = 0.  It follows that m ( f ([a, b])) = 0.  Since  f  is continuous and [a, b] is
compact and connected,  f ([a, b])) is compact and connected and so is either a
non-trivial closed and bounded interval or a single point. Since a non-trivial closed
and bounded interval has non-zero measure, f ([a, b])) must be a single point,
consequently  f  is a constant function.

The next result is a consequence of a function having the property of being a
continuous N function.  In particular the result applies to an absolutely continuous
function on [a, b].

Theorem 10.  Suppose  f : [a, b]  R is continuous and maps null sets to null sets,
i.e.,  f  is a continuous N function.  Then  f  maps measurable sets to measurable sets. 

Proof.   Since the Lebesgue measure is a regular measure, for any measurable set  E
there is a subset, a F set, K in [a, b] such that  K  E  and m(E K) = 0.  By a F set
K, we mean K is a countable union of closed sets in [a, b].   Thus 
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                                                      ,K 
n1

Kn

where each Kn is a closed subset in [a, b].  
Each Kn is closed and bounded and so by the Heine Borel Theorem, is compact.
Since  f  is continuous,  each f (Kn ) is compact and so is closed and bounded by the
Heine Borel Theorem.  Since f (Kn ) is closed, it is measurable.
Therefore,
                                     f K 

n1
f Kn,

being a countable union of measurable sets, is measurable.  
Since  f   maps null sets to null sets,  m( f (E K)) = 0.  It then follows that  f (E K)
is measurable.  Hence,
                                  f (E ) =  f (K )  f (E K))
is a union of two measurable sets and so is measurable.

Corollary 11.  Suppose  f : [a, b]  R is absolutely continuous.  Then  f  maps
measurable sets to measurable sets.
Proof.   Since  f  is absolutely continuous on [a, b],  f  maps null sets in [a, b] to null
sets (see for instance Proposition 9 of my article "Change of variable or substitution
in Riemann and Lebesgue Integration").  Thus,  f  is a continuous N function and so
by Theorem 10, f  maps measurable sets to measurable sets.

For functions that are strictly increasing (or strictly decreasing) we have the following
useful result for absolute continuity.

Theorem 12 (Zarecki).  Suppose  f : [a, b]  R is strictly increasing and continuous.
(a)  f   is absolutely continuous if and only if  m( f ({x  [a, b]:  f ' (x) = })) = 0.
(b)  The inverse function,  f 1 , is absolutely continuous, if and only if, 
        m({x  [a, b]:  f ' (x) =0}) = 0.
Proof.  
(a)  By Theorem 8,  f  is absolutely continuous, if and only if  f , maps null sets to null
sets.  Since  f  is increasing,  f  is differentiable (finitely) almost everywhere on [a, b].
 Hence m({x  [a, b]: f ' (x) = }) = 0.  If  f  maps null sets to null sets, then m( f ({x
 [a, b]: f ' (x) = })) = 0.  
Conversely, suppose m( f ({x  [a, b]: f ' (x) = })) = 0.  Let  E  be a set of measure 0
in [a, b].  Let  A = {x  [a, b]: f ' (x) = },  B = {x  [a, b]:  f ' (x) does not exists and  
f ' (x)  }.  By the Theorem of De La Vallee Poussin, m( f (B)) = 0.  Write E = (E
A)  (E B) (E  (AB)).  Then m(E) = 0 implies that m(E  (AB)) = 0.  By the
Theorem of  De La Vallee Poussin, we may assume that  f ' (x) exists finitely on  E 
(AB).  Therefore, by Theorem 2, 
                                .m f E  A  B  

EAB f   0

Hence .  Since  f ( E B)   f (B) and m( f (B)) = 0, m( f (Em f E AB  0
B) ) = 0.  Since E A  A and m( f (A)) = 0, m( f (E A)) = 0.  Thus,
             .m f E m f E  AB m f EA m f EB  0
It follows that m( f (E ) = 0.  This means  f  maps null sets to null sets and it follows
that  f  is absolutely continuous.      

