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Convergence of Fourier Series 

By Ng Tze Beng 

 

This article is about convergence of Fourier series.  Pointwise convergence, uniform convergence, 

(C,1) summability and convergence almost everywhere will be discussed.  We divide this note into 

three sections.  In Section A we set up the notations and describe the concepts involved while in 

section B we describe some results in Lebesgue theory.  In Section C, we give necessary and sufficient 

conditions for convergence, uniform convergence and (C,1) summability.  Some tests and sufficient 

conditions for uniform convergence for function of bounded variation are derived.  Application to 

sectionally continuous functions is given.  We have included Féjer Lebesgue Theorem which gives a 

sufficient condition for the (C,1) summability of Fourier series and some theorems concerning (C,1) 

summability and convergence almost everywhere. 

Section A.  Definitions, Notations and Preliminaries 

Definition 1. 

Let f be a Lebesgue integrable periodic function of period 2. 

It is convenient to assume that f is defined for all values of x in [0, 2π] and by 

periodicity to all of .  We may need to define values of f appropriately where 

it is not defined in [0, 2π] and extend to  by periodicity.   

Then we have the following formula for the definition of the coefficients 

of a Fourier series of f: 

2

0

1
( )cos( )na f x nx dx




=  , n = 0, 1, 2, … .     ---------     (1) 

2

0

1
( )sin( )nb f x nx dx




=  , n = 1, 2, … .          ---------     (2) 

Consider the series 

                    
( )0 0

1 1

1 1
( ) cos( ) sin( ) ( )

2 2
n n n

n n

T x a a nx b nx a A x
 

= =

= + + = +   . ---------  (A) 

If an and bn are given by (1) and (2), then T(x) is called the Fourier series of the 

function f.   
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Note that we assume the function f is integrable in [−π, π] so that (1) and (2) are 

meaningfully defined.  Thus (A) is a Fourier series if it is the Fourier series of 

some integrable function f, otherwise it is called a trigonometric series, i.e., 

when the coefficients, an, bn of (A) are not known to be given by (1) and (2). 

The trigonometric series T(x) may or may not converge and may not be the 

Fourier series of its limiting function.  When T(x) is a Fourier series it may not 

converge at all points.  Kolmogorov showed that there exists a Lebesgue 

integrable function f whose Fourier series diverges at every point.   

If we assume nice convergence for the trigonometric series, we do have some 

positive result.  This is Theorem S below. 

Theorem S.  If the trigonometric series T(x) converges uniformly to a function 

f, then it is the Fourier series of its sum function f.   More is true, if T(x) 

converges almost everywhere to a function f and the n-th partial sums of T(x) 

are absolutely dominated by a Lebesgue integrable function, then T(x) is the 

Fourier series of f.   More precisely the n-th partial sum converges to f in the L1 

norm.    

We note that in all two cases of Theorem S, the limiting function f is Lebesgue 

integrable and the trigonometric series T(x), by using either the consequence of 

uniform convergence or the Lebesgue Dominated Convergence Theorem, can 

be shown to be the Fourier series of f.  The convergence to f in the L1 norm is a 

consequence of uniform convergence for the first case and in the other of being 

absolutely dominated by a Lebesgue integrable function.   

In this note we are concerned mainly with Fourier series.  Where trigonometric 

series is meant, it will always be specified. 

Definition 2.  

Suppose ( an ) is a sequence.  The Cesaro 1 or (C,1) means of the sequence is 

defined to be 

                                   ( )1 0 1

1

1
n ns s s

n
 + = + + +

+
,        

where 
0

n

n k

k

s a
=

=   for  n ≥ 0.   

For n ≥ 1, let                       
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0

1

1
( ) ( )

2

n

n k

k

t x a A x
=

= +    -----------------------  (1) 

be the sum of the first n +1 terms of the Fourier series T(x) and 0 0

1
( )

2
t x a= . 

The (C,1) means of the Fourier series is then given by 

                           ( )1 0 1

1
( ) ( ) ( ) ( )

1
n nx t x t x t x

n
 + = + + +

+
.     ----------------   (2) 

If  ( )n s  → , then we say the Fourier series T(x) is (C, 1)-summable to s at .  

We are concerned when T(x) is a Fourier series of f, if tn(x) is pointwise 

convergent, uniform convergent or boundedly convergent and if it converges to 

the function f.   We are also concerned with the pointwise convergence, uniform 

convergence and almost everywhere convergence of the (C,1) sums ( )n x  of 

T(x). 

Summation formula 

We use Abel’s summation technique.  For this we reproduce the following 

material from my article Fourier Cosine and sine series.  

Abel’s Summation Formula. 

Suppose (an ) and (bn) are two sequences.  Let 
1

n

n k

k

s b
=

=   .  Then we have the 

following summation formula: 

                          
1

1

1 1

( )
n n

k k k k k n n

k k

a b a a s a s
−

+

= =

= − +    

                                    
1 1

1

( )
n

k k k n n

k

a a s a s+ +

=

= − + .    -----------------------------  (3) 

For the truncated sum we have: 

                                   
1

1( ) ' '
q q

k k k k k q q

k p k p

a b a a s a s
−

+

= =

= − +  ,   -----------------------    (4) 

where  '
k

k j

j p

s b
=

=   ,  k ≥ p. 
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Estimates of the sum are expressed in the following technical lemma. 

Lemma 3.   Suppose ( an ) is a decreasing sequence and an ≥ 0 for all n.  Then 

                                              1
1

1

max | |
n

k k k
k n

k

a b a s
 

=

    ----------------------   (5) 

and                                        max | ' |
q

k k p k
p k q

k p

a b a s
 

=

 .   --------------------    (6)  

The proof can be found in Fourier Cosine and sine series. 

 

Summing the Fourier Series 

Dirichlet and Fejer Kernels 

Definition 4. 

Consider the (n+1)-th partial sum of the Fourier series T(x),  

                       
0

1

1
( ) ( )

2

n

n k

k

t x a A kx
=

= +   .  ---------------------- -----------    (7) 

         ( )0

1 1

1 1 1
( ) cos( ) sin( ) ( ) cos( ( ))

2 2

n n

n k

k k

t x a a kx b kx f t k t x dt


 −
= =

 
= + + = + − 

 
    

                   
1 1

( ) ( ) ( ) ( )n nf t D t x dt f x u D u du
 

  − −
= − = +  ,       ------- ---- (8) 

                                                        by Change of Variable and periodicity, 

where 

                        
1

1
( ) cos( )

2

n

n

k

D x kx
=

= +     ------------------------------------  (9) 

for n > 0 and D0(x) = ½.  

Dn(x) is called the Dirichlet kernel.   Note that Dn(x) is defined and continuous 

for all x in [−π, π].  We shall use this form of the (n+1)-th partial sum of T(x) to 

investigate convergence of T(x). 

The (C,1) mean of T(x), 
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          ( )1 0 1

0

1 1 1
( ) ( ) ( ) ( ) ( ) ( )

1 1

n

n n k

k

x t x t x t x f x u D u du
n n







+

−
=

= + + + = +
+ +

    

                   
1

( ) ( )nf x u K u du


 −
= + ,    -------------------------------------  (10) 

where 

                       
0

1
( ) ( )

1

n

n k

k

K u D u
n =

=
+

 ,   --------------------------------- (11) 

is called the Fejér kernel.                                 

 

We now describe some properties of the Dirichlet and Fejér kernels.   

Now, 1 1 1
2 2 2

1

2sin( ) ( ) sin( ) 2sin( )cos( )
n

n

k

x D x x x kx
=

= +    

                          ( )1 1 1
2 2 2

1

sin( ) sin( ) sin(( 1) )
n

k

x kx x k x x
=

= + + − − +   

                          1 1 1 1
2 2 2 2

sin( ) sin(( ) ) sin( ) sin(( ) )x n x x n x= + + − = + . 

Thus, for x ≠ 0 and x in [−π, π], or 0 < x < 2π, 

                                
1
2

1
2

sin(( ) )
( )

2sin( )
n

n x
D x

x

+
= .              ---------------------------   (12) 

Observe that 
1 1 1
2 2 2 1

21 10 0
2 2

sin(( ) ) ( )cos(( ) )
lim lim (0)

2sin( ) cos( )
n

x x

n x n n x
n D

x x→ →

+ + +
= = + =   

and the Dirichlet kernel in its functional form (16) is continuous at 0.   

For the estimate of the Dirichlet kernel it is useful to consider the modified 

Dirichlet kernel defined by 

                        * 1
2

( ) ( ) cos( )n nD x D x nx= −  

                                 
1 1 1
2 2 21

21 1
2 2

sin(( ) ) sin(( ) ) cos( )sin( )
cos( )

2sin( ) 2sin( )

n x n x nx x
nx

x x

+ + −
= − =   

                                 
1
2

1
2

sin( )cos( )

2sin( )

nx x

x
=   
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1
2

sin( )

2 tan( )

nx

x
=  .             -------------------------------   (13) 

Note that the modified Dirichlet kernel is continuous in [−π, π] and 

                                  *(0)nD n=   and  *( ) 0nD  = .   ------------------------   (14) 

The Fejér kernel has too a useful functional form.  Using (12), 

               
1
2

1
0 0 2

1 1 sin(( ) )
( ) ( )

1 1 2sin( )

n n

n k

k k

k x
K x D x

n n x= =

+
= =

+ +
    

                        1 1
2 22 1

02

1 1
sin(( ) )sin( )

1 2sin ( )

n

k

k x x
n x =

= +
+

   

                        
2 1

02

1 1 cos( ) cos(( 1) )

1 2sin ( ) 2

n

k

kx k x

n x =

− +
=

+
   

                        
2 1

2

1 1 cos(( 1) )

1 4sin ( )

n x

n x

− +
=

+
  

                        
2 1

2

2 1
2

1 2sin ( ( 1) )

1 4sin ( )

n x

n x

+
=

+
  

                        

2
1
2

1
2

2 sin( ( 1) )

1 2sin( )

n x

n x

 +
=  

+  
.     --------------------------------    (15) 

The Fejér kernel in its functional form (15) is continuous in [−π, π]. 

Since 1
2

(0)kD k= +  , 
0 0

1 1 1 1
(0) (0) ( )

1 1 2 2 2

n n

n k

k k

n
K D k

n n= =

= = + = +
+ +

   . --------  (16) 

Note that from (9), 

                
1

1
( ) cos( )

2

n

n

k

D x dx dx kx dx
  

  


− − −
=

= + =                -------------------    (17) 

and so             
0 0

1 1
( ) ( )

1 1

n n

n k

k k

K x dx D x
n n

 

 
 

− −
= =

= = =
+ +

         

and                  
1

( ) 1nK x dx


 −
= .                                              ----------------   (18) 
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Useful properties of trigonometric functions 

Lemma 5. 

(1)   For all x,  sin( ) | |x x  ;    sin( )x x  for x > 0. --------------------  (19) 

(2)   For 0
2

x


   ,  
2

sin( )x x


  .                  --------------------------   (20)        

(3)   For 0 x    ,   
2

2
1 cos( ) 2

x
x


−  .             ---------------------------- (21) 

(4)   For all x,  21
1 cos( )

2
x x−  .                        -------------------------   (22) 

     (5)   Let 
2

1 1
( )

2 tan( )x
h x

x
= −  .    Then h(x) is continuous, bounded and 

increasing on (0, π), 
0

1
lim ( ) 0 , lim ( )
x x

h x h x
 + −→ →

= = ,  so that 0 < h(x) < 1/π and   

0

1
sup ( )

x

h x
  

=  .   In particular,  
2

1 1
(1)

2 tan( )x
O

x
= +  in (0, π). 

 

Consider the problem of the Fourier series T(x) converging to c.  Our aim is to 

examine when the difference ( )nt x c− tends to 0 and formulate conditions for 

pointwise, uniform or almost everywhere convergence.  The difference has a 

nice integral form in terms of the Dirichlet kernel function. 

                         ( )
1

( ) ( ) ( )n nt x c f x u c D u du


 −
− = + − ,  ---------------  (23) 

since   
1

( ) 1nD x dx


 −
= . 

We shall do the same for the problem of (C,1) summability of the Fourier series 

T(x) to c. The difference  1( )n x c + −  too has a nice integral form in terms of the 

Fejér kernel function.  

