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Ideas of  Lebesgue and Perron Integration in Uniqueness 

of Fourier and Trigonometric Series 

By Ng Tze Beng 

This article is about the ideas leading to the uniqueness of a convergent trigonometric 

series.  We examine the ideas involved when the limit function of a trigonometric series is 

Lebesgue integrable.  Through the use of Perron’s technique, we characterize Lebesgue 

integrability by Perron’s major and minor functions.  Through this and de la Vallée-

Poussin’s majorant and minorant functions and Riemann’s idea of passing from the 

symmetric second derivative to the trigonometric series, an idea now called R-

summability, we deduce the uniqueness of Fourier Lebesgue series as stated in Theorem 

1.  When the trigonometric series need not converge to a Lebegsue integrable function but 

is everywhere convergent, building on the idea of Perron’s major and minor functions but 

using the second symmetric derivative, James’s J-major and J-minor functions are used to 

introduce the idea of P2 integral to prove the uniqueness of an everywhere convergent 

trigonometric series, where the coefficients are now recovered by the P2 integral. 

 

Introduction 

Consider the trigonometric series 

                                       
( )0

1

1
cos( ) sin( )

2
n n

n

a a nx b nx


=

+ +           -------------  (A) 

It is our aim to understand the proof of the uniqueness of the Fourier series of 

the sum function of (A), that is, the proof of the following fundamental result 

about Fourier series. 

Theorem 1.  If the series (A) converges except in an enumerable set E to a 

finite and integrable function f, then it is the Fourier series of f.   

Our approach would be that of Riemann and uses Perron’s major and minor 

functions together with the generalized second derivative.  

When the series (A) converges everywhere to a non Lebesgue integrable 

function  f ,  the coefficients are not recoverable by Lebesgue integration.  We 

present a solution by R. D. James using his P2 integrals.   

We shall elaborate the ideas in three sections.  Section A considers 

characterization of the Lebesgue integral in terms of lower and upper semi-
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continuous function.  Properties of these functions that are useful will be 

elaborated and the ideas of upper and lower derivates will be introduced to 

provide a means of obtaining major and minor functions.  Section B then 

considers the idea of the generalized symmetric second derivative of a function, 

its properties and Riemann’s idea in the proof.  Section C contains the 

uniqueness theorems and their proofs.  We introduce in this section the idea of 

R. D. James’ P2 integral and use this to prove the uniqueness of everywhere 

convergence trigonometric series. 

 

Section A.  Semi-continuous Function, Major and Minor 

Functions and Lebesgue Theory 

Lower and upper semi-continuous functions 

Let R* be the extended real numbers.   Suppose  f  : [a, b] → R* is an extended 

real valued function. 

Let   
0

( ) liminf ( ) : ( , ) [ , ]fm x f t t B x a b



+→

=      and    

        
0

( ) lim sup ( ) : ( , ) [ , ]fM x f t t B x a b



+→

=   , where ( , ) ( , )B x x x  = − +  . 

Plainly, by the definition of lim inf and lim sup, for all x in [a, b], 

                            ( ) ( ) ( )f fm x f x M x     

Definition 1.   Let c be in [a, b].  The function  f   is said to be lower semi-

continuous at c if  ( ) ( )fm c f c= .   f   is said to be upper semi-continuous at c if  

( ) ( )fM c f c= .   

Therefore, a finite valued function is continuous at c if, and only if, it is both 

lower and upper semi-continuous at c.  Note that just having one sided semi- 

continuity at c does not imply continuity at c. 

To work with lower and upper semi-continuous function, it is useful to use an 

equivalent form of this property.   The following theorem gives equivalent 

definition of lower and upper semi-continuity. 



3 
 

Theorem 2.  Suppose  f  : [a, b] → R* is an extended real valued function.  Let 

c be in [a, b].  

(a)  f   is lower semi-continuous at c if, and only if, for each  <  f (c), there 

exists  > 0 such that  f  (x) >   for all x  B(c, )  [a, b]. 

(b) Suppose f (c) is finite.  The function f is lower semi-continuous at c if, and 

only if, for each  > 0, there exists  > 0 such that  

               f (x) > f (c) −   for all x  B(c, )  [a, b]. 

(c)  f   is upper semi-continuous at c if, and only if, for each  >  f (c), there 

exists  > 0 such that  f  (x) <   for all x  B(c, )  [a, b]. 

(b) Suppose f (c) is finite.  The function f  is upper semi-continuous at c if, and 

only if, for each  > 0, there exists  > 0 such that  

               f  (x) < f (c) +   for all x  B(c, )  [a, b]. 

Proof.   We prove only parts (a) and (b).  Parts (c) and (d) are similarly proved. 

(a)  If f (c) = − , then we have nothing to prove as plainly, ( ) ( )fm c f c= = − .  

If ( ) ( )fm c f c= =  , then by definition of  ( )fm c =  , for each  <  f (c) = , 

there exists  > 0 such that  f  (x) >  for all x  B(c, )  [a, b].   If   f (c) is 

finite, then by definition of ( ) ( )fm c f c=  for each  <  f (c), there exists  > 0 

such that  f  (x) >  for all x  B(c, )  [a, b].    

(b)  If f (c) is finite, then take  = f (c)  −  <  f (c).   Part (b) then follows from 

part (a). 

 

The next property concerns extreme values of a semi-continuous function on [a, 

b]. 

Theorem 3.  Suppose f : [a, b] → R* is an extended real valued function.    

(i)  If f is lower semi-continuous on [a, b], then f assumes its minimum value. 

(ii)  If f is upper semi-continuous on [a, b], then f assumes its maximum value. 
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Proof.   

(i)  Suppose f is lower semi-continuous on [a, b]. Let  inf ( ) : [ , ]m f x x a b=  .   

If m = +, then f is a constant function taking + and we have nothing to prove. 

If m = − , then there exists a sequence ( xn ) in [a, b], such that  f ( xn ) →  − .    

If m is finite, then there exists a sequence ( xn ) in [a, b], such that  f ( xn ) → m.   

In both cases, by the Bolzano-Weierstrass Theorem, (xn) has a convergence 

subsequence ( )
knx .   Suppose 

knx d→  .  

Then if m is finite,  

                      inf{ ( ) : [ , ]} ( ) ( )fm f x x a b f d m d=   =   

                       liminf ( ) lim ( )
k kn n

k k
f x f x m

→ →
 = = , 

and so f (d) = m.  

If m = − , then lim ( )
kn

k
f x

→
= −  and                 

               
0

( ) ( ) liminf ( ) : ( , ) [ , ]ff d m d f t t B d a b m



+→

= =   = − = . 

The proof of part (ii) is similar and is omitted.   

For finite function f we have the following obvious corollary. 

Corollary 4.  Suppose f : [a, b] → R is a real valued function. 

(i)  If f is lower semi-continuous on [a, b], then f is bounded below. 

(ii)  If f is upper semi-continuous on [a, b], then f is bounded above. 

 

Remark.   A finite-valued semi-continuous function is a Baire class one 

function, i.e., it is the pointwise limit of a sequence of continuous function. 

 

The next result relates Lebesgue integrable function with semi-continuous 

functions. 
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Theorem 5.  Suppose f : [a, b] → R* is Lebesgue integrable.    

For each  > 0, there exist functions u and v such that 

(i) u is lower semi-continuous on [a, b] and v is upper semi-continuous 

    on [a, b]; 

(ii) for all x in [a, b], u(x) > − ,  u(x) ≥  f (x) ≥  v(x) and v(x) <  ; 

(iii)  u and v are Lebesgue integrable on [a, b] and 

                         
b b b

a a a
u f v −   +    . 

 

To establish Theorem 5 we shall use the following characterization of semi-

continuous function. 

Theorem 6.  Suppose f : [a, b] → R* is an extended real valued function.  

(a)  f is lower semi-continuous on [a, b] if, and only if, the set 

                     
1{ [ , ]: ( ) } ([ , ])x a b f x k f k−  = −   

      is closed for every real number k. 

(b)   f is upper semi-continuous on [a, b] if, and only if, the set 

                     
1{ [ , ]: ( ) } ([ , ])x a b f x k f k−  =    

      is closed for every real number k. 

Proof.   

We shall prove part (a) only.  The proof for part (b) is similar. 

Suppose f is lower semi-continuous on [a, b].  Let k be any real number.  Let  

1{ [ , ]: ( ) } ([ , ])B x a b f x k f k−=   = − .  If B = , then B is closed.  Now 

assume B ≠  .  Let c be a limit point of B.  Then c is in [a, b].  We shall show 

that c is in B, i.e.,  f (c) ≤  k.  If f (c) = −  , then obviously c is in B.  We now 

assume that f (c) > − .  By Theorem 2 part(a), for any  <  f (c), there exists  
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> 0 such that  f  (x) >   for all x  B(c, )  [a, b].   Since c is a limit point of 

B, there exists a point d in B(c, )  B – {c} such that   < f (d) ≤  k .  This 

shows that k is an upper bound of the set (−,  f (c)).  Therefore, k ≥ f (c).  

Hence c is in B.  This shows that B is closed. 

Conversely, suppose B is closed for every real number k.   Take c in [a, b].  If     

f (c) = −, then ( ) ( )fm c f c= = −  and so f is lower semi-continuous at c.  

Assume now f (c) > −.  Let k < f (c).  By assumption   
1{ [ , ]: ( ) } ([ , ])B x a b f x k f k−=   = − is closed in [a, b] and does not contain 

the point c.  This means c is in the complement of B which is open in [a, b]. 

Therefore, there exists  > 0 such that B(c, )  [a, b]  Complement of B in [a, 

b].   That is, for all x in B(c, )  [a, b],  f (x) > k.  Thus, by Theorem 2 part (a), 

f is lower semi-continuous at c.   This completes the proof of part (a). 

 

Proof of Theorem 5. 

We prove the theorem when f is non-negative, bounded and Lebesgue 

integrable.  Suppose for all x in [a, b], 0 ≤ f (x) < M for some real number M.  

Given  > 0, let  
1b a


 = 

− +
.  Take an integer N such that N > M. 

For integer k > 0, let 1{ [ , ]: ( 1) ( ) } ([( 1) , )}kE x a b k f x k f k k   −=  −   = − . 

Since f is Lebesgue integrable, f is measurable and Ek is measurable.   Since Ek 

 [a, b], the measure of Ek , m(Ek)  is finite.  It follows that there exists an open 

set Gk such that Ek  Gk and  

                                 
2

( ) ( )
k

k km G m E
k

−

 +  .   -----------  (1) 

Let Ak = Gk[a, b].  Then Ak is open in [a, b] and the characteristic function     

kA  is lower semi-continuous on [a, b].   We deduce this as follows.  In view of 

the fact that 
1{ [ , ]: ( ) } ([ , ])

k kA Ax a b x   −  = −  is either empty, all of [a, b] 

or the complement of Ak in [a, b], which is closed in [a, b], it follows from 

Theorem 6 part (a) that 
kA  is lower semi-continuous on [a, b].   Let  
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1
k

N

A

k

u k
=

=  .   Then u is lower semi-continuous on [a, b] since a finite sum of 

lower semi-continuous function is lower semi-continuous.   Observe that for x  

Ek , 

                                       u(x) ≥ k  > f (x) ≥ (k −1)  .     -----------------   (2) 

Therefore, 

 
1

( )
Nb

k
a

k

u k m A
=

=    

1 1 1 1

2
( ) ( 1) ( ) ( ) 2

kN N N N
k

k k k

k k k k

k m E k m E m E
k

   
−

−

= = = =

 
 + = − + + 

 
     

                                                                                                    by (1), 

1

( ) ( 1)
k

N b b

E a a
k

f b a f b a f   
=

 + − +  + − + = +   .    -------------   (3) 

Suppose now f is nonnegative but unbounded. 

For each integer n > 0, let gn(x) = min{f (x), n}.  Then gn is nonnegative and 

bounded and Lebesgue integrable.  Define f 1 = g1 , and  f n = gn – gn-1 for n > 1. 

Plainly, each f n is nonnegative, bounded and Lebesgue integrable.  In particular, 

                                                
1

n

n

f f


=

=   .               ---------------------    (4) 

By the first part of the proof, that is, inequality (3) with  replaced by 
2n


, 

we can find lower semi-continuous function un on [a, b] such that 

                un ≥  f n  on   [a, b]  and     
2

b b

n n na a
u f


 +  .   ---------------   (5) 

Now let  
1

n

n

u u


=

=   .  Since finite sum of lower semi-continuous functions is 

lower semi-continuous, the n-th partial sum of the series hn , is lower semi-
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continuous.   Moreover, hn is non-negative, bounded and converges pointwise to 

u (finite or infinitely).  Then for any real number k, 

                 
1

{ [ , ]: ( ) } { [ , ]: ( ) }n
n

x a b u x k x a b h x k


=

  =    

is closed in [a, b] since each { [ , ] : ( ) }nx a b h x k  is closed in [a, b].   It follows 

then from Theorem 6, that u is lower semi-continuous.   In particular, from (5) 

we have,  
1 1

n n

n n

u u f f
 

= =

=  =   and by using the Lebesgue Monotone 

Convergence Theorem, 

                    
1 1 2

b b b b

n n na a a a
n n

u u f f



 

= =

 
=  + = + 

 
     . 

Finally, suppose f is an arbitrary Lebesgue integrable function on [a, b]. 

For each integer n > 0, let now f n(x) = max{f (x),  − n}.   Plainly, 

| f n | ≤ | f | for all integer n ≥ 1 and f n → f pointwise on [a, b].  Therefore, by the 

Lebesgue Dominated Convergence Theorem, 

                                      lim
b b

n
a an

f f
→

=  . 

Thus, given  > 0, we can choose an integer N so that  

                                    
2

b b

N
a a

f f


 +   .      --------------------------   (6) 

By definition of f N ,  f N + N ≥ 0.   So  f N + N is nonnegative and Lebesgue 

integrable.  Therefore, by what we have just proved for nonnegative integrable 

function, there is a lower semi-continuous function uN such that 

                      uN ≥ f N + N and ( )
2

b b

N N
a a

u f N


 + +  . --------------  (7) 

Now, let u = uN − N.  Then u = uN − N ≥ f N ≥ f.  In particular, from (7) we have,    

                   ( )
2

b b b

N N
a a a

u u N f


= −  +    
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2 2

b b

a a
f f

 
 + + = +     by inequality (6).  

To find an upper semi-continuous function v for the theorem, we note that if a 

function f is lower semi-continuous, then – f is upper semi-continuous and use 

what we have just proved in the following manner.    We can find a lower semi-

continuous function w for −  f satisfying w ≥ −  f  and 

                                   
b b

a a
w f  − +  . 

