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Riemann Summable Everywhere Series, Two Special 

Cosine Series and Abel Summable Series  

By Ng Tze Beng 

In this note, we present a result about trigonometric series, which are 

everywhere Riemann summable to a bounded function.  We present two 

well-known special cosine series, one that is divergent but Riemann 

summable to zero except at multiples of 2 and another which converges 

dominatedly to an unbounded Lebsgue integrable function.  In the later, we 

sum the series using complex variable technique.  We show also that under 

certain condition on the trigonometric series, Riemann summability implies 

Abel summability.     

The first result we discuss is an observation that for a trigonometric series 

whose coefficients are uniformly bounded, R-summability everywhere to a 

bounded function implies that the trigonometric series is the Fourier series of 

that function.  Although a necessary condition for the trigonometric series to be 

a Fourier series is that the coefficients must tend to 0, we need not use this fact 

in the following proof.  Theorem 35 of my article Ideas of Lebesgue and Perron 

Integration in Uniqueness of Fourier and Trigonometric Series states that if the 

trigonometric series converges except in an enumerable set E to a bounded 

function f, then it is the Fourier series of f.  If there is no exceptional set E, i.e., 

E is empty, we may use, instead of Theorem 35 cited, the result stated above to 

make the same conclusion.  In this case, the trigonometric series converges 

everywhere to f and so it is R-summable to f everywhere and we can conclude 

that it is the Fourier series of f.   

Suppose ( )0

1

1
( ) cos( ) sin( )

2
n n

n

T a a n b n  


=

= + +  is a trigonometric series.   Letting 

( ) cos( ) sin( )n n nA a n b n  = + , we can write 
0

1

1
( ) ( )

2
n

n

T a A 


=

= +  .  Suppose T( ) is 

Riemann summable or R-summable to a bounded function  f (  )  for all    in [ 

−, ] .  Suppose that the series 
2 2

1 1

cos( ) sin( ) ( )n n n

n n

a nx b nx A x

n n

 

= =

+ 
= 

 
   is the 

Fourier series of a continuous function  in [−,  ].   This supposition is 

always satisfied if the coefficients an, bn are bounded.   

Then we have: 

Theorem 1.   Suppose the trigonometric series T() satisfies the condition 

stated above.   Then T(  ) is the Fourier series of f.    
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Proof.    Since 
2 2

1 1

cos( ) sin( ) ( )n n n

n n

a nx b nx A x

n n

 

= =

+ 
= 

 
   is the Fourier series of a 

continuous function , for integer n ≥ 1, 

              
2

1
( )cos( ) na

n d
n




  

 −
 =               ---------------------------  (1) 

and        
2

1
( )sin( ) nb

n d
n




  

 −
 = .              -----------------------------  (2). 

Since T( ) is Riemann summable to  f ( ), there exists  > 0 , such that  

for all 0 | |h   ,  

                        
2

0 2
1

1 sin ( )
( )

2 ( )
n

n

nh
a A

nh




=

+   

is convergent and 

                        
2

0 20
1

1 sin ( )
lim ( ) ( )

2 ( )
n

h
n

nh
a A f

nh
 



→
=

 
+ = 

 
 .           ------------------------ (3). 

 

Now, for h  0,  
2

2

2 2

( ) ( 2 ) ( 2 ) 2 ( )

4 4

h h h

h h

      + +  − − 
=  is a continuous 

function in  .   Observe that  

2

2

1 1
( 2 )cos( ) ( )cos( 2 )

h

h
h n d u nu nh du

 

 
  

 

+

− − +
 + =  −       

                                            
1

( )cos( 2 )n nh d



  

 −
=  − , by periodicity 

and 

2

2

1 1
( 2 )cos( ) ( )cos( 2 )

h

h
h n d u nu nh du

 

 
  

 

−

− − −
 − =  +       

                                            
1

( )cos( 2 )n nh d



  

 −
=  + . 

Hence, for n ≥ 1, 
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2

2

2

1 ( )
cos( )

4

h n d
h






 

 −

 
  

2

1 cos( 2 ) cos( 2 ) 2cos( )
( )

4

n nh n nh n
d

h





  
 

 −

+ + − −
=   

2 2

2 2

1 sin ( ) 1 sin ( )
( )cos( ) ( )cos( )

nh nh
n d n d

h h

 

 
     

 − −
= −  = −    

2

2

sin ( )

( )
n

nh
a

nh
= −   .                            ----------------------------------------------   (4). 

Plainly, 
2

2

2

1 ( )
0

4

h d
h








 −

 
= . 

Similarly, we can deduce that for integer n ≥ 1, 

 
2

2

2

1 ( )
sin( )

4

h n d
h






 

 −

 
  

2 2

2 2

1 sin ( ) 1 sin ( )
( )sin( ) ( )sin( )

nh nh
n d n d

h h

 

 
     

 − −
= −  = −    

2

2

sin ( )

( )
n

nh
b

nh
= −   .                             -----------------------------------------------   (5). 

This shows that the Fourier series of  
2

2

2

( )

4

h

h

 
 is given by 

                ( )
2 2

2 2
1 1

sin ( ) sin ( )
cos( ) cos( ) ( )

( ) ( )
n n n

n n

nh nh
a n b n A

nh nh
  

 

= =

− + = −  . ---------------- (6) 

Since 
2

0 2
1

1 sin ( )
( )

2 ( )
n

n

nh
a A

nh




=

+   is convergent for 0 | |h   ,  so 
2

2
1

sin ( )
( )

( )
n

n

nh
A

nh




=

−  is 

convergent for 0 | |h    and as  
2

2

2

( )

4

h

h

 
 is continuous, for 

2

2

2

( )

4

h

h

 
, 

                             
2 2

2

2 2
1

( ) sin ( )
( )

4 ( )

h
n

n

nh
A

h nh






=

 
= −  .   ------------------------   (7) 
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But      
2

0 20
1

1 sin ( )
lim ( ) ( )

2 ( )
n

h
n

nh
a A f

nh
 



→
=

 
+ = 

 
  and so,  

           
2

020
1

sin ( ) 1
lim ( ) ( )

( ) 2
n

h
n

nh
A f a

nh
 



→
=

 
= − 

 
  . 

It follows then from (7) that              

                               
2

2
020

( ) 1
lim ( )

4 2

h

h
a f

h




→

 
= −  .          ------------------------  (8) 

Define  
2

0

1
( ) ( ).

4
a   = −    Then   is continuous and     

                            
2 2

2 2
02 2

( ) 1 ( )

4 2 4

h ha
h h

    
= − .              ---------------------- (9) 

Therefore, by virtue of (8), 

                         
2 2

2 2
02 20 0

( ) 1 ( )
lim lim ( )

4 2 4

h h

h h
a f

h h

 


→ →

   
= − = . 