                       ( )1

1
( ) ( ) ( )n nx c f x u c K u du







+

−
− = + − ,  ---------------  (24) 

since   
1

( ) 1nK x dx


 −
= . 
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Section B Lebesgue Theory and Mean Value Theorem 

We shall need a generalized form of the Lebesgue Riemann Theorem.  This is 

used to show uniform convergence and to show that the problem of 

convergence, be it pointwise, uniform or boundedly, only depends on the local 

behaviour of the function.  Results from Lebesgue integration theory will be 

used. 

We shall state some of the well-known results without proof. 

Theorem 6.  (Uniform continuity of the Lebesgue integral) 

If g is Lebesgue integrable over the measurable set E, then given any  > 0, 

there exists  > 0 such that for any measurable subset U in E,           

                                       ( )
U

m U g     . 

Theorem 7. 

Suppose g is Lebesgue integrable on an interval containing [a, b] or g is 

Lebesgue integrable on [a, b] and g is formally extended to an interval 

containing [a, b] by defining g to be 0 outside [a, b]. Then 

                       
0

lim ( ) ( ) 0
b

ah
g t h g t dt

→
+ − = .  

Theorem 8.   Suppose g is Lebesgue integrable on [a, b].  Let ( ) ( )
x

a
G x g t dt=  . 

Then G is absolutely continuous on [a, b], differentiable almost everywhere 

and ( ) ( )G x g x =  almost everywhere on [a, b].    

 

Definition 9.   Suppose g is Lebesgue integrable on [a, b].  A point x in [a, b] is 

a Lebesgue point of g if  
0

( ) ( ) ( )
h

g x t g x dt o h+ − = or equivalently, 

                                 
00

1
lim ( ) ( ) 0

h

h
g x t g x dt

h→
+ − = . 

The Lebesgue set of g: [a, b] → is the set of Lebesgue points of g in [a, b].           
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Almost every point of [a, b] is a Lebesgue point of g.  This is a consequence of 

the following more general result. 

 

Lemma 10.  Suppose g: [a, b] → is Lebesgue integrable. Then for any c in , 

00

1
lim ( ) ( )

t

t
g x u c du g x c

t→
+ − = −  for almost all x in [a, b].  More precisely, 

there exists a subset E of [a, b] of measure 0 such that  

                                 
00

1
lim ( ) ( )

t

t
g x u c du g x c

t→
+ − = −  

for all x in [a, b] – E and for any c in .         

Proof.  For any rational number p, there exists a subset Ep of zero measure in [a, 

b] such that for all x in [a, b] − Ep 

                             
00

1
lim ( ) ( )

t

t
g x u p du g x p

t→
+ − = − . 

This is deduced by noting that      

            
0

1 1 ( ) ( )
( ) ( )

t x t

x

G x t G x
g x u p du g s p ds

t t t

+ + −
+ − = − =  , 

where ( ) ( )
u

a
G u g s p ds= − .   By Theorem 8, G is differentiable almost 

everywhere in [a, b].  Therefore, there exists a set of measure 0, Ep, such that 

for all x in [a, b] − Ep, 
0

( ) ( )
( ) lim | ( ) |

t

G x t G x
G x g x p

t→

+ −
 = = − . 

Now let p

p

E E


= .  Since the set of rational numbers is countable, E is a 

countable union of sets of measure zero and so is also of zero measure.  In 

particular for all x in [a, b] − E and for all rational number p in [a, b],   

                             
00

1
lim ( ) ( )

t

t
g x u p du g x p

t→
+ − = − . 
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Suppose now x is in [a, b] − E and  is irrational.   We want to show that  

                             
00

1
lim ( ) ( )

t

t
g x u du g x

t
 

→
+ − = − . 

Given any  > 0, by the density of rational numbers we can choose a rational 

number p in [a, b] such that  

                                            
3

p


 −   .              ----------------------------- (25) 

Note that for t ≠ 0, 

0 0

1 1
( ) ( )

t t

g x u du g x u p du
t t

+ − − + −    

  ( ) ( )
0 0

1 1
( ) ( )

3

t t

g x u g x u p du p du p
t t


   + − − + − = − = −   . ---- (26) 

Thus, for t ≠ 0, 

0 0 0

1 1 1
( ) ( ) ( ) ( )

t t t

g x u du g x g x u du g x u p du
t t t

  + − − −  + − − + −    

                 
0

1
( ) ( ) ( ) ( )

t

g x u p du g x p g x p g x
t

+ + − − − + − − −  

                   
0

1
( ) ( )

3

t

g x u p du g x p p
t


 + + − − − + −                     

                  
0

2 1
( ) ( )

3

t

g x u p du g x p
t

 + + − − − ,           ------------- (27) 

                                                                                                    by using (26). 

Since 
00

1
lim ( ) ( )

t

t
g x u p du g x p

t→
+ − = − , there exists  > 0 such that  

                    
0

1
0 | | ( ) ( )

3

t

t g x u p du g x p
t


   + − − −  .    ---------- (28) 

It follows then from (27) and (28) that there exists  > 0 such that    
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0

1 2
0 | | ( ) ( )

3 3

t

t g x u du g x
t


       + − − −  + = . 

Hence, 
00

1
lim ( ) ( )

t

t
g x u du g x

t
 

→
+ − = − . 

The next technical result, which proves to be very useful, is the Second Mean 

Value Theorem for integral.  We state the generalised version of the theorem 

here without proof.  A good reference is Hobson’s classic, The theory of 

Functions of a Real Variable and the Theory of Fourier’s Series and the 

improvement of Dixon in The Second Mean Value Theorem in the Integral 

Calculus in Mathematical Proceedings of the Cambridge Philosophical society, 

25, 1929, 282-284.  

 

Theorem 11 (Generalised Second Mean Value Theorem). 

Suppose f is Lebesgue integrable on [a, b] and g: [a, b] → is monotone. 

Then 

 (i)           ( ) ( ) ( ) ( ) ( ) ( )
b C b

a a C
f x g x dx g a f x dx g b f x dx= +    -----------  (M) 

for some C with a ≤ C ≤ b; 

(ii)   (M) holds with a < C < b except in some trivial cases, where g(x) is 

constant in the open interval (a, b); 

(iii)  (M) holds with g(a) and g(b) replaced by A and B respectively so that 

the function 

,   ,

( ) ( ),   ,

,      

A x a

h x g x a x b

B x b

=


=  
 =

 is monotone; i.e. 

           ( ) ( ) ( ) ( )
b C b

a a C
f x g x dx A f x dx B f x dx= +    

for some C with a < C < b, except in some trivial cases where g(x) is constant in 

the open interval (a, b);  lim ( ), lim ( )
x a x b

A g x B g x
+ −→ →

   if g is non-decreasing and 

lim ( ), lim ( )
x a x b

A g x B g x
+ −→ →

   if g is non-increasing. 
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We use Theorem 11 in the following special case which we state below. 

Corollary 12.  Suppose f is Lebesgue integrable on [a, b] and g: [a, b] → is 

monotone.  If g is non-negative, non-increasing and greater than or equal to 0, 

we can take B = 0 and A = g(a); if g is non-negative, non-decreasing and greater 

than or equal to 0, we can take A = 0 and B = g(b).  This is sometimes called the 

Bonnet’s Mean Value Theorem. 

 

Theorem 13.  (Riemann Lebesgue Theorem) 

Suppose f and g are function of period 2 and that f is Lebesgue integrable and 

g is of bounded variation.  Then for any a, b with −  ≤ a ≤ b ≤  and any  , 

              ( ) ( )cos( )
b

a
f t g t nt dt +   and  ( ) ( )sin( )

b

a
f t g t nt dt +  

both tend to 0 uniformly in a, b, and  as n tends to .  Moreover, both 

sequences are uniformly bounded in a, b,   and n. 

Proof.  We shall prove only the conclusion for ( ) ( )cos( )
b

a
f t g t nt dt + .  The 

proof for the other sequence is analogous. 

Suppose first that g is the constant function g(t) =1 for all t.   Then 

( )cos( ) ( )cos( )
n

n

b b

n
a a

f t nt dt f s ns ds




  
−

−
+ = + + +   

( )cos( )
n

n

b

n
a

f s ns ds





−

−
= − + +   

( )cos( ) ( )cos( )
n

b b

n n
a b

f s ns ds f s ns ds


  
−

= − + + + + +   

                                             ( )cos( )
n

a

n
a

f s ns ds



−

− + + . 

Hence, 

2 ( )cos( )
b

a
f t nt dt +   ( )( ) ( ) cos( )

b

n
a

f s f s ns ds = + − + +   
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                               ( )cos( ) ( )cos( )
n n

b a

n n
b a

f s ns ds f s ns ds
 

  
− −

+ + + − + +  . 

It follows that 

( )cos( )
b

a
f t nt dt +  ( )

1
( ) ( ) cos( )

2

b

n
a

f s f s ns ds = + − + +   

            1
( )cos( ) ( )cos( )

2 n n

b a

n n
b a

f s ns ds f s ns ds
 

  
− −

+ + + − + +  . 

                                                                                           -------------- (29) 

Therefore, 

( )cos( )
b

a
f t nt dt +  

1
( ) ( )

2

b

n
a

f s f s ds  + − + +   

                                      1
( ) ( )

2 n n

b a

n n
b a

f s ds f s ds
 

  
− −

+ + + + + +   

  1 1
( ) ( ) ( ) ( )

2 2

n n
b b a

n
a b a

f t f t dt f t dt f t dt
   



  

+ + + + +

+ + +
= − + + + +     

 1 1
( ) ( ) ( ) ( )

2 2

n n
b a

n
b a

f t f t dt f t dt f t dt
   



  

+ + + +

− + +
 − + + + +   . 

                                                                                     ----------------- (30) 

By Theorem 7, there exists N such that   

                           ( ) ( )
n

n N f t f t dt







−
  − +     ----------------- (31) 

and by Theorem 6, there exists M such that for all n ≥ M and for any a, b or  

                     ( ) ( )
2 2

n n
b a

b a
f t dt f t dt

  

 

 


+ + + +

+ +
+  + =  .   ------------- (32) 

Let L = max{M, N}.  It follows then from (30), (31) and (32) that for any a, b or 

,           

                      ( )cos( )
2 2

b

a
n L f t nt dt

 
   +  + = .     
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Hence, ( )cos( ) 0
b

a
f t nt dt + →  uniformly in a, b, and . 

Observe that 

( )cos( ) ( ) ( ) ( )
b b

a a
f t nt dt f t dt f t dt f t dt

 

 
  

− −
+  +  + =      . 

Therefore, ( )cos( ) 0
b

a
f t nt dt + →  uniformly and boundedly in a, b, and . 

Now suppose g is of bounded variation on [−, ].  Then g is the difference of 

two decreasing functions.  Thus, we may write 

                                    g = g1 – g2 , 

where g1 and g2 are bounded and decreasing.   We may choose g1 and g2 to be 

both non-negative on [−, ]. Then 

1 2( ) ( )cos( ) ( ) ( )cos( ) ( ) ( )cos( )
b b b

a a a
f t g t nt dt f t g t nt dt f t g t nt dt  + = + − +   . 

                                                                                                 ------------- (33) 

By the Generalized Second Mean Value Theorem or the Bonnet Mean Value 

Theorem, 

               
1 1( ) ( )cos( ) ( ) ( )cos( )

nb c

a a
f t g t nt dt g a f t nt dt + = +  ,   --------- (34) 

 for some cn with a < cn < b and  

               
1 2( ) ( )cos( ) ( ) ( )cos( )

nb d

a a
f t g t nt dt g a f t nt dt + = +  ,   --------- (35) 

 for some dn with a < dn < b. 

Therefore,  

1( ) ( )cos( ) ( ) ( )cos( )
nb c

a a
f t g t nt dt g a f t nt dt +  +   

                                          2 ( ) ( )cos( )
nd

a
g a f t nt dt+ +  . 
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Now g1 and g2 are bounded above and so both are bounded above by some 

constant K.  We may take 1 2max{ ( ), ( )}K g g = − − .   Hence 

( ) ( )cos( ) ( )cos( ) ( )cos( )
n nb c d

a a a
f t g t nt dt K f t nt dt K f t nt dt  +  + + +   . 

By the first case that we have just proved, given  > 0, there exists N such that 

for any a, b, and , 

                          ( )cos( )
2 1

b

a
n N f t nt dt

K


  + 

+ . 