Now let v = −w and so v is upper semi-continuous on [a, b].   Then 

                             
b b b

a a a
v w f = −  −   . 

This completes the proof of Theorem 5. 

 

The next idea is to characterize Lebesgue integral in terms of major and minor 

functions, an idea of Perron which leads to a generalization of the Lebesgue 

integral.  For this we need to bring in the idea of upper and lower derivate of a 

function. 

 

Definition 7.  Suppose F: [a, b] → R is a real-valued function.   Let c be in [a, 

b].  Then the upper derivate of F at c is defined by 

                         
( ) ( )

( ) limsup
x c

F x F c
DF c

x c→

−
=

−
  

and the lower derivate of F at c is defined by 

                          
( ) ( )

( ) liminf
x c

F x F c
DF c

x c→

−
=

−
. 

It is easy to see that F is differentiable at c if and only if both ( )DF c  and 

( )DF c  are finite and equal. 

We state some useful results below, starting with one about continuity and the 

other about monotonicity. 
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Theorem 8.  Suppose F: [a, b] → R is a real-valued function.  Let c be in [a, b].   

If both ( )DF c  and ( )DF c  are finite, then F is continuous at c. 

Proof.   Let M  =  max ( ) , ( )DF c DF c .   Since 
( ) ( )

( ) limsup
x c

F x F c
DF c

x c→

−
=

−
,  

there exists 1  > 0 such that  

          1 1

( ) ( )
( , ) { } ( ) 1 1

F x F c
x c c c DF c M

x c
 

−
 − + −   +  +

−
.   ------- (8) 

Similarly, as 
( ) ( )

( ) liminf
x c

F x F c
DF c

x c→

−
=

−
, there exists 2  > 0 such that  

          2 2

( ) ( )
( , ) { } ( ) 1 1

F x F c
x c c c DF c M

x c
 

−
 − + −   −  − −

−
.   ------- (9) 

Take 3  = min ( 1 , 2 ).  Then it follows from (8) and (9) that 

          3 3

( ) ( )
( , ) { } 1 1

F x F c
x c c c M M

x c
 

−
 − + −  − −   +

−
. 

Thus, 3 3

( ) ( )
( , ) { } 1

F x F c
x c c c M

x c
 

−
 − + −   +

−
 

                                              ( ) ( ) ( 1)F x F c M x c −  + − . 

Hence, given  > 0, take 3min ,
1M


 

 
=  

+ 
 .  Then  

                          | | ( ) ( )x c F x F c −   −  . 

Consequently, F must be continuous at c. 

 

The next theorem is a result for a sufficient condition for a function to be 

increasing. 

Theorem 9.   Suppose F: [a, b] → R is a real-valued function.  Suppose 

( ) 0DF x  for all x in [a, b].   Then F is increasing on [a, b]. 
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Proof.  We prove the theorem under the condition that ( ) 0DF x  for all x in [a, 

b].    Let a ≤ c < d ≤ b.  We shall show that F(c) < F(d).  Now ( ) 0DF c   and so 

the set H = {x [c, d]: F(x) > F(c)} is non-empty, for otherwise, ( )DF c would 

be less than or equal to 0.  H is obviously bounded above by d and so it has a 

supremum M  ≤  d.  We claim that M = d.  Firstly, M must be in H. If M does 

not belong to H, then it is a limit point of H.  Since M is a supremum of H, there 

exists a strictly increasing sequence (an) in H such that an → M.  Now         

                  
( ) ( ) ( ) ( )

lim liminfn n

n n
n n

F a F M F a F M

a M a M→ →

− −


− −
 

                                                
( ) ( )

liminf ( ) 0
x M

F x F M
DF M

x M→

−
 = 

−
  

Therefore, there exists an integer N such that n ≥ N implies that  

                                 
( ) ( ) ( )

0
2

n

n

F a F M DF M

a M

−
 

−
. 

Thus, F(M) >F(aN) > F(c).   This shows that M is in H.   Now M must be equal 

to d.  If M < d, then since ( ) 0DF M  , there must be a point x in the interval 

(M, d) such that F(x) > F(M) for, otherwise ( )DF M would be less than or equal 

to 0.  Since F(M) > F(c), F(x) > F(c) and so x is in H.  This contradicts that M is 

the supremum of H.  Hence M = d and F(d) > F(c).   Since c and d are arbitrary, 

this shows that F is strictly increasing on [a, b]. 

Suppose now ( ) 0DF x  for all x in [a, b].   Let  > 0.   Let G(x) = F(x) + x on 

[a, b].  Then ( ) ( ) 0DG x DF x = +   for all x in [a, b], since the derivative of 

the function x is 1.  It follows that for any d > c in [a, b], G(d) > G(c).   That is, 

F(d) > F(c) + (d − c).   Since we can choose  to be arbitrarily small, F(d) ≥ 

F(c).   This proves that F is increasing. 

                

The next result below relates semi-continuity with the upper and lower 

derivates. 

Theorem 10.   Suppose f : [a, b] → R* is a Lebesgue integrable extended real 

valued function.  Let  ( )
x

a
F x f=   for x in [a, b].  Let c  [a, b]. 
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(a)  If  f  is lower semi-continuous at c, then ( ) ( )DF c f c . 

(b)  If  f  is upper semi-continuous at c, then ( ) ( )DF c f c . 

Proof.   

(a)  Suppose f is lower semi-continuous at c.  By Theorem 2 part (a), for  

 <  f (c), there exists  > 0 such that  f  (x) >   for all x  B(c, )  [a, b].  If   

f (c) = − ,  we have nothing to prove.  We assume that f (c) > − .   For all x  

B(c, )  [a, b] – {c}, 

       ( ) ( ) 1 1 1x c x x

a a c c

F x F c
f f f

x c x c x c x c
 

−
= − =  =

− − − −     . 

Note that the last inequality is obvious if x > c.  If x < c, then 

                       
1 1 1x c c

c x x
f f

x c c x c x
 =  =

− − −    . 

This implies that ( )DF c   for all  < f (c).   It follows that ( ) ( )DF c f c . 

(b)  Suppose f is upper semi-continuous at c.  By Theorem 2 part (c), for  

 > f (c), there exists  > 0 such that f (x) <   for all x  B(c, )  [a, b].  If      

f (c) =  , we have nothing to prove.  We assume that f (c) < .   For all x  

B(c, )  [a, b] – {c}, 

       ( ) ( ) 1 1 1x c x x

a a c c

F x F c
f f f

x c x c x c x c
 

−
= − =  =

− − − −     . 

This implies that ( )DF c   for all  >  f (c).   It follows that ( ) ( )DF c f c . 

 

Major and Minor Functions 

We now introduce Perron’s major and minor functions.   

Definition 11.   Suppose f : [a, b] → R* is an extended real valued function.   

A real-valued function U: [a, b] → R is a major function of  f  on [a, b], if   

( )DU x  −  and ( ) ( )DU x f x  for all x in [a, b].    
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A real-valued function V: [a, b] → R is a minor function of  f  on [a, b], if   

( )DV x    and ( ) ( )DV x f x  for all x in [a, b]. 

 

The next result is a characterization of Lebesgue integrable function in terms of 

major and minor functions. 

We introduce the following notation.  If F is a real value function, we denote 

F(b) – F(a) by  b

aF  . 

Theorem 12.  Suppose f : [a, b] → R* is a measurable extended real valued 

function.  The function f is Lebesgue integrable on [a, b] if, and only if, for each 

 > 0, there exist absolutely continuous major and minor functions, U and V of  f   

on [a, b] such that U(a) = V(a) = 0 and  b b

a aU V −  . 

Proof.  Suppose f is Lebesgue integrable on [a, b].  Given  > 0, by Theorem 5, 

there exist lower semi-continuous function u and a upper semi-continuous 

function v such that for all x in [a, b], u(x) > − ,  u(x) ≥  f (x) ≥  v(x) and v(x) < 

, and  u and v are Lebesgue integrable on [a, b] with 

                            
2 2

b b b

a a a
u f v

 
−   +    .   ---------------   (10) 

Let  ( )
x

a
U x u=    and ( )

x

a
V x v=  .  Then U and V are absolutely continuous 

finite functions on [a, b].  By Theorem 10, ( ) ( )DU x u x  − for all x in [a, b], 

since u is lower semi-continuous on [a, b].  Since v is upper semi-continuous on 

[a, b],  ( ) ( )DV x v x   .  Observe that ( ) ( ) ( )DU x u x f x  and 

( ) ( ) ( )DV x v x f x   for all x in [a, b].  Hence U is a major function and V is a 

minor function of f on[a, b].  Moreover, it follows from (10) that 

              ( ) ( )
2 2

b b b b b b
b b

a a
a a a a a a

U V u v u f v f
 

− = − = − − −  + =      . 

Conversely, given any  > 0, there exist absolutely continuous major and minor 

functions of f, U and V on [a, b] such that  b b

a aU V −  .  Then since U and V are 

absolutely continuous, U and V are differentiable almost everywhere on [a, b] 

and their derivatives are Lebesgue integrable.  That is to say, the derivatives U’  
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and V’ exist almost everywhere on [a, b] and U’ and V’ are Lebesgue integrable.   

Therefore, 'DU U=  almost everywhere on [a, b] and DU  is Lebesgue 

integrable on [a, b].  We also have 'DV V=  almost everywhere on [a, b] and so 

DV  is Lebesgue integrable on [a, b].  By definition of major and minor function 

of  f , ( ) ( ) ( )DV x f x DU x   for all x in [a, b].  Plainly 

            ' '
b b b b

a a a a
DU DV U V− = −     

                                   b b

a aU V = −    by absolute continuity of U and V. 

Thus, we have shown that given any  > 0, there exist integrable functions g and 

h such that g f h   and 
b b

a a
h g −   .   It follows that f is Lebesgue 

integrable on [a, b]. 

This completes the proof. 

Remark. 

Suppose U and V are major and minor functions of f on [a, b].   

Then ( )( ) ( ) ( ) ( ) ( ) 0D U V x DU x DV x f x f x−  −  − =  for all x in [a, b].   

Thus, by Theorem 9, U – V is increasing on [a, b].   Therefore, b b

a aU V . 

If   f   has at least one major and minor function, then we define the upper 

Perron integral on [a, b] to be  inf{ :  a major function of   }b

aUPf U U f=   and 

the lower Perron integral to be sup{ :  a minor function of   }b

aLPf V V f= .   

Then we have LPf UPf .  If  LPf UPf= , then we say f is Perron integrable 

on [a, b].  Theorem 12 then says that any Lebesgue integrable function on [a, b]  

is Perron integrable. 

 

The next result is a kind of limit convergence theorem for the Lebesgue integral. 

Theorem 13.  Suppose f : [a, b] → R* is Lebesgue integrable.  There are 

sequences of continuous functions ( pn :[a, b] →R ) and ( Pn :[a, b] →R ) such 
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that (i) pn(a)  = Pn(a) = 0 , (ii) ( )
x

n
a

p x f→   ,  ( )
x

n
a

P x f→   uniformly on [a, b] 

and                                    ( ) ( ) ( )n nDp x f x DP x  , 

whenever f (x) is finite.   

Proof. 

Let  
1

n
 =  .  By Theorem 12, there exist major function Un  and minor function 

Vn of  f  on [a, b] such that ( )nDU x  − , ( )nDV x   , ( ) ( ) ( )n nDV x f x DU x 

for all x in [a, b] and 
1

( ) ( ) ( ) ( )n n n nU b U a V b V a
n

−  − +  and ( ) ( ) 0n nU a V a= = .  

Moreover, we deduce from the proof of Theorem 12, that the major and minor 

functions satisfy  ( ) ( )
x

n n
a

U x f V x   and            

                
1

( ) ( ) ( ) ( )n n n nU x V x U b V b
n

−  −   for all x in [a, b]. 

Thus, 
1

0 ( ) ( ) ( )
x

n n n
a

U x f U x V x
n

 −  −   for all x in [a, b].   It follows that 

( )
x

n
a

U x f→   uniformly on [a, b].   Similarly, we deduce that ( )
x

n
a

V x f→   

uniformly on [a, b].   Now let ( ) ( )n np x V x=  and ( ) ( )n nP x U x= .   Then 

( )
x

n
a

p x f→   and ( )
x

n
a

P x f→   uniformly on [a, b].   Moreover,  

                 ( ) ( ) ( ) ( ) ( )n n n nDp x DV x f x DU x DP x=   = . 

This completes the proof of the theorem. 

Remark. 

1. Observe that ( ( ) ( )) ( ) ( )) 0n n n nD U x V x DU x DV x−  −   for all x in [a, b].  

Therefore, by Theorem 9, ( ) ( )n nU x V x−  is increasing and nonnegative in 

[a, b], since ( ) ( ) 0n nU a V a− = . 

2. The functions pn(x) and Pn(x) are also known as de la Vallée-Poussin’s 

minorant and majorant functions. 
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Section B.  Riemann’s Idea, Symmetric Second Derivative, 

R-Summability and Convexity. 

Let ( ) cos( ) sin( )n n nA x a nx b nx= +  for n > 1 and A0(x) = a0.  We now write the 

trigonometric series (A) as 

                   ( )0 0

1 1

1 1
( ) cos( ) sin( ) ( ) ( )

2 2
n n n

n n

T x a a nx b nx A x A x
 

= =

= + + = +    ------- (A) 

Observe that  2 2( ) cos( ) sin( ) cos( )n n n n n nA x a nx b nx a b nx = + = + + , where  

2 2 2 2
cos( )  and sin( )n n

n n

n n n n

a b

a b a b
 = = −

+ +
.   Let 2 2

n n na b = + . 

We derive first a necessary condition for convergence of the series (A). 

 

Theorem 14.  If An(x) → 0, or in particular, if T(x) converges in a set E of 

positive measure, then an → 0 and bn → 0. 

Proof.  It is enough to prove that 2 2 0n n na b = + → .  We prove this by 

contradiction.  Suppose 0n →  .  This means there exists  > 0 and a 

subsequence ( )
kn  of ( )n  such that 

kn   for all positive integer k.  Note that if 

T(x) converges in a set E of positive measure, then An(x) → 0 in a set E of 

positive measure. 

Since An(x) → 0 in E, it follows that cos( ) 0
kk nn x + →  in E.  Since cos( )

kk nn x + is 

uniformly bounded by 1, by the Bounded Convergence Theorem, 

            2 2cos ( ) ( ) cos ( ) 0
k kk n E k n

E
n x x dx n x dx




  

−
+ = + →   . 