This means 

                                  2 ( ) ( )D f  =  for all   in [−,  ] .     -------------  (10) 

Since   f   is bounded in [−, ], 2 ( ) ( )D f M  =   for some positive real 

number M.  And so  2 ( )M D M−     for all  in [−,  ] .      

Since  is continuous on the whole of and 2 2( ) ( )D D M  =   , by 

Theorem 25 in Ideas of Lebesgue and Perron Integration in Uniqueness of 

Fourier and Trigonometric Series, for all  and h  0 
2

2

( )h M
h

 
 .  Similarly, 

since 2 2( ) ( )D D M  =   − , by Theorem 25 of Ideas of Lebesgue and 

Perron Integration in Uniqueness of Fourier and Trigonometric Series, for all  

and h  0 in , 
2

2

( )h M
h

 
 − .  It follows that   

2

2

( )h M
h

 
 for all  and all 

h ≠ 0.  This means that  
2

2

2

( )
( )

4

h
hR

h




 
=   is uniformly bounded in  and all h ≠ 
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0.    Since 
2

2

20 0

( )
lim ( ) lim ( )

4

h
h

h h
R f

h


 

→ →

 
= =   and ( )hR   is continuous for each h 

≠ 0, it follows that f is Lebesgue integrable. 

We also have that  

2

2

2

( )
( )cos( ) cos( )

4

h
hR n n

h


  

 
=  is uniformly bounded and 

            
2

2

2

( )
( )cos( ) cos( ) ( )cos( )

4

h
hR n n f n

h


    

 
= → boundedly, 

and so, by the Lebesgue Bounded Convergence Theorem, for integer n ≥ 0,  

as h → 0, 

                 
1 1

( )cos( ) ( )cos( )hR n d f n d
 

 
     

 − −
→   .     -------------  (11) 

 

Similarly, also by the Lebesgue Bounded Convergence Theorem, for integer n ≥ 

1, as h → 0, 

                  
1 1

( )sin( ) ( )sin( )hR n d f n d
 

 
     

 − −
→  .     ---------------- (12) 

Recall 
2 2

2 2
02 2

( ) 1 ( )
( )

4 2 4

h h
hR a

h h

 


   
= = −   so that by (4) for integer n ≥ 1, 

  
1

( )cos( )hR n d



  

 −   

   
2

0 2

2

1 ( )
cos( ) cos( )

2 4

ha
n d n d

h

 

 


   

 − −

 
= −   

   
2

2

2

1 ( )
cos( )

4

h n d
h






 

 −

 
= −   

   

2
sin( )

n

nh
a

nh

 
=  

 
,  by (4), 
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       as 0na h→ →                            ---------------------  (13) 

and 

1
( )sin( )hR n d




  

 −   

     
2

0 2

2

1 ( )
sin( ) sin( )

2 4

ha
n d n d

h

 

 


   

 − −

 
= −   

    
2

2

2

1 ( )
sin( )

4

h n d
h






 

 −

 
= −   

    

2
sin( )

n

nh
b

nh

 
=  

 
, by (5), 

       as 0nb h→ → .     ------------------------   (14) 

Observe that 
0

1
( )hR d a




 

 −
= . 

It follows from (11) and (13) that 
1

( )cos( ) nf n d a



  

 −
= and from (12) and 

(14) that 
1

( )sin( ) nf n d b



  

 −
= .  Also, we have 

                      0
0

1 1
( ) lim ( )h

h
f d R d a

 

 
   

 − −→
= =  . 

This shows that T ( ) is the Fourier series of f ( ). 

This completes the proof. 

 

Note that if ( )0

1

1
( ) cos( ) sin( )

2
n n

n

T a a n b n  


=

= + + converges everywhere to a 

bounded function f, then the coefficients (an) and (bn) are bounded and the series 

2 2
1 1

cos( ) sin( ) ( )n n n

n n

a nx b nx A x

n n

 

= =

+ 
= 

 
   converges uniformly to a continuous 

function and is the Fourier series of its sum function. Since R-summability is 
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regular, T( ) is R-summable to  f  everywhere.   Thus, the condition of 

Theorem 1 is satisfied.  Hence, T( ) is the Fourier series of   f .   

 

Lemma 2.  The condition that T(  ) be Riemann summable or R-summable to a 

bounded function f ( )  for all    in [−,  ] cannot be relaxed even for a single 

point in [−,  ]. 

The proof is by way of the following counter example. 

 

Consider the cosine series 

(C)                          
1

cos( ) cos(2 )
2

 + + +  . 

Note that  
2

1

cos( )

n

nx

n



=

  converges uniformly and absolutely to a continuous 

function and hence it is the Fourier series of its sum function.  (C) is plainly not 

a Fourier series. 

Lemma 3.  (C) is Riemann summable to 0 for    in [− ,  ] – {0} but not at  

= 0. 

Proof.   

To show that (C) is R-summable to 0 for   in [− ,  ] – {0}, we consider the 

following even function for each h such that 0
2

h


     

                        2

2
 , if 0 2

( ) 4

0   if   2

h
h

J h

h


 



 

−
 

= 
  

                  ------------ (15) 

J (− ) = J ( )  for    in [0,  ].    J is extended to the whole of by 

periodicity. 

Then we have  

  
2 2

20 0

1 2 1
( ) ( ) (2 ) 1

2

h h

J d J d h d
h




     

 −
= = − =         ---------------  (16) 
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and for integer n ≥ 1,  

2 2

20 0

1 2 1
( )cos( ) ( )cos( ) (2 )cos( )

2

h h

J n d J n d h n d
h




        

 −
= = −    

2 2

20 0

1 1
cos( ) cos( )

2

h h

n d n d
h h

    = −   

2
2

2 2 0
0

1 1 sin( ) 1
sin(2 ) sin( )

2 2

h
hn

nh n d
nh h n nh


  

 
= − +  

  

2

2

0

1 1 1 cos( )
sin(2 ) sin(2 )

2

h
n

nh nh
nh nh nh n

 
= − −   

 

2

2 2 2

1 sin ( )
(cos(2 ) 1)

2 ( )

nh
nh

n h nh
= − − = .            -------------------------------- (17) 

Hence, the Fourier series of J( ) is given by 

                            
2

2
1

1 sin ( )
cos( )

2 ( )n

nh
n

nh




=

+  .             ----------------------------  (18) 

Since J( ) is continuous and (18) is convergent for 0
2

h


  , the Fourier 

series of J( ) tends to J( ). 

Hence, we may write  

                     
2

2
1

1 sin ( )
cos( ) ( )

2 ( )n

nh
n J

nh
 



=

+ = . 

Thus, for 2h    , 

                      
2

2
1

1 sin ( )
cos( ) 0

2 ( )n

nh
n

nh




=

+ = . 