It follows then that for any a, b, and , 

                
2

( ) ( )cos( )
2 1

b

a

K
n N f t g t nt dt

K


   +  

+ . 

This means  ( ) ( )cos( ) 0
b

a
f t g t nt dt + →  uniformly in a, b, and . 

Moreover, ( ) ( )cos( ) 2 ( )
b

a
f t g t nt dt K f t dt






−
+     .  Therefore, 

( ) ( )cos( )
b

a
f t g t nt dt +  is uniformly bounded in a, b,   and n and 

( ) ( )cos( ) 0
b

a
f t g t nt dt + →  uniformly and boundedly in a, b, and . 

 

Uniform boundedness of the integral of the Dirichlet kernels, modified 

Dirichlet kernels and related integral. 

 

Theorem 14.  For  in [0, ], the integrals 

1
2

10 0
2

sin(( ) )
( )

2sin( )
n

n t
D t dt dt

t

  +
=   , *

10 0
2

sin( )
( )

2 tan( )
n

nt
D t dt dt

t

 

=   and  

0

sin( )nt
dt

t



  are uniformly bounded in n and  . 
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10
2

1 1
sin( )

2 tan( )
nt dt

t t

  
− 

 
  is uniformly bounded in n and  and tends to 0 

uniformly on [0,]. 

Proof.    By Lemma 5, 
1
2

1 1
( )

2 tan( )
h t

t t
= −   is continuous, bounded and 

increasing on (0, ).  Note that 
0

lim ( ) 0
t

h t
+→

=  and 
1

lim ( )
t

h t
 −→

= .  Therefore, by the 

Second Mean Value Theorem (Theorem11), for any  in (0, ], 

      
10
2

1 1
sin( ) ( ) sin( )

2 tan( ) C
nt dt h nt dt

t t

 


 

− = 
 

  ,             

                                                                               for some C with 0 < C < , 

             
1 1 1

( ) cos( ) ( ) cos( ) cos( )
C

h nt h nC n
n n n



  
   

= − = −     
 . 

Therefore, 

          
10
2

1 1 2 2 2 2
sin( ) ( ) ( )

2 tan( )
nt dt h h

t t n n n



 
 

 
−   =  

 
 , 

for all n and for all  in [0, ].   Since 
2

0
n

→ , 
10
2

1 1
sin( )

2 tan( )
nt dt

t t

  
− 

 
  

tends to 0 uniformly on [0, ].    

Now, 
0 0

sin( ) sin( )nnt u
dt du

t u

 

=   by a change of variable.  Let 

0

sin( )
( )

x u
G x du

u
=  .   It is well known that 

0

sin( )
( )

2

u
G x du

u



→ =  as x →.   

This means that G(x) must be bounded on [0, ).  It follows that 

0

sin( )
( )

nt
dt G n

t



= is bounded for any  in [0, ) and for all positive integer n.  

That is to say, 
0

sin( )nt
dt

t



  is bounded uniformly in  in [0, ) and n. 

Since  
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                *

10 0 0 0
2

sin( ) sin( ) sin( )
( )

2 tan( )
n

nt nt nt
dt D t dt dt dt

t t t

   

− = −     

              
10
2

1 1
sin( )

2 tan( )
nt dt

t t

  
= − 

 
  

converges uniformly on [0, ] to 0 as n tends to infinity, it follows that 

*

10 0
2

sin( )
( )

2 tan( )
n

nt
D t dt dt

t

 

=   is uniformly bounded in n and  . 

Now 
*

0 0 0
0

1 1 sin( ) sin( )
( ) ( ) cos( )

2 2 2
n n

nt n
D t dt D t dt nt dt

n n


    

− = = =  
     and so 

*

0 0

1
( ) ( )

2
n nD t dt D t dt

n

 

−   .   Hence *

0 0
( ) ( ) 0n nD t dt D t dt

 

− →   uniformly on 

[0, ] to 0 as n tends to infinity.  It then follows that 
0

( )nD t dt


  is uniformly 

bounded in n and  . 

This completes the proof. 

 

Section C   Convergence Conditions.  Convergence 

Theorems. 

We shall formulate the condition for convergence of Fourier series in terms of 

the Dirichlet kernel function and related much friendlier functions.  To derive 

convergence condition for function which is of bounded variation, the following 

estimation result, in terms of the total variation function, is crucial in some of 

the proofs below. 

Theorem 15.   Suppose h is a function of bounded variation on [0, 2] such that 

0
lim ( ) (0 ) 0
x

h x h
+→

= + =  .  Then for any 0 ≤  ≤   ≤ 2, there is a constant K such 

that for all  > 0,  

              
sin( )

( ) (0, )h

t
h t dt KV

t






  , 
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where (0, )hV x is the total variation of h in the interval (0, x).  

Proof.  Let g: [0, 2] → be defined by 

0

( ),   0
( )

lim ( ) 0
t

h u u
g u

h t
+→


=  =



.   Then g is 

continuous and is also of bounded variation.  Note that the total variation 

function of h is the same as the total variation function of g.  Let Pg(x) denote 

the positive variation of g on [0, x] and Ng(x) be the negative variation function 

of g on [0, x].  Then both Pg(x) and Ng(x) are non-negative increasing functions, 

g(x) = Pg(x) − Ng(x) and the total variation function of g, Vg[0, x] defined to be 

the total variation of g on [0, x], is equal to Pg(x) + Ng(x).    

Then for any 0 ≤  ≤   ≤ 2, by the Second Mean Value Theorem (Theorem 

12) there exists  with  <  <  , such that 

                  
sin( ) sin( )

( ) ( )g g

t t
P t dt P dt

t t

 

 

 
=  . 

Hence,  

                     
sin( ) sin( )

( ) ( ) 2 ( )g g g

t t
P t dt P dt DP

t t

 

 

 
    ,  ------- (36) 

where D is a bound for 
0

sin( )
( )

x t
G x dt

t
=   as shown in Theorem 14. 

Similarly, we deduce that there exists    with     , such that 

            
sin( ) sin( )

( ) ( ) 2 ( )g g g

t t
N t dt N dt DN

t t

 

 

 
 


   .  -------- (37). 

Consequently, using (36) and (37), we have 

 ( )
sin( ) sin( ) sin( )

( ) ( ) ( ) ( )g g

t t t
h t dt g t dt P t N t dt

t t t

  

  

  
= = −    

                           
sin( ) sin( )

( ) ( )g g

t t
P t dt N t dt

t t

 

 

 
 +   

                          ( )2 ( ) ( ) [0, ] (0, )g g g hD P N KV KV    + = = ,    

where K = 2D. 
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This completes the proof of Theorem 15. 

                                                                                   

Suppose f is periodic of period 2 and is Lebesgue integrable on [−, ] and 

therefore, integrable over any finite interval.  Suppose  

          ( )0 0

1 1

1 1
( ) cos( ) sin( ) ( )

2 2
n n n

n n

T x a a nx b nx a A x
 

= =

= + + = +   

is its Fourier series and 
0

1

1
( ) ( )

2

n

n k

k

t x a A kx
=

= +   is the sum of its (n+1) terms. 

Let c be any real number, then from (23) we have  

( )
1

( ) ( ) ( )n nt x c f x u c D u du


 −
− = + −  

( ) ( )
0

0

1 1
( ) ( ) ( ) ( )n nf x u c D u du f x u c D u du



  −
= + − + + −   

( ) ( )
0

0

1 1
( ) ( ) ( ) ( )n nf x u c D u du f x s c D s ds



 
= + − − − − −  , by a change of variable, 

( ) ( )
0 0

1 1
( ) ( ) ( ) ( )n nf x u c D u du f x u c D u du

 

 
= + − + − − −   

( ) ( )
0 0

1 1
( ) ( ) ( ) ( )n nf x u c D u du f x u c D u du

 

 
= + − + − −  , 

                                                    since Dn(u) is an even function, 

( )
0

1
( ) ( ) 2 ( )nf x u f x u c D u du




= + + − −  

( )
( )1

2

10
2

sin ( )1
( ) ( ) 2

2sin( )

n u
f x u f x u c du

u





+
= + + − − .  ------------------------- (38). 

For a fixed c and x, let ( )
1

( ) ( ) ( ) 2
2

cg t f x t f x t c= + + − −      

Then from (38) we obtain 

                    
( )1

2

10
2

sin ( )1
( ) ( )

sin( )
n c

n u
t x c g u du

u





+
− =  .  ---------------------- (39) 
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Hence a necessary and sufficient condition for the Fourier series at x to 

converge to c is 

  
( )1

2

10
2

sin ( )1
( ) 0

sin( )
c

n u
g u du

u





+
→  or, equivalently, 

( )1
2

10
2

sin ( )
( ) 0

sin( )
c

n u
g u du

u

 +
→ .   

It follows that  

                 
( )1

2

10
2

sin ( )
( ) ( ) 0

sin( )
n c

n u
t x c g u du

u

 +
→  →  .  ---------  (40) 

Now, for 0 <  < ,      

( ) ( ) ( )1 1 1
2 2 2

1 1 10 0
2 2 2

sin ( ) sin ( ) sin ( )
( ) ( ) ( )

sin( ) sin( ) sin( )
c c c

n u n u n u
g u du g u du g u du

u u u

  



+ + +
= +   . ------- (41) 

For a fixed  with 0 <  < ,    

   
( )1

2 1
21

2

sin ( )
( ) ( )cot( )sin( ) ( )cos( )

sin( )
c c c

n u
g u du g u u nu du g u nu du

u

  

  

+
= +   .-------- (42) 

By the Second Mean Value Theorem (Theorem 11), for some (x) with              

 < (x) < ,  

             
( )

1 1
2 2

( )cot( )sin( ) cot( ) ( )sin( )
x

c cg u u nu du g u nu du
 

 
=  . ----------------- (43) 

Now by the Riemann Lebesgue Theorem (Theorem 13),  

                     
( )

( )cos( ) 0 and ( )sin( ) 0
x

c cg u nu du g u nu du
 

 
→ →    

boundedly and uniformly in n and x. 

It follows then by using (42) and (43) that for any arbitrary  with 0 <  < ,   

( )1
2

1
2

sin ( )
( ) 0

sin( )
c

n u
g u du

u





+
→  as n tends to infinity.  

Thus, we have proved the following theorem. 

Theorem 16.  A necessary and sufficient condition for the Fourier series T(x) of 

the function f to converge at x to the value c is that there exists a fixed  such 

that 0 <  <  and  
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( )1

2

10
2

sin ( )
( ) 0

sin( )
c

n u
g u du

u

 +
→ . 

 

Theorem 16 is about convergence at a point. 

Now we investigate condition for bounded convergence and uniform 

convergence. 

Let E be a subset of [−, ] and suppose c is a function defined on E.  The 

Fourier series at each point x of E converges to c(x) if, and only if, there exists  

with 0 <  < , 
( )1

2

( ) 10
2

sin ( )
( ) 0

sin( )
c x

n u
g u du

u

 +
→ pointwise on E. 

Suppose now c(x) is bounded on E by M, i.e., |c(x)| < M for all x in E.  For all x 

in E, 

             
( )1

2

( ) 10
2

sin ( )
( ) ( ) ( ) 0

sin( )
n c x

n u
t x c x g u du

u

 +
→  → .    ------------------  (44) 

Following (41) we obtain 

( ) ( ) ( )1 1 1
2 2 2

( ) ( ) ( )1 1 10 0
2 2 2

sin ( ) sin ( ) sin ( )
( ) ( ) ( )

sin( ) sin( ) sin( )
c x c x c x

n u n u n u
g u du g u du g u du

u u u

  



+ + +
= +   . 

                                                                                                  -------------- (45) 

We shall show next that the second integral on the right of (45) for a fixed  > 0 

tends to 0 uniformly in x for x in E.  

From (42) we get 

( )1
2 1

( ) ( ) ( )21
2

sin ( )
( ) ( )cot( )sin( ) ( )cos( )

sin( )
c x c x c x

n u
g u du g u u nu du g u nu du

u

  

  

+
= +   .  ---- (46) 

The second integral in the right-hand side of (46), 

    ( )( )

1
( )cos( ) ( ) ( ) 2 ( ) cos( )

2
c xg u nu du f x u f x u c x nu du

 

 
= + + − −   

     ( )
1

( ) ( ) cos( ) ( ) cos( )
2

f x u f x u nu du c x nu du
 

 
= + + − −   
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    ( )
1 ( )

( ) ( ) cos( ) sin( )
2

c x
f x u f x u nu du n

n




= + + − + . 

