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Fourier Cosine and Sine Series 

By Ng Tze Beng 

 

Consider the series 

                                       
0

1

1
cos( )

2
n

n

a a nx


=

+               -------------  (C) 

and the series  

                                          1

sin( )n

n

a nx


=

                 -------------  (S) 

for the case that the sequence (an) is a non-negative sequence converging to 0. 

We investigate the convergence of the above series and when they do converge 

whether the series is the series of a Lebesgue integrable function.   When they 

do converge to a Lebesgue integrable function, we investigate sufficient 

condition so that the series is also convergent in the L1 norm.   

We recall the following definitions.    Suppose f is a function Lebesgue 

integrable on (−π, π).  We assume that the function is periodic with period 2π, 

that is, f (x) =  f (x+ 2π)  whenever anyone of  f (x) or  f (x+ 2π) is defined and 

that  f (−π) = f (π).  Note that f (π) or f (−π) need not necessarily be defined and 

the restriction of f to the interval [−π, π] need not necessarily be continuous at 

the end points.   It is convenient to assume that f is defined for all values of x in 

[−π, π] and by periodicity to all of .  We may need to define values of f 

appropriately where it is not defined in [−π, π] and extend to by periodicity.   

Then we have the following formula for the definition of the coefficients 

of a Fourier series of f: 

1
( )cos( )na f x nx dx



 −
=  ,  n = 0, 1, 2,  ….      ---------     (1) 

1
( )sin( )nb f x nx dx



 −
=   ,   n = 1, 2,  ….          ---------     (2) 
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Consider the series 

( )0

1

1
cos( ) sin( )

2
n n

n

a a nx b nx


=

+ +  . ------------------  (A) 

When an and bn are given by (1) and (2), (A) is called a Fourier series of the 

function f.  When f is even, bn = 0 for n ≥ 1 and the series (A) is just (C).  When 

f is odd, an = 0 for n ≥ 0 and the series (A) is just (S). 

Note that we assume that f is integrable in [−π, π] so that (1) and (2) are 

meaningfully defined.  Thus, (A) or (C) or (S) is a Fourier series if it is the 

Fourier series of some integrable function f.  (However, for (2) to be defined it 

is sufficient to have the integrability of f (x) sin(x) over [0, π] and we call (S) the 

generalized Fourier sine series.) 

Note that (A) may or may not converge and may not be the Fourier series of its 

limiting function.  And when (A) is a Fourier series, it may or may not converge 

at all points.   Indeed, there exists a Lebesgue integrable function f whose 

Fourier series diverges at every point.   

If we assume nice convergence, we do have some positive result.  This is 

Theorem S below. 

Theorem S.  If the series (A) converges uniformly to a function f, then it is the 

Fourier series of its sum function f.   More is true, if (A) converges almost 

everywhere to a function  f  and the n-th partial sums of (A) are absolutely 

dominated by a Lebesgue integrable function, then (A) is the Fourier series of  f.   

More precisely the n-th partial sum converges to f in the L1 norm.    

We note that in all two cases of Theorem S, f is Lebesgue integrable and the 

series (A), by using either the consequence of uniform convergence or the 

Lebesgue Dominated Convergence Theorem, can be shown to be the Fourier 

series of f by the method of Theorem 11.  The convergence to f in the L1 norm is 

a consequence of uniform convergence for the first case and in the other of 

being absolutely dominated by a Lebesgue integrable function.   We shall not 

prove this result but only for the special case that this note is concerned with. 

This note is concerned mainly with the special case of the two series (C) and (S) 

when the coefficients (an) is a sequence of non-negative terms and an→ 0. 
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1.  The Main Results. 

For the sine series (S) we have the following result giving a necessary and 

sufficient condition for (S) to be a Fourier series. 

Theorem 1.  Suppose (an) is a sequence of nonnegative terms, an = an – an+1 

≥0 and an→ 0.  Then the limit function or sum function of (S), g, is Lebesgue 

integrable if, and only if, 
1

n

n

a

n



=

  .  If 
1

n

n

a

n



=

  , then (S) is the Fourier series of 

g and  ( ) ( ) 0ns x g x dx


−
− → , where sn(x) is the n-th partial sum of the series (S), 

that is, sn(x) converges to g in the L1 norm.    

 

The situation with the cosine series is somewhat different.  We state the result 

as follows. 

Theorem 2.  Suppose the sequence (a0, a1,   ) is convex and an→ 0.  Then 

(1) The cosine series (C) converges, except possibly at x = 0, to a non-

negative Lebesgue integrable function f.  

(2) The series (C) is the Fourier series of f.  

(3) ( ) ( ) 0n x f x dx





−
− → , where n(x) is the Cesaro 1 or (C, 1) means of the 

series (C). 

(4) ( ) ( ) 0nt x f x dx


−
− →  if, and only if, 1

ln( )
( )n n

a o= or, equivalently, anln(n) → 

0.   Here, tn(x) is the n-th partial sum of the series (C). 

We now elaborate on the terms in italic in Theorem 2. 

Suppose ( an ) is a sequence and an = an – an+1 .  Then (an) is also a sequence.    

The sequence ( an ) = (a0 , a1,   )  is said to be convex if  2 an  = an – an+1 ≥ 

0 for all n ≥ 0.  The Cesaro 1 or (C,1) means of the sequence is defined to be 

                                   ( )1 0 1

1

1
n ns s s

n
 + = + + +

+
, 

where 
0

n

n k

k

s a
=

=   for n ≥ 0.  The (C,1) means of the cosine series is then given by 
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                           ( )1 0 1

1
( ) ( ) ( ) ( )

1
n nx t x t x t x

n
 + = + + +

+
, 

where 0

1

1
( ) cos( )

2

n

n k

k

t x a a kx
=

= +   for n ≥ 1 and 0 0

1
( )

2
t x a= . 

If the series (an) = (a0, a1,   ) is only decreasing and an→ 0, then we may not 

always have Lebesgue integrability of the sum function for the series (C) but the 

sum function does have improper Riemann integrability. 

Theorem 3.  Suppose the sequence (a0, a1,   ) is decreasing and an→ 0.  Then 

the cosine series (C) converges except possibly at x = 0 to a function f on [−π, 

π], which is continuous at x for x ≠ 0 in [−π, π].  The sum function f is, in 

general, improperly Riemann integrable.  Thus, if we use improper integral in 

the formula for the Fourier coefficients an, then (C) is the Fourier Riemann 

series of f. 

 

In the next section, we collect together the useful technical results such as 

summation techniques and properties of special sums for the proofs of these 

three theorems. 

 

2.   Technical and Useful Results. 

We recall first the Riemann Lebesgue Theorem: 

Theorem R L.  Suppose f is Lebesgue integrable on [−π, π].   Then  

( )cos( ) 0lim
n

f x nx dx


−
→ 

=   and   ( )sin( ) 0lim
n

f x nx dx


−
→ 

= .        

In view of Theorem RL, the condition that the sequence ( an ) be a null 

sequence, that is, an→ 0, is a necessary condition  in Theorem 1 and 2. 

 

2.1 Summation formula 

Summation technique features prominently in the proof.   We use 

predominantly Abel’s summation formula, which we describe below. 
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Abel’s Summation Formula. 

Suppose (an) and (bn) are two sequences.  Let 
1

n

n k

k

s b
=

=   .  Then we have the 

following summation formula: 

                          
1

1

1 1

( )
n n

k k k k k n n

k k

a b a a s a s
−

+

= =

= − +    

                                    1 1

1

( )
n

k k k n n

k

a a s a s+ +

=

= − + .    -----------------------------  (3) 

For the truncated sum we have: 

                                   
1

1( ) ' '
q q

k k k k k q q

k p k p

a b a a s a s
−

+

= =

= − +  ,           ----------------   (4) 

where '
k

k j

j p

s b
=

=  , k ≥ p. 

We have similar formula when the summation starts from 0 instead of 1.  We 

interpret formula (3) and (4) accordingly.   Formula (3) is sometimes called 

summation by parts. 

Formula (3) or (4) is used to give an alternative useful way to sum the series (C) 

or (S).  We have the following estimate of the sum, particularly useful in 

showing convergence of Fourier series. 

Lemma 4.   Suppose ( an ) is a decreasing sequence and an ≥ 0 for all n.  Then 

                                              1
1

1

max | |
n

k k k
k n

k

a b a s
 

=

    -------------------   (5) 

and                                       max | ' |
q

k k p k
p k q

k p

a b a s
 

=

 .   ------------------    (6)  

Proof.   

By the summation formula (3), we have 

               
1

1

1 1

n n

k k k k k n n

k k

a b a a s a s
−

+

= =

 − +    
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                           ( )
1

1
1 1

1

max max
n

k k j n j
j n j n

k

a a s a s
−

+
   

=

 − + ,    

                                      since ( an ) is a decreasing sequence and an ≥ 0 for all n,   

                          
1

1
max | |j

j n
a s

 
=  . 

Inequality (6) is derived from (4) in exactly the same way. 

 

2.2 Properties of Convex Sequence 

Recall that a sequence ( an ) = (a0 ,a1,   )  is said to be convex if  2 an  = an – 

an+1 ≥ 0 for all n ≥ 0.   For most of the time, the sequence that we deal with is 

usually convergent or a null sequence. Hence, it is always bounded.  For convex 

sequence that is bounded we have: 

Lemma 5.  If ( an ) = (a0 ,a1,   )  is convex and bounded, then it is decreasing, 

i.e.,   an  = an –an+1 ≥ 0 for all n ≥ 0. 

Proof.  By hypothesis, the sequence ( an ) is decreasing.  Then we claim that  

 an ≥ 0 for all n ≥ 0.  We show this by contradiction.   

Suppose there is an integer N ≥ 0, such that  aN   = aN – aN+1 < 0.  Then since 

( an ) is decreasing,  for all n ≥ N,   an = an – an+1 ≤  aN  < 0.  Thus 

aN+1 = aN −  aN  ,   aN+2 = aN+1 −  aN+1 ≥ aN+1 −  aN ≥ aN − 2 aN , , 

 aN+p  ≥  aN − p aN .  Since −  aN > 0, ( aN − p aN ) is unbounded and so ( an ) 

is unbounded.  This contradicts that ( an ) is bounded.  Hence  an  ≥ 0 for all n 

≥ 0.   

 

More is true: 

Lemma 6.  If ( an ) = (a0 ,a1,   )  is convex and bounded,  then nan → 0 and 

the series  2

0

( 1) n

n

n a


=

+   converges to 
0 lim n

n
a a

→
−  . 

Proof.   By Lemma 5, ( an ) is decreasing and bounded, and so by the Monotone 

Convergence Theorem,  ( an ) is convergent.   



7 
 

Observe that 
0 1

0

n

k n

k

a a a +

=

 = −  so that 
0

k

k

a


=

  is convergent and 
0

0

limk n
n

k

a a a


→
=

 = − . 

That is, 
0

k

k

a


=

  is a Cauchy series.  Therefore, given any  > 0, there exists an 

integer N such that for all n ≥ N,  

                                         
2

1

n

k

k n

a 
= +

  . 

Since  ak  ≥ 0 and  2 ak   ≥ 0  for all k ≥ 0, for all n ≥ N,  

                
2

2 2 2 1 2

1

n

n n n n n k

k n

n a a a a a a +

= +

 =  + +    + +  =   . 

Hence n  a2n  → 0.  It follows that 2n  a2n  → 0.   

Now 2 1 2 2(2 1) (2 1) 3n n nn a n a n a++   +      for n > 0 and since n  a2n  → 0, by the 

Comparison Test, (2n+1)  a2n+1  → 0.  Therefore, nan → 0. 

Let  
0

n

n k

k

s a
=

=    for n ≥ 0.   Then by Abel’s summation formula (3) 

                              2

1

0

( 1) ( 1)
n

n k n

k

s a k a n+

=

=  + +  + . 