But ( )2 1
cos ( ) 1 cos(2 2 )

2k kk n k nn x n x + = + +  and so 

                2 1 1
cos ( ) ( ) cos(2 2 )

2 2k kk n k n
E E

n x dx m E n x dx + = + +  .   --------- (11) 
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Note that cos(2 2 ) cos(2 )cos(2 ) sin(2 )sin(2 )
k k kk n k n k nn x n x n x  + = − .  

Therefore, 

cos(2 2 )
kk n

E
n x dx+   

   cos(2 ) cos(2 ) ( ) sin(2 ) sin(2 ) ( )
k kn k E n k En x x dx n x x dx

 

 
   

− −
= −   .---- (12), 

By the Lebesgue Riemann Theorem, 

         cos(2 ) ( ) 0 and sin(2 ) ( ) 0k E k En x x dx n x x dx
 

 
 

− −
→ →   

and as cos(2 ) and sin(2 )
k kn n  are bounded sequences, it follows from (12) that  

cos(2 2 ) 0
kk n

E
n x dx+ → .   Thus, we obtain from (11) that  

                    2 1
cos ( ) ( ) 0

2kk n
E

n x dx m E+ →  . 

This contradicts 2cos ( ) 0
kk n

E
n x dx+ → . 

Therefore, 2 2 0n n na b = + →  and so an → 0 and bn → 0. 

 

If we formally integrate the series (A) term by term twice, we shall obtain the 

following series 

                            2

0 2
1

1 ( )
( )

4

n

n

A x
a x x

n



=

− =      -------------------------   (U) 

Let    
2

1

( )
( ) n

n

A x
x

n



=

 =  .   Then  2

0

1
( ) ( )

4
x a x x = −  . 

We have already proved that if T(x) converges or An(x) → 0 on a set of positive 

measure, then an → 0 and bn → 0.  Consequently, An(x) → 0 uniformly on R 

and (U) gives a very useful series.   We state it formally below. 
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Theorem 15.  If T(x) converges in a set E of positive measure, then 

2
1

( )
( ) n

n

A x
x

n



=

 =   converges absolutely and uniformly to a continuous function 

on R , and so 2

0

1
( ) ( )

4
x a x x = −   converges absolutely and uniformly to a 

continuous function on R. 

Proof.   Since the sequence (An(x)) is uniformly bounded by Theorem 14, it 

follows by Weierstrass M-test that 
2

1

( )
( ) n

n

A x
x

n



=

 =   converges absolutely and 

uniformly to a continuous function on R.  The second statement is now obvious. 

 

To approach the problem of uniqueness, Riemann’s idea is to argue backwards 

from ( )x  to T(x) by a process of generalized symmetric second derivative. 

 

The Idea of Symmetric Second Derivative 

Definition 16.  Suppose g is a finite function, i.e., a real-valued function. 

For any real number h, define 

                    2 ( ) ( ) ( ) 2 ( )hg x g x h g x h g x = + + − − . 

If the limit 
2

20

( )
lim h

h

g x

h→


 exists, then this limit is called the generalized 

(symmetric) second derivative of g at x.  We denote this by D2g(x).  That is, 

                                     
2

2 20

( )
( ) lim h

h

g x
D g x

h→


= . 

We now describe some properties of symmetric second derivative and some of 

its variants.   

The first step towards proving Theorem 1 is the following: 
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Theorem 17 (Riemann).  Suppose T(x) is a trigonometric series, where an → 0 

and bn → 0.  Let 2

0

1
( ) ( )

4
x a x x = −   as in (U).  If T() converges to f (), 

then 2 ( ) ( )D f  = . 

Proof.   Suppose T() converges to f (). 

Define 
2

2

2

( )
( )

4

h
hR

h




 
= .   The limit of ( )hR   is 2 ( )D  . 

Observe that  
2

2

2 2

( ) ( 2 ) ( 2 ) 2 ( )
( )

4 4

h
h

h h
R

h h

   


   + +  − − 
= =  

                                

2

0

1

1 sin( )
( )

2
n

n

nh
a A

nh




=

 
= +  

 
   --------------------------  (13) 

                             after applying the addition formula and summing. 

We want to prove that 0

1

1
( ) ( ) ( )

2
h n

n

R T a A  


=

→ = +  . 

Let 0

1

1
( ) ( )

2

n

n n

k

s a A 
=

= +   for n ≥ 1.   Then  ( ) ( )ns T → . 

We now introduce some notation, write for n = 0, 

2
sin( )

1
nh

nh

 
= 

 
 .    

Let 

2
sin( )

n

nh

nh

 
=  

 
 for n ≥ 1, and 0 1= . 

Let n be the partial sum of Rh() define by 

                        

2

0

sin( )
( )

n

n k

k

kh
A

kh


=

 
 =  

 
  .  ------------------------  (14) 

Here we let 
0 0

1
( )

2
A a =  instead of a0 only for the proof of this theorem. 

By Abel’s summation formula, 
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1

1

0 0

n n

n k k n n k k n n

k k

s s s s
−

+

= =

 =  + =  +  ,     -------------------  (15) 

                                                          where  1k k k+ = −  and sk =sk(). 

Since ( ) ( )ns T →  and 

2
sin( )

0n

nh

nh

 
= → 

 
 for each h ≠ 0 as n →  , 

    

22

0 0

sin( ) sin(( 1) )

( 1)
n k k k

k k

kh k h
s s

kh k h

 

= =

  + 
 →  = −     +    

   for h ≠ 0.  

Therefore, for h ≠ 0,  

         

222

2

2
0

( ) sin( ) sin(( 1) )
( )

4 ( 1)

h
h k

k

kh k h
R s

h kh k h






=

    + 
= = −     +    

 . -------- (16) 

Since ( ) ( )ns T s → = , we may write sk = s +ek and ek→ 0.   

Then for fixed h ≠ 0,  

0

( ) ( )h k k

k

R s e


=

= +   , 

1 1

0 0

( )
n n

n k k n n k k n n

k k

s s s s s e s s+ +

= =

 − =  + − = +  + −   

         1

0

n

k k n n

k

e e+

=

=  +  . 

For  0 < N < n,  

1

1

0

N n

n k k k k n n

k k N

s e e e
−

+

= =

 −   +  +   

          
21 ( 1)

12
0

sin ( )N n k h

k k k n n
kh

k k N

d t
e e dt e

dt t

− +

+

= =

 
  + + 

 
                    

          
21 ( 1)

2
0

sin ( )
max max

N n k h

k k k k
khk N k n

k k N

d t
e e dt e

dt t

− +

 
= =

 
  + + 

 
   ,  --------- (17) 
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                                                                                                since 1k  . 

Let G(t) be the derivative of  
2

2

sin ( )t

t
 for t ≠ 0.   We then obtain from (17), for h 

≠ 0, 

      
1 ( 1)

0

max ( ) max
N n k h

n k k k k
khk N k n

k k N

s e e G t dt e
− +

 
= =

 −   + +   

                
1 ( 1)

0

max ( ) max
N n h

k k k k
Nhk N k n

k

e e G t dt e
− +

 
=

  + +  .  

Then by passage to the limit, we have, since max 0k
k n

e


→   

                
1

0

( ) max ( )
N

h k k k
Nhk N

k

R s e e G t dt
− 


=

−   +  .   --------------  (18). 

Note that for t ≠ 0, 
2 2

2 3

sin ( ) sin(2 ) 2sin ( )
( )

d t t t t
G t

dt t t

−
= =   and so for t  > , 

2 3

1 2
( )G t

t t
 + .   It follows from this inequality that ( )G t dt





  .  Observe 

that 
0

lim ( ) 0
t

G t
→

= .  Therefore, 
0

( )G t dt


  .   Indeed 
0

( ) 1G t dt


= .   Hence, 

0
( )G t dt C



=   . 

It follows from (18) that  

           
1 1

0
0 0

( ) max ( ) max
N N

h k k k k k k
k N k N

k k

R s e e G t dt e e C
− −

 
= =

−   + =  +  . 

Given  > 0 we may choose sufficiently large N so that max
2

k
k N

e
C




  since 

max 0k
k n

e


→ .    Thus for this value of N we have  

                                   
1

0

( )
2

N

h k k

k

R s e



−

=

−   + .         ----------------  (19) 
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Since  

22

0 0

sin( ) sin(( 1) )
lim lim 0

( 1)
k

h h

kh k h

kh k h→ →

  + 
 = − =     +    

 for each k = 0,1,.., N-1, 

1

0
0

lim 0
N

k k
h

k

e
−

→
=

 = .   It follows that there exists  >0 so that for 0 <|h| <  , 

1

0 2

N

k k

k

e
−

=

  . 

Therefore, it follows from (19) that for 0 <|h| < , 

                             ( )
2 2

hR s
 

 −  + = .    

We can thus conclude that             

                      0

1

1
( ) ( ) ( )

2
h n

n

R s T a A  


=

→ = = +  . 

 

Observe that we have proved a more general result concerning R summability. 

Definition 18.   In honour of Riemann, if a series 

2

0

1

sin( )
n

n

nh
u u s

nh



=

 
+ → 

 
   

as h →0, we say the series  
0

n

n

u


=

  is R- summable to the sum s. 

Thus, Theorem 17 states that if the trigonometric series T() satisfies an → 0 

and bn → 0 and converges to s at , then it is R- summable to s at . 

 

We have actually proved the regularity of R-summability.  We state the result as 

follows. 

Theorem 19.   If  
0

n

n

u


=

   converges to the sum s, then the series is R- summable 

to the sum s. 
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(The proof of Theorem 19 is almost exactly the same as in Theorem 17 except 

for appropriate change in notation.) 

Now we investigate some properties of the symmetric second derivative and its 

relation to convexity.  

 

Definition 20.    

Let 
2

2
2

0

( )
( ) limsup h

h

g x
D g x

h→


=   and  

2

2 20

( )
( ) liminf h

h

g x
D g x

h→


= . 

If 2 ( ) ( )hg x o h =  or equivalently 
2

0

( )
lim 0h

h

g x

h→


= ,  then g is said to be smooth at 

x.  g is said to be smooth in a set in an interval if it is smooth at every point in 

the set. 

Note that if g is differentiable at x, then g is smooth at x. 

Theorem 21.  Suppose g is continuous in (a, b) and 2 0D g   in (a, b) except 

perhaps in an enumerable set E.  If E is empty, then g is convex.  If E is not 

empty and g is smooth in E, then g is convex in (a, b).   

Proof.  Suppose 2 ( ) 0D g x   in (a, b) except for x in E.   

Note that g is convex on (a, b) if for any  <  in (a, b), 

       
( ) ( ) ( ) ( )

( )
x g x g

g x
   

 

− + −


−
  for all x in [, ]. 

g is concave on (a, b) if – g is convex on (a, b). 

Suppose on the contrary that g is not convex.  Then there is an interval [, ] in 

(a, b) such that 

                  
( ) ( ) ( ) ( )

( )
x g x g

g x
   

 

− + −


−
  

for some x in (, ).  That is to say, the function d(x) = g(x) – mx − n, where      
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( ) ( ) ( ) ( )

 and 
g g g g

m n
     

   

− −
= =

− −
  

is sometime positive.  Note that d() = d() = 0.  Since g is continuous, d is also 

continuous.  Hence by the Extreme Value Theorem, there exists x0 in (, )    

such that d(x0) is the absolute maximum of [ , ]|d    .  In particular, d(x0) > 0.  

Therefore, for sufficiently small h so that [x0−h, x0+h] (, )     

                   
2 2

0 0 0 0 0

2 2 2

( ) ( ) ( ) ( ) 2 ( )
0h hg x d x d x h d x h d x

h h h

  + + − −
= =  . 

It follows that 2 0( ) 0D g x  .   If the exceptional set E is empty, then this would 

contradict 2 0( ) 0D g x  .   If the exceptional set E is non-empty, then x0  E. 

We shall show that E is non-enumerable.  

Let k = d(x0) > 0.  Since d is continuous at x0 there exists  > 0 such that for all x 

in (x0−, x0+ ), d(x) > d(x0)− k/4 = 3k/4 > 0.  Therefore, for x in (x0−, x0+ ),   

            3
4( ) ( ) ( )g x m h x n d x hx k hx− + − = −  −  . 

Let 2
2(max(| |,| |) 1)

k


 
=

+
.         

If  2
2(max(| |,| |) 1)

k
h 

 
 =

+
 , then for all x in [, ] 

                         
| |

2(max(| |,| |) 1) 2

k x k
hx

 
 

+
 

and for x in (x0−, x0+ ),   

            
3 1

( ) ( ) ( ) 0
4 4

g x m h x n d x hx k hx k− + − = −  −   . ---------  (20) 

This means that for all sufficiently small  near m, i.e., for | − m| < 2,   

                              ( ) 0g x x n− −   

for x in (x0−, x0+ ).  
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Let ( ) ( )d x g x x n = − − .  Then d also has positive absolute maximum in     

[, ].   Observe that ( ) ( ) ( ) ( ) ( )d x g x mx n m x d x m x  = − − + − = − − . 

Hence ( ) ( ) ( ) 0 ( ) ( )d d m m m        = − − = − − = −  and 

( ) ( ) ( ) 0 ( ) ( )d d m m m        = − − = − − = − .  Let x  be the absolute 

maximizer of d in [, ].   Observe that  

0 0 0 0

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2
d x d x d x m x k m x k m d        = − − = − −   −   

and similarly note that ( ) ( ) ( )d x m d     −  .  Hence ( , )x   . 

Let { [ , ]: ( ) ( )}x d x d x    =  = .  Then  is non-empty and is contained in      

[, ].  Let supx =   .  Then [ , ]x   .   Since ( ) ( ), ( )d x d d     , 

( , )x    and ( ) ( )d x d x   = .  It follows as in the case for x0 that                    

2 2( ) ( ) 0D g x D d x  =  .  Hence  x E  .  

We shall show next that g is differentiable at  x  and that ( )g x  = . 

Note that x  is a maximizer of d in [, ], we have then for sufficiently small 

positive h,   

          
( ) ( )

0
d x h d x

h

   + −
   and  

( ) ( )
0

d x h d x

h

   − −


−
. 

It follows that the right upper derivate of d at x , 

        
0

( ) ( )
( ) limsup 0

h

d x h d x
D d x

h

   

 
+

+

→

+ −
=    and the lower left derivate 

        
0

( ) ( )
( ) liminf 0

h

d x h d x
D d x

h

   

  +−
→

− −
= 

−
. 