Therefore,  

( )( )

1 1
( )cos( ) ( ) ( ) cos( ) ( )

2
c xg u nu du f x u f x u nu du c x

n

 

 
 + + − +   

                              ( )
1 1

( ) ( ) cos( )
2

f x u f x u nu du M
n




 + + − + .  ----------------  (47) 

Moreover,  ( )( )
0

1 1
( )cos( ) ( ) ( ) ( )

2
c xg u nu du f x u f x u du M f u du M

n

  

 
 + + − +  +   . 

Now by Riemann Lebesgue Theorem (Theorem 13), 

( )( ) ( ) cos( ) 0f x u f x u nu du



+ + − →  as n tends to  uniformly and boundedly in  

and x and so for a fixed 0 <  < , 

          ( )( ) ( ) cos( ) 0f x u f x u nu du



+ + − →  uniformly and boundedly on E. 

                                                                                              --------------  (48) 

It follows from (47) that for a fixed 0 <  < , 

         
( )( )cos( ) 0c xg u nu du




→ uniformly and boundedly on E.     ---------- (49) 

For the first integral in the right-hand side of (46) following (43), we have 

      
( )

1 1
( ) ( )2 2

( )cot( )sin( ) cot( ) ( )sin( )
x

c x c xg u u nu du g u nu du
 

 
=  ,     ----------  (50) 

where  < (x) < . 

We can prove as above by invoking the Riemann Lebesgue Theorem (Theorem 

11) that for a fixed 0 <  < , since c(x) is bounded on E, 

             
( )

( )( )sin( ) 0
x

c xg u nu du



→     uniformly and boundedly on E.  

Thus, from (50) we see that  

             1
( ) 2

( )cot( )sin( ) 0c xg u u nu du



→  uniformly and boundedly on E. 
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Therefore, it follows from (46) that for a fixed 0 <  < , 

          
( )1

2

( ) 1
2

sin ( )
( ) 0

sin( )
c x

n u
g u du

u





+
→  uniformly and boundedly on E.  ------- (51) 

It then follows from (45) and (51) that if c(x) is bounded on E the Fourier series 

converges boundedly on E if, and only if, 
( )1

2

( ) 10
2

sin ( )
( ) 0

sin( )
c x

n u
g u du

u

 +
→  boundedly 

on E and it converges uniformly on E if 
( )1

2

( ) 10
2

sin ( )
( ) 0

sin( )
c x

n u
g u du

u

 +
→  uniformly 

on E.  We have thus proved the following theorem. 

 

Theorem 17.   Let E be a subset of [−, ].  Let c: E → be a finite function. 

(i) A necessary and sufficient condition for the Fourier series T(x) of the 

function f to converge pointwise to c(x) on E is that there exists a fixed  such 

that 0 <  <  and  

                              
( )1

2

( ) 10
2

sin ( )
( ) 0

sin( )
c x

n u
g u du

u

 +
→  pointwise on E; 

(ii) Suppose c is bounded on E.  A necessary and sufficient condition for the 

Fourier series T(x) of the function f to converge boundedly to c(x) on E is that 

there exists a fixed  such that 0 <  <  and  

                              
( )1

2

( ) 10
2

sin ( )
( ) 0

sin( )
c x

n u
g u du

u

 +
→  boundedly on E; 

(iii) Suppose c is bounded on E.  A necessary and sufficient condition for the 

Fourier series T(x) of the function f to converge uniformly to c(x) on E is that 

there exists a fixed  such that 0 <  <  and  

                              
( )1

2

( ) 10
2

sin ( )
( ) 0

sin( )
c x

n u
g u du

u

 +
→  uniformly on E. 

 

Our next goal will be to obtain simpler integrand for the integral in the last 

theorem.  We shall do this in stages.   
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We would like to replace the integrand 
( )1

2

( ) 1
2

sin ( )
( )

sin( )
c x

n u
g u

u

+
 by 

( )1
2

( )

sin ( )
( )c x

n u
g u

u

+
.   Notice that the convergence behaviour of 

( )1
2

( ) 10
2

sin ( )
( )

sin( )
c x

n u
g u du

u

 +
  is the same as that of 

( )1
2

( ) ( )10 0
2

sin ( )
( ) ( ) ( )

2sin( )
c x c x n

n u
g u du g u D u du

u

 +
=  . 

Now,  

( ) ( )1 1
2 2

( ) ( )10 0
2

sin ( ) sin ( )
( ) ( )

2sin( )
c x c x

n u n u
g u du g u du

u u

 + +
−    

          ( )1
( ) 210

2

1 1
( ) sin ( )

2sin( )
c xg u n u du

u u

  
= − + 

 
 .     ------------------------  (52) 

Let h: (0, ] → R be defined by 
1
2

1 1
( )

2sin( )
h u

u u
= − .   Then for 0 < u < , 

          
2 2

2 2 2

2 2 2 2

2 2

1 cos( ) 4sin ( ) cos( )
( )

4sin ( ) sin ( )

u u u

u u

u
h u

u u

−
 = − =  

                   
2 2 2 4

4 4

2 2 2 2

4 2

16tan ( ) tan ( )
0

4(1 tan ( )) sin ( )

u u

u u

u u

u

− +
= 

+
,            ------------------  (53) 

by expressing sin(u/2) and cos(u/2) in terms of tan(u/4) and the fact that for 0 < 

u < ,  2
2 tan( )u u  so that 2 2

4
16tan( )u u .  Note that  

                        2

0 0
2

2sin( )
lim ( ) lim 0

2 sin( )

u

uu u

u
h u

u+ +→ →

−
= =   by L’ Hôpital’s Rule. 

Hence, h is strictly increasing on [0, ], if we defined h(0) to be equal to 0.  By 

the Second Mean Value Theorem (Theorem11) (taking 

2

0 0
2

2sin( )
lim ( ) lim 0

2 sin( )

u

uu u

u
A h u

u+ +→ →

−
 = =  and 

1 1
1 ( )

2
B h 


=  = − ), 

   ( ) ( )1 1
( ) ( )2 210 ( )

2

1 1
( ) sin ( ) ( )sin ( )

2sin( )
c x c x

x
g u n u du g u n u du

u u

 



 
− + = + 

 
   ---- (54) 
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for some 0 < (x) < .    

Now,   ( )1
( ) 2

( )
( )sin ( )c x

x
g u n u du




+                                                                                                                               

            ( ) ( ) ( ) ( )1 1
( ) ( )2 2

( ) ( )
( )sin cos ( )cos sinc x c x

x x
g u nu u du g u nu u du

 

 
= +  .  ------- (55) 

By the Second Mean Value Theorem (Theorem11) (taking 

( )1
2

1 cos ( ) cos( ) 0A x B =    =  ), 

             ( ) ( ) ( )
( )

1
( ) ( )2

( ) ( )
( )sin cos ( )sin

x

c x c x
x x

g u nu u du g u nu du
 

 



=   ---------------- (56)         

and (taking ( )1
2

0 sin ( ) sin( ) 1A x B =    = ) 

 

  ( ) ( ) ( )1
( ) ( )2

( ) ( )
( )cos sin ( )cosc x c x

x x
g u nu u du g u nu du

 

  
=   , ---------------- (57)) 

for some  ( ) ( ), ( )x x x       . 

Therefore, by the Riemann Lebesgue Theorem, for a fixed  > 0, it follows from  

(54), (55), (56) and (57) that   

          ( )1
( ) 210

2

1 1
( ) sin ( ) 0

2sin( )
c xg u n u du

u u

  
− + → 

 
 pointwise on E  

and if c(x) is bounded on E, 

       ( )1
( ) 210

2

1 1
( ) sin ( ) 0

2sin( )
c xg u n u du

u u

  
− + → 

 
 uniformly and boundedly on E. 

It follows from (52) that convergence of the Fourier series T(x) on E is 

equivalent to the convergence of the integral 
( )1

2

( )
0

sin ( )
( )c x

n u
g u du

u

 +
  to 0. 

Hence, we have proved the next equivalent condition for convergence. 

 

Theorem 18.   Let E be a subset of [−, ].  Let c: E → R be a finite function. 
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(i) A necessary and sufficient condition for the Fourier series T(x) of the 

function f to converge pointwise to c(x) on E is that there exists a fixed  such 

that 0 <  <  and  

                              
( )1

2

( )
0

sin ( )
( ) 0c x

n u
g u du

u

 +
→  pointwise on E; 

(ii) Suppose c is bounded on E.  A necessary and sufficient condition for the 

Fourier series T(x) of the function f to converge boundedly to c(x) on E  is that 

there exists a fixed  such that 0 <  <  and  

                              
( )1

2

( )
0

sin ( )
( ) 0c x

n u
g u du

u

 +
→  boundedly on E; 

(iii) Suppose c is bounded on E.  A necessary and sufficient condition for the 

Fourier series T(x) of the function f to converge uniformly to c(x) on E  is that 

there exists a fixed  such that 0 <  <  and  

                              
( )1

2

( )
0

sin ( )
( ) 0c x

n u
g u du

u

 +
→  uniformly on E. 

 

Now consider a simpler integrand for the convergence problem, namely 

( )
( )

sin
( )c x

nu
g u

u
.   We examine the difference in the same manner as above. 

( ) ( )1
2

( ) ( )
0 0

sin ( ) sin
( ) ( )c x c x

n u nu
g u du g u du

u u

 +
−    

( )1
2

( )
0

sin ( ) sin( )
( )c x

n u nu
g u du

u u

 + 
= − 

 
  

1 1 1
4 4 4 1

( ) ( ) 4
0 0

cos(( ) )sin( ) sin( )
( ) 2 2 ( ) cos(( ) )c x c x

n u u u
g u du g u n u du

u u

 +   
= = +   

   
  . 

                                                                                          ---------------- (58) 

Now for 0 < u < , 
( )1

4 4 44

2

cos( ) tansin( )
0

u u ud u

du u u

−
=   since 4 4tan( )u u  for 0 < u < . 

Thus, 
1
4sin( )u

u
 is non-negative and decreasing on (0, ].  Note that 

1
4

0

sin( ) 1
lim

4u

u

u+→
=

.  Therefore, by the Generalized Second Mean Value Theorem (Theorem11),  
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(taking A = ½ and B = 0), there exists 0 ( )x    such that  

1 1 ( )
4 4 1

( ) ( ) 4
0 0

cos(( ) )sin( )
( ) 2 ( )cos(( ) )

x

c x c x

n u u
g u du g u n u du

u

  + 
= + 

 
  .  ------------- (59) 

As before as for the case of (55), by the Riemann Lebesgue Theorem,
( )

1
( ) 4

0
( )cos(( ) )

x

c xg u n u du
 

+  converges to 0 pointwise and if c(x) is bounded on E, 

it converges to 0, boundedly and uniformly on E.   It follows then from (58) and 

(59) that the same holds true for 
( ) ( )1

2

( ) ( )
0 0

sin ( ) sin
( ) ( )c x c x

n u nu
g u du g u du

u u

 +
−  . 

As a consequence, we have the next convergence theorem. 

Theorem 19.   Let E be a subset of [−, ].  Let c: E → R is a finite function. 

(i) A necessary and sufficient condition for the Fourier series T(x) of the 

function f to converge pointwise to c(x) on E is that there exists a fixed  such 

that 0 <  <  and  

                              
( )

( )
0

sin
( ) 0c x

nu
g u du

u



→  pointwise on E; 

(ii) Suppose c is bounded on E.  A necessary and sufficient condition for the 

Fourier series T(x) of the function f to converge boundedly to c(x) on E is that 

there exists a fixed  such that 0 <  <  and  

                              
( )

( )
0

sin
( ) 0c x

nu
g u du

u



→  boundedly on E; 

(iii) Suppose c is bounded on E.  A necessary and sufficient condition for the 

Fourier series T(x) of the function f to converge uniformly to c(x) on E is that 

there exists a fixed  such that 0 <  <  and  

                              
( )

( )
0

sin
( ) 0c x

nu
g u du

u



→  uniformly on E. 