Since (n+1)  an+1  → 0 and (sn) is convergent, 2

0

( 1) n

n

n a


=

+   is convergent and 

2

0

0

( 1) lim limn n n
n n

n

n a s a a


→ →
=

+  = = − . 

 

2.3 Summing the sine and cosine series. 

Consider the (n+1)-th partial sum of the cosine series (C),  

                       0

1

1
( ) cos( )

2

n

n k

k

t x a a kx
=

= +   .  ----------------------     (7) 

Applying the Abel summation formula (3), we have 
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1

0

( ) ( ) ( )
n

n k k n n

k

t x D x a a D x
−

=

=  + ,   ---------------------  (8) 

where 

                        
1

1
( ) cos( )

2

n

n

k

D x kx
=

= +        -------------------------------  (9) 

for n > 0 and D0(x) = ½.  

Dn(x) is called the Dirichlet kernel.   Note that Dn(x) is defined and continuous 

for all x in [−π, π].  We shall use this form of the (n+1)-th partial sum of (C) to 

investigate convergence of (C). 

Now consider the n-th partial sum of the sine series (S): 

                             
1

( ) sin( )
n

n k

k

s x a kx
=

=  .    -------------------------------- (10) 

Applying the Abel summation formula (3) to (10) gives 

                       
1

1

( ) ( ) ( )
n

k nn k n

k

s x D x a a D x
−

=

=  + ,    ------------------------- (11) 

where                      
1

( ) sin( )
n

n

k

D x kx
=

=      -------------------------------- (12) 

for n ≥ 1. 

( )nD x  is called the conjugate Dirichlet kernel.  Observe that ( )nD x  is defined 

and continuous in [−π, π].  The name conjugate Dirichlet kernel has its origin in 

considering complex Fourier series as a power series on the unit circle so that 

(A) is the real part of  ( )0

1

1

2

inx

n n

n

a a ib e


=

+ −  and if (C) is the series, then the sine 

series is the conjugate series appearing as the imaginary part of the power 

series. 

Now we proceed to investigate the properties of the Dirichlet kernels.  Before 

we do that we introduce a second summation formula involving the Dirichlet 

kernels. 

If anDn(x) → 0, this will then bring us by taking limits of (8) to the series 
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0

( )k k

k

D x a


=

   

and the problem of the convergence of this series. 

Applying the Abel summation formula (3) to the (n+1)-th partial sum Fn(x) of 

this series, we get 

             
1

2

0 0

( ) ( ) ( ) ( )
n n

n k k k k n n

k k

F x D x a E x a E x a
−

= =

=  =  +   ,   -----------------------  (13) 

where 
0

( ) ( ) ( 1) ( )
k

k k k

j

E x D x k K x
=

= = +   

and                                             
0

1
( ) ( )

1

k

k j

j

K x D x
k =

=
+

    -----------------------   (14) 

is called the Fejér kernel and is actually the mean of the Dirichlet kernel.  It is 

also the (C,1) mean of the sequence 
1

,cos( ),cos(2 ),cos(3 ),
2

x x x
 
 
 

.   

In view of (13), we then have 

                        
2

2

1 1

0

( ) ( 1) ( ) ( ) ( )
n

n k k n n n n

k

t x k K x a nK x a a D x
−

− −

=

= +  +  +  , ----------    (15) 

the result of applying the summation formula twice to the (n+1)-th partial sum 

of the series (C).  

We shall use formula (8), (11) and (15) to study the convergence of (C) and (S).  

Thus we derive below some properties of the Dirichlet and Fejér kernels. 

 

2.4 Dirichlet, Fejér and Conjugate Kernels 

              1 1 1
2 2 2

1

2sin( ) ( ) sin( ) 2sin( )cos( )
n

n

k

x D x x x kx
=

= +    

                       ( )1 1 1
2 2 2

1

sin( ) sin( ) sin(( 1) )
n

k

x kx x k x x
=

= + + − − +   

                       1 1 1 1
2 2 2 2

sin( ) sin(( ) ) sin( ) sin(( ) )x n x x n x= + + − = + . 
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Thus, for x ≠ 0 and x in [−π, π], or 0 < x < 2π, 

                                
1
2

1
2

sin(( ) )
( )

2sin( )
n

n x
D x

x

+
= .              ---------------------------   (16) 

Observe that 
1 1 1
2 2 2 1

21 10 0
2 2

sin(( ) ) ( )cos(( ) )
lim lim (0)

2sin( ) cos( )
n

x x

n x n n x
n D

x x→ →

+ + +
= = + =   

and the Dirichlet kernel in its functional form (16) is continuous at 0.   

For the estimate of the Dirichlet kernel it is useful to consider the modified 

Dirichlet kernel defined by 

                        * 1
2

( ) ( ) cos( )n nD x D x nx= −  

                                 
1 1 1
2 2 21

21 1
2 2

sin(( ) ) sin(( ) ) cos( )sin( )
cos( )

2sin( ) 2sin( )

n x n x nx x
nx

x x

+ + −
= − =   

                                 
1
2

1
2

sin( )cos( )

2sin( )

nx x

x
=   

                                  
1
2

sin( )

2 tan( )

nx

x
=  .             -------------------------------   (17) 

Note that the modified Dirichlet kernel is continuous on [−π, π] and 

                                  *(0)nD n=   and  *( ) 0nD  =    ------------------------   (18) 

The Fejér kernel has too a useful functional form.  Using (16), 

               
1
2

1
0 0 2

1 1 sin(( ) )
( ) ( )

1 1 2sin( )

n n

n k

k k

k x
K x D x

n n x= =

+
= =

+ +
    

                        1 1
2 22 1

02

1 1
sin(( ) )sin( )

1 2sin ( )

n

k

k x x
n x =

= +
+

   

                        
2 1

02

1 1 cos( ) cos(( 1) )

1 2sin ( ) 2

n

k

kx k x

n x =

− +
=

+
   

                        
2 1

2

1 1 cos(( 1) )

1 4sin ( )

n x

n x

− +
=

+
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2 1

2

2 1
2

1 2sin ( ( 1) )

1 4sin ( )

n x

n x

+
=

+
  

                        

2
1
2

1
2

2 sin( ( 1) )

1 2sin( )

n x

n x

 +
=  

+  
.     --------------------------------    (19) 

Observe that the Fejér kernel in its functional form (19) is continuous in [−π, π]. 

Since 1
2

(0)kD k= +  , 
0 0

1 1 1 1
(0) (0) ( )

1 1 2 2 2

n n

n k

k k

n
K D k

n n= =

= = + = +
+ +

   . --------  (20) 

Note that from (9) 

                
1

1
( ) cos( )

2

n

n

k

D x dx dx kx dx
  

  


− − −
=

= + =                -------------------    (21) 

and so             
0 0

1 1
( ) ( )

1 1

n n

n k

k k

K x dx D x
n n

 

 
 

− −
= =

= = =
+ +

         

and                  
1

( ) 1nK x dx


 −
= .                                              ----------------   (22) 

We have similar derivations for the conjugate kernels. 

Now  1 1
2 2

1

2sin( ) ( ) 2sin( )sin( )
n

n

k

x D x x kx
=

=   

                           ( )1 1
2 2

1

cos(( ) ) cos(( ) )
n

k

k x k x
=

= − − +  

                          1 1
2 2

cos( ) cos(( ) )x n x= − + , 

so that for x ≠ 0 and in [−π, π], 

                         
1 1
2 2

1
2

cos( ) cos(( ) )
( )

2sin( )
n

x n x
D x

x

− +
= .                  ---------------------  (23) 

Observe that 
1 1
2 2

10
2

cos( ) cos(( ) )
lim 0 (0)

2sin( )
n

x

x n x
D

x→

− +
= =  so that in its functional form 

(23), the conjugate Dirichlet kernel is continuous in [−π, π].  We shall also use 

the modified conjugate Dirichlet kernel, particularly because it is nonnegative. 

The modified conjugate Dirichlet kernel is defined by 
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                               * 1
( ) ( ) sin( )

2
n nD x D x nx= −   .                 -----------------------   (24) 

Using (23) we have for 0 < x  < 2π or  x in [−π, π] – {0},   

                    
1 1

* 2 2

1
2

cos( ) cos(( ) ) 1
( ) sin( )

2sin( ) 2
n

x n x
D x nx

x

− +
= −  

                             
1 1 1
2 2 2

1
2

cos( ) cos(( ) ) sin( )sin( )

2sin( )

x n x nx x

x

− + −
=  

                             
1 1
2 2

1
2

cos( ) cos( )cos( )

2sin( )

x x nx

x

−
=  

                            
1
2

1 cos( )

2 tan( )

nx

x

−
= .  --------------------------------------------   (25) 

Note that as 
*

10
2

1 cos( )
lim 0 (0)

2 tan( )
n

x

nx
D

x→

−
= =  and  

*

1
2

1 cos( )
lim 0 ( )

2 tan( )
n

x

nx
D

x


→

−
= = ,  the 

conjugate Dirichlet kernel in its functional form (25) is continuous in [−π, π].   

The Diriichlet and Fejér kernels involved trigonometric functions.  We now 

state the useful inequalities that we shall use. 

(1)   For all x,  sin( ) | |x x  ;    sin( )x x  for x > 0. --------------------  (26) 

(2)   For 0
2

x


   ,  
2

sin( )x x


  .                  --------------------------   (27)        

(3)   For 0 x    ,   
2

2
1 cos( ) 2

x
x


−  .             ----------------------------- (28) 

(4)   For all x,  21
1 cos( )

2
x x−  .                        ---------------------------   (29) 

Inequality (1) is easy.  

Inequality (2) is a consequence of the fact that cos(x) is decreasing on [0, ]
2


 or 

that sin(x) is concave downward on 0,
2

 
 
 

.  By the Mean Value Theorem, for  

0
2

x


  ,
sin( )

cos( )
x

x
=  for some   with 0 <  < x.   Also by the Mean Value 

Theorem, 
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2

1 sin( )
cos( )

x

x


−
=

−
 for some   with 

2
x


   .  Since  <  ,  cos( ) > cos( ) 

and so 
2

sin( ) 1 sin( )x x

x x

−


−
.  It follows that 

2
sin( )x x


  for 0

2
x


  .  Therefore, 

including the end points 0 and 
2


 , we have 

2
sin( )x x


 . 

For 0 x   ,  
2

2

2
1 cos( ) 2sin ( ) 2

2

x x
x


− =   by inequality (2).   Inequality (4) 

follows from inequality (1). 

 

2.5 Lebesgue Constants. 

To investigate convergence in the L1 norm, we need some estimates of the 

integral of the modulus of the Dirichlet kernels. 

The Lebesgue constant Ln is defined by 
0

1 2
( ) ( )n n nL D t dt D t dt

 

 −
= =   .  The 

conjugate Lebesgue constant is similarly defined by                                   

                                   
0

1 2
( ) ( )n n nL D t dt D t dt

 

 −
= =  . 

It is useful to use the modified Dirichlet kernel.  Since tan(x) ≥ x for 0 ≤ x ≤ π/2, 

for 0 < x ≤ π, 

                                      *

1
2

sin( ) 1
( )

2 tan( )
n

nx
D x

x x
=  .           ------------------ (30) 

Obviously, from the definitions of modified Dirichlet kernel and conjugate 

kernel,         

                             
*( )nD x n   ------------------------------------(31) 

and          

                             
*

( )nD x n . ------------------------------------(32) 
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Also, we have 

                                
* *

1
2

1 cos( ) 2
( ) ( )

2 tan( )
n n

nx
D x D x

x x

−
= =     ------------------------- (33) 

for 0 < x ≤ π. 

