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Second Mean Value Theorem for Integrals 

By Ng Tze Beng 

 

This article is about the Second Mean Value Theorem for Integrals. This theorem, first proved by 

Hobson in its most generality and with extension by Dixon, is very useful and almost indispensable in 

many of the arguments in the convergence problem of Fourier series.  We shall present a proof along 

the line taken by Dixon and Hobson. 

 

The Second Mean Value Theorem for Integrals (SMVT) 

Statement of the Theorem 

Suppose the function f is Lebesgue integrable on [a, b] and g: [a, b] → is 

monotone. 

Then 

 (i)           ( ) ( ) ( ) ( ) ( ) ( )
b C b

a a C
f x g x dx g a f x dx g b f x dx= +    -----------  (M) 

for some C with a ≤ C ≤ b; 

(ii) (M) holds with a < C < b except in some trivial cases where g(x) is constant 

in the open interval (a, b); 

(iii) (M) holds with g(a) and g(b) replaced by A and B respectively so that 

the function 

,   ,

( ) ( ),   ,

,      

A x a

h x g x a x b

B x b

=


=  
 =

 is monotone; i.e. 

           ( ) ( ) ( ) ( )
b C b

a a C
f x g x dx A f x dx B f x dx= +    

for some C with a ≤ C ≤ b; lim ( ), lim ( )
x a x b

A g x B g x
+ −→ →

   if g is increasing and 

lim ( ), lim ( )
x a x b

A g x B g x
+ −→ →

   if g is decreasing.  C can be taken in (a, b) except in 

some trivial cases where g(x) is constant in the open interval (a, b). 
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Note that we say a function g is decreasing if  ( ) ( )x y g x g y   .  It is said 

to be increasing if  ( ) ( )x y g x g y   . 

  

An immediate consequence is the following:   

Corollary (Bonnet Mean Value Theorem).  Suppose f is Lebesgue integrable 

on [a, b] and g: [a, b] → is monotone.  

(i) If g is non-negative, decreasing and greater than or equal to 0, for

lim ( )
x a

A g x
+→

 there exists C such that a ≤ C ≤ b and  

                          ( ) ( ) ( )
b C

a a
f x g x dx A f x dx=  . 

 (ii) If g is non-negative, increasing and greater than or equal to 0, for

lim ( )
x b

B g x
−→

 there exists C such that a ≤ C ≤ b and  

                          ( ) ( ) ( )
b b

a C
f x g x dx B f x dx=  . 

(iii) If g is not constant in (a, b), then the point C in Part (i) and (ii) is in (a, b). 

More precisely, except for some trivial cases when g is constant in (a, b), the 

point C in Part (i) and (ii) is in (a, b). 

Proof.  For Part (i), apply SMVT Part (iii) with B = 0.  For Part (ii), apply 

SMVT Part (iii) with A = 0.  Part (iii) follows from SMVT Part (iii). 

Note that we abbreviate the Second Mean Value Theorem for Integrals by 

SMVT.   

Definition 1.  

Let [a, b] be a closed and bounded interval.  A finite function g: [a, b] → is 

said to be a step function, if there exists a partition of [a, b], a = x0 < x1 <  < xn 

= b, such that g is constant on each open interval 1( , )i ix x− , i= 1, 2,  , n.  
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We shall state the following approximation theorem of Lebesgue integrable 

function without proof.  This follows from the approximation of Lebesgue 

integrable function by simple function and the approximation of characteristic 

function of a measurable subset of finite measure by step function.  The proofs 

may be found in Royden’s Real Analysis.     

 

Theorem 2.   Suppose g is Lebesgue integrable on [a, b].   For any  > 0, there 

exists a step function   on [a, b] such that  ( ) ( )
b

a
g t t dt −  . 

Our approach is to prove Part (i) of SMVT for step function and then use the 

approximation theorem to pass to a general Lebesgue integrable function.   

 

The first thing we observe is that Part (i) of SMVT holds true when f is a 

constant function. 

Lemma 3.  Suppose f is a constant function on (a, b) and g: [a, b] → is 

decreasing and g(a) > g(b).  Then Part (i) of SMVT holds true.  

Proof.   

Suppose f (x) is a constant function, g is decreasing, ( ) 1g a = and ( ) 0g b = .   

Suppose f (x)  =  M  in (a, b).  Since 1 = g(a) ≥ g(x) ≥ g(b) = 0, 

                                       ( ) 0
b

a
b a g x dx−   . 

Therefore, either   ( ) ( ) ( ) ( ) 0
b b

a a
M b a f x g x dx M g x dx−  =    

or                          ( ) ( ) ( ) ( ) 0
b b

a a
M b a f x g x dx M g x dx−  =   . 