 

 

A summary of the above theorems is as follows. 
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Theorem 20.  Suppose the function f is periodic of period 2 and is Lebesgue 

integrable on [−,  ].  Let  
0

1

1
( ) ( )

2

n

n k

k

t x a A kx
=

= +   be the (n+1) partial sum of its 

Fourier series T(x).  Then the behaviour of tn(x) for large n depends on the 

behaviour of f (u) for values of u in (x−, x+). 

Proof.  Taking c = 0, by Theorem 19, the behaviour of tn(x) for large n depends 

on the behaviour of ( )
1

( ) ( ) ( )
2

g u f x u f x u= + + − which obviously involves 

values of f in (x−, x+). 

 

Theorem 21.  Suppose the function f is periodic of period 2 and is Lebesgue 

integrable on [−,  ].  Suppose at x, lim ( ) ( )
t x

f t f x
+→

= +  and lim ( ) ( )
t x

f t f x
−→

= − .  

Let ( )
1

( ) ( )
2

c f x f x= + + − .  Then a necessary and sufficient condition for tn(x) 

to converge to c is that there exists a  with 0 <  <, 
( )

0

sin
( ) 0c

nu
g u du

u



→ , 

where ( )
1

( ) ( ) ( ) 2
2

cg u f x u f x u c= + + − − . 

Proof.  Immediate from Theorem 19. 

 

We can formulate a version of Theorem 21 in terms of the behaviour of g0(u) 

below. 

Theorem 22.  Suppose the function f is periodic of period 2 and is Lebesgue 

integrable on [−,  ].    Let x be in (−,  ).  Suppose the function 

( )
1

( ) ( ) ( )
2

u f x u f x u = + + −  is of bounded variation in (0, ).  Let 

0
lim ( ) (0 )
u

u 
+→

= + .   Then ( ) (0 )nt x → +   .   

Proof.   Suppose   is of bounded variation in the interval (0, ).  Then 

0
lim ( ) (0 )
t

t 
+→

= +  exists.  By Theorem 19, ( ) (0 )nt x → +  if and only if  

( )
( )

0

sin
( ) (0 ) 0

nu
u du

u



 − + → . 
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( )
( )

( )
( )

( )
( )

0 0

sin sin sin
( ) (0 ) ( ) (0 ) ( ) (0 )

nu nu nu
u du u du u du

u u u

  


     − + = − + + − +   . 

And so, 

                ( )
( )

0

sin
( ) (0 )

nu
u du

u



 − +   

                ( )
( )

( )
( )

0

sin sin
( ) (0 ) ( ) (0 )

nu nu
u du u du

u u

 


    − + + − +  .  --------  (60) 

By Theorem 15, 

                       ( )
( )

0

sin
( ) (0 ) (0, )

nu
u du KV

u



  − +  ,             ----------------- (61) 

where (0, )V  is the total variation of    on the open interval (0, ).  Note that 

the total variation  (0, )V   is equal to the total variation of  

( ) (0 ),  0
( )

0,   0

u u
h u

u

 − + 
= 

=
 , which is continuous at 0 and so 

0 0
lim (0, ) lim [0, ] 0.h
u u

V u V u+ +→ →
= =    Hence, given any  > 0, there exists  > 0 such 

that 0 (0, )
2

V
K




      .  Thus, for all 0 <  <  and 0 <  < , we have then 

from (60) and (61), that for any integer n > 0,  

        ( )
( )

( )
( )

0

sin sin
( ) (0 ) ( ) (0 )

2

nu nu
u du u du

u u

 




   − +  + − +   . -------- (62) 

But by the Riemann Lebesgue Theorem, ( )
( )sin

( ) (0 ) 0
nu

u du
u




 − + →  as n 

tends to , and so there exists N such that n ≥ N implies that         

                             ( )
( )sin

( ) (0 )
2

nu
u du

u






 − +   .  ------------------  (63) 

It follows from (62) and (63), that for n ≥ N, 

                        ( )
( )

0

sin
( ) (0 )

2 2

nu
u du

u

  
  − +  + = . 
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This means ( )
( )

0

sin
( ) (0 ) 0

nu
u du

u



 − + →  and so ( ) (0 )nt x → + . 

 

Convergence Theorems 

We now expand our domain of convergence, 

Theorem 23.   Suppose the function f is periodic of period 2 and is Lebesgue 

integrable on [−,  ].    Suppose f is of bounded variation in (a, b)  [−,  ].    

Then its Fourier series T(x) converges boundedly to ( )
1

( ) ( )
2

f x f x+ + − in any 

closed interval [ , ]a b   in (a, b).   If in addition, f is also continuous on (a, b), 

then the series T(x) converges uniformly on [ , ]a b  . 

Proof.   Since [ , ] ( , )a b a b   , there exists a  > 0 so that for any x in [ , ]a b  , 

[ , ] ( , )x x a b − +  .  Since f is of bounded variation in (a, b), the left and right 

limits, f (x−) and f (x+), exist at each point x in (a, b).   

Let ( )
1

( ) ( ) ( )
2

c x f x f x= + + −  for x in (a, b).  Then c(x) is bounded on (a, b) 

since f is bounded on (a, b).    

Let ( )
1

( ) ( ) ( )
2

u f x u f x u = + + − .  For x in (a, b), 

          ( )
0

1
( ) lim ( ) ( ) ( ) (

2u
x u f x f x c x 

+→
+ = = + + − = . 

Then by Theorem 22, T(x) converges pointwise to c(x) for any x in (a, b).     

We next show that the convergence is boundedly on [ , ]a b  . 

For each x in (a, b), define     

            ( ) ( ) ( ) and  ( ) ( ) ( )x xf u f x u f x f u f x u f x+ −= + − + = − − − . ----- (64)  

Then  ( ) ( ) ( ) and  ( ) ( ) ( )x xf u f x u f x f u f x u f x+ −= + − + = − − −  are of bounded 

variation in[ , ] ( , )x x a b − +  .     
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By Theorem 19, T(x) converges to c(x) boundedly on [ , ]a b   if, and only if,  

( )
( )

0

sin
( ) 0c x

nu
g u du

u



→  boundedly on [ , ]a b  , where 

     ( ) ( )( )

1 1
( ) ( ) ( ) 2 ( ) ( ) ( )

2 2
c x x xg u f x u f x u c x f u f u+ −= + + − − = +  ----- (65)      

for 0 < u <   is of bounded variation on [0, ].  In particular, the total variation 

of ( )( )c xg u  in (0, ),  
( )

(0, )
c xgV   satisfies                     

( ) ( )
( )

1 1
(0, ) (0, ) (0, ) ( , ) ( , ) ( , )

2 2c x x x
g f f ff f

V V V V a b V a b V a b  + − +  + = , --- (66) 

where (0, ) and (0, )
x xf f

V V + − are respectively the total variations of 

( ) and  ( )x xf u f u+ − in (0, ) and ( , )fV a b is the total variations of f in (a, b). 

We already knew that 
( )

( )
0

sin
( ) 0c x

nu
g u du

u



→ pointwise on [ , ]a b  .  By Theorem 

15, for all integer n > 0,  

                  
( )

( )( )
0

sin
( ) (0, ) ( , )

c xc x g f

nu
g u du V K V a b K

u



  .           ---------------  (67) 

This shows that 
( )

( )
0

sin
( )c x

nu
g u du

u



  is uniformly bounded and so the 

convergence is boundedly. 

Suppose now that f is also continuous in (a, b).  Then c(x) = f (x) for all x in (a, 

b) and 
( )

( )
0

sin
( ) 0c x

nu
g u du

u



→ pointwise on [ , ]a b  . Let  a  be such that 

a a a    . Since f is continuous and of bounded variation on (a, b), the 

function ( ) [ , ]f fT x V a x=  for x in (a, b) is continuous on (a, b) and so is 

continuous on [ , ]a b  .  Therefore, ( )fT x  is uniformly continuous on [ , ]a b  . 

Since ( )( )

1
( ) ( ) ( ) 2 ( )

2
c xg u f x u f x u f x= + + − − , the total variation of ( )( )c xg u  

on (0, ) is less than or equal to half the total variation of f on (x, x+) + the total 

variation of f on (x−, x), i.e., 

     ( )
( )

1
(0, ) ( , ) ( , )

2c xg f fV V x x V x x   + + −   
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                     ( )
1

( ) ( ) ( ) ( )
2

f f f fT x T x T x T x  + − + − −  ----------------- (68) 

Since ( )fT x  is uniformly continuous on [ , ]a b  , given  > 0, there exists  > 0 

such that for all x in [ , ]a b  , | t | <  implies ( ) ( )
2

f fT x t T x
K


+ −  .  Therefore, 

for all x in [ , ]a b  , for any 0    ,  

                          
( )

1
(0, )

2 2 2 2c xgV
K K K

  


 
  + = 

 
.        -----------------  (69) 

Choose a  such that 0 <   and 0    .  Then 

     
( ) ( ) ( )

( ) ( ) ( )
0 0

sin sin sin
( ) ( ) ( )c x c x c x

nu nu nu
g u du g u du g u du

u u u

  


= +   .   -------- (70) 

By Theorem 15, for all integer n > 0 and for all x in [ , ]a b  ,               

                  
( )

( )( )
0

sin
( ) (0, )

2 2c xc x g

nu
g u du V K K

u K

  
  = ,    ---------------- (71) 

by using (67). 

Now, we claim that 
( )

( )

sin
( )c x

nu
g u du

u



 converges to 0 uniformly and boundedly 

on [ , ]a b  .   By the Mean Value Theorem (Theorem 11), we get 

         
( ) ( )

( ) ( )

sin 1
( ) ( )sin( )

x

c x c x

nu
g u du g u nu du

u

 

 
=        -------------------- (72) 

for some  ( )x     . 

Since c(x) is bounded on E, by the Riemann Lebesgue Theorem, 
( )

( )( )sin( )
x

c xg u nu du


  tends to 0 boundedly and uniformly on[ , ]a b  .     

Hence from (72),  

                                       
( )

( )

1
( )sin( ) 0

x

c xg u nu du



→ .  -------------------- (73) 

Therefore, by (72) and (73), 
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( )

( )

sin
( ) 0c x

nu
g u du

u




→   ----------------------------  (74) 

boundedly and uniformly on[ , ]a b  .     

Hence, given  > 0, there exists integer N such that for all x in[ , ]a b  ,     

                        
( )

( )

sin
( )

2
c x

nu
n N g u du

u






   . ------------------- (75) 

It then follows from (68), (69) and (75) that for all x in[ , ]a b  ,     

( )
( )

0

sin
( )c x

nu
n N g u du

u



     

               
( ) ( )

( ) ( )
0

sin sin
( ) ( )

2 2
c x c x

nu nu
g u du g u du

u u

 



 
 +  + =  . 

This means  
( )

( )
0

sin
( ) 0c x

nu
g u du

u



→  uniformly on[ , ]a b  .     

Therefore, by Theorem 19, the Fourier series T(x) converges uniformly to f (x) 

on [ , ]a b  . 

This completes the proof of Theorem 23. 

 

Remark.   The proof above also shows that if c(x) is bounded, then 

( )
( )

sin
( ) 0c x

nu
g u du

u




→  uniformly and boundedly. 

 

If we take the interval (a, b) in Theorem 23 to be [− , ], then we have 

immediately the following: 

Theorem 24.  Suppose the function f is periodic of period 2 and is Lebesgue 

integrable on [−,  ].    Suppose f is of bounded variation in [−,  ].    Then its 

Fourier series T(x) converges boundedly to  ( )
1

( ) ( )
2

f x f x+ + − in [−,  ].  If, 
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in addition, f is also continuous on [−,  ], then the series T(x) converges 

uniformly to f (x) on [−,  ].   

Proof.   Note that it is not essential that (a, b)  [−,  ] in Theorem 23.  One 

can replace the interval in Theorem 23 simply by a bounded interval (a, b) in R.  

Therefore, if f is of bounded variation on [−,  ], then f is of bounded variation 

on [−, 2 ], and we can take (a, b) to be any open interval containing [−, 2 

].  Theorem 24 is then a corollary of Theorem 23. 

 

We next describe a test of Dini. 

Theorem 25 (Dini Test).  Suppose the function f is periodic of period 2 and is 

Lebesgue integrable on [−,  ].  Let c be a real number and x  [−,  ].   Let 

( )
1

( ) ( ) ( ) 2
2

cg u f x u f x u c= + + − − .  If 
( )cg u

u
  is Lebesgue integrable, then the 

Fourier series of f at x, T(x), converges to c.   