For the conjugate Dirichlet kernel, from (25), for 0 < x ≤ π, 

    
1 1
2 2

1 1
2 2

cos( ) cos(( ) ) 1
( )

2sin( ) sin( )
n

x n x
D x

x x

− +
=    

               
x


 ,                      ------------------------------------------------------ (34) 

by (27). 

Similarly,  

                 
1
2

1 1
2 2

sin(( ) ) 1
( )

2sin( ) 2sin( ) 2
n

n x
D x

x x x

+
=   ,       -------------------------- (35) 

for 0 < x ≤ π. 

 

We have the following estimates for the Lebesgue constants. 

Theorem 7.  

(1)   
2

4
ln( ) (1)nL n O


= +  ;  

2

4
ln( )nL n


 as n →  .    

(2)   
2

ln( )nL n


;  
*

0
( ) ln( )nD t dt n



  as n →   . 

 

Before embarking on the proof of Theorem 7, we deduce the following estimate 

of the function  
2

1

2 tan( )x
 . 

Lemma 8.    Let 
2

1 1
( )

2 tan( )x
h x

x
= −  .  Then h(x) is continuous, bounded and 

increasing on (0, π), 
0

1
lim ( ) 0 , lim ( )
x x

h x h x
 + −→ →

= = ,  so that 0 < h(x) < 1/π and   

0

1
sup ( )

x

h x
  

=  .   In particular,  
2

1 1
(1)

2 tan( )x
O

x
= +  in (0, π). 
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Proof.  Observe that  
( )

2 22
2 22

2 2 2

2

sin ( )1 csc ( )
'( )

4 sin ( )

x xx

x
h x

x x

−
= − + =   > 0 for 0 < x < π, since 

2 2
| sin( ) |x x  for x > 0 (see (26)).  Therefore, h is strictly increasing on (0, π).  Now 

            2

0 0
2

2 tan( )
lim ( ) lim  

2 tan( )

x

xx x

x
h x

x+ +→ →

−
=   

                        
2 2

2 2 2

2 2 2
0 0

2 2 2 2 2

sec ( ) 1 sec ( ) tan( )
lim = lim =0 

2 tan( ) sec ( ) 2sec ( ) sec ( ) tan( )

x x x

x x x x xx xx x+ +→ →

−
=

+ +
, 

by applying L’ Hôpital’s Rule twice.        

Observe that 
2

1 1 1 1
lim ( ) lim lim 0

2 tan( )xx x x
h x

x    − − −→ → →
= − = − = .  Hence, 

0

1
sup ( )

x

h x
  

=  and  

0
inf ( ) 0

x
h x

 
= .   Since h is strictly increasing on (0,  ), it follows that 0 < h(x) < 

1/.  Therefore, for all x in (0, ), 

                                     
2

1 1 1 1
0

2 tan( )xx x
 −   .    ---------------------------   (36) 

This means 
2

1 1
(1)

2 tan( )x
O

x
= +  in (0, π). 

Proof of Theorem 7 Part (1). 

We shall use the modified conjugate Dirichlet kernel because * 1
( ) ( )

2
n nD x D x−   

for x in [−π, π].  We have * *1 1
( ) ( ) ( )

2 2
n n nD x D x D x−   +  for x in [0, π] and so 

                 * *

0 0 0

2 2 2
( ) 1 ( ) ( ) 1n n n nD x dx D x dx L D x dx

  

  
−  =  +   .  ------------ (37) 

This means                *

0

2
( ) (1)n nL D x dx O




= + .           ------------------------  (38) 

By (17) and (36), for 0 < x < π, 

                  *

2

| sin( ) | | sin( ) | sin( ) | sin( ) |
0 ( )

2 tan( )
nx

nx nx nx nx
D x

x x
 −  =  .   -----------  (39) 
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Observe that all the three functions in the above inequality are bounded in the 

closed and bounded interval [0, π].  Thus taking the integrals we have 

            *

0 0 0 0

| sin( ) | | sin( ) | | sin( ) |
( )n

nx nx nx
dx dx D x dx dx

x x

   


−      . 

Therefore, 

     *

0 0 0 0

2 | sin( ) | 2 | sin( ) | 2 2 | sin( ) |
( )n

nx nx nx
dx dx D x dx dx

x x

   

    
−      . 

Consequently, 

                  *

0 0 0

2 | sin( ) | 2 2 2 | sin( ) |
( )n

nx nx
dx D x dx dx

x x

  

   
−      .  ----------- (40) 

Thus,                       *

0 0

2 2 | sin( ) |
( ) (1)n

nx
D x dx dx O

x

 

 
= +  .           ------------ (41) 

We now estimate the integral 
0

| sin( ) |
 

nx
dx

x



 .   

Divide [0, π] into n equal subintervals so that  

  
1 1 1( 1)

0 0 0
0 0 0

| sin( ) | | sin( ) | | sin( ) | | sin( ) |n n n

n

n n nk

k
k k kn n

nx nx nt k nt
dx dx dt dt

x x t k t k

  





 

− − −+

= = =

+
= = =

+ +
          

                    
1

0 0
1

| sin( ) | | sin( ) |n n

n

k n

nt nt
dt dt

t t k

 



−

=

= +
+

   

                    
1

0 0
1

sin( ) 1
sin( )

n n

n

k n

nt
dt nt dt

t t k

 



−

=

 
= +  

+ 
  ,       ----------------------  (42) 

by using change of variable, 
n

x t k = + . 

Now for k ≥ 1 and 0 ≤  t  ≤ 
n


 , ( 1)

n n n
k t k k   +  +   so that  

                                   
1 1 1

( 1)n n nk t k k  
 

+ +
.              -----------------------  (43) 

Observe that
0 0

| sin( ) |n nnt nt
dt dt

t t

 

 =  .   It then follows from (42) and (43) that 

             
1 1 1

0 0
1 1 1

| sin( ) | 1 2 1 2 1
sin( )

n

n n n

k k kn n

nx
dx nt dt

x k n k k



 
  



− − −

= = =

 + = + = +    .  -----  (44)  
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Let  
1

1
ln( )

n

n

k

d n
k=

= −  .   Then ( dn )  is a non-negative decreasing sequence 

converging to the Euler constant  < 1.  Now d1 =1. Therefore, for all n ≥ 1,   

                                1

1

1
ln( ) 1

n

k

n d
k


=

 −  =   or 

                                
1

1
ln( ) ln( ) 1

n

k

n n
k


=

+   + .             ------------------      (45) 

Hence it follows from (44) and (45) that for n ≥ 1, 

              
0

| sin( ) | 2 2 2
(ln( ) 1) ln( )

nx
dx n n

x



 
  

 
 + + = + + 

 
  ----------------  (46) 

and so 

                            
2 20

2 | sin( ) | 4 4
ln( ) 2

nx
dx n

x



  

 
 + + 

 
  .     ---------------   (47) 

From (42) and (43) we obtain, 

       
1 1

0 0 0 0
1 1

| sin( ) | sin( ) 1 sin( ) 2 1
sin( )

( 1) ( 1)

n n

n n

k kn n

nx nt x
dx dt nt dt dx

x t k x n k

  

 

− −

= =

 + = +
+ +

      

                           
1/2

0
1

sin( ) 2 1

( 1)

n

k

x
dx

x k





−

=

 +
+

     

                           
1

1 1

2 1 2 1
1

( 1)

n n

k kk k 

−

= =

 + 
+

   by inequality (27).   -------------  (48) 

So, for n ≥ 1,   

                          
0

| sin( ) | 2 2 2
( ln ) ln

nx
dx n n

x



 
  

 + = + ,    

by using (45). 

Hence, for n ≥ 1,       

                                      
2 20

2 | sin( ) | 4 4
ln( )

nx
dx n

x




  

 + . -------------------  (49) 

That is,                        
20

2 | sin( ) | 4
ln( ) (1)

nx
dx n O

x



 
= +  .  --------------------  (50) 
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It follows then from (41) and (50) that 

                                 *

20

2 4
( ) ln( ) (1)nD x dx n O



 
= + .            ---------------------- (51) 

Therefore, from (38) and (51),  
2

4
ln( ) (1)nL n O


= + .   

 

Proof of Theorem 7 Part (2). 

We now estimate the conjugate Lebesgue constant.  As above we shall use the 

modified conjugate Dirichlet kernel since 
* 1

( ) ( )
2

n nD x D x−   for x in [0, π].  It is 

useful to note that 
*

( ) 0nD x  .  As for Ln, we deduce that  

                           
*

0

2
( ) (1)n nL D x dx O




= + . ---------------------  (52) 

Recall that  
*

1
2

1 cos( )
( )

2 tan( )
n

nx
D x

x

−
=  for 0 < x < π and extend the definition at 0 and π 

by taking appropriate limits.  Hence, we obtain, by using Lemma 8, (see (36)) 

        
*

2

1 cos( ) 1 cos( ) 1 cos( ) 1 cos( ) |
0 ( )

2 tan( )
n

x

nx nx nx nx
D x

x x

− − − −
 −  =  , 

for 0 <x < π.   Note that all the functions in the above inequality are bounded. 

Hence, taking integral we get, 

           
*

0 0 0 0

1 cos( ) 1 cos( ) 1 cos( )
0 ( )n

nx nx nx
dx D x dx dx

x x

   



− − −
 −      , 

that is, 

                    
*

0 0 0

1 cos( ) 1 cos( )
0 1 ( )n

nx nx
dx D x dx dx

x x

  − −
 −     . ----------------  (53) 

It follows that              

                       
*

0 0

2 2 1 cos( )
( ) (1)n n

nx
L D x dx dx O

x

 

 

−
= = +  .         ---------------   (54) 

As in the case for the Lebesgue constant, we divide the interval [0, π] into n 

equal subintervals and spread the integral over these n intervals. 
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1 1( 1)

0 0
0 0

1 cos( ) 1 cos( ) 1 cos( )n n

n

n nk

k
k k n

nx nx nt k
dx dx dt

x x t k

 







− −+

= =

− − − +
= =

+
     

                                 
1

0 0
1

1 cos( ) 1 cos( )n n

n

k n

nt nt k
dt dt

t t k

 



−

=

− − +
= +

+
  .      -------------  (55) 

Observe that  

          
2 2

2

0 0 0 0

1 cos( ) 1 cos( ) 2sin ( ) 1

2 4

n
xnt x

dt dx dx xdx
t x x

    − −
=   =       ----------  (56) 

and for k ≥ 1, 

                    
0 0

1 cos( ) 1 1
(1 cos( ))

n n

n n

nt k
dt nt k dt

t k k k

 

 




− +
 − + =

+  .   ----------------  (57) 

Thus, combining (55), (56) and (57), we have for n ≥ 1, 

                   
2 21

0
1 1

1 cos( ) 1 1

4 4

n n

k k

nx
dx

x k k

  −

= =

−
 +  +   

                                           
2

ln( ) 1
4

n


 + + ,                  ----------------------   (58) 

by (45). 

Using inequality (28), 

                    
2

20 0 0

1 cos( ) 1 cos( ) 2 2

3

n nt x x
dt dx dx

t x

   



− −
=  =   ,    ----------------  (59) 

and for k ≥ 1, 

                   
0 0

1 cos( ) 1 1
(1 cos( ))

( 1) 1

n n

n n

nt k
dt nt k dt

t k k k

 

 




− +
 − + =

+ + +  .   --------  (60) 

Using (55), (59) and (60) we have for n ≥ 1, 

                
1

0
1 1

1 cos( ) 1 1
1

1

n n

k k

nx
dx

x k k

 −

= =

−
 + =

+
   

                                       ln( )n + ,                     ------------------------------  (61) 

by inequality (45). 