Hence for some 0 ≤ t ≤ 1, 
( ) ( )

( ) ( ) ( ) ( )
b a t b a a t b a

a a a
f x g x dx tM b a Mdt f t dt

+ − + −

= − = =   . 

Note that  ( )a a t b a b + −   and so we can take C to be equal to ( )a t b a+ −

and we get 
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( )

( ) ( ) ( ) ( ) ( )
b a t b a C

a a a
f x g x dx tM b a Mdt g a f t dt

+ −

= − = =   .  This proves the case 

when f is a constant function in (a, b).   

In general, let 
( ) ( )

ˆ( )
( ) ( )

g x g b
g x

g a g b

−
=

−
  for x in [a, b].  Then ĝ  is decreasing, 

ˆ( ) 1g a =  and ˆ( ) 0g b = .  By what we have just proved, there exists C such that a 

≤ C ≤ b and  

                              ˆ( ) ( ) ( )
b C

a a
f x g x dx f x dx=  .  --------------------------    (1) 

Consequently,  ( ) ( ) ( ) ( ) ( ( ) ( )) ( )
b b C

a a a
f x g x dx g b f x dx g a g b f x dx− = −    

and Part (i) of SMVT holds. 

 

The following technical lemma is used to combine the intervals on which Part 

(i) of SMVT holds. 

Lemma 4.  Assume that g is decreasing on [a, b].  If Part (i) of SMVT is true 

for the subintervals [, ] and [, ], then it is true for the interval [, ]. 

Proof.  As Part (i) of SMVT is true for the interval [, ], we have  

                 ( ) ( ) ( ) ( ) ( ) ( )
C

C
f x g x dx g f x dx g f x dx

 

 
 = +         ------------  (2) 

for some C   .  Similarly, we get  

                  ( ) ( ) ( ) ( ) ( ) ( )
D

D
f x g x dx g f x dx g f x dx

 

 
 = +        -------------- (3)  

for some D   .   

We can write (2) and (3) as follows: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
C C

f x g x dx g f x dx g f x dx f x dx
 

   
 = + −     --------- (4) 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
D D

f x g x dx g f x dx f x dx g f x dx f x dx
  

    
 = − + −      

                                                                                                          -------- (5) 
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Thus, adding (4) and (5) gives 

( ) ( )f x g x dx


  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
C D

g g f x dx g g f x dx g f x dx


  
    = − + − +   . ----- (6). 

If ( ) ( )g g = , then g is constant on [, ].  Then from (6) we obtain 

           ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
C

C
f x g x dx g f x dx g f x dx g f x dx

  

  
  = = +     

for any C with   < C <  .   

Now, assume ( ) ( )g g  . 

Observe that 

                     
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

C Dg g g g
f x dx f x

g g g g 

   

   

   − −
+   

− −   
   

 is of the form ( ) ( )
C D

f x dx m f x
 

+   with , 0 and 1 m m + = . 

Since the function ( ) ( )
x

H x f t dt


=   is continuous, there exists E with C ≤ E ≤ 

D such that  

         
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

C D Eg g g g
f x dx f x f x

g g g g  

   

   

   − −
+ =   

− −   
   . 

Thus 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
C D E

g g f x dx g g f x dx g g f x dx
  

     − + − = −   . 

It follows then from (6), 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
E

f x g x dx g g f x dx g f x dx
 

  
  = − +    

                        ( ) ( ) ( ) ( )
E

E
g f x dx g f x dx




 = +  . 

Thus Part (i) of SMVT holds on the interval [, ]. 
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This completes the proof of Lemma 4. 

 

Proof of the Second Mean Value Theorem Part (i).     

We prove Part (i) of SMVT when g is decreasing.  The case when g is 

increasing follows by considering  − g , since  − g is decreasing. 

If g(a) = g(b), then g is constant, say g(x) = K, then we can take C to be any 

value in (a, b), since trivially, 

       ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b C b

a a a C
f x g x dx Kf x dx g a f x dx g b f x dx= = +    . 

We assume now g(a) > g(b). 

Let  
( ) ( )

ˆ( )
( ) ( )

g x g b
g x

g a g b

−
=

−
  for x in [a, b].  Then ĝ  is decreasing, ˆ( ) 1g a =  and 

ˆ( ) 0g b = . 

Let  ( ) ( )
x

a
F x f t dt=   for x in [a, b].   Then F is continuous on [a, b].   