That is to say, for all 0
2 2

h
 

   , 
2

2
1

1 sin ( )
cos( ) 0

2 ( )n

nh
n

nh




=

+ =  and so for any       

0 <  ≤  ,   
2

2
1

1 sin ( )
cos( ) 0

2 ( )n

nh
n

nh




=

+ =  for 
2

h


  . 
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Letting h tends to 0 we have for 0 <  ≤  ,  
2

20
1

1 sin ( )
lim cos( ) 0

2 ( )h
n

nh
n

nh




→
=

 
+ = 

 
 . 

Plainly, for − ≤   < 0, 
2

20
1

1 sin ( )
lim cos( ) 0

2 ( )h
n

nh
n

nh




→
=

 
+ = 

 
 . 

Hence, by periodicity, 
2

20
1

1 sin ( )
lim cos( ) 0

2 ( )h
n

nh
n

nh




→
=

 
+ = 

 
  for    ≤    < 2 .   

That means (C) is Riemann summable to 0 for    in [− ,  ] – {0} or  

 (C) is Riemann summable to 0 for    in (0, 2). 

Note that   for  0
2

h


   ,   (0)
2

J
h


=   and so 

2

2
1

1 sin ( )

2 ( ) 2 2n

nh

nh h h

 

=

+ = = .  It 

follows that 
2

20 0
1

1 sin ( )
lim lim

2 ( ) 2h h
n

nh

nh h



→ →
=

+ = =  .   This means (C) is not R-

summable at  = 0. 

 

We now state a slightly more general version of Theorem 1. 

Theorem 4.  Suppose 

               ( )0 0

1 1

1 1
( ) cos( ) sin( ) ( )

2 2
n n n

n n

T a a n b n a A   
 

= =

= + + = +    

is a trigonometric series.  Suppose T(  ) is Riemann summable to a function      

f ( )  for all    in [−,  ] except for a denumerable subset E in [ −,  ].  

Suppose f is bounded in [−,  ] – E.   Suppose that the series 

2 2
1 1

cos( ) sin( ) ( )n n n

n n

a nx b nx A x

n n

 

= =

+ 
= 

 
   is the Fourier series of a continuous 

function  in [−,  ] and that   is smooth at every point in E.  Then T(  ) is 

the Fourier series of f.    

Proof.   The proof is almost exactly the same as for Theorem 1, using Theorem 

25 in Ideas of Lebesgue and Perron Integration in Uniqueness of Fourier and 

Trigonometric Series.  Here, we use 2 ( ) ( )D f  =  for all   in [−,  ] – E 

and is bounded in [−,  ] – E and that  is smooth in E since  is smooth in E. 
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Observe that for the trigonometric series (C),               

                              2 2

2
1

1 1 cos( )
( ) ( )

4 4 n

n

n


   



=

 = −  = −   

is not smooth at 0.  For   
2 2

2

2 2
1

(0) sin ( )

4 ( )

h

n

nh

h nh



=

 
= −  so that  

                 
2 2 2

2 2

2 2 2
1

(0) 1 (0) 1 sin ( )

4 2 4 2 ( )

h h

n

nh

h h nh



=

   
= − = +       

and so, for  0
2

h


  ,  since  
2

2
1

1 sin ( )

2 ( ) 2 2n

nh

nh h h

 

=

+ = = ,   

                               
2

2

2

(0)

4 2

h

h h

 
= . 

Thus, 
2

2

2
0 0

(0)
lim lim 0

4 2 2

h

h h
h h

h h

 
+ +→ →

 
= =  , consequently,  is not smooth at 0. 

 

Remark. 

If an → 0 and bn → 0, then for the trigonometric series,        

                 ( )0 0

1 1

1 1
( ) cos( ) sin( ) ( )

2 2
n n n

n n

T a a n b n a A   
 

= =

= + + = +  , 

2

2
1

1 ( )
( )

4

n

n

A

n


 



=

 = −   is continuous and smooth in by Theorem 26 of Ideas of 

Lebesgue and Perron Integration in Uniqueness of Fourier and Trigonometric 

Series. Thus, we may formulate Theorem 4 as follows: 

Theorem 5.  Suppose an → 0 and bn → 0.   Suppose the trigonometric series 

               ( )0 0

1 1

1 1
( ) cos( ) sin( ) ( )

2 2
n n n

n n

T a a n b n a A   
 

= =

= + + = +    

is Riemann summable to a function f (  ) for all    in [−,  ] except for a 

denumerable subset E in [−,  ] and f is bounded in [−,  ] – E.    
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Then T( ) is the Fourier series of f.    

 

Consider the trigonometric series 

(S2)                                     
2

1
sin( )

ln( )n

n
n




=

  .                   ----------------------- (19) 

Note that we cannot apply Theorem 5 to (S2). 

It is known that (S2) is not a Fourier series of any function and it converges 

everywhere to a non-Lebesgue integrable function g.  (See Example 4 (1) of my 

article, Fourier Cosine and Sine Series.)  Note that g is not bounded in [−,  ]. 

(S2) converges everywhere and so it satisfies the first condition of Theorem 5, it 

is Riemann summable everywhere but to an unbounded function. 

However, the trigonometric series 

(C2)                                  
2

1
cos( )

ln( )n

n
n




=

                         ---------------------- (20) 

converges for all  except for   which are multiples of 2  and is the Fourier 

series of its sum function. (See Example 4 (1) of my article, Fourier Cosine and 

Sine Series.) (C2) is thus Riemann summable everywhere except for   which 

are multiples of 2  .  The sum function is unbounded in [−,  ] –{0}. 

Thus both (S2) and (C2) are Riemann summable to an unbounded function and 

so Theorem 5 is not applicable.  Observe that since 

    
2 2

1 1
ln(1 ) 1

ln( )

n n

n n

r r r
n n

 

= =

 = − − −   and 
1

lim ln(1 )
r

r
−→
− − =  , 

(C2) is not Abel-summable at  = 0.   Moreover, since the sequence 
1

ln( )n

 
 
 

  is 

convex and tends to 0, by Theorem 2 Part (1) of Fourier Cosine and Sine 

Series) , (C2)  converges to a non-negative Lebesgue integrable function and is 

the Fourier series of its sum function.  Since it is not Abel-summable, it is also 

not Riemann summable. (See Theorem 12 below.) 
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If we replace the condition of boundedness on f in Theorem 5 to integrability, 

then we have the following:  

Theorem 6.  Suppose an → 0 and bn → 0.   Suppose the trigonometric series 

               ( )0 0

1 1

1 1
( ) cos( ) sin( ) ( )

2 2
n n n

n n

T a a n b n a A   
 

= =

= + + = +    

is Riemann summable to a function f (  ) for all   in [−,  ] except for a 

denumerable subset E in [−,  ] and f is Lebesgue integrable in [−,  ].    

Then T(  ) is the Fourier series of f.    