(b) Suppose f  1 is absolutely continuous.  Let C = {x  [a, b]:  f ' (x) =0}.   Then by
Theorem 3,  m ( f (C)) = 0.  Then since   f  1 is absolutely continuous,
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                                      mC  m f 1 f C   0.
As in part (a), note that  f  1 is absolutely continuous if and only if  f 1 maps null sets
to null sets.
Now assume that m(C) = 0. 
Let E be a subset of  f ([a, b]) = [c, d] of measure 0.  Then E = f (A), where A = f  
1(E).  We shall show that m(A) = 0.
By Theorem 15 of "Functions of Bounded Variation and Johnson's Indicatrix",
f ' = 0 almost everywhere on A. 
Write A = (A C )  (A  C).  Since f ' = 0 almost everywhere on A, m(A  C) =0.
But A C  C and m( C) = 0 and so m(A C ) = 0.  Hence m(A) = m( f  1(E) ) = 0.
This completes the proof.

The proof of  Theorem 12 (a) word for word with minor modification changing
"increasing" to "of bounded variation" and "" to  "" gives the following theorem.

Theorem 13.   Suppose  f : [a, b]  R is continuous and of bounded variation.
Then  f   is absolutely continuous, if and only if,  m( f ({x  [a, b]:  f ' (x) = })) = 0.

We shall now give a proof of the Theorem of De La Vallée Poussin.

Theorem 14  (De La Vallée Poussin).  Suppose  f : [a, b]  R is a function of
bounded variation.  Then there is a subset N of [a, b] such that 
                          m(v f (N)) = m ( f (N) ) = m(N) = 0,
where v f  is the total variation function of  f,  and for each x in [a, b] N,   f ' (x) and   
v f ' ( x ) exist (finite or infinite) and that 
                                   v f ' ( x ) =  | f ' (x) |.

The following elementary proof is due to F. S.  Cater.

The following technical lemma is the key to the proof.

Lemma 15.  Suppose  f : [a, b]  R is a function of bounded variation.  Let  h and k
be positive numbers such that h < k.  Suppose E = { x  [a, b]: there is a derived
number of v f  at x greater than  k and a derived number of f  at x, whose absolute
value is less than h.}.  Suppose S = { x  [a, b]: there is a positive derived number
and a negative derived number of  f  at x}.
Then 
                 m(v f ( E S  )) = m ( f (E S) ) = m(E S) = 0.

Proof. We assume that E S is non-denumerable, otherwise trivially all three sets
have measure zero.
The first step is to choose some anchor partition for [a, b] to approximate the total
variation of  f.   Recall the definition of  the total variation of a function of bounded
variation,

           vfb  sup 
i1

n

f xi  f xi1 :

                               .P : a  x0  x1   xn  b is a partition for a, b
Then given any  > 0, there exists a partition   such that P : a  u0  u1   un  b
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                  ,  i.e.,vfb    
i1

n

f ui  f ui1  vfb

                        .   ------------------------------  (A)vfb  
i1

n

f ui  f ui1  

Then for any partition,  , containing all the points of theQ : a  z0  z1   zt  b
partition P,

                           . ----------- (1)vfb 
i1

t

vf zi  vf zi1  
i1

t

f zi  f zi1  

Let P denote also the set of points of the partition. .P : a  u0  u1   un  b
We may assume also that  f  is continuous at every point of E S.  Then  v f  is also
continuous at every point of  E S.  Since  f  is of bounded variation, the set of
discontinuity of   f  is denumerable and so we may remove these points of
discontinuity from E S without affecting the conclusion of the lemma.
Let U be an open set containing the image  v f ( E ) such that m(U) < m(v f (E)) + .
Since U is open and  v f  is continuous at e for each e in E, there exists an  > 0 so that
( v f (e)  ,  v f (e) +  )  U and corresponding to this  > 0 there exists  > 0 such
that 
                      x (e  , e + )   v f (x)  ( v f (e)  ,  v f (e) +  ).
Thus we can find arbitrary small non trivial intervals [x, y] with x  e  y such that 
 v f (e)  [ v f (x), v f (y)]  ( v f (e)  ,  v f (e) +  ).   In particular, since v f  has a
positive derived number > k at e we can find arbitrary such small intervals [x,  y] such
that

                                           .
vfy  vf x

y  x  k

 (Note that since v f  has a positive derived number at e, the interval [ v f (x), v f (y)] is
never degenerate.)  Thus we can cover  v f ( E )  by arbitrary such small closed
intervals.  Therefore, by the Vitali Covering Theorem, we can cover v f (E) almost
everywhere by countable mutually disjoint closed interval, 
                                              ,vfai, vf bi
such that    and   for each i.vfai, vf bi U vfbi  vf ai  kbi  ai
Therefore, the intervals,  , are also mutually disjoint andai, bi
                     mvf E    mU 

i
v f bi  vf ai  k

i
bi  ai

and so     
                                 .  -----------------------------    (2)

i
bi  ai  mvf E  /k

Without loss of generality we may assume that the set of points of the partition .
 does not contain any points of  E.  If P contains a pointP : a  u0  u1   un  b

in E we may just remove this point from E.  We may thus remove all the points in P
that are in E from E without affecting the conclusion of the lemma as only a finite
number of points is removed from E.  We may take  = 1/N  then by passing to the
limit as N tends to infinity only at most a denumerable number of points are removed
from E.   Consequently as the measure of a set of denumerable number of points and
its image under f  or  v f is of measure zero, the conclusion of the lemma remains valid.
 
