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Abel-summability of Fourier Series and its Derived Series 

By Ng Tze Beng 

In this article, we focus on the use of Poisson-Abel kernel to investigate the convergence of Fourier 

series.  Abel-summability or A-summability is more general than (C,1) summability.  We concentrate on 

A-summability and its application to Fourier series, Fourier integral and harmonic function.  A-

summability, like (C,1) summability, is also regular and so it too generalizes the usual notion of 

convergence in the sense of Cauchy.  In section A, we give the definition of A-summability and its 

regularity property.  In section B we define the Poisson kernel, the conjugate kernel, the Poisson integral 

and conjugate Poisson integral arising from a Lebesgue integrable function, show that they are harmonic 

in the open unit disk and list some useful properties of the Poisson kernel.  In section C, we give the 

convergence theorems and some application to harmonic function, defined by the Poisson integral, state 

a special form of the maximum and minimum principle for harmonic function of the Poisson integral 

type and show that we can recover the continuous harmonic function defined on a closed unit disk from 

the values on the unit circle. In section D, we show that the derived series of a Fourier series is A-

summable to its symmetric derivative if it exists.  Through the use of the symmetric derivative of a 

primitive of Lebesgue integrable periodic function f, we show that its Fourier series is Lebesgue 

summable at   to c if`, and only if, f satisfies condition c  at  . 

Section A   A-summability 

Definition 1.   Let ( an ), n =0, 1, 2, 3, ….  ,  be a sequence.  Let 
0

n

n k

k

s a
=

=   be 

the (n+1)-th partial sum of the series  
0

k

k

a


=

 .   The series  
0

k

k

a


=

  is convergent if 

the sequence ( sn ) converges.   Let 
0

n

n k

k

T s
=

=   and n be the arithmetic mean

0

1

1

n

n k

k

s
n


=

=
+

 .    

The series 
0

k

k

a


=

  is said to be (C,1) summable to a (finite) value s if the 

sequence (n ) converges to s. 

Consider the power series  
0

k

k

k

a x


=

 .   Suppose the power series converges for  0 

≤ x < 1 or  |x| < 1.   If the limit 
1

0

lim k

k
x

k

a x s
−



→
=

= ,  then we say the series 
0

k

k

a


=

  is 

Abel summable or A-summable to s. 
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We shall establish the regularity of A-summability as a consequence of the 

regularity of (C,1) summability. 

Theorem 2.  (C,1) summability is regular.  If the series 
0

k

k

a


=

  converges to s, 

then it is (C,1) summable to s, i.e., the arithmetic mean 
0

1

1

n

n k

k

s
n


=

=
+

  

converges to s.   

Proof.   Note that  
0

k

k

a


=

  converges to s if and only if 0 1( )a s a− + +    

converges to 0.   
0

k

k

a


=

  is (C,1) summable to s if and only if n converges to s if, 

and only if, 
0

1

1

n

k

k

s s
n =

−
+

  converges to 0 if, and only if, 
0

1
( )

1

n

k

k

s s
n =

−
+

  

converges to 0 if, and only if, 0 1( )a s a− + +  is (C,1) summable to 0.   

Therefore, we may assume without loss of generality that  
0

k

k

a


=

  converges to 0.   

Thus, 0ns → .   So given any  >0, there exists integer N such that  

                           | |n nn N s s      −   .          ---------------------   (1) 

Hence, for n > N,   by using (1), 

0 0 1

1 1 1

1 1 1

n N n

n k k k

k k k N

s s s
n n n


= = = +

= = +
+ + +

  
0

1 1
( )

1 1

N

k

k

s n N
n n


=

 − −
+ +

 . 

It follows that  

                
0

1 1
liminf liminf ( )

1 1

N

n k
n n

k

s n N
n n

  
→ →

=

 
 − − = − + + 

 . 

Since  is arbitrary, liminf 0n
n


→

 . 