Since g is smooth in E, d is also smooth in E, i.e., for x in E, 
2 ( ) ( )hd x o h = , 

or 

            

2

0 0

( ) ( ) ( ) 2 ( )
lim lim 0

h

h h

d x d x h d x h d x

h h

   

→ →

 + + − −
= = . -------------- (21) 
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Thus   

               

2

0 0

( ) ( ) ( ) 2 ( )
lim lim 0

h

h h

d x d x h d x h d x

h h

       

→ →

 + + − −
= =  

and so given any  > 0 there exists  > 0 so that 0 < |h| <  implies  

( ) ( ) 2 ( ) ( ) ( ) ( ) ( )d x h d x h d x d x h d x d x h d x

h h h

             + + − − + − − −
= −

−
 

                                                        <   . 

This means, for 0 < |h| < ,  

   
( ) ( ) ( ) ( ) ( ) ( )d x h d x d x h d x d x h d x

h h h

            
− − + − − −

−   +
− −

. 

It follows that 

     
0 0

( ) ( ) ( ) ( )
limsup limsup

h h

d x h d x d x h d x

h h

       
+ +→ →

− − + −
− 

−
  and 

    
0 0

( ) ( ) ( ) ( )
limsup limsup

h h

d x h d x d x h d x

h h

        
+ +→ →

+ − − −
 +

−
 . 

Since  is arbitrary, 

0

( ) ( )
( ) limsup

h

d x h d x
D d x

h

   

 
+

+

→

+ −
=  

                
0

( ) ( )
limsup ( )

h

d x h d x
D d x

h

   

 
+

−

→

− −
= =

−
.  

Hence,                 ( ) ( ) 0.Dd x D d x   

+=             

Similarly by using limit inferior we can show that  

                            ( ) ( ) 0.Dd x D d x   −=   

Therefore, 0 ( ) ( ) 0Dd x Dd x       and so ( ) ( ) 0Dd x Dd x   = = and d is 

differentiable at x  with ( ) 0d x 
 = .    
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By definition of d ,  ( ) ( )d x g x    = −  and so ( )g x  = .   Thus, for each  

in the interval, (m−2, m+2), we can associate an element x  in E such that 

( )g x  = .   Therefore, there are as many elements in E as there are in (m−2, 

m+2).  This means that E contains a set which is non-denumerable and so E is 

a non-denumerable set.  This contradicts that E is denumerable.   It follows that 

g must be convex. 

Theorem 22.  Suppose g is continuous in (a, b) and 2 0D g   in (a, b) except 

perhaps in an enumerable set E.  If E is empty, then g is convex in (a, b).   If E is 

non-empty and g is smooth in E, then g is convex in (a, b). 

Proof.   For each integer n > 0, let 21
( ) ( )

2
ng x g x x

n
= + .    Then  

2 2

1
( ) ( ) 0nD g x D g x

n
= +   for all x except for x in E.  If g is smooth in E, gn is 

also smooth in E.   Therefore, by Theorem 21, each gn is convex in (a, b).  Since 

g is the limit of gn, g is also convex in (a, b).   

 

For concavity we have the following result.  

Theorem 23.  Suppose g is continuous in (a, b) and 2 0D g   in (a, b) except 

perhaps in an enumerable set E.  If E is empty, then g is concave in (a, b).  If E 

is non-empty and g is smooth, then g is concave in (a, b).   

Proof.  Let h = −g.  Then 2 2 2( ) 0.D h D g D g= − = −   Note that h is continuous 

in (a, b) and smooth in E if E is non-empty, since g is.  Therefore, by Theorem 

22, h is convex and so g is concave in (a, b). 

Corollary 24.  Suppose g is continuous in (a, b) and 2 0D g =  in (a, b) except 

perhaps in an enumerable set E.  If E is empty, then g is linear in (a, b).  If E is 

non-empty and g is smooth in E, then g is linear in (a, b).   

Proof.  If 2 0D g = , then 2 2 0.D g D g= =   Then by Theorem 22 and Theorem 23 

g is both concave and convex in (a, b). Therefore, for any interval [, ] in (a, 

b) g is a linear function on [, ] and the derivative g  is a constant in [, ].  
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By letting  tends to a and  tends to b, we conclude that g  is a constant 

function in (a, b).  It follows that g is a linear function.  

Theorem 25. Suppose g is continuous in (a, b) and 2D g c  in (a, b) except 

perhaps in an enumerable set E in which g is smooth if E is non-empty.  Then 
2

2

( )hg x
c

h


  for a < x –h < x + h < b;  

Suppose g is continuous in (a, b) and 2D g c  in (a, b) except perhaps in an 

enumerable set E in which g is smooth if E is non-empty.  Then 
2

2

( )hg x
c

h


  for 

a < x –h < x + h < b. 

Proof.   Let 21
( ) ( )

2
p x g x cx= − .    Then p is continuous in (a, b) and smooth in 

E if E is non-empty.  Then 2 2 0D p D g c= −   in (a, b) except perhaps in E.  

Therefore, by Theorem 22, p is convex in (a, b).  Since p is convex in (a, b), for 

any x and h such that a < x –h < x + h < b, 2 ( ) 0h p x  .   But 

2 2 2( ) ( ) 0h hp x g x ch =  −   and so 2 2( )hg x ch  .  Hence 
2

2

( )hg x
c

h


  for a < x –

h < x + h < b.  Similarly, if 2 ( )D g x c  in (a, b) except perhaps in an 

enumerable set E in which g is smooth, then 2 2( )D g D g c−  −  −  and so by 

what we have just proved, for a  < x –h < x + h < b, 
2 2

2 2

( )( ) ( )h hg x g x
c

h h

 − 
= −  −  

and it follows that 
2

2

( )hg x
c

h


 . 

Our next result is about smoothness of the function (x) obtained by formal 

integration of a trigonometric series T(x) twice.  To get back to the 

trigonometric series using the symmetric second derivative we need to use the 

smoothness of (x). 
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Theorem 26.   Suppose T(x) is a trigonometric series that converges in a set E 

of positive measure or an → 0 and bn → 0.  Then the function  

                               2

0 2
1

1 ( )
( )

4

n

n

A x
x a x

n



=

 = −   

obtained by formally integrating the trigonometric series T(x) twice, is 

continuous and smooth on the whole of R.  That is to say,  

              
2 ( )

0h x

h

 
→  as h →0 or 2 ( ) ( )h x o h  = . 

Proof.    We shall show that  
2

2 ( )
0

2

h x

h

 
→ .  The theorem then follows.  From 

(13) ,              

22

2
02

1

( ) 1 sin( )
( ) ( )

4 2

h
h n

n

nh
R a A

h nh


 



=

   
= = +  

 
   

We shall write the summation in three parts.   Since ( ) 0nA x →  uniformly on R, 

given  > 0, there exists integer N such that n > N implies that ( )nA x  for all 

x in R. 

The first part is  

 

2

0

1

1 sin( )
( )

2

N

n

n

nh
I a A

nh


=

 
= +  

 
  . 

The second part is chosen according to h.   Given any h, with |h| < , let s be the 

integer part of 
| |h


. Then we have 1 1

| |
s s

h


   + .  Thus ( 1)s h s h  + . 

Part (II) is given by 

2

1

sin( )
( )

N s

k

k N

kh
II A

kh


+

= +

 
=  

 
  , 

Part (III) is given by 
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2

1

sin( )
( )k

k N s

kh
III A

kh




= + +

 
=  

 
  . 

Then we have            
2

2

2

( )

4

h I II III
h

 
= + +   ----------------------------  (22) 

Observe that for any ,  2h I →0 as h →0 since 

2
sin( )

0.
nh

h
nh

 
→ 

 
 

Since ( )nA x  for all x and for all n > N, 
1 1

( )
N s N s

k

k N k N

II A s  
+ +

= + = +

  =   and so 

                     hII sh   . -----------------  (23) 

Observe that 

               
2 2 2 2 2

1 1

( ) 1 1 1 1k

k N s k N s

A
III

k h h k h N s


 

 

= + + = + +

  
+

  , 

since 
2 2

1

1 1 1

( ) s
k

dx
s k x s

 

=

 =
+

   for s ≥ 1.     

Therefore, since ( ) ( 1)s N h s h +  +  , 
1

III
h




 .  Hence,  

                                              IIIh



 . --------------------------------  (24)        

It follows then using (23) and (24) that 

     
2 2

2 2

2

( ) ( ) 2
2 2 2 2 2 2

2 4

h hh hI hII hIII hI
h h

  




   
=  + +  + + . 

Since 2h I →0 as h →0, there exists  > 0 so that for 0 < |h| < , we have 

|2hI| < .  Hence for 0 < |h| < , 

             
2

2 ( ) 2 2
2 (1 2 )

2

h

h

 
   

 

 
 + + = + + . 
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Since  is arbitrarily chosen, this shows that 
2

2

0

( )
lim 0

2

h

h h



→

 
= .   Consequently 

2

0

( )
lim 0h

h h



→

 
=  for any . 

This completes the proof, 

 

Incidentally, we have proved the following theorem. 

Theorem 27.   If (un) is a sequence that converges to 0, then    

                

2

1

sin( )
0n

n

nh
h u

nh



=

 
→ 

 
  as h →0. 

 

The next result is a technical result aims at expressing the difference of actually 

integrating a function f twice and the function obtained by formally integrating 

the Fourier series of f twice term by term.   

 

Theorem 28.  Suppose f (x) is finite except in an enumerable set E and 

integrable in (a, b).  Suppose g(x) is continuous in (a, b) and smooth in E when 

E is non-empty and that 

                                22 ( ) ( ) ( )D g x f x D g x   

for all x in (a, b) not in E.   Let ( )( ) ( )
x t

a a
J x f u du dt=    be the repeated integral 

of f.   Then g(x) – J(x) is linear in (a, b).   

Proof.  We shall employ de La Vallee Poussin majorant and minorant functions.  

Since f is Lebesgue integrable in (a, b), by Theorem 13, there are sequences of 

continuous functions ( pn :[a, b] →R ) and ( Pn :[a, b] →R ) such that (i) pn(a)  

= Pn(a) = 0 , (ii) ( )
x

n
a

p x f→   ,  ( )
x

n
a

P x f→  uniformly in [a, b]  and for x not 

in E, 

                                    ( ) ( ) ( )n nDp x f x DP x  . 
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Let  ( ) ( )
x

n n
a

q x p t dt=   and ( ) ( )
x

n n
a

Q x P t dt=  .  Since ( )
x

n
a

p x f→  ,  

( )
x

n
a

P x f→  uniformly in [a, b],  ( ) ( )nq x J x→  and ( ) ( )nQ x J x→ uniformly in 

[a, b].  Note that both ( ) and ( )n nq x Q x are differentiable in [a, b].  By the 

Cauchy Mean Value Theorem,   

        
2

2 2

( ) ( ) ( ) 2 ( ) ( ) ( )

2

h n n n n n nQ x Q x h Q x h Q x Q x h Q x h

h h h

  + + − − + − −
= =  

for some h   between 0 and h.  There exists 0 <  < 1 such that h h= . 

Hence,     

        
2

2

( ) ( ) ( ) ( ) ( )

2 2

h n n n n nQ x Q x h Q x h P x h P x h

h h h

   

 

  + − − + − −
= =  

              
1 ( ) ( ) 1 ( ) ( )

2 2

n n n nP x h P x P x h P x

h h

 

 

+ − − −
= +

−
 .   --------------  (25) 

Therefore, it follows from (25) that  

2

20 0 0

( ) 1 ( ) ( ) 1 ( ) ( )
liminf liminf liminf

2 2

h n n n n n

h h h

Q x P x h P x P x h P x

h h h→ → →

 + − − −
 +

−
 

                         
1 1

( ) ( ) ( )
2 2

n n nDP x DP x DP x= + = . 

This means               

                                   2 ( ) ( ) ( )n nD Q x DP x f x  ,              ----------------  (26)        

except for x in E, since ( ) ( )nDP x f x .  

Let k(x)= J(x) – g(x),  Kn(x) = Qn(x) – g(x)  and kn(x) = qn(x) – g(x).  Then 

Kn(x) → k(x) and kn(x) → k(x) uniformly in (a, b).   

Note that since J(x), qn(x) and Qn(x) are differentiable and g is continuous in (a, 

b), k(x), Kn(x) and kn(x) are all continuous in (a, b).  If E is non-empty, since g is 

smooth in E, k(x), Kn(x) and kn(x) are all smooth in E. 

To proceed further we use the following inequality for supremum and infimum: 



33 
 

For any two functions u(x) and v(x) continuous in 0 0 0( , ) { }x x x − + −  for 

some  > 0, 

  
0 0 0 0 0 0

0 0 0
( , ) { } ( , ) { }( , ) { }

inf { ( ) ( )} sup { ( )} inf { ( )}
x x x x x x x xx x x x

u x v x u x v x
     − + −  − + − − + −

+  +   

                                            
0 0 0( , ) { }

sup { ( ) ( )}
x x x x

u x v x
  − + −

 +   

provided 
0 0 0

0 0 0
( , ) { }( , ) { }

sup { ( )} inf { ( )}
x x x xx x x x

u x v x
    − + − − + −

+  is not of the form  −  

 so that,                  

    
0 0

0 0

liminf{ ( ) ( )} limsup{ ( )} liminf{ ( )} limsup{ ( ) ( )}
x x x xx x x x

u x v x u x v x u x v x
→ →→ →

+  +  +          

                                                                          ----------------------  (27)                

Then using (27), except for x in E,  

 2 22 2 2( ) ( ) ( ( )) ( ) ( ) ( ) ( ) 0n n nD K x D Q x D g x D Q x D g x f x f x + −  −  − = . 

Therefore, by Theorem 22, Kn(x) is convex in (a, b).  Hence k(x) being the limit 

of Kn(x) is also convex in (a, b).   

Similarly, we can deduce that for some 0 <  < 1 

           
2

2

( ) 1 ( ) ( ) 1 ( ) ( )

2 2

h n n n n nq x q x h q x q x h q x

h h h

 

 

 + − − −
= +

−
. 

From this we can deduce as above for Qn(x) that  

                              2 2( ) ( ) ( )n nD q x D p x f x  .    ------------------   (27) 

Therefore, for x not in E, 

         2 2 2 22 2( ) ( ) ( ) ( )( ) ( ) ( )n n n nD k x D k x D q x D g x D q x D g x  + − = −  

                        ( ) ( ) 0f x f x − = . 

Therefore, by Theorem 23, kn(x) is concave in (a, b).  Hence k(x) being the limit 

of kn(x) is also concave in (a, b).  Thus k(x)= J(x) – g(x)) is both convex and 

concave in (a, b) and so is linear in (a, b).  This completes the proof. 
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Integrating A Fourier Series Formally. 