Since at each point e of E  {ai , bi : i = 1,2,  } , there is a derived number of  f  
whose absolute value is less than  h, we may pick arbitrary small interval  suchc, d
that e is either one of the end points of the interval, 

                                           ,
f d  f c

d  c  h

9



 and that P [c, d] = .   Note that  {ai , bi : i = 1,2,  } isc, d iai, bi
countable and so its image under v f  is also countable and so is of measure zero.
Hence, again by the Vitali Covering Theorem, we can cover v f (E) almost everywhere
with countable mutually disjoint closed intervals   such that P [ci ,vfci, vf di
di ] =  ,ci, di iai, bi
                                     f di  f ci  hdi  ci
for each i and
                                .          -------------------  (3)mvf E 

i
v f di  vf ci

But using (1) and the fact that for any x < y,  , we can show|f y  f x|  vfy  vf x
that
                         .  ---------------- (4)

i
v f di  vf ci  

i
f di  f ci  

(Show this for finite number of the intervals and pass to the limit.)ci, di
Since , ici, diiai, bi
                                           .   ------------------------- (5)

i
di  ci 

i
bi  ai

Then from (3) and (4), we arrive at
                           mvf E 

i
v f di  vf ci  

i
f di  f ci  

                                          . h
i
di  ci    h

i
bi  ai  

Thus,                       mvf E  /h 
i
bi  ai

and using (2) we get  
                                 .  mvf E  /h  mvf E  /k
Since  = 1/N is arbitrary, by passing N to infinity we deduce that,   

.  But since h < k , this is only possible if m(v f ( E )) =0.mvf E/h mvf E/k

Now we proceed to show that m(v f ( S )) =0.  Using the fact that at each e in S, there
is a positive derived number of  f , and as in the above argument, we may pick
arbitrary small interval  such that e is either one of the end points of the interval, r, s

                                           
f s  f r

s  r  0
and .  Hence, we may cover v f (e) by arbitrary small intervals          P r, s 

  Therefore, by the Vitali Covering Theorem, we may cover v f (S)vf r, vf s.
almost everywhere by countable mutually disjoint closed intervals  vf ri, vf si
such that P [ri , si ] =    for each iand f si  f ri  0
             ,  ----------------- (6)mvf S 

i
v f si  vf ri  

i
f si  f ri  

where the last inequality is deduced using (1).
Similarly, as before using the negative derived number of  f  at each of  the point e of
S, we may cover  v f (E) almost every where with countable mutually disjoint closed
intervals    such that P [pi , qi ] =   vf pi, vf qi pi, qi iri, si

 for each i and f pi  f qi
            .  ---------------- (7)mvf S 

i
v f qi  vf pi  

i
f pi  f qi  

Since   ipi, qi iri, si,
                ,

i
f pi  f qi 

i
N f si Nf ri

               ,      
i

f si  f ri 
i
P f si Pf ri

10



where N f and Pf  are the negative and positive variations of  f.  Therefore, because v f

=N f + Pf ,
              .

i
f pi  f qi 

i
f si  f ri 

i
v f si  vf ri

This inequality together with (6) and (7) yields,
              

i
v f si  vf ri   

i
v f qi  vf pi   

i
v f si  vf ri

and so 
                                           .

i
v f qi  vf pi  2

Hence,  .  Since  = 1/N by passing to the limit as N tends  to infinity,  mvf S  2
m(v f ( S )) = 0.
Therefore, 
                        mvf SE mvf E mvf S  0
and so  .  mvf SE  0
Now for any > 0, take an open set U such that   f ( E S )  U and  m(U )   .
Since U is open, U is a countable union of mutually disjoint non-trivial intervals  I i .
Then the collection {v f -1 ( I i )} covers  E S.  Therefore,
      .m f S E  mf vf