Proof.  The proof is exactly the same as for Theorem 1 in my article Ideas of 

Lebesgue and Perron Integration in Uniqueness of Fourier and Trigonometric 

series.   Here, we have 2 2

0 0 2
1

1 1 ( )
( ) ( )

4 4

n

n

A
a a

n


   



=

 = −  = −   is continuous 

and smooth in and we can compare this with the iterated integral of f.  Via 

this and similar consideration for the Fourier series of f, it allows us to compare 

T( ) with the Fourier series of f as in the proof of Theorem 1 in  Ideas of 

Lebesgue and Perron  Integration in Uniqueness of Fourier and Trigonometric 

series.    

Remark. 

We can apply Theorem 6 to (C2) since (C2) converges to a Lebesgue integrable 

function. 

 

For result starting from Abel summability we have the following Theorem of 

Verblunsky and Zygmund: 

Theorem 7 (Verblunsky, Zygmund) Suppose the trigonometric series 

               ( )0 0

1 1

1 1
( ) cos( ) sin( ) ( )

2 2
n n n

n n

T a a n b n a A   
 

= =

= + + = +   

satisfies that an and bn are of o(n).   If T( ) is Abel summable everywhere to a 

finite and integrable function, then T( ) is the Fourier series of  f . 
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We may replace the condition that an and bn be of o(n) by that an → 0 and bn  → 

0, as this is a necessary condition for T( ) to be a Fourier series.  The proof is 

also easier than that for Theorem 7, whose proof would not be given here.   

 

Theorem 8.  Suppose the trigonometric series 

               ( )0 0

1 1

1 1
( ) cos( ) sin( ) ( )

2 2
n n n

n n

T a a n b n a A   
 

= =

= + + = +   

satisfies that an → 0 and bn  → 0.   If T( ) is Abel summable everywhere to a 

finite and integrable function  f , then T( ) is the Fourier series of  f . 

 

Before we prove Theorem 8, we state Rajchman’s Lemma without proof. 

 

Let ( )*

0 0
1 11 1

1 1
( ) limsup cos( ) sin( ) limsup ( )

2 2

n n

n n n
r rn n

g a a n b n r a A r   
− −

 

→ →= =

   
= + + = +   

   
   

and * 0
1

1

1
( ) liminf ( )

2

n

n
r

n

g a A r 
−



→
=

 
= + 

 
 . 

Lemma 9.  (Rajchman’s Lemma). 

Suppose that the series 
2 2

1 1

cos( ) sin( ) ( )n n n

n n

a nx b nx A x

n n

 

= =

+ 
= 

 
   is the Fourier series 

of   in [−,  ].   Let 
2

0

1
( ) ( )

4
a   = −  .  Suppose 2

0 2
1

1 ( )

4

n

n

A
a

n






=

−   is 

Abel summable at  to ( ) .   Then 

                           
*

2 ( ) ( )D g     ,   * 2( ) ( )g D   . 

        

For the proof of Lemma 9 see (7.6) pages 353-354 of Trigonometric Series 

Volume 1 by Zygmund.  

Proof of Theorem 8 
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Since an → 0 and bn  → 0,  
2

1

( )n

n

A

n



=

  converges absolutely and uniformly to a 

continuous function  in [−,  ].    Hence, 2

0 2
1

1 ( )

4

n

n

A
a

n






=

−   converges 

uniformly and absolutely to a continuous and smooth function  

2

0

1
( ) ( )

4
a   = −  (see Theorem 26 in Ideas of Lebesgue and Perron 

Integration in Uniqueness of Fourier and Trigonometric series). 

It follows that 2

0 2
1

1 ( )

4

n

n

A
a

n






=

−   is Abel summable at   to ( )  for all  . 

Since T( ) is Abel summable everywhere to a finite and integrable function  f ,  

*

0 * 0
11 1 1

1 1
( ) limsup ( ) ( ) liminf ( ) ( )

2 2

n n

n n
rr n n

g a A r g a A r f    
−

−

 

→→ = =

   
= + = = + =   

   
   for all  .  

Therefore, by Lemma 9 (Rajchman’s Lemma),   

                                      2 2( ) ( ) ( )D f D       

for all  .  

Then by Theorem 28 of Ideas of Lebesgue and Perron Integration in 

Uniqueness of Fourier and Trigonometric series, ( ) ( )J  − , where 

( )0 0
( ) ( )

t

J f u du dt


 =   , is linear.   If we take 

( )0

1

1
cos( ) sin( )

2
n n

n

n n    


=

+ +  to be the Fourier series of f and   

2

0 2
1

1 cos( ) sin( )
( )

4

n n

n

n n
H

n

   
  



=

+
= −  , then ( ) ( )H J −  is linear. 

It follows that 

     2

0 0 2
1

1 ( )cos( ) ( )sin( )
( ) ( ) ( ) ( )

4

n n n n

n

a n b n
L H a

n

   
    



=

− + − 
=  − = − −  

 
    

is linear.  

Hence, as in the proof of Theorem 1 of Ideas of Lebesgue and Perron 

Integration in Uniqueness of Fourier and Trigonometric series, we deduce that  
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0 0 0a − =  and 
2

1

( )cos( ) ( )sin( )n n n n

n

a n b n
C

n

   

=

− + − 
= 

 
 .  By taking the integral 

on both sides from 0 to 2 we see that C = 0.  It then follows that 

( ) 0 and ( ) 0n n n na b − = − =  and so  and n n n na b = = .   Thus, T( ) is precisely the 

Fourier series of  f ( ).  This completes the proof of Theorem 8. 

 

If an → 0 and bn  → 0, then 2

0

1
( ) ( )

4
a   = −   is continuous and smooth in 

.  To apply Theorem 28 of Ideas of Lebesgue and Perron Integration in 

Uniqueness of Fourier and Trigonometric series, we require only that the 

inequality 2 2( ) ( ) ( )D f D       be satisfied for all  in [−,  ] except for 

a denumerable set E in [−,  ] and that    is smooth in E.       

Thus, we have a variation of Theorem 8. 

Theorem 10.  Suppose the trigonometric series 

               ( )0 0

1 1

1 1
( ) cos( ) sin( ) ( )

2 2
n n n

n n

T a a n b n a A   
 

= =

= + + = +   

satisfies that an → 0 and bn  → 0.   If T( ) is Abel summable to a finite value   

f( ) for all  in [−,  ] except for a denumerable set E in [−,  ] and f is 

Lebesgue integrable in [−,  ] , then T( ) is the Fourier series of  f. 

 

The proof of Theorem 10 is exactly the same as for Theorem 8. 

 

Remark.  Idea of the proof of Theorem 7. 