It is sufficient to show that there exists C such that a ≤ C ≤ b and  

                              ˆ( ) ( ) ( )
b

a
f x g x dx F C= .  --------------------------    (7) 

This is because if (7) holds, then  

              
( ) ( )

ˆ( ) ( ) ( ) ( ) ( )
( ) ( )

b b C

a a a

g x g b
f x g x dx f x dx F C f x dx

g a g b

−
= = =

−   . 

And we have  

           ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
b b C

a a a
f x g x dx g b f x dx g a g b f x dx− = −    

and so 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
b C b C

a a a a
f x g x dx g a f x dx g b f x dx f x dx= + −     

                        ( ) ( ) ( ) ( )
C b

a C
g a f x dx g b f x dx= +  . 
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Thus Part (i) of SMVT follows. 

Note that with ˆ( ) 1g a =  and ˆ( ) 0g b = , (7), i.e., 

        ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b C C b

a a a C
f x g x dx F C f x dx g a f x dx g b f x dx= = = +     

is a special case of the theorem. 

Case 1.  f is a constant function on (a, b). 

By Lemma 3, when f (x) is a constant function on (a, b), Part (i) of SMVT 

holds. 

Case 2.   f is a step function, g is decreasing. 

Since f is a step function, there is a partition of [a, b], a = x0 < x1 <  < xn = b , 

such that  f  is constant on each open interval 1( , )i ix x− , i= 1, 2,  , n.  

By Case 1, we know that Part (i) of SMVT is true on each subinterval 1[ , ]i ix x− , 

i= 1, 2,  , n.   Since there is only a finite number of subintervals in the 

partition, by Lemma 4, starting from the first interval, we can extend to the 

whole interval [a, b] for Part (i) of SMVT to hold.  Thus Part (i) of SMVT is 

true for step functions.  

Case 3.  General   f.  

Suppose the function f is Lebesgue integrable on [a, b].   Then by Theorem 2, 

for any integer n ≥ 1, there exists a step function n such that  

                             
1

( ) ( )
b

n
a

t f t dt
n

 −  .  ----------------------------  (8) 

Therefore, for all x in [a, b],  
1

( ) ( ) ( ) ( )
x x x

n n
a a a

t dt f t dt t f t dt
n

 −  −    .          

Hence,  

     
1 1 1 1

( ) ( ) ( ) ( ) ( )
x x x

n
a a a

F x f t dt t dt f t dt F x
n n n n

− = −   + = +   . ------- (9) 

Since F is continuous on [a, b], by the Extreme Value Theorem, there exists  
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,  in [a, b], such that ( ) inf{ ( ) : [ , ]}F F x x a b m =  =  and   

( ) sup{ ( ) : [ , ]}F F x x a b M =  = .  It follows then from (9) that 

                                   
1 1

( )
x

n
a

m t dt M
n n

−   +  .     ---------------------   (10) 

Since Part (i) of SMVT holds for step function, for each n ≥ 1, there exists Cn 

such that a ≤ Cn ≤ b and  

                          ˆ( ) ( ) ( )
nb C

n n
a a

x g x dx x dx =  .  ---------------------------      (11) 

Therefore, it follows from (10) that for n ≥ 1, 

                                     
1 1

ˆ( ) ( )
b

n
a

m x g x dx M
n n

−   + .   ------------------ (12) 

Now 

         ˆ ˆ( ) ( ) ( ) ( )
b b

n
a a

g x f x dx g x x dx−    

         
1

ˆ( ) ( ) ( ) ( ) ( )
b b

n n
a a

g x f x x dx f x x dx
n

  −  −        by (8). 

Therefore,  

          
1 1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
b b b

n n
a a a

g x x dx g x f x dx g x x dx
n n

 −   +   .  ----- (13) 

We deduce from (12) and (13) that  

                              
2 2

ˆ( ) ( )
b

a
m g x f x dx M

n n
−   +   .        --------------- (14) 

Therefore, letting n tends to , we have 

                                       ˆ( ) ( )
b

a
m g x f x dx M   

and by the Intermediate Value Theorem, there exists C lying between  and  

and hence in [a, b] such that 

                                      ˆ( ) ( ) ( )
b

a
F C g x f x dx=   .    
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Thus, we have proved (7) and Part (i) of SMVT follows. 

 

Proof of Part (ii) of the Second Mean Value Theorem. 

We prove Part (ii) of SMVT when g is decreasing.  The case when g is 

increasing follows by considering  – g. 

By part (i), ˆ( ) ( ) ( )
b

a
g x f x dx F C=  for some C in [a, b]. 

If C lies in (a, b), then part (ii) follows.   