If f has a jump discontinuity at x and 
( )cg u

u
 is Lebesgue integrable, then c is 

necessarily equal to ( )
1

( ( ) ( )
2

f x f x+ + − . 

Proof.   By Theorem 19, T(x) converges to c if, and only if, for some 0 <  < , 

                        
( )

0

sin
( ) 0c

nu
g u du

u



→ . 

But by the Riemann Lebesgue Theorem, since 
( )cg u

u
  is Lebesgue integrable,  

( )
0

sin
( ) 0c

nu
g u du

u



→  and so the theorem follows. 

If  f has a jump discontinuity at x, then by Féjer’s Theorem (Theorem 12 in 

Fourier Cosine and Sine Series or Theorem 34 this note), the (C,1) mean of the 

Fourier series at x converges to ( )
1

( ( ) ( )
2

f x f x+ + − .   Since the Fourier series 

converges at x to c, c must be equal to ( )
1

( ( ) ( )
2

f x f x+ + −  by the regularity of 

(C,1) convergence. 
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Sectionally Continuous Function 

A function f : [a, b] → R is said to be sectionally continuous if there is a finite 

partition, 0 1 na x x x b=    =  such that f is bounded and continuous on each 

open interval 1( , )i ix x− , i = 1,2, , n. 

Therefore, a sectionally continuous function on [a, b] can have at most a finite 

number of discontinuity.  Note that they need not be jump discontinuity.   

 

Lemma 26.  Suppose at x0 f is differentiable in an open neighbourhood 

containing x0, except possibly at x0 , i.e., there exists a  > 0 such that f  is 

differentiable in (x0 − , x0 + )−{ x0 }. Suppose 

0 0

0 0lim ( ) ( )  and  lim ( ) ( )
x x x x

f x f x f x f x
+ −→ →

   = + = −  both exist and are finite.  Then f 

is necessarily continuous at x0 or has both left and right limits at x0 . 

Proof.    Take any sequence ( an ) in (x0, x0 + ) such that an > x0 and an → x0 .  .  

Since 
0

0lim ( ) ( )
x x

f x f x
+→

 = + , there exists 1 > 0 such that  

                      0 0 1 0( ) ( ) 1x x x f x f x    +  − +  .   ------------------  (76) 

There exists an integer N such that  

                      0 1

0

1
| | min ,

2 1 ( )
nn N a x

f x




  
  −   

+ +  
.  ---------------- (77) 

For all n, m ≥ N, if n ma a ,  by the Mean Value Theorem, 

                      
( ) ( )

( )n m

n m

f a f a
f

a a


−
=

−
  , 

for some  strictly between an and am..  This means | − x0 | < 1 . 

Hence 

      ( )0( ) ( ) ( ) 1 ( )n m n m n mf a f a f a a f x a a − = −  + + − , 
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                     because | − x0 | < 1 so that by (76), ( )0( ) 1 ( )f f x  + + ,              

                             ( )0

0

1 ( )
1 ( )

f x
f x


 + + =

+ +
.  -----------------  (78) 

If  n ma a= , (78) holds true trivially. 

Therefore, ( f (an ) ) is a Cauchy sequence and so is convergent.  This means 

0

0lim ( ) ( )
x x

f x f x
+→

= + exists.  Similarly, we can show that 
0

0lim ( ) ( )
x x

f x f x
−→

= −

exists.  Note that even if both the left and right limits 0 0( )  and  ( )f x f x + − at x0 

are the same, f need not be continuous at x0. 

 

Now we examine the local behaviour of f at such an x0 .  By the hypothesis of 

Lemma 26, f is continuous in (x0, x0 + ).  Since 
0

lim ( )
x x

f x
+→

exists, by taking a 

smaller value of , we may assume that f is bounded in (x0, x0 + ).  Therefore, 

0 0( ) ( )
( )

f x h f x
g h

h

+ − +
=  is defined and continuous on (0, ). 

Moreover, by the Mean Value Theorem, for 0 < h < , 

           0 0
0

( ) ( )
( )

f x h f x
f x

h

+ − +
= +  for some 0 h    

and so   

         0 0
0 0 0

( ) ( )
( ) ( ) ( )

f x h f x
f x f x f x

h

+ − +
  − + = + − +  .       --------- (79) 

Given  > 0, there exists 2 > 0 such that  

                 0 0 2 0( ) ( )x x x f x f x    +  − +  .  

Thus, from (79) we have  

              0 0
2 0

( ) ( )
0 min{ , } ( )

f x h f x
h f x

h
  

+ − +
   − +  .   -------- (80) 
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That is to say, 0 0
0

0

( ) ( )
lim ( )
h

f x h f x
f x

h+→

+ − +
= + . 

This means g(h) is Lebesgue integrable on (0, ). 

Similarly, we can show that 0 0
0

0

( ) ( )
lim ( )
h

f x h f x
f x

h+→

− − −
= −

−
 and

0 0( ) ( )
( )

f x h f x
k h

h

− − −
=  is Lebesgue integrable on (0, ). 

It follows that 

( ) 0 0 0 0( ) 1 ( ) ( ) ( ) ( )
( ) ( )

2 2

cg h f x h f x h f x f x
g h k h

h h

+ + − − + − −
= + =  

with 0 0( ) ( )

2

f x f x
c

+ + −
=  is Lebesgue integrable on (0, ).  Therefore, by 

Theorem 25, the Fourier series of f at x0 converges to 0 0( ) ( )

2

f x f x+ + −
. 

We have thus proved the following 

Theorem 27.  Suppose the function f is periodic of period 2 and is Lebesgue 

integrable on [−,  ].   Let x0 be in (−,  ).  Suppose 0 0( )  and  ( )f x f x + −  

exist, i.e., there exists a  > 0 such that f is differentiable in (x0 − , x0 + 

)−{x0}and 
0 0

0 0lim ( ) ( )  and  lim ( ) ( )
x x x x

f x f x f x f x
+ −→ →

   = + = −  both exist and are 

finite.  Then f necessarily has a jump discontinuity at x0 or is continuous at x0 

and the Fourier series at x0 converges to  0 0( ) ( )

2

f x f x+ + −
.   If f is 

differentiable at x0, then the Fourier series at x0 converges to f (x0).     

Proof.   We only need to prove the last statement.  If f is differentiable at x0, 

then 0 0 0

0

( ) ( ) 2 ( )
lim 0

2h

f x h f x h f x

h→

+ + − −
=  and so the function

0 0 0( ) ( ) 2 ( )

2

f x h f x h f x

h

+ + − −
 is Lebesgue integrable.   It then follows by 

Theorem 25 that the Fourier series at x0 converges to f (x0).     
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Corollary 28.  Suppose the function f is periodic of period 2 and is Lebesgue 

integrable on [−,  ].  Suppose f is sectionally continuous on [−,  ].  Let x0 be 

in (−,  ).   Suppose the left and right limits of f at x0 exist.  If  

0 0

0

( ) ( )
lim
h

f x h f x

h+→

+ − +
 and 0 0

0

( ) ( )
lim
h

f x h f x

h+→

− − −

−
 both exist, then the Fourier 

series at x0 converges to  0 0( ) ( )

2

f x f x+ + −
.   

Proof.  The Lebesgue integrability of 

0 0 0 0( ) ( ) ( ) ( )
( )

2
c

f x h f x h f x f x
g h

h

+ + + − + − −
=  is a consequence of sectional 

continuity and the existence of 0 0

0

( ) ( )
lim
h

f x h f x

h+→

+ − +
 and 

0 0

0

( ) ( )
lim
h

f x h f x

h+→

− − −

−
 as in Theorem 27.  The result then follows from 

Theorem 25. 

 

The next result is about absolute convergence of Fourier series. 

Theorem 29.  Suppose the function f is periodic of period 2 and is continuous 

on [−,  ]. Suppose  f    is sectionally continuous on [−,  ] with jump 

discontinuity.  That is to say, there is a finite partition, 

0 1 nx x x − =    =  such that  f  is differentiable on each open interval 

1( , )i ix x−  so that f   is continuous and bounded on 1( , )i ix x− , i = 1,2, , n, and at 

each point x of discontinuity of f  , both the left and right limits of f   exist. 

Then the Fourier series of f converges uniformly and absolutely to f on [−,  ].   

Proof.    Since f   is continuous and bounded on 1( , )i ix x− and  f  is continuous 

on 1[ , ]i ix x− , by the Mean Value Theorem For Derivative, for any x, y in 1[ , ]i ix x−

, | ( ) ( ) | | |f x f y C x y−  − , where C is a bound for f   in 1( , )i ix x− .  It follows 

that f is Lipschitz on 1[ , ]i ix x−  and so f is continuous and of bounded variation on 

1[ , ]i ix x− .  Since there is only a finite number of such interval in the partition, f is 

continuous and of bounded variation on [−,  ].  Then by Theorem 24, the 

Fourier series of f converges uniformly to f on [−,  ].  More is true, since f is 

Lipschitz on each 1[ , ]i ix x−  and there is only a finite number of these intervals in 



39 
 

the partition, f is Lipschitz on [−,  ] and so f is absolutely continuous on [−,  

].   

We shall show next that the Fourier series of f converges absolutely and 

uniformly to f on [−,  ].   

Here we digress to bring in Parseval inequality for square integrable function. 

Suppose g is square integrable on [−, ], that is, g2 is Lebesgue integrable.  

Since [−,  ] is of finite measure, g is also Lebesgue integrable.  Suppose 

( )0

1

1
cos( ) sin( )

2
n n

n

a a nx b nx


=

+ +  is the Fourier series of g.  Now for each integer m 

≥1,        

               ( )
2

1

( ) cos( ) sin( ) 0
m

n n

n

g x a nx b nx dx


−
=

− +  .   ------------------------ (81) 

On the other hand,  

( ) ( ) ( )
2 2

2

1 1

( ) cos( ) sin( ) ( ) cos( ) sin( )
m m

n n n n

n n

g x a nx b nx dx g x dx a nx b nx dx
  

  − − −
= =

 
− + = + + 

 
   

 

                                                
1 1

2 ( )cos( ) 2 ( )sin( )
m m

n n

n n

a g x nx dx b g x nx dx
 

 − −
= =

− −    

( ) ( )
2 2 2

1 1 1

( ) 2 2
m m m

n n n n n n

n n n

g x dx a b a a b b



  

−
= = =

= + + − −    

( ) ( )
2 2 2

1

( )
m

n n

n

g x dx a b





−
=

= − + .    Therefore,  ( ) ( )
22 2

1

( )
m

n n

n

a b g x dx





−
=

+     . 

It follows that ( )2 2

1

n n

n

a b


=

+   .   

This means that if g is square integrable, then its Fourier coefficients satisfy   

                                                ( )2 2

1

n n

n

a b


=

+   .   --------------------------   (82) 

Now we return to our function f .  Note that f is absolutely continuous on [−,  

].  Thus, we may write f as an integral, i.e.,  
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0

( ) ( ) (0)
x

f x f t dt f= + . 

Then  

 ( )
2 2

0 0 0

1 1
( )cos( ) ( ) (0) cos( )

x

na f x nx dx f t dt f nx dx
 

 
= = +    

     ( )
2

2

0 0
0

1 sin( ) 1 ( )sin( )
( ) (0)

x nx f x nx
f t dt f dx

n n




 

 
= + −  

  , by integration by parts, 

     
1

nB
n

= − ,                                              --------------------------------------  (83) 

where ( )0

1

1
cos( ) sin( )

2
n n

n

A A nx B nx


=

+ +  is the Fourier series of f  . 