Also using (1) we get for n > N,    

0 0 1

1 1 1

1 1 1

n N n

n k k k

k k k N

s s s
n n n


= = = +

= = +
+ + +

     
0

1 1
( )

1 1

N

k

k

s n N
n n


=

 + −
+ +

 . 
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Therefore, 

         
0

1 1
limsup limsup ( )

1 1

N

n k
n n k

s n N
n n

  
→ → =

 
 + − = + + 

  .  

Thus,  limsup 0n
n


→

  and we have 0 liminf limsup 0n n
n n

 
→ →

   .  It follows that 

lim 0n
n


→

= .   This proves Theorem 2. 

 

Theorem 3.   If the series 
0

k

k

a


=

  is (C,1) summable to s, then it is A-summable 

to s. 

Proof.  Note that  
0

k

k

a


=

  is A-summable to s if, and only if, 0 1( )a s a− + +    is 

A summable to 0.  Thus, we may, as in the proof of Theorem 2, assume that  

0

k

k

a


=

  is (C,1) summable to 0.   This means that 
0

1 1
0

1 1

n

n k n

k

s T
n n


=

= = →
+ +

 .  

It follows that given any  > 0, there exists integer N > 0 such that   

                               ( 1)
1

n
n

T
n N T n

n
      +

+
 .     ------------------- (2) 

Therefore, using (2), we get 

                    1 1 2( 1)n n n n nn N s T T T T n − −  = −  +  + .   --------------- (3) 

It follows that  

               1 11 4( 1)n n n n nn N a s s s s n − − +  = −  +  + .   ---------------- (4) 

Since 
0

( 1) n

n

n x


=

+  converges absolutely for |x| < 1 , it follows by Comparison 

Test and (2), (3), and ( 4) that 
0

n

n

n

T x


=

 ,  
0

n

n

n

s x


=

  and 
0

n

n

n

a x


=

  all converges 

absolutely for |x| < 1.   
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We want to show that 
1

0

lim 0k

k
x

k

a x
−



→
=

= .   As a first step we shall rewrite the 

(n+1)-th partial sum 
0

n
k

k

k

a x
=

 . 

   
1 1

0 1 0

0 1 1 0 0 0

( )
n n n n n n

k k k k k k

k k k k k k k

k k k k k k

a x s s s x s x x s x s s x x s x
− −

−

= = = = = =

= + − = − + = −       

               1

0

(1 )
n

k n

k n

k

x s x s x +

=

= − +  

               1 1

0

(1 ) (1 )
n

k n n

k n n

k

x x T x T x s x+ +

=

 
= − − + + 

 
 ,   

                                                     by applying similar derivation for  
0

n
k

k

k

s x
=

 , 

              2 1 1

0

(1 ) (1 )
n

k n n

k n n

k

x T x x T x s x+ +

=

= − + − + .                  ------------    (5) 

Now for |x| < 1,  
1

( 1) 0
n

n x
+

+ → .    Using this fact together with (2) and (3), we 

can easily deduce that 1 0n

nT x + →  and 1 0n

ns x + →  for |x| < 1. 

Hence, using (5), we have that for |x| < 1,           

                      2

0 0

( ) (1 )k k

k k

k k

f x a x x T x
 

= =

= = −  .                     ---------------  (6) 

Therefore, for |x| < 1,           

2 2

0 0 1

( ) (1 ) (1 )
N

k k k

k k k

k k k N

f x x T x x T x T x
 

= = = +

= − = − +    

      2 2

0 1

(1 ) (1 )
N

k k

k k

k k N

x T x x T x


= = +

 − + −   

      
2 2

0 1

(1 ) (1 ) ( 1)
N

kk

k

k k N

x T x x k x


= = +

 − + − +  ,  by using inequality (2). 
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Hence for 0 ≤ x < 1, 

2 2

0 1

( ) (1 ) (1 ) ( 1)
N

k k

k

k k N

f x x T x x k x


= = +

 − + − +   

          2 2 2

2
0 0

1
(1 ) (1 ) (1 )

(1 )

N N
k k

k k

k k

x T x x x T x
x

 
= =

 − + − = − +
−

  . 

Thus, 2

1 1 0

limsup ( ) limsup (1 )
N

k

k
x x k

f x x T x  
− −→ → =

 
 − + = 

 
 . 