Under the hypothesis of Theorem 7, i.e., an and bn are of o(n) and T( ) is Abel 

summable everywhere to a finite and integrable function, 
2

1

( )n

n

A

n



=

  need not be 

uniformly convergent to a continuous function and so we cannot conclude 

immediately that it is A-summable.   However, by the Riesz-Fisher Theorem, 

2
1

( )n

n

A

n



=

  is a Fourier series.  It can be shown that T( ) is Abel summable 
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implies that 
2

1

( )n

n

A

n



=

  is  A-summable to H ( ).   It is harder to show that H ( ) 

is continuous everywhere.  Once this is established then 
2

1

( )n

n

A

n



=

  is the Fourier 

series of H ( ) by Theorem 8 and  2

0 2
1

1 ( )

4

n

n

A
a

n






=

−   is A-summable 

everywhere to the continuous function 2

0

1
( )

4
a H − .  We can then deduce that 

T( ) is the Fourier series of  f  by using Rajchman’s Lemma as in the proof of  

Theorem 8. 

 

Next consider the cosine series: 

(C3)                          
cos(2 ) cos(3 )

cos( )
2 3

 
 + +                -------------   (21) 

Theorem 11.  (C3) converges pointwise and dominatedly to the continuous 

function 
( )2

1
ln

2sin 

 
 
 

 for   in (0, 2 ).   (C3) is the Fourier series of 

( )2

1
ln

2sin 

 
 
 

 and converges to 
( )2

1
ln

2sin 

 
 
 

 in the L1 norm.   

Proof. 

Consider the complex valued function ( ) (1 )f z Log z= − , where Log is the 

principal complex logarithmic function.  Since 1 – z maps the open unit disc 

{ :| | 1}D a z=  into the analytic domain of the principal logarithmic function, f is 

analytic in the open unit disk and in particular, by the chain rule, for all z in D, 

                       
21

( ) (1 )
1

f z z z
z

 = − = − + + +
−

 .      --------------------  (22)              

And so for z in D,  

            
[0 ] [0 ] [0 ]

0 0

( ) ( ) n n

z z z
n n

f z f d d d     
 

→ → →
= =

= = − = −     
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1

n

n

z

n



=

= − .                                ---------------------------------   (23) 

Let iz re =   for  0 ≤ r < 1.   Substitute this value of z in (23) we get 

                     
1 1

cos( ) sin( )
( )i n n

n n

n n
f re r i r

n n

   

= =

= − −  .    --------------    (24) 

Hence, the real part of  ( )if re   is given by  

                                   
1

cos( ) n

n

n
r

n



=

−  .                   ------------------------  (25) 

That is to say, the real part of  (1 )iLog re −  is given by (25). 

Hence, 

                    
1

cos( )
Re (1 )i n

n

n
Log re r

n

 

=

− = − . 

Since  
1

cos( )

n

n

n



=

−  is convergent for   not a multiple of 2 , by Abel’s 

theorem, 

                     
1

1

cos( )
lim Re (1 )i

r
n

n
Log re

n


−



→
=

− = −   or 

                      
1

1

cos( )
lim Re (1 )i

r
n

n
Log re

n


−



→
=

= − − .             ------------------  (26) 

But 
21

Re (1 ) ln(|1 |) ln(1 2 cos( ))
2

i iLog re re r r  − = − = + −  and so 

2

1 1

1
limRe (1 ) lim ln(1 2 cos( ))

2

i

r r
Log re r r 

− −→ →
− = + −  

                              
2

2 2

1 1
ln(2 2cos( )) ln(4sin ( )) ln(2sin( ))

2 2
 = − = =   

for   in (0, 2 ). 

Hence, it follows from (26) that for   in (0, 2 ),  
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2

1 2

cos( ) 1
ln(2sin( )) ln

2sin( )n

n

n






=

 
= − =  

 
 .   

We shall show that the convergence is dominated by a Lebesgue integrable 

function. 

Let  
1

cos( )
( )

n

n

k

k
t

k




=

=    be the n-th partial sum of (C3).  Let 
1

na
n

=  .  Then 

we can write  

                          
1

( ) cos( )
n

n k

k

t a k 
=

=  .  ---------------------------   (27) 

Using Abel’s summation formula with 0 0a = , we have 

                                
1

0

( ) ( ) ( )
n

n k k n n

k

t D a a D  
−

=

=  + ,      ----------------------  (28) 

where  

                          
1
2

1
1 2

1 sin(( ) )
( ) cos( )

2 2sin( )

k

k

j

k
D j


 

=

+
= + =   ------------------------- (29) 

is the Dirichlet kernel. (See (8), (9) and (16) of my article Fourier Cosine and 

Sine Series.)  

Applying the summation formula again gives 

                
2

2

1 1

0

( ) ( 1) ( ) ( ) ( )
n

n k k n n n n

k

t k K a nK a a D   
−

− −

=

= +  +  + ,   ----------------  (30) 

where  

2
1
2

1
0 2

1 2 sin( ( 1) )
( ) ( )

1 1 2sin( )

k

k j

j

k
K D

k k


 

=

 +
= =  

+ +  
  is the Fejér kernel.  (See (14), 

(15) and (19) of my article Fourier Cosine and Sine Series.)  

For a fixed   in (0, 2 ), 

             
1
2

1
2

1 sin(( ) )
( ) 0

2sin( )
n n

n
a D

n






+
= →   as  n →   .                    ---------------  (31) 

Note that 
1

( )
2

nD n  +  so that ( ) 2n na D   .                          ----------------- (32) 
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Observe too that  

              

2
1
2

1 1 11
2

sin( )
( ) 2 0

2sin( )
n n n

n
nK a a





− − −

 
 =  → 

 
 as  n →    --------------------- (33) 

and  
1 1

2

1

0 0

1 1
( ) ( ) ( )

2 2 2

n n

n j j

j j

n n
nK x D x D x n n

− −

−

= =

−
=   + =   so that for n ≥ 2, 

                            2

1 1

1 1
( ) 1

2 ( 1)
n nnK a n

n n
− −  

−
.      ----------------------------  (34) 

Observe that, for k ≥ 1, 

                 

2
1

2 22

1
2

sin( ( 1) )
( 1) ( ) 2 0

2sin( )
k k k

k
k K a a






 +
+  =   

 
.   --------------------- (35) 

For k = 0, 2

0 0 0 0 1

1 1 3
( ) ( )( ) ( 1 )

2 2 4
K a D a a  =  −  = − − = −  and so, for n ≥ 3,  

                 
2

2

1

3
( ) ( 1) ( ) 3

4

n

n k k

k

t k K a 
−

=

 +  + + .      -------------------------------  (36) 

Plainly, 
3

( ) 3
4

nt     for n = 1 and 2. 

If we define 0

3

2
b =  and n nb a=  for n ≥ 1, then 2 2 2

0 0 and n nb b a =  =   for n ≥ 

1 and 

               
2 2

2 2

1 0

( 1) ( ) ( 1) ( )
n n

k k k k

k k

k K a k K b 
− −

= =

+  = +   .          -------------------- (37) 

It follows that  

                 
2

2 2

0 0

15 15
( ) ( 1) ( ) ( 1) ( )

4 4

n

n k k k k

k k

t k K b k K b  
− 

= =

 +  +  +  +  .   ------- (38)  

Since each term of the series 2

0

( 1) ( )k k

k

k K b


=

+   is non-negative, by Bepo Levi 

Theorem, 2

0

( 1) ( )
n

k k

k

k K b
=

+   converges to a Lebesgue integrable function g( ) 

in (0, 2 ).   