Thus (58) and (61) says that  
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0

1 cos( )
ln( ) (1)

nx
dx n O

x

 −
= + .  ---------------------------    (62) 

It follows from (53) and (62) that 
*

0
( ) ln( ) (1)nD x dx n O



= +  and so by (54), 

                             
*

0

2 2
( ) ln( ) (1)n nL D x dx n O



 
= = + . 

This proves part (2). 

 

2.6 Convergence of (S) and (C) 

In this section we investigate the convergence of the series (S) and (C) when the 

coefficients are nonnegative and converge to 0.  We deduce when the 

convergence is uniform and when the sum function is continuous.  The 

technique is usually known as Dirichlet test. 

We shall begin with the cosine series (C): 

                              0

1

1
cos( )

2
n

n

a a nx


=

+    

Let  0

1

1
( ) cos( )

2

n

n k

k

t x a a kx
=

= +  be the (n+1)th partial sum of (C).  Suppose an ≥ 0 

for n ≥ 0 and an → 0. 

For m > n, by Abel’s summation formula (3) or (8),   

                 1( ) ( ) ( ) ( ) ( )
m

m n k k m m n n

k n

t x t x D x a a D x a D x+

=

− =  + − .    -----------------   (63) 

Then by triangle inequality, 

 1( ) ( ) max ( ) ( ) max ( ) 2 max ( )
m

m n k k m n k n k
n k m n k m n k m

k n

t x t x a D x a a D x a D x+
     

=

 
−   + + = 

 
 .  ----  (64) 

Now restrict the domain to the interval [, 2π−], 0 <  < π.  Then for all x in 

[, 2π−] and for all n ≥ 0, 

                     
1
2

1
2 2

sin(( ) ) 1
( )

2sin( ) 2sin( )
n

n x
D x

x 

+
=   .  ---------------------------------  (65) 
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Thus, by (64) and (65), for all x in [, 2π−] and for all m > n ≥  0, 

                         
2

( ) ( )
sin( )

n
n m

a
t x t x


−   .   

 
          ------------------------------  (66) 

Since an → 0, given any  > 0, there exist integer N such that 

                                
2

| | sin( ))n nn N a a   =  . 

Thus, for any n, m with m > n ≥ N and for all x in [, 2π−], 

                                        ( ) ( )n mt x t x −  . 

It follows that the sequence (tn(x)) is uniformly Cauchy on [, 2π−].  

Therefore, (C) converges uniformly to a continuous function on [, 2π−].  It 

follows that (C) converges pointwise to a continuous function on (0, 2π).  Hence 

(C) converges pointwise to a continuous function f on [−π, π] – {0}.  More 

precisely (C) converges pointwise for all x not a multiple of 2π.  The sum 

function is continuous at every point not a multiple of 2π.  The series (C) may 

or may not be convergent at 0 and when it does, the sum function may or may 

not be continuous at 0. 

Now we consider the sine series (S): 

                                      
1

sin( )n

n

a nx


=

   

Let the n-th partial sum of (S) be
1

( ) sin( )
n

n k

k

s x a kx
=

=  .  Suppose an ≥ 0 for n ≥ 1 

and an → 0.   For m > n, as above by Abel’s summation formula (3) or (11),   

                 1( ) ( ) ( ) ( ) ( )
m

k mm n k m n n

k n

s x s x D x a a D x a D x+

=

− =  + − .   ----------------   (67) 

And we have by triangle inequality, for m > n > 0, 

                            ( ) ( ) 2 max ( )km n n
n k m

s x s x a D x
 

−  .    ----------------------------- (68) 

Now for all x in [, 2π−], 0 <  < π and for all n ≥ 0, 

                     
1 1
2 2

1
2 2

cos( ) cos(( ) ) 1
( )

2sin( ) sin( )
n

x n x
D x

x 

− +
=   .  ----------------------  (69) 



22 
 

Therefore, it follows from (68) and (69) that for all x in [, 2π−], 0 <  < π and 

for all m > n > 0, 

                               
2

2
( ) ( )

sin( )

n
m n

a
s x s x


−  .   --------------------------------  (70) 

Since an → 0, we deduce as for the cosine series that (sn(x)) is uniformly 

Cauchy on [, 2π−] and so (S) converges uniformly on [, 2π−].  Therefore, 

(S) converges uniformly to a continuous sum function on [, 2π−].   It follows 

that (S) converges pointwise to a continuous function on (0, 2π).  Hence, by 

periodicity it converges to a sum function continuous at every point not a 

multiple of 2π.  Since (S) converges at 0, (S) is convergent on the whole of R.  

The series (S) converges to a sum function g on [−π, π] continuous at x ≠ 0.  The 

function g may or may not be continuous at 0. 

We have thus proved the following theorem. 

Theorem 9.   Suppose an ≥ 0 and an → 0 for the series (C) and (S).  

Then the series (C) converges pointwise except possibly at x = 0 to a function f 

continuous at x for all x in [−π, π]−{0}.  The series (S) converges pointwise to a 

function g on [−π, π] and g is continuous at x for all x ≠ 0 in [−π, π].  Both series 

converge uniformly on [, 2π−] for any 0 <  < π. 

 

For the sine series (S) to converge uniformly on the whole of R, we have the 

following result. 

Theorem 10.   Suppose an ≥ 0 for n ≥ 1 and an → 0.  Then the series (S) 

converges uniformly on R if and only if 0nna →  . 

Proof. 

Suppose (S) converges uniformly on R.  Then (S) is uniformly Cauchy.  

Hence, given  > 0, there exists an integer N such that for all n ≥ N and for all m 

≥ n and for all x in R, 

                                         sin( )
2

m

k

k n

a kx


=

 .         -----------------------  (71) 
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Take any n ≥ N.  Let 
4

y
n


= . Since an → 0 and ( an ) is decreasing,  an  ≥ 0 for 

all n ≥ 1.  Therefore, 

                  
2 2 2

2 2 2

1 1 1

sin( ) sin( ) sin( ) sin( ) 0
4

n n n

k n n n

k n k n k n

a ky a ky a ny na


= + = + = +

      . 

It then follows from (71) that for any n ≥ N, 

             
2 2

2

1 1

sin sin( ) sin( )
4 2

n n

n k k

k n k n

na a ky a ky
 

= + = +

 
 =  

 
  , 

that is, 2nna   .   This means 2 0nna → and so  22 0nna → .  Since 2 2 2 1n na a− − , by 

the Comparison Test, 2 1(2 2) 0nn a −− → .  Thus, 2 1 2 1 2 1(2 1) (2 2) 0n n nn a n a a− − −− = − + → .  

It follows that 0nna → . 

Conversely, suppose 0nna → .  Then limsup 0n
n

na
→

= .  Let supk j
j k

ja


= .  Then n → 

0.  We shall estimate the tail end of the series and show that the estimate is 

independent of x and depends only on n . 

Take any x in (0, π].  Let xN
x

 
=   

, the integer part of π/x.  Then  

1 1x xN N
x


   + .  By Theorem 9, (S) is convergent on R.  It follows that the 

truncated sum 

                                   ( ) sin( )k n

n k

T x a nx


=

=    

is convergent for all x.  For any x in (0, π] we split Tk(x) into two summations 

according to x using Nx .  For convenience we drop the subfix and let N =  Nx 

and note that it depends on x. 

Let 
1

'( ) sin( )
k N

k n

n k

T x a nx
+ −

=

=   and ''( ) sin( )k n

n k N

T x a nx


= +

=  .  For the first summation we 

have 

             
1 1 1 1

'( ) sin( )
k N k N k N k N

k n n n k k

n k n k n k n k

T x a nx a nx x na x xN 
+ − + − + − + −

= = = =

  =  =     

                       k .                                                     ----------------  (72) 
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From (67) we have 

            ( )1''( ) lim ( ) ( )k m k N
m

T x s x s x+ −
→ 

= −     

                     
1

11

1

lim ( ) ( ) ( )
m

n m k Nn m k N
m

n k N

D x a a D x a D x
−

+ −+ −
→

= + −

 
=  + − 

 
   by using (67)  

                     
1

1lim ( ) ( ) ( )
m

n m k Nn m k N
m

n k N

D x a a D x a D x
−

+ −+
→

= +

 
=  + − 

 
 . 

Therefore, since the above limit exists, an → 0 and 
2

1
( )

sin( )
nD x


  for some  

with 0 <  < π, we deduce that         

                        1''( ) ( ) ( )n k Nk n k N

n k N

T x D x a a D x


+ −+

= +

=  −  .         --------------  (73) 

Hence,           1''( ) ( ) ( )n k Nk n k N

n k N

T x D x a a D x


+ −+

= +

  +  

                       2n k N k N

n k N

a a a
x x x

  

+ +

= +

  + = , by using inequality (34), 

                       2 ( 1)k Na N+ + ,                since 1N
x


 + ,  

                     2 ( ) 2k N ka N k + +  .                     ------------------------------  (74)  

Therefore, combining (72) and (74) we have, for any x in (0, π],         

                                 ( ) (2 )k kT x   + .              ------------------------------   (75) 

Inequality (75) is obviously true for x = 0.  Since n → 0, ( ) 0kT x → uniformly 

on [0, π].  Hence the series (S) converges uniformly on [0, π] and since the sum 

function is odd, (S) also converges uniformly on [−π, 0] and hence on [−π, π].  It 

then follows by periodicity that (S) converges uniformly on the whole of R.     

Under the hypothesis that an ≥ 0 for n ≥ 1 and an → 0, if the series (C) or (S) 

converges to a Lebesgue integrable function, then (C) or (S) is the Fourier series 

of their respective sum function.  This is a special case of a more general result 

namely, that if a trigonometric series converges except for a denumerable subset 
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to a finite and integrable function, then it is the Fourier series of this function.  

There are other generalizations of this result.  The proofs of these general results 

are much more difficult.  We present the proof for this special case.  

Theorem 11.  Suppose that an ≥ 0 for n ≥ 0 and an → 0.  Suppose the series 

(C) converges to a Lebesgue integrable function f and the series (S) converges 

to a Lebesgue integrable function g.  Then (C) is the Fourier series of f and (S) 

is the Fourier series of g. 

Proof.   Observe that g(x)sin(mx) is the limit of the series  
1

sin( ) sin( )k

k

mx a kx


=

 . 

That is, 

                            
1

( )sin( ) sin( ) sin( )k

k

g x mx mx a kx


=

=  .        ---------------------  (76) 

We claim that this series is uniformly convergent on R.  

For d > n, the truncated series 

                       sin( ) sin( ) sin( ) sin( )
d d

k k

k n k n

mx a kx mx a kx
= =

=   

and so, for 0 < x ≤ π, 

              sin( ) sin( ) sin( )
d d

k k

k n k n

mx a kx mx a kx
= =

   

                                          max sin( )
j

n
n j d

k n

mxa kx
 

=

  , by Lemma 4, 

                                         
2

1

sin( )xnmxa , by a similar formula to (23),   

                                         nma  , by inequality (27). 

This inequality is obviously true for x = 0.  Hence for 0 ≤ x ≤ π, 

                              sin( ) sin( )
d

k n

k n

mx a kx ma 
=

  

and so                    sin( ) sin( )k n

k n

mx a kx ma 


=

 .        -----------------   (76)  
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Since an → 0, (76) implies that 
1

sin( ) sin( )k

k

mx a kx


=

  is uniformly Cauchy on [0, π] 

and so converges uniformly on [0, π] to ( )sin( )g x mx . 

Therefore, 

                    
0 0

1

2 2
( )sin( ) sin( )sin( )k

k

g x mx dx a mx kx dx
 

 



=

=    

                                                
0

1

2 cos(( ) ) cos(( ) )

2
k m

k

m k x m k x
a dx a







=

− − +
= =  . 

This means (an) are the Fourier coefficients of g(x).  Thus (S) is the Fourier 

series of g. 

For the cosine series (C) we use the following device.   