Suppose T(x) is the Fourier series of a Lebesgue integrable function f.  Then by 

the Riemman Lebesgue Theorem, its Fourier coefficients,  and n na b  satisfy an → 

0 and bn → 0.   We shall show that by formally integrating the Fourier series 

term by term, we obtain a uniformly convergent series converging to the 

integral of  f . The Fourier series need not converge and the series so obtained is 

always uniformly convergent.  

The special series 
1

sin( )
( )

n

nx
S x

n



=

=    plays a role in this investigation.  Note 

that S(x) converges uniformly in any closed interval free from multiples of 2 

and converges boundedly to the function J(x) defined by, 

                   

1
( ),   0 2 ,

( ) 2

0,     0

x x
J x

x

 


−  
= 

 =

  

and extended to whole of R by periodicity.  That it converges boundedly is by 

Theorem 14 of my note on Fourier cosine and sine series. That S(x) converges 

uniformly in any closed interval free from multiples of 2 may be deduced by 

using Dirichlet’s Test.  See Theorem 9 in Fourier cosine and sine series.   

Suppose  

            ( )0 0

1 1

1 1
( ) cos( ) sin( ) ( ) ( )

2 2
n n n

n n

T x a a nx b nx A x A x
 

= =

= + + = +  ,  

is the Fourier series of the Lebesgue integrable function f.    Consider the series 

obtained by formally integrating the series  

                          ( )
1 1

cos( ) sin( ) ( )n n n

n n

a nx b nx A x
 

= =

+ =   

term by term, that is, 

               ( )
0 0

1 1

cos( ) sin( ) ( )
x x

n n n

n n

a nt b nt dt A t dt
 

= =

+ =    

                      
1 1 1

sin( ) cos( ) cos( ) sin( )n n n n n n

n n n

a nx b nx b b b nx a nx

n n n n n

  

= = =

− 
= − + = − 

 
    . 
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Let ( ) cos( ) sin( )n n nB x b nx a nx= −  for integer n ≥ 1.  Then the above series is given 

by 

                                
1 1

( )
( ) n n

n n

b B x
W x

n n

 

= =

= −  .           ----------------------  (28) 

We shall show that this series W(x) is uniformly convergent and converges to 

the function  
0

0

1
( ) ( )

2

x

F x f t dt a x= − . 

By definition of the Fourier coefficient bn , 

     
2 2

0 0
1 1 1

1 1 1 sin( )
( )sin( ) ( )

n n n
m

m m m

b mx
f x mx dx f x dx

m m m

 

 = = =

  
= =   

   
     

             ( )
2 2

0 0

1 1 1
( ) ( ) ( ) ( )

2
f x J x dx f x x dx

 


 

 
→ = − 

 
   

by the Lebesgue Dominated Convergence Theorem as deduced below.   

Since 
1

sin( )
( ) ( )

n

nx
S x J x

n



=

= → boundedly, 
1

sin( )n

m

mx
K

m=

  for some real 

number K and for all integer n ≥ 1.  Therefore, 
1

sin( )
( ) ( )

n

m

mx
f x K f x

m=

  and 

since K |f| is Lebesgue integrable, we invoke the Lebesgue Dominated 

Convergence Theorem to give the above statement.  Hence, we have 
1

n

n

b

n



=

  is 

always convergent and 

                                 
2

0
1

1 1
( ) ( )

2

n

n

b
f x x dx

n








=

 
= − 

 
  . 

 

Hence we have proved the following theorem. 

Theorem 29.  If the function f is Lebesgue integrable and represented by the 

Fourier series ( )0 0

1 1

1 1
( ) cos( ) sin( ) ( ) ( )

2 2
n n n

n n

T x a a nx b nx A x A x
 

= =

= + + = +  , then 
1

n

n

b

n



=

  

is convergent and 
2

0
1

1 1
( ) ( )

2

n

n

b
f x x dx

n








=

 
= − 

 
  . 
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Consider now 
0 0

0 0

1 1
( ) ( ) ( )

2 2

x x

F x f t dt a x f t a dt
 

= − = − 
 

   on [0, 2].  Note 

that F(0) = F(2) = 0.  Observe that F is absolutely continuous on [0, 2] and 

periodic on R with period 2. 

Then  
2

2 2

0
0 0

0

1 1 sin( ) 1 1 sin( )
( )cos( ) ( ) ( )

2

nx nx
F x nx dx F x f x a dx

n n


 

  

   
= − −     

  , 

                                                                                       by integration by parts, 

                                    
2 2

0
0 0

1 sin( ) 1 sin( ) 1
( )

2
n

nx nx
f x dx a dx b

n n n

 

 
= − + = −   

and 
2

2 2

0
0 0

0

1 1 cos( ) 1 1 cos( )
( )sin( ) ( ) ( )

2

nx nx
F x nx dx F x f x a dx

n n


 

  

   
= − + −     

   

                                 
2 2

0
0 0

1 cos( ) 1 1 cos( ) 1
( )

2
n

nx nx
f x dx a dx a

n n n

 

 
= − =  , 

                                                                                 by integration by parts. 

Hence the Fourier coefficients for F(x) are (
1

nb
n

−   , 
1

na
n

 ) for n ≥ 1.   

  
2 2 22

000 0 0

1 1 1
( ) ( ) ( ) ( )

2 2 2
F x dx F t t F t tdt f t a tdt

  

 

 
= − = − − 

 
     

                                                               by integration by parts 

2
2 2 2

0 0
0 0 0

1 1 1 1 1 (2 )
( ) ( )

2 2 2 2 2 4
f t tdt a tdt f t tdt a

   

   
= − + = − +    

( )
2

2 2 2

0 0 0
1

1 1 1 (2 ) 1
( ) ( ) ( )

2 2 4 2

n

n

b
f t tdt f t dt t f t dt

n

  


   



=

= − + = − =      by Theorem 29. 

Hence the Fourier series of F(x) is given by 

                      
1 1 1 1

cos( ) sin( ) ( )
( ) n n n n n

n n n n

b b nx a nx b B x
W x

n n n n

   

= = = =

−
= − = −      . 

We may invoke the theory of Fourier series of a continuous function of bounded 

variation that its Fourier series converges to the function. 
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For now we shall show its convergence directly by a simple device of shifting 

the function itself. 

Fix a  in [0, 2].  Let g(t) = f (+t).  Here f is defined outside [0, 2] by 

periodicity.  Then g is Lebesgue integrable since f is.  We shall consider the 

Fourier coefficients of g(t). 

2 2 2

0 0

1 1 1
( )cos( ) ( )cos( ) ( )cos( ( ))g t nt dt f t nt dt f u n u du

   


 

  

+

= + = −    

   
2 21 1

cos( ) ( )cos( ) sin( ) ( )sin( )n f u nu du n f u nu du
   

 
 

 

+ +

= +    

   cos( ) sin( ) ( )n n na n b n A  = + =   

and 

 
2 2 2

0 0

1 1 1
( )sin( ) ( )sin( ) ( )sin( ( ))g t nt dt f t nt dt f u n u du

   


 

  

+

= + = −    

   
2 21 1

cos( ) ( )sin( ) sin( ) ( )cos( )n f u nu du n f u nu du
   

 
 

 

+ +

= −    

   cos( ) sin( ) ( )n n nb n a n B  = − = .   

Therefore, the Fourier coefficients of g(t) is given by ( ( ),  ( )) n nA B  . 

It follows then by Theorem 29 that  
1

( )n

n

B

n



=

  is convergent and converges to 

2 2 2

0 0 0

1 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2 2
g t t dt f t t dt F t t dt

  

    
  

   
− = + − = + −   

   
   ,  

                                                                    since 
2

0

0

1
( ) 0

2

a
t dt






− = , 

                
22

0 0

1 1
( )( ) ( )

2 2
F t t F t dt


  

 
= + − + +  

              ( )
2

0

1 1
( 2 )( ) ( ) ( )

2 2
F F F t dt



     
 

= + − − + +   

              
2

0

1
( ) ( )

2
F F t dt



 


= − + + .            ----------------------------  (29) 

Now, 
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2 2 2

0 0

1 1 1
( ) ( ) ( )

2 2 2
F t dt F u du F u du

   




  

+

+ = =   ,    by periodicity, 

               
2 22

00 0 0

1 1 1 1
( ) ( ) ( )

2 2 2 2
F u u F u udu f u a udu

 

  

 
= − = − − 

 
          

              ( )
2

0

1
( )

2
u f u du






= −     since 
2 2

0 0
0 0

1 1 1 1
( )

2 2 2 2
a udu f u du a

 

 
 

= =    

              
1

n

n

b

n



=

=  ,    by Theorem 29. 

Therefore, it follows from (29), 

2 2

0 0
1

1 1 1 1
( ) ( ) ( ) ( ) ( )

2 2

n

n

b
g t t dt f t t dt F

n

 

   
 



=

   
− = + − = − +   

   
   

                                0
0

1

1
( )

2

n

n

b
f t dt a

n






=

= − + +   

Hence,  

           0
0

1 1

( ) 1
( )

2

n n

n n

B b
f t dt a

n n




 

= =

= − + +  . 

Therefore, the series 
1 1 1 1

cos( ) sin( ) ( )
( ) n n n n n

n n n n

b b nx a nx b B x
W x

n n n n

   

= = = =

−
= − = −     

converges to  0
0

1
( ) ( )

2

x

f t dt a x F x− = .    

 

We have thus proved the convergence part of the following theorem. 

Theorem 30.  Suppose f is periodic with period 2 and is Lebesgue integrable. 

Its Fourier series may be integrated term by term and the integrated series 

converges uniformly and 

      0 0
0

1 1 1 1

1 cos( ) sin( ) 1 ( )
( )

2 2

x
n n n n n

n n n n

b b nx a nx b B x
f t dt a x a x

n n n n

   

= = = =

−
= + − = + −    , 

i.e., the righthand series converges uniformly to 
0

( )
x

f t dt . 



39 
 

Proof.  We have already proved convergence.  We now show that the 

convergence is uniform.  It is sufficient to show that the convergence of  

1

( )n

n

B

n



=

  is uniform in . 

Recall that the Fourier coefficients of g(t) = f (t +) is given by ( ( ),  ( )) n nA B  .  

Therefore,  

                     
2

0

( ) 1 sin( )
( )

q n q

n

n p n p

B nt
f t dt

n n






=

= =

= +  .     -----------------  (30) 

Note that for any p ≥ 1,  
1

sin( )
2

p

n

nt
K

n


=

 + = .  ----------------------- (31)   

(See (118) of Fourier Cosine and Sine Series.) 

         
2 2

0 0

( ) 1 sin( ) sin( )
( ) ( )

q n q n q

n

n p n p n p

B nt nt
f t dt f t dt

n n n

 
 



= =

= = =

 +  +    .  -------  (32) 

2 2

0 0 2

sin( ) sin( ) sin( )
( ) ( ) ( )

n q n q n q

n p n p n p

nt nt nt
f t dt f t dt f t dt

n n n

  

 
  

= = =

−
= = =

+ = + + +       

                                          
2 sin( )

( )
n q

n p

nt
f t dt

n

 




=
−

=

+ +    

  
2 2

0 2

sin( )
2 ( ) 2 ( ) ( )

n q

n p

nt
K f t dt K f t dt f t dt

n

   

  
  

=
−

−
=

 + + + + + +    .     ----- (33) 

Given any  > 0, by the absolute continuity of the Lebesgue integral on an 

interval, there exists 1 > 0 such that for any measurable subset E of measure 

less than 1 ,  
8E

f
K


 .  Thus take any 0 <  < 1, we have from (32) and (33) 

that  

                  
2( ) sin( )

( )
2

q n q

n

n p n p

B nt
f t dt

n n

 



 


=
−

= =

 + +  .   ----------------  (34) 

Since 
1

sin( )

n

nt

n



=

  converges uniformly on the interval [, 2−], it is uniformly 

Cauchy and so there exists an integer N such that for all integers q ≥ p ≥ N and 

for all t in [, 2−], 
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( )
2

0

sin( )

2 1 ( ) )

n q

n p

nt

n f t dt


=

=


+




   .      -----------------  (35) 

Thus, it follows from (34) and (35) that for any , and for q ≥ p ≥ N , 

( )
2

2

0

( )
( )

2 2 1 ( ) )

q

n

n p

B
f t dt

n f t dt

 

 

  


−

=

 + +
+

 


    

 

( ) ( )
2 2

2 20 0

0 0

( ) ( )
2 22 1 ( ) ) 2 1 ( ) )

f t dt f t dt
f t dt f t dt

 

 

   
  + +  + 

+ +
 

 
 . 

This shows that 
1

( )n

n

B

n



=

  is uniformly Cauchy on R and so 
1

( )n

n

B

n



=

  converges 

uniformly on R.  This completes the proof of Theorem 30. 

 

Now, we may use Theorem 30 to investigate the relation of the symmetric 

second derivative with the double integral of f.   

Suppose f is periodic and integrable on finite interval and T(x) is its Fourier 

series.   

 Let  ( )
1

( , ) ( ) ( )
2

t f t f t   = + + − .   Then using integration by parts, we have  

    ( ) ( )0 0 0 0
0

( , )(2 ) ( , ) 2 ( , )
x

x s x s

t h t dt t dt h s t dt ds      − = − +
      .  ----- (36) 

In view of Theorem 30, we can express the integral on the right side as a series. 

Theorem 31.   Suppose f is periodic and Lebesgue integrable.  Let  

                   

22

2
02

1

( ) 1 sin( )
( ) ( )

4 2

h
h n

n

nh
R a A

h nh


 



=

   
= = +  

 
  

as defined in Theorem 17 using the Fourier series T() of  f.  Then 

            

2
2

0 2 0
1

1 sin( ) 1
( ) ( ) ( , )(2 )

2 2

h

h n

n

nh
R a A t h t dt

nh h
   



=

 
= + = − 

 
  . 
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Proof.  Using (36) we obtain 

 ( ) ( )
2

2 2

0 0 0 0
0

( , )(2 ) ( , ) 2 ( , )
h

h s h s

t h t dt t dt h s t dt ds      − = − +
       

                               ( )
2

0 0
( , )

h s

t dt ds =   .   ------------------------------  (37) 

Now ( )
0 0 0 0

1 1 1
( , ) ( ) ( ) ( ) ( )

2 2 2

s s s s

t dt f t f t dt f t dt f t dt     = + + − = + + −     

                          
0 0

1 1
( ) ( )

2 2

s s

f t dt f t dt 
−

= + − +  . -------------------- (38) 

The Fourier series for g(t) = f (+t) is given by ( ( ),  ( )) n nA B  . 