Similarly,  

( )
2 2

0 0 0

1 1
( )sin( ) ( ) (0) sin( )

x

nb f x nx dx f t dt f nx dx
 

 
= = +    

    ( )
2

2

0 0
0

1 cos( ) 1 ( )cos( )
( ) (0)

x nx f x nx
f t dt f dx

n n




 

 
= − + +  

  , by integration by parts, 

    
1 (0) (2 ) 1 1

n n

f f
A A

n n n n





 
= − + = 

 
.                   --------------------------------- (84) 

By the Cauchy Schwartz’s inequality, 

              

1/2
2

2

2 2
1 1 1 1

1n n n n
k k

k

k k k k

B B
B

k k k= = = =

   
=     

   
    .         --------------------- (85) 

Note that since f   is sectionally continuous, it is bounded almost everywhere 

and so ( )
2

f   is integrable and so its coefficients satisfy the Parseval inequality 

(82).  It follows that 2

1

k

k

B


=

  .  Since 
2

1

1

k k



=

  , it follows from (85) that 

1

k

k

B

k



=

  .   Then by (83) 
1

k

k

a


=

  .  Similarly, we can deduce that 

1 1

k
k

k k

A
b

k

 

= =

=    .  It then follows by Weierstrass M-Test that the Fourier 

series of f converges uniformly and absolutely. 
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Differentiation of Fourier Series 

Theorem 30.   Suppose the function f is periodic of period 2 and continuous 

on [−,  ].  Suppose f  is sectionally continuous on [−, ] with jump 

discontinuity.  Let x0 be in [−, ].  Suppose 0( )f x exists.  Then the Fourier 

series of f may be differentiated term by term to give 0( )f x  and the resultant 

series is the Fourier series of f  at x0 . 

Proof.  Since  f    is sectionally continuous on [−, ], f is absolutely 

continuous on [−,  ].  Hence, both f and f    are Lebesgue integrable on [−,  

].  Suppose the Fourier series of f  is 

                     ( )0

1

1
cos( ) sin( )

2
n n

n

A A nx B nx


=

+ + .   --------------    (86) 

And the Fourier series of f is 

                       ( )0

1

1
cos( ) sin( )

2
n n

n

a a nx b nx


=

+ + .  ----------------    (87) 

Note that 0 ( ) ( ) ( ) 0A f t dt f f and the coefficients of the two series 

are related by (83) and (84), i.e., 

                    and  n n n nB na A nb= − = .      ----------------------- (88) 

By Theorem 27, the Fourier series of  f  at x0 converges to 0( )f x .   

By Theorem 29,  ( )0

1

1
cos( ) sin( ) ( )

2
n n

n

a a nx b nx f x


=

+ + → .  In particular, 

             ( )0 0 0 0

1

1
cos( ) sin( ) ( )

2
n n

n

a a nx b nx f x


=

+ + → . 

If we differentiate (87) term by term we get (86) on account of (88). 

This completes the proof. 
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Theorem 31.  Suppose the function f  is periodic of period 2 and is absolutely 

continuous on [−, ] .   Then f and  f   are Lebesgue integrable on [−, ].   If 

( , )n nf a b  , then ( , )n nf nb na − . 

Proof.   Immediate from the proof of Theorem 29.  

 

(C,1) Summability of Fourier Series. 

Suppose the function f is periodic of period 2 and is Lebesgue integrable on 

[−,  ].   Suppose 
0

1

1
( ) ( )

2

n

n k

k

t x a A x
=

= +   is sum of the (n+1) terms of the Fourier 

series of f.   Then the (C,1) mean of the Fourier series is 

                          ( )1 0 1

1
( ) ( ) ( ) ( )

1
n nx t x t x t x

n
 + = + + +

+
. 

Recall from (10) that  

        ( )1 0 1

0

1 1 1
( ) ( ) ( ) ( ) ( ) ( )

1 1

n

n n k

k

x t x t x t x f x u D u du
n n







+

−
=

= + + + = +
+ +

    

                   
1

( ) ( )nf x u K u du


 −
= + ,     

where 

2
1
2

1
0 2

1 2 sin( ( 1) )
( ) ( )

1 1 2sin( )

n

n k

k

n x
K u D u

n n x=

 +
= =  

+ +  
 . (See (15).) 

Let c be a real number.  Then recall from (24) 

( )1

1
( ) ( ) ( )n nx c f x u c K u du







+

−
− = + −   

               ( ) ( )
0

0

1 1
( ) ( ) ( ) ( )n nf x u c K u du f x u c K u du



  −
= + − + + −   

               ( ) ( )
0

0

1 1
( ) ( ) ( ) ( )n nf x u c K u du f x s c K s ds



 
= + − − − − −   

               ( ) ( )
0 0

1 1
( ) ( ) ( ) ( )n nf x u c K u du f x u c K u du

 

 
= + − + − −  , since Kn is even, 
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                ( )
0

1
( ) ( ) 2 ( )nf x u f x u c K u du




= + + − −                ----------------------  (89) 

            ( )
2 1

2

2 10
2

1 sin ( ( 1) )
( ) ( ) 2

2( 1) sin ( )

n u
f x u f x u c du

n u





+
= + + − −

+  . --------------- (90) 

With (90) we get immediately: 

Theorem 32.  Suppose the function f is periodic of period 2 and is Lebesgue 

integrable on [−, ].  Then the (C,1) mean of the Fourier series at x converges 

to c if, and only if, 

                                  
2 1

2

2 10
2

1 sin ( )
( ) 0

sin ( )
c

nu
g u du

n u



→ , 

where ( )
1

( ) ( ) ( ) 2
2

cg u f x u f x u c= + + − − . 

 

Take a fixed 0 <  < . 

                
2 1 ( )

22 1
22 21 1

2 2

1 sin ( ) 1 1
( ) ( )sin ( )

sin ( ) sin ( )

x

c c

nu
g u du g u nu du

n u n

 

 
=  , 

                                                                for some ( )x    , --------- (91) 

by the Second Mean Value Theorem. 

Therefore, 
2 1 ( )

2

2 21 1
2 2

1 sin ( ) 1 1
( ) ( )

sin ( ) sin ( )

x

c c

nu
g u du g u du

n u n

 

 
  . --------------   (92) 

Now 
( )

0
( ) | ( ) |

x

cg u du f u du c
 


 +  .  

It then follows from (92) that 
2 1

2

2 1
2

1 sin ( )
( )

sin ( )
c

nu
g u du

n u



  tends to 0 uniformly and 

boundedly in x.  Hence, we have proved the following: 
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Theorem 32.  Suppose the function f is periodic of period 2 and is Lebesgue 

integrable on [−,  ].   Then the (C,1) mean of the Fourier series at x converges 

to c if, and only if, for some 0 <  <  ,  
2 1

2

2 10
2

1 sin ( )
( ) 0

sin ( )
c

nu
g u du

n u



→ . 

Suppose E is a subset of [−,  ] and c:E →  is a finite function. Suppose c is 

bounded.  Then the (C,1) mean of the Fourier series at x converges uniformly to 

c(x) on E if, and only if, for some 0 <  <  , 
2 1

2

2 10
2

1 sin ( )
( ) 0

sin ( )
c

nu
g u du

n u



→  uniformly 

on E. 

 

Assume c: E → is bounded.  Consider the difference, 

           
2 21 1

2 2
( ) ( )2 21 10 0

2 2

sin ( ) sin ( )
( ) ( )

sin ( ) ( )
c x c x

nu nu
g u du g u du

u u

 

−    

           
( )

2 1
( ) 2 22 10 1

2 2

1 1
( )sin ( )

sin ( )
c xg u nu du

u u

  
= − 

 
 

 . 

Now 
2 2

1 1
( )

sin ( )
h u

u u
= −  is strictly increasing on (0, ]

2


.  Observe that for u in 

(0, )
2


, 

( )
3 3 1/3

cos 1 sin( )
( ) 0 0

sin ( ) (cos( ))

u u
h u u

u u u
 = − +   −  .  Note that  

1/3

sin( )
( )

(cos( ))

u
k u u

u
= −  

is increasing on [0, )
2


 by observing that (0) 0  and ( ) 0k k u =   for u in (0, )

2


. 

Thus,  
( )

22 1 1
2 2

1 1

sin ( )u u
−  is strictly increasing on (0, ] and so by the Second Mean 

Value Theorem, since 
( )

22 1 10
2 2

1 1 1
lim 0

sin ( ) 3u u u
+→

− =  , there exists, 0 ( )x    such 

that   

         
2 21 1

2 2
( ) ( )2 21 10 0

2 2

sin ( ) sin ( )
( ) ( )

sin ( ) ( )
c x c x

nu nu
g u du g u du

u u

 

−             

         
( )

2 1
( ) 222 1 ( )1

2 2

1 1
( )sin ( )

sin ( )
c x

x
g u nu du



 

 
= − 

 
 

 . 
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Now, 

2 1
( ) ( ) ( )2

( ) ( ) 0 0
( )sin ( ) ( ) ( ) ( ) ( )c x c x c x

x x
g u nu du g u du g u du f u du c x

   

 
   +    . ----- (92) 

Since c(x) is bounded on E, it follows that  

            
2 21 1

2 2
( ) ( )2 21 10 0

2 2

1 sin ( ) 1 sin ( )
( ) ( ) 0

sin ( ) ( )
c x c x

nu nu
g u du g u du

n u n u

 

− →    

uniformly and boundedly on E.   We have then by Theorem 32 the following: 

 

Theorem 33.  Suppose the function f is periodic of period 2 and is Lebesgue 

integrable on [−,  ].   Then the (C,1) mean of the Fourier series at x converges 

to c if, and only if, for some 0 <  <  , 
2 1

2

20

1 sin ( )
( ) 0c

nu
g u du

n u



→ .                                

Suppose E is a subset of [−,  ] and c: E → is a finite function. Suppose c is 

bounded.  Then the (C,1) mean of the Fourier series at x converges uniformly to 

c(x) on E if and only if for some 0 <  <  , 
2 1

2

20

1 sin ( )
( ) 0c

nu
g u du

n u



→  uniformly 

on E. 

 

Suppose the function f  is periodic of period 2 and is Lebesgue integrable on 

[−,  ] .  Suppose at each point x of a subset E of [−,  ], the left and right 

limit of f exists.   Suppose further that ( )
1

( ) ( ) ( )
2

c x f x f x= + + −  is bounded on 

E.  For instance, c(x) is bounded if E is a finite set. 

Take a fixed 0 <  < .  Let 0 <  < .  Then 

 
2 2 21 1 1

2 2 2
( ) ( ) ( )2 2 20 0

1 sin ( ) 1 sin ( ) 1 sin ( )
( ) ( ) ( )c x c x c x

nu nu nu
g u du g u du g u du

n u n u n u

  


= +   . --- (93) 

 

For each x in E,  ( )( )
0 0

1
lim ( ) lim ( ) ( ) ( ) ( ) 0

2
c x

u u
g u f x u f x u f x f x

→ →
= + + − − + − − = . 



46 
 

Therefore, given  > 0, there exists (x) depending on x, with 0 < (x) <  <  

such that  

                              ( )

2
( ) ( )c xu x g u





   .  ----------------------------  (94) 

Therefore,          

2 21 1( ) ( )
2 2

( ) ( )2 20 0

1 sin ( ) 1 sin ( )
( ) ( )

x x

c x c x

nu nu
g u du g u du

n u n u

 

   

                                   

( )

1 1
2 2

2 2 21( ) ( ) ( )
2

22 20 0 02

2 sin ( ) 2 sin ( ) 2 sin ( )x n x n x

v
n

nu v v
du dv dv

n u n n v

    

  
 = =    

2

20

sin ( )

2 2

v
dv

v

   

 



 = = ,                                   -------------------------- (95) 

since  
2

20

sin ( )

2

v
dv

v



= . 

By the Second Mean Value Theorem, there exists, ( ) ( )x x    , such that 

   
( )

2 1 ( )
22 1

( ) ( ) 222( ) ( )

sin ( ) 1
( ) ( )sin ( )

( )

x

c x c x
x x

nu
g u du g u nu du

u x

 

 
=  . ---------------- (96) 

Now, 

  
( ) ( )

2 1
( ) ( ) ( )2

( ) ( ) 0 0
( )sin ( ) ( ) ( ) ( ) ( )

x x

c x c x c x
x x

g u nu du g u du g u du f u du c x
   

 
   +    . 

It follows that if c(x) is bounded on E and that (x) is bounded below on E by a 

positive constant, then  

          
( )

2 1 ( )
22 1

( ) ( ) 222( ) ( )

sin ( ) 1
( ) ( )sin ( )

( )

x

c x c x
x x

nu
g u du g u nu du

u x

 

 
=   is uniformly 

bounded. 