Consider (1 – cos(mx)) f (x).  

The series 
1

(1 cos( ))cos( )k

k

a mx kx


=

− converges to (1 cos( )) ( )mx f x− .  We show that 

the convergence is uniform on [0, π]. 

Now for any d  ≥ n and x in (0, π],    

               (1 cos( ))cos( ) (1 cos( )) cos( )
d d

k k

k n k n

a mx kx mx a kx
= =

− = −   

                                 2 21
cos( )

2

d

k

k n

m x a kx
=

    

                                 2 21
max cos( )

2

j

n
n j d

k n

m x a kx
 

=

  , by Lemma 4, 

                                 2 2

2

1 1

2 sin( )
n x

m a x , by using the summation method of (16), 

                                 2 2 21 1

2 2
n nm a x m a   , by (27). 

This inequality is obviously true for x = 0.  Hence, for x in [0, π], 

                        2 21
(1 cos( ))cos( )

2
k n

k n

a mx kx m a


=

−  .   -----------------  (77) 
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It then follows that the series converges to (1 – cos(mx)) f (x) uniformly on [0, 

π].  Therefore, 

0

0 0 0
1

2 2
(1 cos( )) ( ) (1 cos( )) (1 cos( ))cos( )k

k

a
mx f x dx mx dx a mx kx dx

  

  



=

− = − + −    

                                  0
0

1

2
cos( )cos( )k

k

a a mx kx dx






=

= −    

                                  0
0

1

2 cos( ) cos( )

2
k

k

mx kx mx kx
a a dx







=

+ + −
= −       

                                   0 ma a= − .             ------------------------------------  (78) 

Taking limit as m tends to infinity we have, by the Riemann-Lebesgue 

Theorem, 

                                 0
0

2
( )f x dx a




=       ------------------------------------ (79)    

It follows now from (78) that  

                                  
0

2
cos( ) ( ) mmx f x dx a




= . 

Hence the series (C) is the Fourier series for f. 

 

3.  Proof of The Main Results 

 

3.1 Proof of Theorem 1. 

By hypothesis an ≥ 0 for all n ≥ 1 and an → 0.  By Theorem 9, the series (S) 

converges pointwise on R and uniformly on [, 2π−].  We shall show that the 

sum function g is Lebesgue integrable if, and only if,  
1

n

n

a

n



=

  . 

Recall from (11) that the n-th partial sum of (S) is: 

                  
1

1

1 1

( ) ( ) ( ) ( ) ( )
n n

k n k nn k n k n

k k

s x D x a a D x D x a a D x
−

+

= =

=  + =  +  .   



28 
 

Since ( ) ( )ns x g x→ , an+1 → 0 and ( )nD x
x


 , by (34), 

                                      
1

( ) ( )k k

k

D x a g x


=

 →       ---------------------------  (80) 

 pointwise on [−π, π]. 

We now consider the use of the modified conjugate Dirichlet kernel.  Take the 

series 
*

1

( )k k

k

D x a


=

 .  It converges to a function g* on [−π, π], because   

* 1
( ) ( ) sin( )

2
k kD x D x kx= −  and 

1

1
sin( )

2
k

k

kx a


=

 converges uniformly and absolutely to 

a continuous function h on R by application of the Weierstrass M test.  That is, 

we have 

                                      
*

1

( ) *( )k k

k

D x a g x


=

 →        ------------------------   (81) 

on [−π, π] and ( ) *( ) ( )g x g x h x= + . 

Note that 
*

( ) 0k kD x a  and so by the Lebesgue Monotone Convergence 

Theorem, 

                                  ( )*

0 0
1

*( ) ( )k k

k

g x dx D x dx a
 

=

=    ---------------------  (82) 

and g* is Lebesgue integrable if, and only if,  ( )*

0
1

( )k k

k

D x dx a


=

    . 

Since ( ) *( ) ( )g x g x h x= +  and h is continuous, g is Lebesgue integrable if, and 

only if, g* is Lebesgue integrable. 

Now, by Theorem 7 Part (2),  
*

0
( ) ln( ) (1)kD x dx n O



= +  and since 
1

k

k

K a


=

    for 

any constant K,  

                          ( )*

0
1 1

( ) ln( )k k k

k k

D x dx a k a
 

= =

        .  ------------------ (83) 

It remains to show that  
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1 1

ln( ) k
k

k k

a
k a

k

 

= =

        .        -----------------  (84) 

Now, let 
1

n
k

n

k

a
t

k=

=   be the n-th partial sum of 
1

k

k

a

k



=

 .  Then by Abel summation 

formula (3), 

                                     
1

1

1 1

n n

n k k n n k k n n

k k

t s a a s s a a s
−

+

= =

=  + =  +  ,      ------------ (85) 

where 
1

1n

n

k

s
k=

=  . 

Suppose now that 
1

k

k

a

k



=

  , that is ( tn ) is convergent.   Therefore, ( tn ) is 

bounded above.  Since all the terms are nonnegative, 
1

0
n

k k

k

s a
=

   is bounded 

above and so the series 
1

k k

k

s a


=

  is convergent.   Now by (45), ln( ) (1)ks k O= +  

and so it follows that 
1

ln( ) k

k

k a


=

  is convergent. 

Conversely, suppose 
1

ln( ) k

k

k a


=

 is convergent.  Then 
1

n

k k

k

s a
=

  is convergent.  

Observe that 

                         ln( ) ln( ) ln( )n k k

k n k n

n a n a k a
 

= =

=     . 

Since ln( ) 0k

k n

k a


=

 → , by the Comparison test  

                                                ln( ) 0nn a → .   -----------------------------------  (86) 

Therefore, since ln( ) (1)ns n O= + and 0na → , ansn → 0.  It follows then form (85) 

that ( tn ) is convergent, i.e., 
1

k

k

a

k



=

  .   

Next, we show that if 
1

k

k

a

k



=

  , then (S) converges to g in the L1 norm.    

By the Lebesgue Monotone Convergence Theorem, 
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*

0
1

*( ) ( ) 0
n

k k

k

g x D x a dx


=

−  →   as n →  .     ------------  (87) 

Therefore, 

           
1

0
1

( ) ( ) ( )
n

k nk n

k

g x D x a a D x dx
 −

=

−  −  

  
1 1

*

0
1 1

1
*( ) ( ) ( ) sin( ) ( )

2

n n

k nk k n

k k

g x h x D x a kx a a D x dx
 − −

= =

= + −  −  −   

  
1 1

*

0 0 0
1 1

1
*( ) ( ) ( ) sin( ) ( )

2

n n

k nk k n

k k

g x D x a dx h x kx a dx a D x dx
  − −

= =

 −  + −  +    . -----  (88) 

Since 
1

1
sin( )

2
k

k

kx a


=

 converges uniformly to h on [0, π], 

                 
1

0
1

1
( ) sin( ) 0

2

n

k

k

h x kx a dx
 −

=

−  →  as n →  .     ------------------  (89) 

Since 
0

( ) ln( ) (1)nD x dx n O


= + , 0na → and ln( ) 0nn a →  (See (86)),  

                                    
0

( ) 0nna D x dx


→ .   --------------------------------  (90) 

Therefore, by the Comparison Test, using (88), (87), (89) and (90), we have 

       
1

0 0
1

( ) ( ) ( ) ( ) ( ) 0
n

k nn k n

k

g x s x dx g x D x a a D x dx
  −

=

− = −  − →  . 

Thus (S) converges to g in the L1 norm.  This completes the proof of       

Theorem 1.   

 

3.2 Proof of Theorem 2.       

If (a0 , a1,   ) is convex and an→ 0, then by Lemma 5, an  ≥ 0 for all n ≥ 0.   

Part (2) is a consequence of Part (1) by Theorem 11.  By Theorem 9, the cosine 

series (C) converges pointwise at x except possibly for x = 0 in [−π, π]. The 

limiting function or sum function f is continuous at every x ≠ 0 in [−π, π]. 

We shall show that f is a non-negative Lebesgue integrable function.  
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Let  
0

1

1
( ) cos( )

2

n

n k

k

t x a a kx
=

= +   be the (n+1)-th partial sum of (C).  Then we have, 

by Abel’s summation formula (3) (see (8)), 

                              
1

0

( ) ( ) ( )
n

n k k n n

k

t x D x a a D x
−

=

=  + . 

By using Abel’s summation formula on the summand 
1

0

( )
n

k k

k

D x a
−

=

 , we get   

               
2

2

1 1

0

( ) ( 1) ( ) ( ) ( )
n

n k k n n n n

k

t x k K x a nK x a a D x
−

− −

=

= +  +  +      

(see 15).   Here, ( )nK x is the Fejér kernel.  Note that for x ≠ 0 and x in [−π, π], 

( )
2 | |

nD x
x


  (see (35)).  It follows that ( ) 0n na D x → .  Observe that Kn(x) ≥ 0 for 

all x in [−π, π] and for x in [, π], 0 <  < π, from (19) we have 

            
2 2 21 1 1

2 2 2

1 1 cos(( 1) ) 1 1
( )

1 4sin ( ) 2( 1)sin ( ) 2( 1)sin ( )
n

n x
K x

n x n x n 

− +
=  

+ + +
  

or                          
2 1

2

1
max ( )

2( 1)sin ( )
n

x
K x

n   


+
.     ------------------  (91) 

Therefore, 1 1 1 12 21 1
2 2

1
( )

2 sin ( ) 2sin ( )
n n n n

n
nK x a a a

n  
− − − −   =  .  Since an → 0, 

1 1( ) 0n nnK x a− − → .   It follows that  

                           2

0

( ) ( 1) ( )n k k

k

t x k K x a


=

→ +   

pointwise on [−π, π] – {0}.  Hence for x in [−π, π] – {0},    

                             2

0

( ) ( 1) ( ) 0k k

k

f x k K x a


=

= +   .   

Because 2( 1) ( ) 0k kk K x a+   for all k ≥ 0, by the Lebesgue Monotone 

Convergence Theorem, 

                     ( ) 2

0

( ) ( ) ( 1)k k

k

f x dx K x dx k a
 

 



− −
=

= +      
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                                    2

0

( 1) k

k

k a


=

= +  , by (22) 

                                    <  , by Lemma 6. 

It follows that f is Lebesgue integrable.   This proves Part (1) and hence Part (2). 

Now, we examine the convergent series  

                                 2

0

( 1) ( )k k

k

k K x a


=

+  . 

Let the (n+1)-partial sum of this series be 2

0

( ) ( 1) ( )
n

n k k

k

G x k K x a
=

= +  .   

By the Lebesgue Monotone Convergence Theorem, 

                                    ( ) ( ) 0nf x G x dx


−
− → .               -------------------  (92) 

More precisely,  

                         ( ) 2

0

( ) ( ) ( 1) ( )
n

n k k

k

G x dx K x dx k a f x dx
  

  − − −
=

= +  →   . 

Now, 

 ( ) ( ) ( ) ( ) ( ) ( )n n n n n nt x f x a D x t x f x a D x− −  − −  

                                  
2

2

1 1

0

( 1) ( ) ( ) ( )
n

k k n n

k

k K x a f x nK x a
−

− −

=

= +  − +  ,  by (15), 

                                  2 1 1( ) ( ) ( )n n nG x f x nK x a− − − − +  .     

Therefore,      

 2 1 1( ) ( ) ( ) ( ) ( ) ( )n n n n n na D x G x f x nK x a t x f x− − −− − −   −  

                                  2 1 1( ) ( ) ( ) ( )n n n n na D x G x f x nK x a− − − + − +  . 

                                                                                      ---------------------  (93) 

Hence, 

2 1 1( ) ( ) ( ) ( ) ( ) ( )n n n n n na D x dx G x f x dx n a K x dx t x f x dx
   

   
− − −

− − − −
− − −   −     
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2 1 1( ) ( ) ( ) ( )n n n n na D x dx G x f x dx n a K x dx

  

  
− − −

− − −
 + − +    .   