Since  is arbitrary, 
1

limsup ( ) 0
x

f x
−→

= .   Therefore, 
1

lim ( ) 0
x

f x
−→

=  and so 

1
lim ( ) 0
x

f x
−→

= .  This means  
0

k

k

a


=

  is A-summable to 0.   This completes the 

proof. 

Theorem 2 and Theorem 3 give the following  

Corollary 4.  A-summability is regular. 

 

Section B 

Abel’s Method, Poisson Kernel, Conjugate Poisson Kernel and 

Harmonic Function 

To bring in circular functions, i.e., sine and cosine functions, we consider the 

complex power series 

                     ( )
1 1

1 1

2 2

k
k i k x i x

k k

r e re
 

= =

+ = +  .           ------------------   (7)   

For 0 ≤  r < 1  or  |r| < 1,  this power series converges absolutely for all x and  

         
1

1 1 1 1

2 2 1 2(1 )

i x
k i k x i x

i x i x
k

re
r e re

re re



=

+
+ = + =

− −
  

                             
2

2

1 2 sin( )

2(1 2 cos( ))

r i r x

r r x

− +
=

+ −
.           -------------------- (8) 
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Taking the real part of the power series we have: 

                 
2

2
1

1 1
cos( )

2 2(1 2 cos( ))

k

k

r
r kx

r r x



=

−
+ =

+ −
 .       ----------  (9) 

And taking the imaginary part we obtain: 

                  
2

1

sin( )
sin( )

1 2 cos( )

k

k

r x
r kx

r r x



=

=
+ −

  .            --------------- (10)         

Let                    
2

2

1
( , )

2(1 2 cos( ))

r
P r x

r r x

−
=

+ −
      ---------------- (11) 

and                    
2

sin( )
( , )

1 2 cos( )

r x
Q r x

r r x
=

+ −
 .       -----------------  (12) 

 

P(r,x) is called the Poisson kernel and Q(r,x) the conjugate Poisson kernel. 

 

Suppose ( ) cos( ) ( ) 0n n nA a n b n  = + →  or (An()) is bounded.  

This is always satisfied if (an , bn) are Fourier coefficients of a Lebesgue 

integrable periodic function  f  of period 2 and  

                                  0

1

1
( )

2
k

k

a A 


=

+   

is its Fourier series. 

Then 

                                0

1

1
( , ) ( )

2

k

k

k

u r a r A 


=

= +     ----------------------- (13) 

converges (absolutely) for | r| < 1.   

Observe that, for k ≥ 1, 

( )
1 1

( )cos( ( )) ( ) cos( )cos( ) sin( )sin( )f t k t dt f t kt k kt k dt
 

 
  

 − −
− = +    
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     ( ) ( )
1 1

( ) cos( ) cos( ) ( ) sin( ) sin( )f t kt dt k f t kt dt k
 

 
 

 − −
= +   

     cos( ) sin( ) ( ).k k ka k b k A  = + =   

Therefore, for 0 ≤  r  < 1, 

0

1

1 1
( , ) ( )cos( ( ))

2

k

k

u r a r f t k t dt



 





−
=

= + −   

1

1 1 1
( ) ( )cos( ( ))

2

k

k

f t dt r f t k t dt
 

 


 



− −
=

= + −   

1

1 1
cos( ( ) ( )

2

k

k

r k t f t dt









−
=

 
= + − 

 
  

2

2

1 1
( )

2(1 2 cos( ))

r
f t dt

r r t



 −

−
=

+ − − ,     -----------------------    (14) 

                      by using (9), 

1
( , ) ( )P r t f t dt






 −
= − .                  ------------------------------    (15) 

The integral in (14) is called the Poisson integral of f and P(r, t-) is its 

associated Poisson kernel. 

 

The series 0

1

1
( )

2
k

k

a A 


=

+   is A-summable to s if  
1

lim ( , )
r

u r s
−→

=  or, 

equivalently, if 
1

1
lim ( , ) ( )
r

P r t f t dt s





− −→
− = .   

Thus we can use the Poisson kernel to investigate A-summability.   