1 Ii 
i

m f vf
1 Ii 

i
m Ii  mU  

We have used the fact that  for each i.  We deduce this asm f vf
1 Ii mIi

follows. For any point x, y in ,  .vf
1 Ii | f x  f y|  |v f x  vf y|  diameterIi

Therefore, the diameter of    diameter of I i = length of  I i = m(I i ).  Thatf vf
1 Ii

means .  Since  was arbitrary, m(f (E S  )) = 0.m f vf
1 Ii mIi

It remains now to show that m(E S  ) = 0.
Since  f  is of bounded variation,  f  is differentiable almost everywhere.  So we may
assume that  f  has finite derivative at every point of  E S.    f  is  obviously not
differentiable at every point of S since each point of S has a positive and negative
derived numbers.  Note that, since | f ' | = v f '  almost every where, we may look only
at points x in E, where the derived number for f  at  x has the same absolute value as
the only derived number of  v f  at x.  So since points in E do not have this property, E
must have measure 0.  It follows that m(E S) = 0.  We may alternatively prove
directly that  m(E S) = 0 by using a Vitali covering argument. 

16.  Proof of  de La Vallée Poussin Theorem (Theorem 14)

Let Eh, k = { x  [a, b]: there is a derived number of v f  at x greater than  k and a
derived number of f  at x, whose absolute value is less than h, h < k.}.
Let  Let N = E S.  We have already shown inE Eh,k : h, k rational and h  k.
the proof of Lemma 15 that m(S) = m( f (S )) = m(v f (S )) =0.
By Lemma 15, m(Eh, k) = 0 for each pair (h, k), h < k.  Thus E is a countable union of 
sets of measure zero and so m(N) = m(E S ) = 0.  Note that                              
                                     m f E  

0 h  k, h and k rational
m f Eh,k  0

since the set is a countable union of sets,    f E  f Eh,k : h, k rational and h  k.
  f ( Eh, k ), each of measure zero by Lemma 15.  Thus m( f (E)) = 0.  It follows that     
m( f (N )) = 0.   Similarly, we show that m(v f  (N)) = 0. 
We now prove the property of N as stated in the theorem.  Take any x in [a, b]  N.   
Then x is not in S and not in any Eh, k .  Hence  f  does not have a positive and a
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negative derived numbers at x.  Moreover for any finite derived number  DV of  v f  at
x, 
                          DV    | D f |  for any derived number D f  of  f  at x.
Therefore, for any derived number DV  of v f  at x, we have,
                     DV  inf{ |D f | : D f  is a derived number of  f  at x}.
Note that if  DV is a derived number of  v f  at x, then there is a sequence ( hn ) such
that hn  0 , hn  0 and

                                      .DV 
n  lim

vfx  hn  vfx
hn

Therefore, the sequence   is bounded.  Since we have for each n, 
vfx  hn  vfx

hn

, the sequence  is also
f x  hn  f x

hn


vfx  hn  vfx
hn

f x  hn  f x
hn

bounded.  Hence, by the Bolzano Weierstrass Theorem,   has a
f x  hn  f x

hn

convergent subsequence,   and 
f x  hnk  f x

hnk

                                     D f 1 
k  
lim

f x  hnk  f x
hnk

is a derived number of  f  at x.  Moreover the subsequence  
vfx  hnk  vfx

hnk

converges to the same value DV and so we have
                                                 | D f 1 |   DV .
But DV    | D f 1 | and so  DV    | D f 1 |.  It follows that any derived number of  v f  at
x is equal to  .  Consequently there can beinf|D f | : Df is a derived number of f at x.
only one derived number of  v f  at x and so v f  is differentiable at x.  It follows that for
any derived number Df  of  f  at x,
                                    | D f |   v f '(x)
and v f '(x)  | D f |  because v f '(x) is the infimum of all absolute values of  the derived
numbers of  f  at x.  Thus, | D f |   v f '(x) for any derived number D f of  f   at x.
Therefore, any derived number of  f  has one unique absolute value.  Since  f  has no
derived number of opposite sign at x, it can have only one unique derived number at
x.  That is to say,  f  is differentiable at x. 
Suppose now that v f  has an infinite derived number at x, then since x is in [a, b]  N,
any derived number Df  of  f  at x must have |Df | =  .  Consequently there is only
one derived number of v f  at x, namely +.  Since  f  does not have derived number of
opposite signs at x, it can have only one derived number at x either + or .
We have thus proved that  f  is differentiable (finite or infinite) at every point of [a, b]
 N.  
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