Thus, by (22) we get 

2 1( ) ( ) ( ) ( ) ( )n n n n na D x dx G x f x dx n a t x f x dx
  

  
− −

− − −
− − −   −    

                        
2 1( ) ( ) ( )n n n na D x dx G x f x dx n a

 

 
− −

− −
 + − +   .       

By Lemma 6, 1 1 1( 1) 0n n nn a n a a  − − − = −  +  →  and so it follows from the above 

inequality and (92) that                                                    

                    lim ( ) ( ) lim ( )n n n
n n

t x f x dx a D x dx
 

 − −→ →
− =  .          ------------------  (94) 

Since 
4

( ) ln( ) (1)nD x dx n O


 −
= +  and an → 0, lim ( ) 0 ln( ) 0n n n

n
a D x dx a n



−→
=  → . 

Therefore, lim ( ) ( ) 0 lim ln( ) 0n n
n n

t x f x dx a n


−→ →
− =  = .  This proves Part (4). 

Now we examine the (C,1) mean of the Fourier series (C):                    

                           ( )1 0 1

1
( ) ( ) ( ) ( )

1
n nx t x t x t x

n
 + = + + +

+
  

For x in [−π, π] – {0}, tn(x) →  f (x).   Therefore, by the regularity of Cesaro 

summability, 1( ) ( )n x f x + → .  [ If a series converges, then its (C,1) mean also 

converges to the same value.]   It remains to prove Part (3) that 

 ( ) ( ) 0n x f x dx





−
− → .     

Firstly, we show that 1( ) ( )n x dx f x dx
 

 
 +

− −
→  .  

We shall use the following formula that for a (C,1) mean of a series with index 

starting from 0, 

                    ( )1 0 1

0

1
1

1 1

n

n n k

k

k
s s s a

n n
 +

=

 
= + + + = − 

+ + 
  ,   -------------------  (95) 

where 
0

n

n k

k

s a
=

=  . 

Using (95), we have 
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 ( )1 0 1

1
( ) ( ) ( ) ( )

1
n nx t x t x t x

n
 + = + + +

+
   

             0

1

1
1 cos( )

2 1

n

k

k

k
a a kx

n=

 
= + − 

+ 
       

             
1

1

0

1
1 1 ( ) 1 ( )

1 1 1

n

k k k n n

k

k k n
a a D x a D x

n n n

−

+

=

+      
= − − − + −      

+ + +      
 ,  

                                 by Abel’s summation formula (3),  

            ( ) ( ) 
1 1

1

0 0

1
( ) 1 ( ) 1 ( )

1 1

n n

k k k k k n n

k k

n
a D x k a k a D x a D x

n n

− −

+

= =

 
=  + − + + + − 

+ + 
   

            ( ) 
1 1

0 0

1
( ) 1 ( ) 1 ( )

1 1

n n

k k k k k n n

k k

n
a D x a k a D x a D x

n n

− −

= =

 
=  + − +  + − 

+ + 
    

            ( )
1 1 1

0 0 0

1 1
( ) ( ) 1 ( ) 1 ( )

1 1 1

n n n

k k k k k k n n

k k k

n
a D x a D x k a D x a D x

n n n

− − −

= = =

 
=  + − +  + − 

+ + + 
      

            ( )
1 1

0 0 0

1 1
( ) ( ) 1 ( )

1 1

n n n

k k k k k k

k k k

a D x a D x k a D x
n n

− −

= = =

=  + − + 
+ +

   .  -----------  (96) 

Now 
1 2

2

1 1

0 0

( ) ( 1) ( ) ( )
n n

k k k k n n

k k

a D x a k K x a nK x
− −

− −

= =

 =  + +   , 

  
1

0 0

1 1
( ) ( 1) ( )

1 1

n n

k k k k n n

k k

a D x a k K x a K
n n

−

= =

=  + +
+ +

    and  

( ) ( ) ( ) 
21 2

1 1 1

0 0

1 1
1 ( ) 1 2 ( 1) ( )

1 1 1

n n

k k k k k n n

k k

n
k a D x k a k a k K x a K

n n n

− −

+ − −

= =

+  = +  − +  + + 
+ + +

  , 

                                          by using Abel’s summation (3). 

Therefore, it follows from (96), 

2
2

1 1 1

0

( ) ( 1) ( ) ( )
n

n k k n n

k

x a k K x a nK x
−

+ − −

=

=  + +     

                   
1

0

1
( 1) ( )

1

n

k k n n

k

a k K x a K
n

−

=

+  + +
+

   

                   ( ) ( ) 
22

1 1 1

0

1
1 2 ( 1) ( )

1 1

n

k k k n n

k

n
k a k a k K x a K

n n

−

+ − −

=

− +  − +  + − 
+ +
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2

2

1 1 1 1

0

1
( 1) ( ) ( ) ( )

1

n

k k n n n n n n

k

a k K x a nK x a nK x a K
n

−

− − − −

=

=  + +  +  +
+

     

                  ( ) 
22

1 1 1

0

1
2 ( 1) ( )

1 1

n

k k k n n

k

n
k a k a k K x a K

n n

−

+ − −

=

−  − +  + − 
+ +

   

        
2

2

1 1 1 1

0

1
( 1) ( ) ( ) ( )

1

n

k k n n n n n n

k

a k K x a nK x a nK x a K
n

−

− − − −

=

=  + +  +  +
+

     

                    
22

2

1 1 1

0

1
2 ( 1) ( )

1 1

n

k k k n n

k

n
k a a k K x a K

n n

−

+ − −

=

−  −  + − 
+ +

 .    --------- (97)
    

 

Thus,  

    1 2 1 1 1 1

1
( ) ( ) ( ) ( )

1
n n n n n n n nx G x a nK x a nK x a K

n
 + − − − − −− =  +  +

+
  

                               
22

2

1 1 1

0

1
2 ( 1) ( )

1 1

n

k k k n n

k

n
k a a k K x a K

n n

−

+ − −

=

−  −  + − 
+ +

 . 

                                                                                          ----------------  (98) 

Now, 

   
2 2

2 2

1 1

0 0

2 ( 1) ( ) 2 ( 1)
n n

k k k k k

k k

k a a k K x k a a k





− −

+ +
−

= =

   
 −  + =  −  +   

   
    

                 
2 2

2

1

0 0

( 1) 2 ( 1)
n n

k k

k k

k a k a k 
− −

+

= =

=  + −  +    

                
2 3 2

2 2

1 1

0 0 0 0

( 1) 2 ( 1) 2 ( 1)
n n k n

k k n

k k j j

k a k a j a j  
− − −

+ −

= = = =

   
=  + −  + −  +   

   
     , 

                                                                by Abel’s summation formula (3) 

               
2 3

2 2

1 1

0 0

( 1) ( 1)( 2) ( 1)
n n

k k n

k k

k a k a k k a n n  
− −

+ −

= =

=  + −  + + −  −   

              
2 2

2 2

1

0 1

( 1) ( 1) ( 1)
n n

k k n

k k

k a k a k k a n n  
− −

−

= =

=  + −  + −  −   

              1 ( 1)na n n −= −  − .                                  ------------------------  (99) 
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Therefore, it follows from (98) and (99) that 

 ( )
2

1 2 1 1 1 1

1 1
( ) ( ) ( 1)

1 1 1
n n n n n n n

n
x G x dx a n a n a a n n a

n n n




     + − − − − −

−
− =  +  + +  − − 

+ + +  

                                   1 0n na n a −=  + →  as n →  , by Lemma 6. 

Therefore,  

( ) ( ) ( )1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) 0n n n nx f x dx x G x dx G x f x dx
  

  
 + + − −

− − −
− = − + − →    as n →   . 

That is,  1lim ( ) ( )n
n

x dx f x dx
 

 
 +

− −→
=  .    

Convergence in the L1 norm is more difficult.  We shall need some technical 

result concerning the Fejér kernels and the (C, 1) mean of a Fourier series. 

 

We shall need to use more general result to do this. 

3.3 Proof of Theorem 2 part (3). 

We write the (n+1)-th partial sum tn as an integral: 

         0

1 1

1 1 1
( ) cos( ) ( ) cos( ( ))

2 2

n n

n k

k k

t x a a kx f t k t x dt


 −
= =

 
= + = + − 

 
  ,  

                                since the limiting function f is Lebesgue integrable, 

                 
1 1

( ) ( ) ( ) ( )n nf t D t x dt f x u D u du
 

  − −
= − = +  ,       -------------- (100) 

                                                        by Change of Variable and periodicity. 

Note that (100) is also true for a general Lebesgue integrable function f not 

necessarily an even function. 

Then the (C,1) mean, 

          ( )1 0 1

0

1 1 1
( ) ( ) ( ) ( ) ( ) ( )

1 1

n

n n k

k

x t x t x t x f x u D u du
n n







+

−
=

= + + + = +
+ +

    

                   
1

( ) ( )nf x u K u du


 −
= + .                                  ----------------- (101) 
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Therefore, 

                    ( )1

1
( ) ( ) ( ) ( ) ( )n nx f x f x u f x K u du







+

−
− = + − ,   ----------------  (102) 

since 
1

( ) 1nK u du


 −
= . 

Before we proceed further, we state a result of Fejér: 

Theorem 12.  Suppose f is a Lebesgue integrable periodic function of period 

2π.  Then f has a Fourier series (A). 

(1)  If  f  is continuous at x, then the (C,1) mean of the Fourier series (A) 

converges to f (x); 

(2)  If f is continuous on [−π, π], then the (C,1) mean of the Fourier series (A) 

converges uniformly to f ; 

(3)  If f has a jump discontinuity at x, that is, lim ( ) ( )
t x

f t f x
− −

→
= and 

lim ( ) ( )
t x

f t f x
+ +

→
= exist, finite and not equal, then the (C,1) mean of the 

Fourier series at x converges to ( )
1

( ) ( )
2

f x f x− ++  . 

Proof.  Using (102), we have 

( )1

1
( ) ( ) ( ) ( ) ( )n nx f x f x u f x K u du







+

−
− = + −  

  ( ) ( )
0

0

1 1
( ) ( ) ( ) ( ) ( ) ( )n nf x u f x K u du f x u f x K u du



  −
= + − + + −   

  ( ) ( )
0 0

1 1
( ) ( ) ( ) ( ) ( ) ( )n nf x u f x K u du f x u f x K u du

 

 
= + − + − −  , 

                                            by Change of Variable and that Kn(−u) = Kn(u), 

   
0

2 ( ) ( )
( ) ( )

2
n

f x u f x u
f x K u du





+ + − 
= − 

 
   

   
0

2
( , ) ( )nx u K u du






=  ,                                                 --------------------- (103) 

where 
( ) ( )

( , ) ( )
2

f x u f x u
x u f x

+ + −
= − . 



38 
 

If f is continuous at x, then given  > 0, there exists  > 0 depending on x so that  

                       ( ) ( )u f x u f x   + −  .               ----------------------  (104) 

Therefore, 

                                         ( , )u x u                -----------------------  (105)    

 and it follows that 

              
1

0 0 0
( , ) ( ) ( ) ( )

2
n n nx u K u du K u du K u du

  
     =   .  -------------  (106)                        

Now,   

                         ( , ) ( ) ( ) ( , )n nx u K u du x u du
 

 
     ,            ---------------   (107) 

where 

                           
2 1

2

1
( ) max ( )

2( 1)sin ( )
n n

x
K x

n 
 

 
= 

+
.         ------------------ (108) 

Thus, by (103), (106) and (107),  

  1
0

2 2
( ) ( ) ( , ) ( ) ( ) ( , )

2
n n nx f x x u K u du x u du

 




     

 
+

 
− =  + 

 
  , i.e.,            

                      1

2
( ) ( ) ( ) ( , )n nx f x x u du




    


+ −  +  .         ------------ (109) 

Since the inequality (108) implies that ( ) 0n  → , it follows from (109) that 

1( ) ( ) 0n x f x + − → .  That is to say, 1( ) ( )n x f x + → .  This proves part (1). 