20 
 

Indeed, since ( )nb is a decreasing null convex sequence,  2

0

0

( 1) k

k

k b b


=

+  =  and 

          2 2

0
0 0

0 0

3
( ) ( 1) ( ) ( 1)

2 2 4
k k k

k k

g d k b K d k b b
   

    
 

= =

= +  = +  = =   .   ---- (39) 

This shows that the partial sums of (C3) are dominated by g() +15/4.  Hence, 

(C3) converges dominatedly in (0, 2 ).   It follows that (C3) is the Fourier 

series of 
( )2

1
ln

2sin 

 
 
 

 and that (C3) converges to 
( )2

1
ln

2sin 

 
 
 

 in the L1 norm.   

Remark. 

(1) Since the convergence of (C3) is dominated by a Lebesgue integrable 

function, the limit function 
( )2

1
ln

2sin 

 
 
 

 is Lebesgue integrable on [0, 2 ].   A 

direct calculation shows that 
( )
1

ln
sin 

 
 
 

is Lebesgue integrable on [0,  ] and 

that 
( )

/2

0

1
ln ln(2)

sin 2
d

 




 
= 

 
 , from which we can deduce that 

( ) ( )2 2

1 1
ln ln ln(2)

2sin sin 

   
= −   

   
 is Lebesgue integrable and that  

                
( ) ( )0 0

2 2

1 1
ln ln ln(2)

2sin sin
d d

 

 
  

   
= −   

   
   

                                             
( )

/2

0

1
2 ln ln(2) 0

sin
du

u




 

= − = 
 

 . 

This confirms that the constant term of the Fourier series is 0. 

Observe that 
( ) ( )/2 /2

1 1
ln lim ln

sin sin

t

t
d d



 
 

 −→

   
=   

   
   

( ) ( ) ( )

/2

/2 /20 0

1 1 1
lim ln lim ln lim ln

sin sin sin

t t

tt t t
d du du

u u



 


 − + +→ → →

     
= = − =     

−     
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( )

/2

0

1
ln ln(2)

sin 2
d

 




 
= = 

 
 . 

(2)  Note that adding  
3

4
  to (C3) gives  

(C4)                      
3 cos(2 ) cos(3 )

cos( )
4 2 3

 
+ + +  

and this is the trigonometric series  
0

1

1
cos( )

2
n

n

b b n


=

+  , where ( bn ) is given as 

above and is a convex sequence.  By Theorem 2 of my article Fourier Cosine 

and Sine Series, (C4) converges except at   = 0 in [−  /2,  /2] to a Lebesgue 

integrable function and is the Fourier series of its sum function and that the 

convergence is also in the L1 norm.  It follows that (C3) also converges to a 

Lebesgue integrable function and is the Fourier series of its sum function and 

that the convergence is also in the L1 norm.  Indeed (C4) converges to 

( )2

3 1
ln

4 2 | sin |

 
+  

 
 in [−  /2,  /2] except at  = 0.   

Note that 2

0

( 1) ( )k k

k

k K b


=

+  converges to 
( )2

3 1
ln

4 2 | sin |

 
+  

 
 in (0, 2 ) and so 

( )2

3 1
( ) ln

4 2 | sin |
g




 
= +   

 
in (0, 2 ) .  Indeed, the partial sums of (C3) are 

dominated by 
( )2

9 1
ln

2 2 | sin |

 
+   

 
in (0,  2 ) . 

(3)  Knowing that (C3) converges almost everywhere in (0, 2 ) to 

( )2

1
ln

2sin 

 
 
 

, which is Lebegsue integrable in [0, 2 ], an application of 

Theorem 1 in my article Ideas of Lebesgue and Perron Integration in 

Uniqueness of Fourier and Trigonometric series, concludes that (C3) is the 

Fourier series of 
( )2

1
ln

2 | sin |

 
 
 

.   We may apply also either Theorem 6 or 

Theorem 10 to make the same conclusion. 
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(4) We may use complex analytic function in the unit disk and Abel’s Theorem 

to sum a trigonometric series as above.  Suppose   

          ( )0 0

1 1

1 1
( ) cos( ) sin( ) ( )

2 2
k k k

k k

T a a k b k a A   
 

= =

= + + = +    

is a trigonometric series.  Let 0

1

( ) 2 k

k

k

F z c c z


=

= +  , where b0 = 0 and 

1
( )

2
n n nc a ib= − .    Then if we write iz re = ,  

0

1

1 1
( , ) ( ) ( ( ) ( )) Re ( )

2 2

k

k

k

u r a r A F z F z F z 


=

= + = + =  .  Thus, if T ( ) is 

convergent at , 

              
0

1 1 1
1

1
lim ( , ) lim ( ) limRe ( ) ( )

2

k i

k
r r r

k

u r a r A F re T  
− − −



→ → →
=

 
= + = = 

 
 . 

If F(z) has a closed formula and 
1

limRe ( ) Re ( )i i

r
F re F e 

−→
= , then

( ) Re ( )iT F e  = . 

For (C3), we can take 
1

( )

n

n

z
F z

n



=

=   and a closed formula for F(z) is 

( ) (1 )F z Log z= − −  and for  in (0, 2 ) we obtain ( ) Re ( )iT F e  = as the 

answer above. 

The conjugate series of (C3) is  

                  
sin(2 ) sin(3 )

sin( )
2 3

 
− − −  

and the imaginary part of ( )iF re 
 is 

1

1
sin( )k

k

r k
k




=

  and we obtain for  in (0, 

2 ), 

           
sin(2 ) sin(3 )

sin( ) Im (1 )
2 3

iLog e  
 + + = − −   

                                                         
1

(1 ) ( )
2

iArg e   = − − = − . 
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Hence, the conjugate series converges to – h() in [0, 2 ], where  

                                

1
( ) , 0 2

( ) 2

0 0, 2

h
   



 


−  

= 
 =

 . 

We now turn to some relation between Riemann summability and Abel 

summability. 

Theorem 12.  Suppose F is a periodic Lebesgue integrable function of period 

2.   Suppose ( )0 0

1 1

1 1
( ) cos( ) sin( ) ( )

2 2
n n n

n n

T a a n b n a A   
 

= =

= + + = +   is the Fourier 

series of F.   If F has a generalized second symmetric derivative D2 F( )  at ,  

then the second derived series of the Fourier series of  F  at , 

                        ( )2 2

1 1

cos( ) sin( ) ( )k k k

k k

k a k b k k A  
 

= =

− + = −  , 

is A-summable to 2 ( )D F  .  

Proof. 