Therefore,  
2 1

2
( ) 2( )

1 sin ( )
( )c x

x

nu
g u du

n u



  tends to 0 pointwise and if (x) is bounded 

below on E by a positive constant 
2 1

2
( ) 2( )

1 sin ( )
( ) 0c x

x

nu
g u du

n u




→ uniformly and 

boundedly on E.             
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Hence there exists an integer N such that  

                  
2 1

2
( ) 2( )

1 sin ( )
( )

2
c x

x

nu
n N g u du

n u






    .   -------------------   (97) 

If (x) is bounded below on E by a positive constant, then there exists an integer 

N so that (97) holds for all x in E. 

It follows then from (93), (95) and (97), 

                   
2 1

2
( ) 20

1 sin ( )
( )

2 2
c x

nu
n N g u du

n u

  
   + = . 

This means  
2 1

2
( ) 20

1 sin ( )
( ) 0c x

nu
g u du

n u



→  pointwise on E .   

If f is uniformly continuous and bounded on E, then the left and right limits at x 

in E are the same and equal to f (x).  Thus c(x) = f (x) on E. We may choose the 

same (x) for all x in E by uniform continuity so that (x) is bounded below on 

E and that (94) and (97) holds for all x in E.  Hence (95) and (97) implies that 
2 1

2
( ) 20

1 sin ( )
( ) 0c x

nu
g u du

n u



→ uniformly and boundedly on E. 

We have thus proved the following theorem. 

Theorem 34.  Suppose the function f is periodic of period 2 and is Lebesgue 

integrable on [−, ].  Suppose at each point x of a subset E of [−, ], the left 

and right limits of f exist.    

(i) At each point x of E, the (C,1) mean of the Fourier series at x converges to 

( )
1

( ) ( ) ( )
2

c x f x f x= + + − . 

(ii) Suppose f is uniformly continuous and bounded on E.  Then the (C,1) mean 

of the Fourier series converges uniformly and boundedly to f (x) on E.  

(ii) If f is continuous on [−, ], then the (C,1) mean of the Fourier series 

converges uniformly and boundedly to f (x) on [−, ]. 
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Our next result is a more general sufficient condition for summability.  This is 

the Féjer Lebesgue theorem. 

Theorem 35 (Féjer Lebesgue).   Suppose the function f is periodic of period 2 

and is Lebesgue integrable on [−, ].  Then the Fourier series of f is (C, 1) 

summable at every point x for which 
00

1
lim ( ) ( ) 0

t

t
f x u f x du

t→
+ − = , to f (x).   

More generally, if f satisfies condition Lc at  , i.e., if  
00

1
lim ( ) 0

t

c
t

g u du
t→

= , 

where  
( ) ( )

( )
2

c

f u f u
g u c

 + + −
= − , then the Fourier series of f (x) is (C, 1) 

summable to c at x =  . 

 

Before we prove Theorem 35, we state a useful consequence. 

Theorem 36. Suppose the function f is periodic of period 2 and is Lebesgue 

integrable on [−, ].  Then the Fourier series of f is (C, 1) summable almost 

everywhere to f (x).      

Proof.  By Lemma 10, almost every point of [−, ] is a Lebesgue point of f. 

That is to say, for all x in [−, ] except for a null set,  

                             
00

1
lim ( ) ( ) 0

t

t
f x u f x du

t→
+ − = . 

Therefore, by Theorem 35, the Fourier series of f at x is (C, 1) is summable to     

f (x) for all x outside a set of measure zero. 

 

Proof of Theorem 35.      

Fix a  with 0 <  < .  Let ( )
1

( ) ( ) ( ) 2 ( )
2

xg u f x u f x u f x= + + − − . 

Then for t > 0,   

 ( )
0 0

1 1 1
( ) ( ) ( ) 2 ( )

2

t t

xg u du f x u f x u f x du
t t

= + + − −   
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0 0

1 1 1
( ) ( ) ( ) ( )

2

t t

f x u f x du f x u f x du
t t

 
 + − + − − 

 
   

       
0 0

1 1 1
( ) ( ) ( ) ( )

2

t t

f x u f x du f x u f x du
t t

− 
 + − + + − 

− 
  .  --------- (98) 

Since 
00

1
lim ( ) ( ) 0

t

t
f x u f x du

t→
+ − = , it follows that 

00

1
lim ( ) 0

t

x
t

g u du
t+→

= . 

We can deduce similarly that 
00

1
lim ( ) 0

t

x
t

g u du
t−→

=    Therefore,  

 
00

1
lim ( ) 0

t

x
t

g u du
t→

= .   This means f satisfies condition  ( )f xL   at  x.  Thus, we 

may proceed the proof with the more general case taking c in place of f (x) and 

write   in place of x.     We assume that  
00

1
lim ( ) 0

t

c
t

g u du
t→

= , where  

( ) ( )
( )

2
c

f u f u
g u c

 + + −
= − .     

Let 
0

( ) ( )
t

ct g u du =   for t > 0.   Then given  > 0, there exists  such that for 

0 <  <  and for 0 < t ≤  , 

                                          ( )
4

t t


  .          --------------------------------- (99) 

Choose  
1

n


  , i.e., 
1

n
 . 

 
1

1

2 2 2 21 1 1 1
2 2 2 2

2 2 2 20 0

sin ( ) sin ( ) sin ( ) sin ( )
( ) ( ) ( ) ( )

n

n

c c c c

nu nu nu nu
g u du g u du g u du g u du

u u u u

  


= + +     

                        1 2 3I I I= + +  .                            -----------------------------  (100) 

Now 

          
1 12 2 21

2
1 20 0

sin ( ) 1
( ) ( )

4 4 4 16

n n

c c

nu n n n
I g u du g u du

u n


   =  ,        --------- (101)     

since 
1

n
 . 
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1 1 1
1

2 1
2

2 2 2 2 3

( )sin ( ) ( ) ( )
( ) 2

n n n
n

c

c

g unu u u
I g u du du du

u u u u


    

  = +  
   , 

                                                                                       by integration by parts, 

     
1

2 1
2 3

( ) 1 1
( ) 2

4 4 2 4 2n

n

u n
n du n

u

   


   

   
 −  +  + −  +   

   
 .     --------------- (102) 

 
2 1

2
3 2 2 2 2 0

sin ( ) 1 1 1
( ) ( ) ( ) ( )c c c c

nu
I g u du g u du g u du g u du

u u

   

   
       . ---- (103) 

Therefore, given  > 0, for a fixed  as above, by (100)-(103),            

       
2 1

2

2 20 0

1 sin ( ) 1 1
( ) ( )

16 2 4
c c

nu n
g u du n g u du

n u n

   

 

 
 + + + 

 
  . -----------------  (104) 

Thus, given  > 0, fix an  , with 0 <  <  such that for 0 < t ≤  , (99) holds. 

Then take n sufficiently large so that  

                    
2 0

1 1
( )

16 2 4
cg u du

n

  


 

 
+ + +  

 
 . 

This means 
2 1

2

20

1 sin ( )
( ) 0c

nu
g u du

n u



→ . 

Therefore, by Theorem 33, the Fourier series of f at x=  , is (C, 1) summable to 

c.  This proves the more general case and hence the special case when 

00

1
lim ( ) ( ) 0

t

t
f x u f x du

t→
+ − = . 

Theorem 37. Suppose the function f is periodic of period 2 and is Lebesgue 

integrable on [−, ].  Suppose the function ( )
1

( ) ( ) ( )
2

u f x u f x u = + + −  has 

a limit at u = 0, i.e.,  
0

lim ( ) (0 )
u

u 
+→

= +  exists, then the Fourier series of f at x is 

(C, 1) summable to (0 ) + .  In particular, if f is continuous at x, then the Fourier 

series of f at x is (C, 1) summable to f (x).   
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Proof.   Note that if  
0

lim ( ) (0 )
u

u 
+→

= + , then f satisfies condition Lc at x with   

(0 )c = + .   Theorem 37 then follows from Theorem 35.  Observe that if f is 

continuous at x, then 
0

lim ( ) (0 ) ( )
u

u f x 
+→

= + = .       

 

Convergence Almost Everywhere 

We now discuss some results concerning convergence almost everywhere.  A 

most useful result is the important Riesz-Fischer Theorem.   

Theorem 38.   If  ( )2 2

1

n n

n

a b


=

+    , then the trigonometric series 

                           ( )
1 1

( ) cos( ) sin( )n n n

n n

A x a nx b nx
 

= =

= +   

is the Fourier series of a square integrable function F. 

 

The following summability result of Hardy is very useful in passing from 

summability to normal convergence. 

 

Theorem 39.   Notation as in Theorem 38.  If 1( ) ( )n n
A x O= , then  

1

( )n

n

A x


=

  is (C,1) summable to s if, and only, if 
1

( )n

n

A x


=

 converges to s. 

 

The next two results are about convergence almost everywhere. 

Theorem 40. If  ( )
1 1

( ) cos( ) sin( )n n n

n n

A x a nx b nx
 

= =

= +   is the Fourier series of a 

square integrable function F, then the series 

                                  
( )

1
2

2

cos( ) sin( )

ln( )

n n

n

a nx b nx

n



=

 +
 
 
 

  

converges almost everywhere on . 
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Theorem 41.  Suppose an, bn are Fourier coefficients of an integrable function f, 

i.e.,  ( )0

1

1
cos( ) sin( )

2
n n

n

a a nx b nx


=

+ +  is a Fourier series, then both series 

              
2

cos( ) sin( )

ln( )

n n

n

a nx b nx

n



=

 +
 
 

  and 
2

sin( ) cos( )

ln( )

n n

n

a nx b nx

n



=

 −
 
 

  

converge almost everywhere. 

 

The proofs of theorems 38 to 41 can be found in Zygmund’s monumental work 

Trigonometric Series.   

 

We now state some consequences of these theorems. 

Theorem 42.  If  ( )0

1

1
cos( ) sin( )

2
n n

n

a a nx b nx


=

+ +  is a trigonometric series with 

0  and  0n na b→ → , then the series 
0

1

1 cos( ) sin( )

2

n n

n

b nx a nx
a x

n



=

− 
−  

 
  converges 

almost everywhere to some function. 

Proof. 0  and  0n na b→ →  implies that both sequences (an) and (bn) are 

bounded and as a consequence 

2 2

1

n n

n

a b

n n



=

    
+           

 .  Therefore, by 

Theorem 38, 
1

cos( ) sin( )n n

n

b nx a nx

n



=

− 
 
 

  is the Fourier series of a square integrable 

function F.  Then F is of course integrable.  By Theorem 36, this series is (C,1) 

summable almost everywhere to F(x).  As 0  and  0n na b→ → , 

cos( ) sin( )n nb nx a nx

n

−
 is 

1
o

n

 
 
 

.   Therefore, by Hardy’s Theorem, Theorem 39, 

this series converges almost everywhere to F(x).  Consequently, the series 

0

1

1 cos( ) sin( )

2

n n

n

b nx a nx
a x

n



=

− 
−  

 
  obtained by a formal integration of the 

trigonometric series term by term, converges almost everywhere. 
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Theorem 43.   The trigonometric series  ( )0

1

1
cos( ) sin( )

2
n n

n

a a nx b nx


=

+ +  

converges almost everywhere if ( )( )
22 2

1

ln( )n n

n

a b n


=

+   . 

Proof.  By Theorem 38, ( )
1

cos( ) sin( ) ln( )n n

n

a nx b nx n


=

+  is the Fourier series of 

some square integrable function F.  It follows then by Theorem 41 that  

           
( )

( )
2 2

cos( ) sin( ) ln( )
cos( ) sin( )

ln( )

n n

n n

n n

a nx b nx n
a nx b nx

n

 

= =

+
= +   

converges almost everywhere to some function.  Consequently, the series 

converges almost everywhere. 

Theorem 44.   The trigonometric series  ( )0

1

1
cos( ) sin( )

2
n n

n

a a nx b nx


=

+ +  

converges almost everywhere if ( )2 2

1

ln( )n n

n

a b n


=

+   . 

Proof.  By Theorem 38, ( )
2

cos( ) sin( ) ln( )n n

n

a nx b nx n


=

+  is the Fourier series of 

some square integrable function F.  It follows then by Theorem 40 that  

           
( )

( )
2 2

cos( ) sin( ) ln( )
cos( ) sin( )

ln( )

n n

n n

n n

a nx b nx n
a nx b nx

n

 

= =

+
= +   

converges almost everywhere to some function.  Hence the trigonometric series 

converges almost everywhere. 