If f is continuous on [−π, π], then f is uniformly continuous on [−π, π] and so 

(104) is valid for any x as  > 0 can be chosen for any x such that (104) holds 

true. 

Note that if max ( )
x

M f x
 −  

= , then  ( , ) 2x u M  .  It follows from (109) that for all 

x,         

              1

2
( ) ( ) ( ) 2 4 ( )n n nx f x Mdu M




      


+ −  +  + .    -------------- (110) 
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This implies that 1( ) ( )n x f x + → uniformly on [−π, π].  This completes the proof 

for part (2). 

Suppose now f has a jump discontinuity at x.  We may redefine the value of f at 

x to be  ( )
1

( ) ( )
2

f x f x− ++ .  Then by the definition of the one-sided limit at x, 

there exists  > 0 so that ( , )u x u     .  It follows in exactly the same 

manner, using (106) and (107), that 1( ) ( )n x f x + → .  This proves part (3).   

 

Completion of the proof of Theorem 2 part (3) 

By (102), 1

1
( ) ( ) ( ) ( ) ( )n nx f x f x u f x K u du







+

−
−  + − . 

Therefore, 

        ( )1

1
( ) ( ) ( ) ( ) ( )n nx f x dx f x u f x K u du dx

  

  



+

− − −
−  + −   . 

But  

             ( ) ( )( ) ( ) ( ) ( ) ( ) ( )n nf x u f x K u du dx f x u f x K u dx du
   

   − − − −
+ − = + −    , 

                                             by Fubini Theorem for non-negative function, 

                           ( ) ( )nu K u du





−
=  ,     ----------------------- (111) 

where  ( ) ( ) ( )u f x u f x dx





−
= + − .   

Note that (u) is a periodic, nonnegative continuous function.  It is also an even 

function but we do not require this fact.  That it is a continuous function can be 

deduced by the fact that f can be approximated by a continuous function since it 

is integrable (See the next theorem.)  Hence ( ) ( )nu K u is integrable.  Note that f 

is measurable since it is integrable and so there is an integrable Borel 

measurable function g such that g = f almost everywhere on [−π, 2π].  We may 

replace f by g and the integral 
1

( ) ( ) ( )nf x u f x K u du


 −
+ −  as well as the integrals 

on both sides of (111) remain unchanged.  Since g is Borel, g(x + y) is 

measurable with respect to the product measure on  and so 
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( ) ( ) ( )ng x u g x K u+ −  is measurable and we may apply Fubini Theorem to 

conclude that 

             ( ) ( )( ) ( ) ( ) ( ) ( ) ( )n ng x u g x K u du dx g x u g x K u dx du
   

   − − − −
+ − = + −      

and so (111) follows since  

              ( ) ( )( ) ( ) ( ) ( ) ( ) ( )n ng x u g x K u dx du f x u f x K u dx du
   

   − − − −
+ − = + −    . 

By (101),  
1

( ) ( )nu K u du





 −  is the (C,1) mean of the Fourier series for  at 0.   

Observe that (0) = 0.  We shall prove that (u) is continuous at 0.   Indeed 

(u) is continuous on [−π, π].  The proof for any u in [−π, π] is similar.    We 

require the following approximation theorem:  

Theorem 13.  Given any  > 0, any integrable function g on may be 

approximated by a continuous function  with compact support so that 

R
( ) ( )x g x −  .    

To use this result, extend the domain of f beyond [−2π, 2π] by defining it to take 

the value 0 outside [−2π, 2π].  Then there exists a continuous function   with 

compact support so that 
R

( ) ( )
3

x f x dx


 −    .   Therefore, ( ) ( )
3

x f x dx







−
−    

and ( ) ( )
3

f x u x u dx







−
+ − +  . 

Thus,  ( ) ( )f x u f x dx


−
+ −  

    ( ) ( ) ( ) ( ) ( ) ( )f x u x u dx f x x dx x u x dx
  

  
   

− − −
 + − + + − + + −    

    ( ) ( )
3 3

x u x dx




 
 

−
 + + + − . 

The function  is continuous on [−2π, 2π] and so it is uniformly continuous on 

[−2π, 2π].  Hence, by uniform continuity, there exists π >  > 0 so that   

           ( ) ( )
6

x u x


 


+ −     for all x in [−π, π] and for any  | |u  . 
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Hence, ( ) ( )
6 3

x u x dx dx
 

 

 
 

− −
+ −  =      for   | |u   and so     

                              ( ) ( )f x u f x dx





−
+ −   . 

It follows that ( ) ( ) 0f x u f x dx


−
+ − →  as u → 0.  This means  is continuous at 

0. 

By (111), 

             1

1
( ) ( ) ( )n nx f x dx u K du

 

 
 


+

− −
−   . 

Therefore, since the right-hand side of the above expression is the (C,1) mean of 

the Fourier series of  at 0 and (0) = 0, by Theorem 12 Part (1),    

                            
1

( ) (0) 0nu K du



 

 −
→ = .   

Hence, by the Comparison Test, we have 

                   1( ) ( ) 0n x f x dx



 +

−
− →   

and this completes the proof of Theorem 2 part (3). 

 

We have actually proved the following 

Theorem 12*.   Suppose f is a Lebesgue integrable function of period 2π.  Then 

the sequence of (C,1) means of the Fourier series of f converges to f in the L1 

norm.  More precisely,  1( ) ( ) 0n x f x dx



 +

−
− → . 

 

3.4 Proof of Theorem 3 

Suppose an → 0 and (an) = (a0, a1,  ) is decreasing.  By Theorem 9, the cosine 

series (C), 

                      0

1

1
cos( )

2
n

n

a a nx


=

+  , 
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converges pointwise to a function f (x) in [−π, π] except possibly at x = 0.   The 

function f   is continuous at x ≠ 0. 

We assume that a0 = 0 and all partial sums involved begin with a1 .  The series 

obtained by integrating (C) term-wise is 

                                    
1

sin( )n

n

a
nx

n



=

 .              ----------------------------  (SC) 

Since an → 0 and so 0na
n

n

 
→ 

 
 and with this condition, by Theorem 10, (SC) 

converges uniformly to a continuous function F(x) on .  Note that the series 

(C) converges uniformly in [, 2π−] for any 0 <  < π.  This implies that F is 

differentiable in [−π, π]−{0} and ( ) ( )F x f x = .   Since F is continuous and so 

Lebesgue integrable, by Theorem 11, (SC) is the Fourier series of F.   Hence 

                                   
0

2
( )sin( )na

F x nx dx
n




=  .                   --------------------- (112) 

Now, for 0 <  < π, 

  
1 1

( )sin( ) cos( ) ( ) cos( ) ( )F x nx dx nx F x nx f x dx
n n


 

 


 
= − +  

  , 

                                                          by integration by parts, 

                         
1 1 1

cos( ) ( ) cos( ) ( ) cos( ) ( )n F n F nx f x dx
n n n




   = − +   .  -------- (113)      

Note that F(π) = 0 and 
0

lim ( ) (0) 0F F



→

= = .  It then follows from (113) that 

0 0 0

1 1 1
lim ( )sin( ) lim cos( ) ( ) cos( ) ( ) lim cos( ) ( )F x nx dx n F n F nx f x dx

n n n

 

   
   

→ → →
= − +   

         
0 0

1 1 1 1
cos(0) (0) cos( ) 0 lim cos( ) ( ) lim cos( ) ( )F n nx f x dx nx f x dx

n n n n

 

  


→ →
= − + =  . 

Hence, from (112),         

          
0 00

1 1
( )sin( ) lim cos( ) ( ) cos( ) ( )

2

na
F x nx dx nx f x dx nx f x dx

n n n

  





→
= = =    , ----- (114) 

where the right-hand side is an improper Riemann integral, 
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and so 

                      
00

2 2
lim cos( ) ( ) cos( ) ( )na nx f x dx nx f x dx

 

 →
= =  . 

Thus, once we show that f has an improper integral that is 0, then (C) is the 

Riemann Fourier series of f.   

For 0 <  < π,  ( ) ( ) ( ) ( ) ( )f x dx F x dx F F F
 

 
  = = − = −  .  Therefore,      

                       
0 0

( ) lim ( ) (0) 0f x dx F F





→
= − = − = . 

Thus, (C) is the Riemann Fourier series of  f.   

Suppose now that a0 ≠ 0.  Then if (C) converges to f, 
1

cos( )n

n

a nx


=

  converges to 

0( )
2

a
f x −  and by the above argument  0

0
( ) 0

2

a
f x dx

  
− = 

 
  so that  

                                  0
0

2
( )f x dx a




= .  

From (114), we obtain, for n ≥ 1. 

              
0 0

1
( )sin( ) lim cos( ) ( )

2

na
F x nx dx nx F x dx

n n

 





→
= =   

                     0

0 0

1 1
cos( ) ( ) cos( ) ( )

2

a
nx f x dx nx f x dx

n n

  
= − = 

 
    

and we have, as before, 
0

2
cos( ) ( )na nx f x dx




=   for n ≥ 1.   Note that in 

interpreting (114) in the context that a0 ≠ 0, 0( ) ( )
2

a
F x f x = −  .   

That is to say, (C) is the Riemann Fourier series of its sum function f.  This 

completes the proof of Theorem 3. 

4.  Examples 

(1)    Because the sequence 
1

ln( )n

 
 
 

 is convex, by Theorem 2 part (4), translated   

appropriately with the series starting from n= 2, the series 
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2

1
cos( )

ln( )n

nx
n



=

  

converges to a Lebesgue integrable function f and is the Fourier series of 

its sum function f. It does not converge to f in the L1 norm.  Indeed by (94) 

in the proof of Theorem 2 and Theorem 7,  

        
1 1 4 4

lim ( ) ( ) lim ( ) lim ln( ) 0
ln( ) ln( )

n n
n n n

t x f x dx D x dx n
n n

 

   − −→ → →
− = = =   . 

However, its (C,1) mean converges to f in the L1 norm.    

The conjugate series 

                                 
2

1
sin( )

ln( )n

nx
n



=

  

by Theorem 9, converges to a function g but it is not the Fourier series of g 

by Theorem 1 since 
2

1

ln( )n n n



=

  is divergent. 

(2)  The series 

                                
2

1
cos( )

ln( )n

nx
n n



=

  

converges to a Lebesgue integrable function f in the L1 norm by Theorem 2 

Part (4). 

(3)  The series  

                                              2

1
cos( )

ln( )n

nx
n



=


        

converges by Theorem 2, to a non-negative Lebesgue integrable function f 

because the sequence 
1

ln( )n

 
 
 

is convex.  But it does not converge to f in the 

L1 norm.   Indeed, the integral of the modulus of its n-th partial sum tn(x) 

tends to infinity.   We deduce this as follows. From (94),  

                   lim ( ) ( ) lim ( )n n n
n n

t x f x dx a D x dx
 

 − −→ →
− =    

                                               
1 4

lim ln( )
ln( )n

n
n →

=    by Theorem 7 



45 
 

                                               
4

lim ln( )
n

n
→

= =    

and so lim ( )n
n

t x dx


−→
=  . 

However, its (C,1) mean tends to f in the L1 norm. 

 

5.  Related Results to Theorem 10 and Theorem 1. 

There are two results that can be proved or deduced by the methods of Theorem 

10.  One of them concerns bounded convergence and the other continuity. 

Theorem 14.   Suppose an ≥ 0 for n ≥ 1 and an → 0.  Then the series (S) 

converges boundedly on  if, and only if, 1( )n n
a O= or nna K  for all n ≥1 and 

for some K > 0. 