Consider  

    ( )0 0

1 1

1 1
( , ) ( ) cos( ) sin( )

2 2

k k

k k k

k k

u r a A r a a k b k r   
 

= =

= + = + +   

                
1

( , ) ( )P r t F t dt





 −
= − ,                                     -------------- (40)         

where 
2

2

1
( , )

2(1 2 cos( ))

r
P r x

r r x

−
=

+ −
 is the Poisson kernel. 

(See (14) of my article Abel summability of Fourier series and its Derived 

series.) 

We shall need the partial derivative of the Poisson kernel.  Note that 

2

2 2

(1 )sin( )
( , )

(1 2 cos( ))

r r t
P r t

t r r t

 − −
=

 + −
. 

Then  
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1 1

( , ) ( , ) ( ) ( , ) ( )u r P r t F t dt P r t F t dt
t

 

 
  

   − −

  
= − = − −

        

     and so            

2 2

2 2

1 1
( , ) ( , ) ( ) ( , ) ( )u r P r t F t dt P r t F t dt

t t

 

 
  

   − −

   
= − − = −

     . --- (41) 

It follows that the second derived series of T( ) is Abel summable at  , if, and 

only if, the limit  
2 2

2 2
1 1

1
lim ( , ) lim ( , ) ( )
r r

u r P r t F t dt
t




 

 − − −→ →

 
= −

   exists. 

2 2

2 2

1
( , ) ( , ) ( )u r P r t F t dt

t




 

  −

 
= −

      

               
2

2

1
( , ) ( )P r s F s ds

t

 

 




−

− −


= +

  

               
2

2

1
( , ) ( )P r s F s ds

t






 −


= +

 , by periodicity, 

               
2 2

0

2 20

1 1
( , ) ( ) ( , ) ( )P r s F s ds P r s F s ds

t t




 

  −

 
= + + +

          

              
2 2

2 20 0

1 1
( , ) ( ) ( , ) ( )P r s F s ds P r s F s ds

t t

 

 
 

 
= + + − − +

   .  ----- (42) 

But 
2 2 2

2

2 2 3

(1 )cos( ) 2 cos ( ) 4
( , ) (1 )

(1 2 cos( ))

r t r t r
P r t r r

t r r t

 + + −
= − −

 + −
 so that 

2 2

2 2
( , ) ( , )P r s P r s

t t

 
− =

 
 and so it follows from (42) that  

2 2 2

2 2 20 0

1 1
( , ) ( , ) ( ) ( , ) ( )u r P r s F s ds P r s F s ds

t t

 

  
  

  
= + + − +

     

( )
2

20

1
( , ) ( ) ( )P r s F s F s ds

t



 


 
= + + − 

 
      --------------------------------   (43) 
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( )
2 2

2

2 30

1 (1 )cos( ) 2 cos ( ) 4
(1 ) ( ) ( )

(1 2 cos( ))

r t r t r
r r F s F s ds

r r t



 


+ + −
= − − + + −

+ − . --- (44) 

 

2
2

20

1
( , )sin ( )P r s s ds

t







  

2

0
0

1 1
sin ( ) ( , ) 2sin( )cos( ) ( , )

s

s

s P r s s s P r s ds
t t




 

=

=

  
= −   



0

1
sin(2 ) ( , )s P r s ds

t






= −

 , by integration by parts, 

0
0

1 1
sin(2 ) ( , ) 2cos(2 ) ( , )

s

s

s P r s s P r s ds




 

=

=

 
= − +  

 , by integration by parts, 

0

1
2cos(2 ) ( , )s P r s ds




=   

 
2

20

1 cos(2 )(1 )

1 2 cos( )

s r
ds

r r s





−
=

+ −  

2 2 2
2

2 20

1 cos(2 ) 1

1 2 cos( ) 1

r s r r
ds r

r r s r

 

 

− −
= = =

+ − − ,                  --------------- (45) 

                                  since 
2

2 20

cos(2 )

1 2 cos( ) 1

s r
ds

r r s r

 
=

+ − − . 

Hence,  

( )
2 2

2 22 20

1
( , ) ( ) ( , ) ( ) ( ) ( )u r D F P r s F s F s ds D F

t



    
 

  
− == + + − − 

  
  

( )
2 2

2 2

2 2 20 0

1 1 ( )
( , ) ( ) ( ) ( , ) sin ( )

D F
P r s F s F s ds P r s s ds

t t r

  
 

 

    
= + + − −   

    
   

2
2 2

2 20

1 ( )
( , ) ( ) ( ) sin ( )

D F
P r s F s F s s ds

t r

 
 



   
= + + − −  

   
 .   ------------------ (46) 
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Now, observe that  
2

20
0

1 1
( , ) ( , ) 0

s

s

P r s ds P r s
t t




 

=

=

   
= =      

 . 

And so we can write 

2

22
( , ) ( )u r D F 




−


 

2
2 2

2 20

1 ( )
( , ) ( ) ( ) 2 ( ) sin ( )

D F
P r s F s F s F s ds

t r

 
  



   
= + + − − −  

   
  .  ---------------  (47) 

Now, we shall examine the bounds for
2

2
( , )P r s

t




.   

Recall  
2 2 2

2

2 2 3

(1 )cos( ) 2 cos ( ) 4
( , ) (1 )

(1 2 cos( ))

r s r s r
P r s r r

t r r s

 + + −
= − −

 + −
    

2
2

2 2 2 3

cos( ) 4 sin ( )
(1 )

(1 2 cos( )) (1 2 cos( ))

s r s
r r

r r s r r s

 
= − − − 

+ − + − 
.        ------------- (48) 

 

Let 0
2


   . 

Then for / 2s    and  0 ≤ r < 1, 

2
2 2

2 4 4 4

1 4 1
( , ) (1 ) (1 )(1 4 )

sin ( ) sin ( ) sin ( )

r
P r s r r r r r

t   

   
 − +  − +   

    
 

while for / 2 s    and 0 ≤ r < 1, 

2
2

2
( , ) (1 )(1 4 )P r s r r r

t


 − +


. 

Hence for s    and 0 < r < 1, 

             
2

2

2 4

1
( , ) (1 )(1 4 )

sin ( )
P r s r r r

t 

 
 − +  

  
 .   ----------------------   (49) 

It follows then for 0 <  <  /2 and 0 < r <1, 
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2
2 2

2 2

1 ( )
( , ) ( ) ( ) 2 ( ) sin ( )

D F
P r s F s F s F s ds

t r






  



   
+ + − − −  

   
  

2
2

4 2

( )(1 )(1 4 ) 1
( ) ( ) 2 ( )

sin ( )

D Fr r r
F s F s F ds

r






  

 

 − +
 + + − + + 

 
  

2
2

4 2

( )(1 )(1 4 ) 1
2 ( ) 2 ( )

sin ( )

D Fr r r
F s ds F

r








  −

 − +
 + + 

 
   . -------------------  (50) 

It follows from (50) that  

2
2 2

2 2
1

1 ( )
lim ( , ) ( ) ( ) 2 ( ) sin ( ) 0
r

D F
P r s F s F s F s ds

t r






  

−→

   
+ + − − − =  

   
 . 