I,e, its Fourier series is 

                    ( )0

1

1
( )cos( ) ( )sin( )

2
n n

n

a A nx B nx 


=

+ + . 

Therefore, by Theorem 30, 

       0
0

1 1

1 ( ) ( )cos( ) ( )sin( )
( )

2

x
n n n

n n

B B nx A nx
f t dt a x

n n

  


 

= =

−
+ = + −    ------ (39)      

 and the series on the right hand side converges uniformly in x.  Hence, we have       

       0
0

1 1

1 ( ) ( )cos( ) ( )sin( )
( )

2

x
n n n

n n

B B nx A nx
f t dt a x

n n

  


 −

= =

+
+ = − + −   .------ (40) 

It follows then from (38), (39) and (40) that 

               0
0

1

1 ( )sin( )
( , )

2

x
n

n

A nx
t dt a x

n


 



=

= +  ,       ------------------     (41) 

and the series on the right hand side of (41) converges uniformly in x for x in R. 

Therefore, we can integrate (41) term by term, obtaining 

            ( ) 2

0 2 20 0
1 1

1 ( ) ( )cos( )
( , )

4

x s
n n

n n

A A nx
t dt ds a x

n n

 
 

 

= =

= + −     
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2

2

0 2
1

2sin
1 2

( )
4

n

n

nx

a x A
n




=

 
 
 = +  .     ------------- (42) 

Hence, using (37), and (42), 

                
2

2
2

0 20
1

2sin ( )
( , )(2 ) ( )

h

n

n

nh
t h t dt a h A

n
  



=

− = +   . 

It follows that  

            

2
2

02 0
1

1 1 sin( )
( , )(2 ) ( ) ( )

2 2

h

n h

n

nh
t h t dt a A R

h nh
   



=

 
− = + = 

 
 . 

This proves Theorem 31. 

 

By Theorem 19, if 0

1

1
( )

2
n

n

a A 


=

+   converges to a value c, then the series is R 

summable to c, i.e., Rh() → c as h → 0.  With Theorem 31, we may have a 

different way of determining R summability by using the integral  

2

2 0

1
( , )(2 )

2

h

t h t dt
h

  − . 

From (41) we obtain 

                    0
0

1

1 1 ( )sin( )
( , )

2

t
n

n

A nt
u du a

t nt


 



=

= + .             ------------- (43). 

Now, if f is Lebesgue integrable, then the function 
0

( ) ( )
x

F x f t dt=   is 

absolutely continuous, differentiable almost everywhere and ( ) ( )F x f x =

almost everywhere.   Hence for almost all , 

         0

0

( )
lim ( )

t

t

f u du
f

t




→

+
=


  and 0

0

( )
lim ( )

t

t

f u du
f

t




→

−
=


. -------- (44) 
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By using the functions g(t) = f (+t) and h(t) = f (−t) with 
0

( ) ( )
x

G x g t dt=   and 

0
( ) ( )

x

H x h t dt=  , the above is just the statement (0) (0) ( )G g f  = = and 

(0) (0) ( )H h f  = = .  It follows from (44) that for almost all , 

                            
00

1
lim ( , ) ( )

t

t
u du f

t
  

→
= .   --------------------  (45) 

 

Theorem 32.  Suppose f is periodic and Lebesgue integrable.  Then for almost 

all ,           

                          
2

2 00

1
lim ( , )(2 ) ( )

2

h

h
t h t dt f

h
  

→
− = , 

that is, for almost all ,  Rh() → f ( ).   Indeed, if 
00

1
lim ( , )

t

t
u du c

t
 

→
= , then 

2

2 00

1
lim ( , )(2 )

2

h

h
t h t dt c

h
 

→
− =  or Rh() → c.    

Proof.    In view of (45) it is sufficient to prove that  
00

1
lim ( , )

t

t
u du c

t
 

→
=  

implies 
2

2 00

1
lim ( , )(2 )

2

h

h
t h t dt c

h
 

→
− = .   

          
2 2 2

2 20 0 0

1 1 1
( , )(2 ) 2 ( , ) ( , )

2 2 2

h h h

t h t dt t dt t tdt
h h h

     − = −    

                                             
2

2 00

1
2 lim ( , )

2

h

h
c t tdt

h
 

→
→ −   .  ---------  (46) 

            ( )
2 2 2

2 2 20 0 0

1 1 1
( , ) ( , )

2 2 2

h h h

t tdt t c tdt ctdt
h h h

   = − +     

                                       ( )
2

2 0

1
( , )

2

h

t c tdt c
h

 = − +   -------------   (47) 
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We claim that ( )
2

2 00

1
lim ( , ) 0

2

h

h
t c tdt

h
 

→
− = . 

( ) ( )( ) ( )( )
2

2 2

2 20 0 0 0
0

1 1
( , ) ( , ) ( , )

2 2

h
h s h s

t c tdt t c dt s t c dt ds
h h

     
  − = − − −    

   

( )( ) ( )( ) 
2 2

2 0 0 0

1
( , ) 2 ( , )

2

h h s

t c dt h t c dt ds
h

   = − − −    

( )( )
2 2

20 0 0

1 1
2 ( , ) 2 ( , )

2 2

h h s

t dt c t c dt ds
h h

   = − − −   .     --------------- (48) 

Now 
2

0

1
2 ( , ) 2 2 2 0

2

h

t dt c c c
h

  − → − = .   We shall show that 

( )( )
2

2 0 0

1
( , ) 0

2

h s

t c dt ds
h

  − →  . 

Since ( )
00

1
lim ( , ) 0

s

s
t c dt

s
 

→
− = ,  given  > 0, there exists,  > 0 such that for 

0 < |s| < ,    ( )
0

1
( , )

s

t c dt
s

  −     or  ( )
0

( , )
s

t c dt s  −   .  ---------  (49) 

Therefore, for 0
2

h


   , for h > 0,

( )( ) ( )( )
2 2 2

2 2 20 0 0 0 0

1 1 1
( , ) ( , )

2 2 2

h s h s h

t c dt ds t c dt ds sds
h h h

     −  −  =      

and for h < 0, 

( )( ) ( )( )
2 0 0

2 2 20 0 2 0 2

1 1 1
( , ) ( , )

2 2 2

h s s

h h
t c dt ds t c dt ds s ds

h h h
     −  −  =     . 

Thus, for 0
2

h


   ,  ( )( )
2

2 0 0

1
( , )

2

h s

t c dt ds
h

  −   .  It follows that  

( )( )
2

2 0 0

1
( , ) 0

2

h s

t c dt ds
h

  − →  .  Therefore, from (46), (47) and (48) we get  

2 2

2 20 00

1 1
( , )(2 ) 2 lim ( , ) 2

2 2

h h

h
t h t dt c t tdt c c c

h h
   

→
− → − = − =  .  

Thus, Rh() → c.    
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As a consequence of Theorem 32, we have: 

Theorem 33.  Suppose f is periodic and Lebesgue integrable.  Then for almost 

all , its Fourier series T() is R-summable to f ().         

 

We have actually proved the following: 

Theorem 33A.  If the Fourier series of f is Lebesgue summable at  to c, then  it 

is Riemann summable or  R-summable to c.     

(For the definition of Lebesgue summability, see page 4 of Abel-summability of 

Fourier series and its derived series and Theorem 20 there.)      

 

Section C.  Uniqueness Theorems. 

Uniqueness of Fourier and Trigonometric Series 

Our first uniqueness theorem concerns trigonometric series. 

Theorem 34.  If two trigonometric series converge to the same sum except in 

an enumerable set E, then they are identical.   More precisely, if a trigonometric 

series T() converges to 0 except in E, then an = 0 and bn = 0 for all n, i.e., T() 

is identically 0. 

Proof.  Suppose T() converges to 0 except in E.  Then by Theorem 14, an → 0 

and bn → 0.   It follows then by Theorem 15, 
2

1

( )
( ) n

n

A

n






=

 =   converges 

absolutely and uniformly to a continuous function on R and 

2

0

1
( ) ( )

4
a   = −   is continuous on R.    By Theorem 26, ( ) is smooth on 

the whole of R.  By Theorem 17, except for  in E, 2 ( ) 0D  = .  It then follows 

from Corollary 24 that ( ) is a linear function on R. 

Suppose  ( ) m C  = + .   Observe that  
2

1

( )
( ) n

n

A

n






=

 =   is a bounded 

function on R since an → 0 and bn → 0.  Therefore, ( ) K  for some K and 

for all  in R. 



46 
 

Thus, 

               
0 0 0

( ) 1 ( ) 1 ( ) 1

4 4 4

K
a a a

  
  

   

  
= −  −  − .   

We claim that a0 = 0.   If a0 ≠ 0, then by the above inequality, since 

0

1
 as +

4

K
a  


− → + →  ,     

                                
( )

  as 






→ + → + . 

But  
( )

   as  
C

m m



 


= + →   → + .  This shows that a0 = 0.  Hence, 

( ) ( ) m C   = − = + .  Since ( )  is bounded, m = 0.  Thus ( )  is the 

constant function – C, i.e., ( ) C = −   for all  in R.  Thus 
2

1

( )
( ) n

n

A

n






=

 =   

converges uniformly to the constant function – C.  We may thus integrate ( )

term by term, giving 

                

2

2 2
0

20 0
1

( )
2 ( ) ( ) 0

n

n

A d
C C d d

n



   
   



=

− = − =  = =


  , 

since  
2 2 2

0 0 0
( ) cos( ) sin( ) 0n n nA d a n d b n d

  

     = + =   .  Hence C = 0 and 

so ( ) 0 =  for all  in R.  Again, since convergence of ( )  to 0 is uniform,  

     
2

2 0

1
( )cos( ) 0na

n d
n



  


=  =  and 
2

2 0

1
( )sin( ) 0nb

n d
n



  


=  = . 

Therefore, an = bn = 0 for all n ≥ 1.  We have already shown that a0 = 0.  Hence 

the trigonometric series is identically 0. 

Our next result paves the way for the proof of Theorem 1.  It states that 

Theorem 1 is true if the trigonometric series converges except in an enumerable 

set to a bounded function. 
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Theorem 35.   Suppose the trigonometric series T() converges except in an 

enumerable set E to a bounded function  f (), then it is the Fourier series of       

f ().    

Proof.    Since T() converges to f () except for  in E of zero measure, T() 

converges to f () almost everywhere and so  f  is measurable.  Since f is also 

bounded, f is Lebesgue integrable on any bounded interval and in particular on 

[−, ].  By Theorem 17, except for  in E, 2 ( ) ( )D f  = .  Suppose | f () | ≤ 

M for some real number M and for all  not in E.  Then 2 ( ) ( )D f M  = 

except for  in an enumerable set E.   Therefore, 2 2( ) ( )D D M  =   except 

for  in E.  By Theorem 26,  is continuous and smooth on the whole of R.   

Therefore, by Theorem 25, 

2

2

( )h M
h

 
 for all  .  Similarly, since 2 2( ) ( )D D M  =   − , by Theorem 

25,  
2

2

( )h M
h

 
 −  for all  in R.   It follows that   

2

2

( )h M
h

 
 for all  and 

all h ≠ 0.  This means that  
2

2

2

( )
( )

4

h
hR

h




 
=   is uniformly bounded in  and all 

h ≠ 0.    Recall that 

2

0

1

1 sin( )
( ) ( )

2
h n

n

nh
R a A

nh
 



=

 
= +  

 
 .   Therefore, by the 

Lebesgue Bounded Convergence Theorem, 

     
1

( )cos( )hR n d



  

 −   

     ( )
2

0

1

1 sin( )
cos( ) ( )cos( )

2
k

k

a kh
n d A n d

kh

 

 
    

 



− −
=

 
= +  

 
   

     

2
sin( )

  as 0n n

nh
a a h

nh

 
= → → 

 
  and 

1
( )sin( )hR n d




  

 −   

     ( )
2

0

1

1 sin( )
sin( ) ( )sin( )

2
k

k

a kh
n d A n d

kh

 

 
    

 



− −
=

 
= +  
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2
sin( )

  as 0n n

nh
b b h

nh

 
= → → 

 
. 

Since ( ) ( )hR f → boundedly almost everywhere, 

( )cos( ) ( )cos( )hR n f n   → boundedly almost everywhere and so by the 

Lebesgue Bounded Convergence Theorem, 

                   
1 1

( )cos( ) ( )cos( )hR n d f n d
 

 
     

 − −
→  . 

This shows that 
1

( )cos( )na f n d



  

 −
=   is the Fourier coefficient of f.  

Similarly, since ( )sin( ) ( )sin( )hR n f n   → boundedly almost everywhere 

and so by the Lebesgue Bounded Convergence Theorem, 

                 
1 1

( )sin( ) ( )sin( )hR n d f n d
 

 
     

 − −
→  . 

Therefore, 
1

( )sin( )nb f n d



  

 −
=   is the Fourier coefficient of f.  Hence T() 

is the Fourier series of  f. 

 

Now we remove the boundedness condition on f in Theorem 35.  This gives the 

statement in Theorem 1.                 

We restate the theorem here. 

Theorem 1.  If the trigonometric series T() converges except in an enumerable 

set E to a finite and integrable function  f ,  then  it is the Fourier series  of  f.   

Proof.   Suppose ( )0 0

1 1

1 1
( ) cos( ) sin( ) ( ) ( )

2 2
n n n

n n

T x a a nx b nx A x A x
 

= =

= + + = +  . 

Let  2

0 2
1

1 ( )
( )

4

n

n

A x
x a x

n



=

 = −  .  For the proof we shall compare  with the 

iterated integral of f. 



49 
 

By Theorem 17, except for  in E, 2 ( ) ( )D f  = .  By Theorem 26,  is 

continuous and smooth on the whole of R.  Let ( )
0 0

( ) ( )
x t

J x f u du dt=    be the 

repeated integral of f.   Then by Theorem 28, (x) – J(x) is linear in R.   

The function f is Lebesgue integrable and so it has a Fourier series given by  

                         ( )0

1

1
( ) cos( ) sin( )

2
n n

n

A x nx nx  


=

= + + . 

Let  2

0 2
1

1 cos( ) sin( )
( )

4

n n

n

nx nx
g x x

n

 




=

+ 
= −  

 
 .   Then J(x) – g(x) is linear in R. We 

deduce this as follows.   

Firstly,   

0
( ) ( )

x

J x f t dt =   

0

1 1

1 cos( ) sin( )

2

n n n

n n

nx nx
x

n n

  


 

= =

−
= + −   by Theorem 30, 

1

( ) n

n

g x
n



=

= +  , since the differentiated series is uniformly convergent. 