Proof. 

Suppose (S) converges boundedly on .  Then there exists a real number M > 0 

such that for all n ≥ 1 and for all x in , 

                                           
1

sin( )
n

k

k

a kx M
=

 .         -----------------------  (115) 

Take any n ≥ 1.  Let 
4

y
n


= . Since an → 0 and ( an ) is decreasing,  an  ≥ 0 for all 

n ≥ 1.  Therefore, 

                  
2 2 2

2 2 2

1 1 1

sin( ) sin( ) sin( ) sin( ) 0
4

n n n

k n n n

k n k n k n

a ky a ky a ny na


= + = + = +

      . 

It then follows from (115) that for any n ≥ 1, 

             
2 2 2

2

1 1 1

sin sin( ) sin( ) sin( )
4

n n n

n k k k

k n k k

na a ky a ky a ky M


= + = =

 
  =  

 
   , 

that is, 
2 2nna M . Therefore 

22 2 2nna M .  Since 2 2 2 1n na a− − ,    

2 1 2 2(2 2) (2 2) 2 2n nn a n a M− −−  −   for n > 1.  Thus, for n > 1,

2 1 2 1 2 1 2 1 1(2 1) (2 2) 2 2 2 2n n n nn a n a a M a M a− − − −− = − +  +  + .   If we let 
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12 2K M a= + , then for all n ≥ 1, 2 1(2 1) nn a K−−  .  It follows that nna K  for 

all n ≥ 1.   

Conversely, suppose there exists K > 0 such that nna K  for all n ≥ 1.   

Take any x in (0, π].  Let xN
x

 
=   

, the integer part of π/x.  Then  

1 1x xN N
x


   + .  By Theorem 9, (S) is convergent on , i.e.,

1

( ) sin( )n

n

T x a nx


=

=   

is convergent for all x.  Let 
1

( ) sin( )
k

k n

n

T x a nx
=

=  . We split Tk (x) into two 

summations according to x using Nx .  For convenience we drop the subfix and 

let N = min(k,  Nx ) and note that it depends on x. 

Let 
1

'( ) sin( )
N

n

n

T x a nx
=

=   and 
1

''( ) sin( )
k

n

n N

T x a nx
= +

=   if N < k and empty if N ≥ k.  For 

the first summation we have 

             
1 1 1

'( ) sin( )
N N N

n n

n n n

T x a nx a nx Kx KNx K
= = =

       .   --------------  (116) 

From (67) we have 

            ( )''( ) ( ) ( )k NT x s x s x= −     

                     
1

( ) ( ) ( )
k

n k Nn k N

n N

D x a a D x a D x
−

=

 
=  + − 

 
 , by using (67),  

                     
1

1

1

( ) ( ) ( )
k

n k Nn k N

n N

D x a a D x a D x
−

+

= +

 
=  + − 

 
 . 

Therefore, when N < k,       

             
1

1

1

''( ) ( ) ( ) ( )
k

n k Nn k N

n N

T x D x a a D x a D x
−

+

= +

  + +  

                       
1

1 1

1

2
k

n k N N

n N

a a a a
x x x x

   −

+ +

= +

  + + = , by using inequality (34), 

                       12 ( 1)Na N+ + ,    since 1N
x


 + ,  
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                       2K .                                       ------------------------------  (117)  

Therefore, combining (116) and (117) we have for any x in (0, π]         

                                 ( ) (2 )kT x K +               ------------------------------   (118) 

Inequality (118) is obviously true for x = 0.  Therefore, Tk (x) converges 

boundedly on [0, π], i.e., (S) converges boundedly on [0, ].  Since the sum 

function is odd, (S) also converges boundedly on [−π, 0] and hence on [−π, π].  

It then follows by periodicity that (S) converges boundedly on the whole of .     

The next result states that the uniform convergence of the series (S) is 

equivalent to the continuity of the limiting function g. 

 

Theorem 15.   Suppose an ≥ 0 for n ≥ 1 and an → 0.  Then the series (S) 

converges to a continuous function on if, and only if, 0nna →  . 

Proof. 

Suppose 0nna →  .  Then by Theorem 10 (S) converges uniformly to g on .  

Consequently, g is continuous.  

Conversely suppose the limiting function g is continuous.  Then g is Lebesgue 

integrable and so by Theorem 11, (S) is the Fourier series of g. 

We assert that we may integrate g term by term.  This is a special case that any 

Fourier series may be integrated term by term and the resulting series converges 

uniformly. 

If we integrate (S) term by term we obtain the following series: 

                 (D)       
1 1 1

(1 cos( )) cos( )n n n

n n n

a a a
nx nx

n n n

  

= = =

− = −   . 

Since (S) is the Fourier series of g, 

          
2 2

0 0
1 1 1

1 1 1 sin( )
( )sin( ) ( )m

m m m

a mt
g t mt dx g t dx

m m m

 

 

  

= = =

 
= = 

 
     

                 
2

0

1
( )( )

2
g t x dx






= − , 
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by the Lebesgue Dominated Convergence Theorem, since 
1

sin( )

m

mt

m



=

  converges 

boundedly to the function 

1
( ) , 0 2

( ) 2

0 0, 2

x x
h x

x

 




−  

= 
 =

 . 

This implies that 
1

n

n

a

n



=

  is convergent.  It then follows that the series (D) 

converges uniformly and absolutely to a continuous function by the Weierstrass 

M-test.  We now show that it converges to the integral of g, 
0

( ) ( )
x

G x g t dt=   . 

Observe that G(0) = G(2) = 0 and G is continuous of period 2 and is an even 

function.   It follows that the Fourier series of G(x) is a cosine series and its 

Fourier coefficients An is given by 

  ( )
2 22

0 00 0

1 1
( ) ( ) ( )A G t dt G t t tg t dt

 

 
= = −    

      
2

0

1
( ) ( )t g t dt






= −    since G(0) = G(2)=0, 

       
1

2 n

n

a

n



=

=   

and for n ≥ 1, 

2
2 2

0 0
0

1 1 sin( ) sin( )
( )cos( ) ( ) ( )n

nt nt
A G t nt dt G t g t dt

n n


 

 

  
= = −     

  ,  

                                                                              by integration by parts, 

    
2

0

1 1
( )sin( ) na

g t nt dt
n n




= − = − . 

Thus the Fourier series of G(x) is given by (D).  

Since G is continuous on [0, 2] and its Fourier series (D) is convergent on [0, 

2], by Theorem 12 Part (2), the (C,1) mean of (D) converges uniformly to G 

on [0, 2]. Since (D) converges uniformly, its limiting function is the same as 

the limit of its (C,1) mean.  Consequently (D) converges uniformly to G. 
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Let k be any positive integer, 

                      
/

0
1

( ) 1 cos
k

n

n

a
G g t dt n

k n k

 

=

    
= = −    

    
  .         ---------- (119) 

Since g is continuous at 0, g(t) → 0 as t → 0. Given any  > 0, there exists  > 0 

such that | | | ( ) |t g t    .  Since 0
k


→  because k → , there exists a 

positive integer N such that k N
k


    .  Therefore, 

    
/ / /

0 0 0
( ) ( )

k k k

k N G g t dt g t dt dt
k k

   
 

 
  =   = 

 
   . -----------(120)  

This means 

                                           lim 0
k

kG
k



→ 

 
= 

 
 .       -------------------------- (121)  

Now,     

      
2

2

2 2 2
[ /2] 1 [ /2] 1 [ /2] 1

1 1
1 cos 2 2

n k n k n k
n n

n

n k n k n k

a a
n n na

n k n k k

 



= = =

= + = + = +

  
−  =  

  
   ,  

                                                                       by using inequality (28), 

                
2 2 2

[ /2] 1 [ /2] 1

1 2 2 [ / 2]
2 ( [ / 2] 1)

2

n k n k

k k k

n k n k

k k
na a n a k k

k k k

= =

= + = +

−
 = = + +   

               
2

2
( [ / 2] 1)

4 2

k
k

k a
a k k

k
 + +  .             ----------------------- (122)  

Therefore, for k > N, 

    
/

0
1

( ) 1 cos
2

k
n k

n

a a
G g t dt n

k n k

 

=

    
= = −     

    
  . -----------------  (123)                

Hence, 2kka kG
k

 
  

 
 for k > N.   And so by the Squeeze Theorem and (121), 

lim 0k
k

ka
→ 

= . 
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This completes the proof. 

 

The next result concerns the cosine series (C).  It gives a sufficient condition for 

the Lebesgue integrability of the sum function of (C), whereas the same 

condition is a necessary condition for the sum function of (S) to be Lebesgue 

integrable.   

 

The method of proof of Theorem 1 proves the following: 

Theorem 16.  Suppose (an) is a sequence of nonnegative terms, an = an – an+1 

≥ 0 and an→ 0.  Then the limit function or sum function of (C), f, is Lebesgue 

integrable if  
1

n

n

a

n



=

  .  If 
1

n

n

a

n



=

  , then (C) is the Fourier series of f and  

( ) ( ) 0nt x f x dx


−
− → , where tn(x) is the (n+1)-th partial sum of the series (C), 

that is, tn(x) converges to f in the L1 norm.    

Proof. 

Recall from (8) that the (n+1)-th partial sum of the series (C) is      

                              
1

0

( ) ( ) ( )
n

n k k n n

k

t x D x a a D x
−

=

=  + . 

As deduced in Section 2.6, tn(x) converges pointwise to a continuous function f 

on  , {0} − −  .  It may or may not converge at 0.  We want to show that f is 

Lebesgue integrable on  , − . 

Since for x  0, ( ) ( )nt x f x→ , an → 0 and ( )
2

nD x
x


  by (35), 

                                      
0

( ) ( )k k

k

D x a f x


=

 →       ---------------------------  (124) 

 pointwise and absolutely on  , {0} − − . 

Recall from the proof of Theorem 1 (see (84)), that 

                             
1 1

ln( ) k
k

k k

a
k a

k

 

= =

       . 
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Note that 
0

( ) ( )k k

k

g x D x a


=

=  is convergent on  , {0} − − .  Obviously, 

0

( )
n

k k

k

D x a
=

  is dominated by g.   By Lemma 7 part (1) or (51), for n ≥ 1, 

                           
4

( ) ln( ) (1)nD x dx n O


 −
= + . 

Therefore, ( )
0

( )k k

k

D x dx a






−
=

     as we are given that 
1

k

k

a

k



=

  .   

Therefore, by the Lebesgue Monotone Convergence Theorem, g is Lebesgue 

integrable on  , − .    It follows then by the Lebesgue Dominated 

Convergence Theorem and (124) that   f   is Lebesgue integrable on  , − .   

Therefore, by Theorem 11, (C) is the Fourier series of f. 

Next, we show that if 
1

k

k

a

k



=

  , then (C) converges to f in the L1 norm.    

By the Lebesgue Domonated Convergence Theorem, 

                          
0

( ) ( ) 0
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Now, 
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Since 
4

( ) ln( ) (1)nD x dx n O


 −
= + , 0na → and ln( ) 0nn a →  (See (86)),  
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−
→ .   ----------------------------  (128) 

Therefore, by the Comparison Test, using (126), (127) and (128), we have 
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Thus, (C) converges to f in the L1 norm.  This completes the proof. 
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Remark.  We have seen in Example 4 (1) that the series 

                                   
2

1
cos( )

ln( )n

nx
n



=

  

converges to a Lebesgue integrable function f and is the Fourier series of f.   As 

2

1

ln( )n n n



=

  is divergent, this shows that the converse of Theorem 16 is false.   

Note that it does not converge to f in the L1 norm.   