Hence, 

   
2

2 2

2 2
1

1 ( )
lim ( , ) ( ) ( ) 2 ( ) sin ( ) 0
r

D F
P r s F s F s F s ds

t r






  

−→

   
+ + − − − =  

   
  .  ----- (51) 

Now, since 2 20

( ) ( ) 2 ( )
( ) lim

h

F h F h F
D F

h

  


→

+ + − −
= , 

            
20

( ) ( ) 2 ( )
lim

sin ( )h

F h F h F

h

  

→

+ + − −
      

           
2

22 20

( ) ( ) 2 ( )
lim ( )

sin ( )h

F h F h F h
D F

h h

  


→

+ + − −
= = . 

Thus, given  > 0, there exists  > 0 such that 0 <  <  /2 and  

          
22

( ) ( ) 2 ( )
0 | | ( )

sin ( )

F s F s F
s D F

s

  
  

+ + − −
   −  .  -----------  (52) 

For this value of   , 

2
2 2

2 20

1 ( )
( , ) ( ) ( ) 2 ( ) sin ( )

D F
P r s F s F s F s ds

t r

 
  



   
+ + − − −  
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2
2

2 22 2 20

1 ( ) ( ) 2 ( 1
( , )sin ( ) ( ) ( ) 1

sin ( )

F s F s F
P r s s D F D F ds

t s r

   
 



   + + − −  
= − + −   

    
  

2
2

22 20

1 ( ) ( ) 2 (
( , )sin ( ) ( )

sin ( )

F s F s F
P r s s D F ds

t s

   




 + + − −
 −

  

                               
2

2

22 20

1 1
( , )sin ( ) ( ) 1P r s s ds D F

t r






 
+ − 

 
  

2
2

22 20

1 1
1 ( ) ( , )sin ( )D F P r s s ds

r t



 


 
 + −   

 .   

 
2

2

22 20

1 1
1 ( ) ( , )sin ( )D F P r s s ds

r t



 


  
 + −     

     ----------------------------  (53) 

Now, using (48) we get 

 
2 2 4

2 2

2 2 2 2 3

cos( )sin ( ) 4 sin ( )
( , )sin ( ) (1 )

(1 2 cos( )) (1 2 cos( ))

s s r s
P r s s r r

t r r s r r s

 
= − − − 

 + − + − 
 

                                                     ----------------------------------------   (54) 

and so, 

2
2 2

2 2 2

1 4
( , )sin ( ) (1 )

(1 2 cos( )) (1 2 cos( ))

r
P r s s r r

t r r s r r s

 
 − + 

 + − + − 
. 

                                                              ------------------------------------  (55) 

Therefore, 

2
2 2

2 20 0

1
( , )sin ( ) (1 )(1 4 )

(1 2 cos( ))
P r s s ds r r r ds

t r r s

 
 − +

 + −   

                                     
2

2
(1 )(1 4 ) (1 4 )

1
r r r r r

r


 − + = +

−
.  -------  (56) 

Therefore, it follows from (53) and (56) that given  > 0, there exists  > 0 such 

that 0 <  <  /2 and for 0 < r < 1, 
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2
2 2

2 20

1 ( )
( , ) ( ) ( ) 2 ( ) sin ( )

D F
P r s F s F s F s ds

t r

 
  



   
+ + − − −  

   
  

  
2

2

2 22 2 20

1 1 1
1 ( ) ( , )sin ( ) 1 ( ) (1 4 )D F P r s s ds D F r r

r t r



   


      
 + −  + − +            

  

  
22

1
5 5 1 ( )D F

r
 

 
 + − 

 
.  

Hence, 

          
2

2 2

2 20
1

1 ( )
limsup ( , ) ( ) ( ) 2 ( ) sin ( ) 5

r

D F
P r s F s F s F s ds

t r

 
   

−→

   
+ + − − −   

   
 . 

                                                                                           ------------------ (57) 

Therefore,  

2

22
1

limsup ( , ) ( )
r

u r D F 
−→


−


 

2
2 2

2 20
1

1 ( )
limsup ( , ) ( ) ( ) 2 ( ) sin ( )

r

D F
P r s F s F s F s ds

t r

 
  

−→

   
= + + − − −  

   
  

2
2 2

2 20
1

1 ( )
limsup ( , ) ( ) ( ) 2 ( ) sin ( )

r

D F
P r s F s F s F s ds

t r

 
  

−→

   
 + + − − −  

   
  

  
2

2 2

2 2
1

1 ( )
limsup ( , ) ( ) ( ) 2 ( ) sin ( )

r

D F
P r s F s F s F s ds

t r






  

−→

   
+ + + − − −  

   
  

5 0 5  + = , by (57) and (51). 

Since   is arbitrary,  
2

22
1

limsup ( , ) ( )
r

u r D F 
−→


−


=0 and so

2

22
1

lim ( , ) ( ) 0
r

u r D F 
−→

 
− = 

 
.  This means 

2

22
1

lim ( , ) ( )
r

u r D F 
−→


=


  and the second 

derived series of T( ) is A-summable at   to 2 ( )D F  .  
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This proves Theorem 12. 

 

Theorem 13. 

Suppose ( )0

1

1
( ) cos( ) sin( )

2
n n

n

T a a n b n  


=

= + +  is a trigonometric series. 

(1) Suppose T( ) satisfies the condition of Theorem 1.  In particular, it is 

Riemann summable everywhere to f ( ).  Then T( ) is Abel summable 

everywhere to f ().   

(2) Suppose T( ) satisfies the condition of Theorem 4 or Theorem 5 or 

Theorem 6.  In particular, it is Riemann summable at    to f ( ) except for   in 

an enumerable set E.  Then T( ) is Abel summable at   to f ( ) for all   in      

[−,  ] – E. 

Proof.  Recall that in all cases 
2 2

1 1

cos( ) sin( ) ( )n n n

n n

a nx b nx A x

n n

 

= =

+ 
= 

 
   is the Fourier 

series of a continuous function .   In particular T( ) is Riemann summable to f 

( ) implies that 0 2

1
( ) ( )

2
f a D = −  .  Hence,  2 0

1
( ) ( )

2
D a f  = − . 

Note that the second derived series of 
2

1

( )n

n

A x

n



=

  is 
0

1

1
( ) ( )

2
n

n

A T a 


=

− = − + . 

By Theorem 12, 0

1
( )

2
T a− +  is A-summable to  2 0

1
( ) ( )

2
D a f  = − . 

It follows that ( )T   is A-summable to ( )f  . 

This completes the proof. 

Remark. 

Theorem 13 and Theorem 10 implies Theorem 6. 
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