If F(C)  F(a) = 0, then ˆ( ) ( ) 0
b

a
g x f x dx  , i.e., 

                             ( ) ( ) ( ) ( )
b b

a a
g x f x dx g b f x dx  . 

If F(C)  F(b), then ˆ( ) ( ) ( )
b b

a a
g x f x dx f x dx  , i.e., 

 ( ) ( ) ( ) ( ) ( ( ) ( )) ( ) ( ) ( )
b b b b

a a a a
g x f x dx g b f x dx g a g b f x dx g a f x dx + − =    . 

Therefore, Part (ii) of SMVT will hold unless F(C) = F(a) = 0 or F(C) = F(b) 

and for all x in (a, b), ( ) ( )  and  ( ) ( )F x F a F x F b  . 

We shall show that under this condition g must be constant in (a, b). 

The condition implies that ( ) ( )F x F C for all x in (a, b). It follows then by 

continuity that G(x) = F(x) – F(C) is of constant sign.  Note that F(C) = 0 or 

F(b). 

Our approach will be to show that for any open interval (c, d) in [a, b], g is 

constant. 

Let a < c < d < b.  We apply Part (i) of SMVT to each of the three intervals, [a, 

c], [c, d] and [d, b]. We obtain 

          
1

1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
c C c

a a C
f x g x dx g a f x dx g c f x dx= +   , 

          
2

2

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
d C d

c c C
f x g x dx g c f x dx g d f x dx= +    and    
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3

3

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
b C b

d d C
f x g x dx g d f x dx g b f x dx= +   .           --------------- (15) 

Now writing (15) in terms of F(x) and noting that ˆ ˆ( ) 1  and ( ) 0g a g b= = , we get:  

( )1 1
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

c

a
f x g x dx F C g c F c F C= + − , 

( ) ( )2 2
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

d

c
f x g x dx g c F C F c g d F d F C= − + − and 

( )3
ˆ ˆ( ) ( ) ( ) ( ) ( )

b

d
f x g x dx g d F C F d= − ,                     -------------------------  (16) 

for some 1 2 3a C c C d C b      .  

Adding all three equations in (16) we obtain 

  ( ) ( )1 2 3
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( )

b

a
f x g x dx F C g c F C g c g d F C g d= − + − + .----- (17) 

Since ˆ( ) ( ) ( )
b

a
g x f x dx F C= , we get from (17) that 

( )( )1
ˆ( ) ( 1 ( )F C F C g c− −   

( )( ) ( )2 3
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0F C F C g c g d F C F C g d+ − − + − = .          ----- (18) 

Note that since ˆ( )g x is decreasing on [a, b],   

                ˆ ˆ ˆ ˆ ˆ1 ( ) 0,   ( ) ( ) 0,   ( ) ( ) 0g c g c g d g d g b−  −   = . 

If G(x) = F(x) – F(C) > 0 in (a, b), then since F is continuous on [a, b], G(x) ≥ 0 

on [a, b].   If G(x) = F(x) – F(C) < 0 in (a, b), then G(x) ≤ 0 on [a, b].  

Therefore, each of the three terms in (18) is of the same sign or equal to 0.  

Hence each of the three terms in (18) must vanish.  Consequently, since 

2( ) ( ) 0F C F C−   for C2 is in (a, b), ˆ ˆ( ) ( ) 0g c g d− = . This implies that

( ) ( )g c g d= . 

Therefore, g must be constant on [c, d].  Since [c, d] is any interval in (a, b), this 

implies that g is constant in (a, b). 

This proves Part (ii) of SMVT for decreasing g. 

Proof of Part (iii) Second Mean Value Theorem.  
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Suppose f is Lebesgue integrable on [a, b] and g: [a, b] → is monotone. 

Consider the function 

,   ,

( ) ( ),   ,

,      

A x a

h x g x a x b

B x b

=


=  
 =

 which is monotone on [a, b].  

This means  lim ( ), lim ( )
x a x b

A g x B g x
+ −→ →

   if g is increasing and 

lim ( ), lim ( )
x a x b

A g x B g x
+ −→ →

   if g is decreasing. 

Therefore, applying Part (i) of SMVT to h we get 

          ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b C b

a a a C
f x g x dx f x h x dx h a f x dx h b f x dx= = +      

                                 ( ) ( )
C b

a C
A f x dx B f x dx= +  , 

for some C with a ≤ C ≤ b.  

If g is not constant on (a, b), then the point C can be taken to be in (a, b).   

More precisely, by Part (ii) of SMVT, C can be taken to be in (a, b) except for 

some trivial cases when g is constant in (a, b). 

This completes the proof of the Second Mean Value Theorem for Integrals. 