Therefore, J(x) – g(x) is linear in R.  Thus, since (x) – J(x) is linear in R,        

(x) – g(x)  is linear in R.   That is to say, 

         2

0 0 2
1

1 ( )cos( ) ( )sin( )
( ) ( )

4

n n n n

n

a nx b nx
L x a x

n

 




=

− + − 
= − −  

 
  

is linear in R.    

Suppose                                L(x) = Ax – C.    ------------------------------  (50)     

Since 
2

1

( )cos( ) ( )sin( )n n n n

n

a nx b nx

n

 

=

− + − 
 
 

  is uniformly bounded, as in the proof 

of Theorem 34, (a0 − 0) = 0 and so a0 = 0.  Thus,  

                      
2

1

( )cos( ) ( )sin( )n n n n

n

a nx b nx
Ax C

n

 

=

− + − 
− = −  

 
 .  ---------- (51) 

Since the right hand side of (51) is bounded in R, A = 0.  Hence, 
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2

1

( )cos( ) ( )sin( )n n n n

n

a nx b nx
C

n

 

=

− + − 
=  

 
 . 

Thus, the right hand side converges uniformly to a constant function.   Then 

 
2 2

20 0
1

( )cos( ) ( )sin( )
2 0n n n n

n

a nx b nx
C Cdx dx

n

   




=

− + − 
= = = 

 
  and so C = 0.  It 

follows that 
2

1

( )cos( ) ( )sin( )
0n n n n

n

a nx b nx

n

 

=

− + − 
= 

 
 .  By Theorem 34,   

( ) 0 and ( ) 0n n n na b − = − =  and so  and n n n na b = = .   Thus T(x) is the Fourier 

series of the limiting function  f (x).   

This completes the proof. 

 

James P2 integral and Convergent Trigonometric series   

We now consider the question of recovering the coefficients of a convergent 

trigonometric series. 

Suppose the trigonometric series (A) converges to a finite function f.  How can 

we recover the coefficients an , bn ?  If f is Lebesgue integrable, then by 

Theorem 1, the series is the Fourier series of f and the coefficients are given by 

the Euler formula, 

   
2

0

1
( )cos( )na f x nx dx




=  ,  n = 0, 1, 2,  ….  ,     

2

0

1
( )sin( )nb f x nx dx




=   ,   n = 1, 2,  …. .   

Suppose f is not Lebesgue integrable, how can the coefficients an , bn  be 

determined ?  This question has been settled, albeit by different methods and the 

invention of different types of integration theory, involving a change of the 

form of the above Fourier formula for the coefficients, by Denjoy, Verblumsky, 

Marcinkiewicz and Zygmund, Burkill and James in the period 1935-1950.       

We shall describe one solution by James using his Perron second integral, 

which was named in honour of Perron’s method of defining Perron integral of a 

function.  This is also called the P2 integral.   This is invented to tackle this 
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problem and the first crucial result is the following theorem which we state 

before we give a description of the P2 integral.    

 

Theorem 36.   If the trigonometric series (A) converges to a finite function  f or 

equivalently, if  f  is the pointwise limit of a convergent trigonometric series in 

(0, 2),  then  f   is necessarily  P2 integrable.    

 

Suppose f is defined in an interval (a, b).   We describe James’ major and minor 

functions of f in almost the same fashion as Perron’s major and minor functions 

except we use the generalized symmetric second derivatives and require the 

functions to vanish at the end points. 

 

Definition 37.   Suppose f : [a, b] → R is a finite valued function.   The pair of 

real-valued  functions  M  : [a, b] → R  and  m  : [a, b] → R are called  

respectively the  J-major  and J-minor functions of  f   on [a, b], if   

(1)  M and m are continuous on [a, b],  M(a) = M(b) = m(a) = m(b)=0 , 

(2) 22 ( ) ( ) ( )D M x f x D m x   for x in (a, b) except for a denumerable set E0 in 

(a, b), 

 (3) 2 ( )D M x  − , 2 ( )D m x    for all x in (a, b) except for a denumerable set 

E0 in (a, b), 

(4) M(x) and m(x) are smooth for all x in E0. 

 

Definition 38.  The real valued function   f  : [a, b] → R is said to be P2 

integrable over (a, , b), where a <  < b,  if  for any  > 0, there exists a pair of  

J-major  and J-minor functions of  f  , M and m on [a, b],  such that 0 ≤  m() – 

M() ≤ . 

We denote by  ( )J −  the common values 

sup{ ( ) :  a -minor function of  }=inf{ ( ) :  a -major functions of  }m m J f M M J f − −

and define the P2 integral of f to be J() , that is to say, 
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( , , )

( ) ( )
a b

f x dx J


=  . 

Note that in the definition we have taken into account that if M and m are J-

major and J-minor functions of f, then M – m is convex on [a, b].   Condition (2) 

implies that 2 22( )( ) ( ) ( ) ( ) ( ) 0D M m x D M x D m x f x f x−  −  − =  for x in (a, 

b) except for a denumerable set so that by Theorem 21, M – m is convex.   Then 

by continuity and the fact that ( )( ) ( )( ) 0M m b M m a− = − = ,  M(x) – m(x) ≤ 0 

and so  – m(x) ≤ − M(x). 

We may define f to be P2 integrable over (a, , b) if  

sup{ ( ) :  a -minor function of  }=inf{ ( ) :  a -major functions of  }m m J f M M J f − −

and denote the negative of the common value by 
( , , )

( )
a b

f t dt
 . 

Remark.   The condition (2) of Definition 37 may be replaced by a weaker 

condition that the inequality be satisfied except for a set of measure zero is 

shown by James using a non-negative, increasing and absolutely continuous 

function  given in Lemma 1, 11.8, page 369 of  “Theory of functions by 

Titchmarsh, E. C. 1932”, together with the fact that the indefinite integral of a 

bounded increasing function is convex.   

Theorem 39 (James).  The real valued function   f : [a, b] → R is  P2 integrable 

over (a, , b), where a <  < b,  if, and only if, for any  > 0, there exists a pair 

of  functions M and m on [a, b],  satisfying 

(1)  M and m are continuous on [a, b], M(a) = M(b) = m(a) = m(b)=0 , 

(2) 22 ( ) ( ) ( )D M x f x D m x   for x in (a, b) except for a set E of measure zero 

in (a, b), 

 (3) 2 ( )D M x  − , 2 ( )D m x    for all x in (a, b) except for a denumerable set 

E0 in (a, b), 

(4) M(x) and m(x) are smooth for all x in E0, 

and  

(5)  0 ≤ m() – M() ≤ . 

We shall give a proof of this theorem later. 
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For the bounds of the value of the P2 integral over (a, , b), we have 

Corollary 40.  Suppose f : [a, b] → R is  P2 integrable over (a, , b), where a < 

 < b.  Then for any pair of functions M and m satisfying conditions (1) to (5) of 

Theorem 39, we have 

          M( ) ≤ 
( , , )

( )
a b

f t dt
   ≤ m() . 

Theorem 41.  If f : [a, b] → R is  P2 integrable over (a, , b)  and  f  =  g almost 

everywhere in (a, b), then g is also  P2 integrable over (a, , b) and   

( , , ) ( , , )
( ) ( )

a b a b
f x dx g x dx

 
=  . 

Proof.    By Theorem 39, the functions M and m satisfying conditions (1) to (5) 

of Theorem 39 for the function f also work for g, since f = g almost everywhere 

in (a, b).  It follows then from Theorem 39 that g is also P2 integrable over (a, , 

b). 

Moreover, by Corollary 40, both integrals lie in the interval (M(),  m() ) of 

length ≤ .   Since  is arbitrary, the integrals must be the same. 

 

The next theorem gives a descriptive definition of the P2 integral. 

Theorem 42.  Suppose that F(x) is continuous in [a, b] and that 2 ( )D F x is 

defined for all x in (a, b) except for a set E of measure zero, and that  

2 2( ) and ( )D F x D F x  are finite for all x in (a, b) with the possible exception of a 

denumerable set E0, where F(x) is smooth.   If  2( ) ( )f x D F x= , where 2 ( )D F x

is defined and f (x) = 0 elsewhere, then f (x) is P2 integrable over (a, , b) for any 

 in (a, b) and  

             
( , , )

( ) ( ) ( ) ( )
a b

b a
f x dx F F a F b

b a b a

 


− −   
= − −   

− −   
 .    ----------  (52) 

Proof.  Let  ( ) ( ) ( ) ( ) ( )
b x x a

M x m x F x F a F b
b a b a

− −   
= = − −   

− −   
.  Then  

2 2( ) and ( ) ( )D M x D m x f x=  for all x in (a, b) except for a set of measure zero 
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and  2 2( ) and ( )D m x D M x  are finite with the exception of a denumerable set 

where M ad m are smooth.   It follows that conditions (1) to (5) of Theorem 39 

are satisfied.   By Corollary 40,           

         
( , , )

( ) ( ) ( ) ( ) ( ) ( )
a b

b a
f x dx M m F F a F b

b a b a

 
  

− −   
= = = − −   

− −   
 . 

 

Theorem 43.  Suppose F(x) and G(x) are two functions satisfying the 

hypothesis of Theorem 42.  Suppose 2 2( ) ( )D F x D G x= for almost all x in (a, b).  

Then for any x in (a, b),     

( ) ( ) ( ) ( ) ( ) ( )
b x x a b x x a

F x F a F b G x G a G b
b a b a b a b a

− − − −       
− − = − −       

− − − −       
. 

In particular, F(x) – G(x) is a linear function in (a, b).  

Proof.   

Suppose 2 2( ) ( )D F x D G x=  for all x not in E and E is a set of measure zero in 

(a, b).  Let 
2 ( ),  ( , )

( )
0,   

D F x x a b E
f x

x E

 −
= 


 and  

2 ( ),  ( , )
( )

0,   

D G x x a b E
g x

x E

 −
= 


 

Then f (x) = g(x) for x not in E.  That is, f  = g almost everywhere in (a, b). 

By Theorem 42, f (x) is P2 integrable over (a, x, b) for any x in (a, b) and  

             
( , , )

( ) ( ) ( ) ( )
a x b

b x x a
f t dt F x F a F b

b a b a

− −   
= − −   

− −   
 .     

Also by Theorem 42, g (x) is P2 integrable over (a, x, b) for any x in (a, b) and  

             
( , , )

( ) ( ) ( ) ( )
a x b

b x x a
g t dt G x G a G b

b a b a

− −   
= − −   

− −   
 .     

Since f  = g almost everywhere in (a, b), by Theorem 41, these two P2 integrals 

are the same, i.e., 

( ) ( ) ( ) ( ) ( ) ( )
b x x a b x x a

F x F a F b G x G a G b
b a b a b a b a

− − − −       
− − = − −       

− − − −       
. 
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Hence, 

( ) ( ) ( ) ( ) ( ) ( )
b x x a b x x a

F x G x F a F b G a G b
b a b a b a b a

− − − −       
− = + − −       

− − − −       
 

is a linear function. 

 

Suppose now the trigonometric series   

                   ( )0 0

1 1

1 1
( ) cos( ) sin( ) ( )

2 2
n n n

n n

T x a a nx b nx a A x
 

= =

= + + = +    

converges everywhere to a function f .    Then by Theorem 15, 

2 2

0 02 2
1 1

1 ( ) 1 cos( ) sin( )
( )

4 4

n n n

n n

A x a nx b nx
x a x a x

n n

 

= =

+
 = − = −    converges 

absolutely and uniformly to a continuous function on R.   By Riemann Theorem 

(Theorem 17), 2 ( ) ( )D x f x =  everywhere.  It follows then from Theorem 42 

that  f  is  P2 integrable over (−2, x, 2)  for x in (−2, 2) and that     

      
( 2 , ,2 )

2 2
( ) ( ) ( 2 ) (2 )

4 4x

x x
f t dt x

 

 
 

 −

− +   
=  −  − −    

   
 . 

In particular,  

( 2 ,0,2 )

1 1
( ) (0) ( 2 ) (2 )

2 2
f t dt

 
 

−
=  −  − −   

2 2 2

0 0 02 2 2
1 1 1

1 1 1 1
( 2 ) (2 )

2 4 2 4

n n n

n n n

a a a
a a a

n n n
  

  

= = =

   
= − − − − − − = −   

   
   . 

Consequently, 

                              0 2 ( 2 ,0,2 )

1
( )a f t dt

  −
= −  . 

Hence we have, 
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Theorem 44.   If the trigonometric series ( )0

1

1
( ) cos( ) sin( )

2
n n

n

T x a a nx b nx


=

= + +  

converges everywhere to a function f , then  f  is necessarily P2  integrable over 

(−2, c, 2) for any c in the interval  (−2, 2)  and 0 2 ( 2 ,0,2 )

1
( )a f t dt

  −
= −  . 

Remark.   Theorem 36 of course follows from Theorem 44. 

Theorem 45.   If the trigonometric series ( )0

1

1
( ) cos( ) sin( )

2
n n

n

T x a a nx b nx


=

= + +  

converges everywhere to a function f, then for n > 0, 

2 2( 2 ,0,2 ) ( 2 ,0,2 )

1 1
( )cos( )  and   ( )sin( )n na f t nt dt b f t nt dt

    − −
= − = −  . 

 

We shall write f (x) cos(nx) as the limit of a trigonometric series.   We employ 

the following technique as explained by R L Jefferey in his 1953 lecture on 

Trigonometric Series to the Royal Society of Canada. 

Lemma 46.   Suppose  0 ,  , m mK K K−  are complex numbers such that 

0 +  + 0m mK K K− = .    Let    1, 0 1, , , , , , ,n n nc c c c c− − +    be a sequence of 

real numbers with ,  0n nc c− →  as n →   .    Then for each m > 0, 

                 ( )0lim 0
k

m n m n m n m
k

n k

K c K c K c− + −
→

=−

+ + = . 

Proof.  Let ( )0

k

k m n m n m n m

n k

S K c K c K c− + −

=−

= + +  for each positive integer k. 

Then 

 ( )0

k

k m n m n m n m

n k

S K c K c K c− + −

=−

= + +  

0

k k k

m n m n m n m

n k n k n k

K c K c K c− + −

=− =− =−

= + +     

( )
1 1

0 0 0

1 1

k m k m k m k k m

m m n m n n n m n

n k m n k m n k n k m n k m

K K K c K c K c K c K c
− + − + − − + −

− −

=− + = − + =− = − + =− −

= + + + + + +      
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1 1

0

1 1

k m k m k k m

m n n n m n

n k m n k n k m n k m

K c K c c K c
+ − + − − + −

−

= − + =− = − + =− −

 
= + + + 

 
     

0

1 1 1 1

k m k k k m

m n n n m n

n k m n k m n k m n k m

K c K c c K c
+ +

− − −

= − + = − + = − + = − +

 
= + + + 

 
     

Each of the above summations is a finite sum of sequences that tends to 0 and 

so 0.kS →  

We shall apply Lemma 46 to trigonometric series.   Observe that 

      ( )0

1

1
( ) cos( ) sin( )

2
n n

n

T x a a nx b nx


=

= + +  

             
0

1

1

2 2 2

inx inx inx inx

n n

n

e e e e
a a b

− −

=

 + −
= + + 

 
  

            ( )0

1

1 1
( ) ( )

2 2

inx inx

n n n n

n

a a ib e a ib e


−

=

= + − + +  

Now define two sequences of real numbers,    and n n n na a b b− −= = −  for n > 0 

and b0 = 0.  We can now write the partial sum of T(x) as  

         ( ) ( )0

1

1 1
( ) cos( ) sin( ) ( )

2 2

k k
inx

k n n n n

n n k

T x a a nx b nx a ib e
= =−

= + + = −  .  -------------- (53) 

Since ( )kT x converges to f (x) everywhere,  ( ) inx

n n nc a ib e= −  converges to 0 as n 

tends to  .   It follows by Lemma 46 that        

( )( ) ( )

0lim ( ) ( ) ( ) 0
k

i n m x inx i n m x

m n m n m n n m n m n m
k

n k

K a ib e K a ib e K a ib e+ −

− + + − −
→

=−

− + − + − = . 

                                                                 ---------------------------------------- (54) 

If we now let ( )0

1 1 1
,   and  

2 2 2

imx imx imx imx

m mK e K e e K e− −

− = = − + =  , then 

0 +  + 0m mK K K− = .   And we have  

( )( ) ( )

0( ) ( ) ( )
k

i n m x inx i n m x

m n m n m n n m n m n m

n k

K a ib e K a ib e K a ib e+ −

− + + − −

=−

− + − + −  
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( )( ) ( )
2cos( )

2 2 2

k
inx inx inxn nn m n m n m n m

n k

a iba ib a ib
e mx e e+ + − −

=−

− − −
= − + 

 
 . 

It follow from (54) that 

( ) ( ) ( )
lim2cos( ) lim

2 2 2

k k
inx inx inxn n n m n m n m n m

k k
n k n k

a ib a ib a ib
mx e e e+ + − −

→ →
=− =−

−  − − 
= +   

  
 

 

( ) ( )
lim

2 2

k
inx inxn m n m n m n m

k
n k

a a b b
e i e+ − − +

→
=−

+ + 
= − 

 
 .       -------------------------- (55) 

But from (53), 
( )

lim ( )
2

k
inxn n

k
n k

a ib
e f x

→
=−

− 
= 

 
  and so 

( )
lim2cos( ) 2cos( ) ( )

2

k
inxn n

k
n k

a ib
mx e mx f x

→
=−

− 
= 

 
 .    Therefore, from (55),  

               
( ) ( )

lim cos( ) ( )
4 4

k
inx inxn m n m n m n m

k
n k

a a b b
e i e mx f x+ − − +

→
=−

+ + 
− = 

 
  

Hence, we have shown that cos(mx) f (x) is the limit of a convergent 

trigonometric series  

            
( ) ( )

cos( ) ( )
4 4

inx inxn m n m n m n m

n

a a b b
e i e mx f x



+ − − +

=−

+ + 
− = 

 
 , 

whose constant term is 
( ) ( )

4 4 2

m m m m ma a b b a
i− −+ +

− =  .     It follows from 

Theorem 44 that 
2 ( 2 ,0,2 )

1
( )cos( )  ma f t mt dt

  −
= −  . 

Similarly, if we take ( )0

1 1 1
,   and  

2 2 2

imx imx imx imx

m mK e K e e K e
i i i

− −

− = − = − − = , 

we can deduce that 

           
( ) ( )

sin( ) ( )
4 4

inx inxn m n m n m n m

n

b b a a
e i e mx f x



+ − + −

=−

− − 
+ = 

 
 , 

where the trigonometric series on the left has constant term equalling  
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( ) ( )

4 4 2

m m m m mb b a a b
i− −− −

− = . 

Thus, by Theorem 44, 
2 ( 2 ,0,2 )

1
( )sin( )  mb f t mt dt

  −
= −  .          

James’ Argument (Proof of Theorem 39) 

Because of the use of Theorem 22 to deduce convexity we actually require 

condition (2) of Definition 37 to hold except for a denumerable set. James’ 

argument is that if there are functions M and m satisfying conditions (1) to (5) 

of Theorem 39, then there are J- major and J-minor functions for f  satisfying 

the condition of P2 integrability for f.  

 

Central to the argument is the construction of a non-negative increasing 

function whose derivative at every point of a set of measure zero is infinite. 

 

Lemma 47 (Titchmarsh).  Suppose E is a set of measure zero in (a, b).  Then 

for any  > 0, there is a non-negative increasing and absolutely continuous 

function (x) such that ′(x) = +  for every x in E, (a) = 0 and (b) <  . 

Proof. 

Let   n = /2n for integer n ≥ 1.   Then 
1

n

n

 


=

= .   By the outer regularity of 

Lebesgue measure, for each integer n ≥ 1, there exists an open set Un such that 

E  Un  and the measure of  Un , m(Un ) <  n .  By taking intersection of these 

consecutive open sets if need be, we may assume that Un+1  Un. 

Let f n be the characteristic function of Un.  That is, 

                               
1,  if 

( )
0,  if 

n

n

n

x U
f x

x U


= 


   . 

Let  1 2

1

n

n n k

k

f f f f
=

= + + + =   .  Then ( )n  is an increasing sequence of non-

negative functions.  In particular, ( )n x n =  for x in E.   
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Observe that ( ) ( )
( , )

( , )
n

x

n n n n n
a a x U

f f m a x U m U 


= =     .  It follows that 

                              
1 1

n nx x

n k n
a a

k k

f  
= =

=        ----------------  (56). 

Therefore, by Bepo Levi ‘s Lemma, n converges to a finite function   almost 

everywhere and in particular,  

                                lim
x x

n
a an

  
→

=   .       -------------------  (57) 

Let  ( )
x

a
x  =    and  ( )

x

n
a n

x  =  .    Note that n and   are measurable and 

Lebesgue integrable and that ( )n  is an increasing sequence of absolutely 

continuous functions converging to an increasing absolutely continuous 

nonnegative and bounded function . 

Observe that since f k is the characteristic function of Uk , the derivative of   

( )
x

k k
a

g x f=   satisfies ( ) 1kg x =  for all x in Uk .   It follows that 

1

( ) ( )
n

nn

k

D x g x n
=

 = =  for all x in Un.   This means that for any  > 0, there 

exists 1 > 0 for x in Un ,  such that for  0 < |h| < 1 

                                
( ) ( )n nx h x

n
h


 + − 

 −     -----------------  (58) 

Consequently, for x in Un ,  0 < |h| < 1  implies 

            
( ) ( ) ( ) ( )

x h x h

n
n nx x

x h x x h x
n

h h h h

 


+ +

 + −   + − 
=  =  −

 
. 

Therefore, for x in Un ,   

                 
0 0

( ) ( ) ( ) ( )
limsup ,limsup

h h

x h x x h x
n

h h+ −→ →

 + −   + − 
   

and   
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0 0

( ) ( ) ( ) ( )
liminf ,liminf

h h

x h x x h x
n

h h+ −→ →

 + −   + − 
 .      

This means that D(x) =  ′ (x) ≥ n for any x in Un .  Since E  Un for any 

positive integer n, this implies that D(x) =  ′ (x) = +   for x in E.  

Furthermore, by (57), ( )
x

a
x   =  .  Moreover, ( ) 0 and ( )a b  =   .   

This completes the proof. 

 

Proof of Theorem 39.  James’ Argument. 

Since any enumerable set is of measure zero, the condition of P2 integrability 

over (a, , b), where a <  < b, implies conditions (1) to (5) of Theorem 39.  So 

we shall prove the converse.  

Take any   in (a, b).   Suppose f : [a, b] → R is a finite valued function.  Given 

any  > 0, by hypothesis, there are functions M : [a, b] → R  and   

m : [a, b] → R satisfying  

(1)  M and m are continuous on [a, b], M(a) = M(b) = m(a) = m(b)=0, 

(2) 22 ( ) ( ) ( )D M x f x D m x   for x in (a, b) except for a set E of measure zero,  

(3) 2 ( )D M x  − , 2 ( )D m x    for all x in (a, b) except for a denumerable set 

E0 in (a, b), 

(4) M(x) and m(x) are smooth for all x in E0 

and   

(5)  0 ≤ m() – M() ≤ /2. 

By Lemma 47, there is a non-negative increasing and absolutely continuous 

function (x) such that ′(x) = +  for every x in E,  (a) = 0 and    

                                 0 ( )
4( )

b
a




  

−
 .    ------------------------    (59) 

Define                          ( )
x b

a a

x a
x

b a

−
 =  − 

−   . 
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The function 
x

a
   is convex since it is the integral of a bounded continuous 

increasing function.   We can deduce this by showing that this function is mid-

point convex and that mid-point convexity for a continuous function implies 

convexity for the function on (a, b) (Jensen Theorem).   Notice that for x < y,  

( )2 2

2

1

2

x y x y

x y

x y y

a a a x

+ +

+
   +           and the inequality on the right holds 

since  is non negative and increasing.   Hence  (x) is convex and so (x) is 

convex.  Since (a) = (b) = 0, it follows that  

                              ( ) 0
b

a a

a

b a

 


−
 =  −  

−  .        ----------------  (60) 

Hence,   

0 ( ) ( )
4( ) 4

b b

a a a

a a a
b a

b a b a b a a

    




− − −
 − =  −     − =

− − − −   , 

                                                                                             -----------  (61) 

by (59). 

Observe that  is differentiable in (a, b) since 
x

a
  is differentiable as  is 

continuous. 

We now examine the symmetric second derivative of  . 

         
2

2 2

( ) ( ) ( ) 2 ( )h x x h x h x

h h

   + +  − − 
=  

        
2

2 ( ) ( )

2

x h x h x

a a a
x h x h

h h

+ −

 +  −   + −  −
= =

  
    

                         for some h  between 0 and h by Cauchy Mean Value Theorem 

        
( ) ( )

2

x h x h

h

 



 + −  −
=  ,  for some  0 <  < 1, 

        
1 ( ) ( ) 1 ( ) ( )

2 2

x h x x h x

h h

 

 

 + −   − − 
= +

−
 .     --------------  (62) 
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It then follows from (62) that  

2

20 0 0

( ) 1 ( ) ( ) 1 ( ) ( )
liminf liminf liminf

2 2

h

h h h

x x h x x h x

h h h→ → →

   + −   − − 
 +

−
 

                         
1 1

( ) ( ) ( )
2 2

D x D x D x=  +  =  . 

Therefore,  2 ( ) ( ) 0D x D x    .   ---------------------------------------  (63) 

Using   we now define J major and minor functions for  f.   

 

Let  ( ) ( ) ( )M x M x x= +    and  ( ) ( ) ( )m x m x x= −  .   Note  that 

( ) and ( )M x m x  are continuous on [a, b] and ( ) ( ) ( ) ( ) 0M a M b m a m b= = = = . 

Since M(x) and m(x) are smooth for all x in E0 and (x) is differentiable in (a, 

b), ( ) and ( )M x m x  are smooth for all x in E0 . 

Then from the definition of  ( ) and ( )M x m x , we deduce that 

                              2 2 2( ) ( ) ( )D M x D M x D x +       --------------------  (64) 

and  

                               2 2 2( ) ( ) ( )D m x D m x D x −           -------------------  (65)   

It follows from (64), (65) and (63) and condition (3) that 2 ( )D M x  − and  

2 ( )D m x    for all x in (a, b) except for a denumerable set E0 in (a, b). 

By conditions (2) and (63), we have then 

             22 ( ) ( ) ( )D M x f x D m x   for x in (a, b)−E.  

Now, for x in E− E0, ( )D x = +  and so by (63), 

                                 2 ( )D x = + .             ---------------------------   (66) 
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Since 2 ( )D M x  −  for x in E− E0, it follows that for x in E− E0 , by (64) and 

(66), 

                           2 ( ) ( )D M x f x= +  . 

Since 2 ( )D m x    for x in E− E0, it follows that for x in E− E0 , by (65) and 

(66), 

                                 2 ( ) ( )D m x f x= −  .   

It then follows that for x not in E0, 

                               2 2( ) ( ) ( )D M x f x D m x  . 

Moreover, from (61) and that 0 ≤  m() – M() <  /2, we obtain 

              0 ( ) ( ) ( ) ( ) 2 ( )
2 2

m M m M
 

      − = − −   + = .   

This shows that ( ) and ( )M x m x  are J major and minor functions for f satisfying   

0 ( ) ( )m M   −  .  Therefore, by Definition 38, f is P2 integrable over (a, , 

b). 

 

Proof of Corollary 40. 

Suppose f : [a, b] → R is  P2 integrable over (a, , b), where a <  < b.  Then by 

Theorem 39, given any  > 0, there exists a pair of functions M and m satisfying 

conditions (1) to (5) of Theorem 39.  Let  > 0 be arbitrarily given.  As in the 

proof of Theorem 39, let ( )
x b

a a

x a
x

b a

−
 =  − 

−  , where (x) is a non-negative 

increasing and absolutely continuous function such that ′(x) = +  for every x 

in E, (a) = 0 and 0 ( )
( )

b
a




  

−
 .    

Let ( ) ( ) ( )M x M x x= +    and  ( ) ( ) ( )m x m x x= −  .    We have shown that 

these functions are J major and minor functions for f.   By the definition of P2 

integrability of f over (a, , b),     
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( , , )

( ) ( ) ( )
a b

M f t dt m


   . 

Hence,               
( , , )

( ) ( ) ( ) ( ) ( )
a b

M f t dt m


   +    −  . 

But by (60),          

        0 ( ) ( )
( )

b b

a a a

a a a
b a

b a b a b a a

   
 



− − −
 − =  −     − =

− − − −   . 

It follows that 

                          
( , , )

( ) ( ) ( )
a b

M f t dt m


   −   + . 

Since  > 0 is arbitrary,  
( , , )

( ) ( ) ( )
a b

M f t dt m


   .   This completes the 

proof. 