We observe the following important properties of the Poisson kernel. 

Note that for | r | <1,  

 

2 2

2 2 2 2

1 1
( , ) 0

2(1 2 cos( )) 2 (1 cos( )) (1 cos ( ))

r r
P r x

r r x r x r x

− −
= = 

+ − − + −
 ---- (16) 
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We can integrate P(r, x), by integrating the power series expansion (9) of  P(r, 

x) term by term by invoking the Riemann Dominated Convergence Theorem 

since the power series is absolutely convergent and uniformly bounded by 

1 1

2 1 | |
r

r
+

−
 , to give, for  0 ≤ r < 1,  

                         
1 1 1

( , ) 1
2

P r x dx dx
 

  − −
= =  .             -----------------------   (17)    

   

Consider the special cosine series: 

(C)                          
1

cos( ) cos(2 )
2

 + + +   

(C) is A-summable to 0 for  not a multiple of 2, since 

                 
2

2
1

1 1
cos( )

2 2(1 2 cos( ))

k

k

r
r k

r r






=

−
+ =

+ −
  

and     
2

2
1

1 0
lim 0

2(1 2 cos( )) 2(2 2cos( ))r

r

r r  −→

−
= =

+ − −
. 

On the other hand, the (C,1) mean of (C) is given by the Fejer kernel, 

2
1
2

1
0 2

1 2 sin( ( 1) )
( ) ( )

1 1 2sin( )

n

n k

k

n x
K D

n n
 

=

 +
= =  

+ +  
  , which tends to 0 for  not a multiple 

of 2.   So (C) is both (C,1) and A-summable to 0 for  not a multiple of 2.  

We can of course deduce the A-summability of (C) indirectly by invoking 

Theorem 3. 

Now we turn to the special sine series 

(S)                    sin( ) sin(2 ) sin(3 )  + + +  

For | r | < 1, from (10) we have  
2

1

sin( )
sin( )

1 2 cos( )

k

k

r
r k

r r








=

=
+ −

  and for  not 

a multiple of 2, 
2

1

sin( ) sin( ) 1
lim cot

1 2 cos( ) 2 2 cos( ) 2 2r

r

r r

  

 −→

 
= =  

+ − −  
.  This means 
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(S) is A-summable to 
1

cot
2 2

 
 
 

 for  not a multiple of 2.    Of course, we can 

also deduce this by invoking Theorem 3 and that (S) is (C,1) summable to 

1
cot

2 2

 
 
 

 for  not a multiple of 2.  The conjugate Fejer kernel is 

1 1
2 2

1
0 1 2

1 1 cos( ) cos( ( 1) )
( ) ( )

1 1 2sin( )

n n

n k

k k

k
K D

n n

 
 

= =

− +
= =

+ +
   

1
21

2 1
1 2

1 cos( ( 1) )
cot( )

1 2 2sin( )

n

k

n k

n




=

 +
= − 

+  
  

1 1
2 2

1 1

1 1 1
cot( ) cot( ) cos( ) sin( )

1 2 2 2

n n

k k

n
k k

n
   

= =

 
= − + 

+  
   

1 1
2 2

1 1 1 1
cot( ) cot( ) ( ) ( )

1 2 2 2 2
nn

n
D D

n
   

  
= − − +  

+   
 

1 1 1
2 2 21 1 1

2 2 2 1 1
2 2

1 1 1 sin(( ) ) 1 cos( ) cos(( ) )
cot( ) cot( ) cot( )

1 2 4 2 2sin( ) 2 2sin( )

n n n

n

  
  

 

 + − +
= + − + 

+  
 

1 1 1 1
2 2 2 21

2 2 1
2

1 1 cos( )sin(( ) ) sin( )cos(( ) )
cot( )

1 2 4sin ( )

n n n

n

   




 + + + +
= − 

+  
 

1
2 2 1

2

1 1 sin(( 1) )
cot( )

2 1 4sin ( )

n

n






 +
= −  

+  
. 

Thus, 1 1
2 22 1

2

1 1 sin(( 1) ) 1
lim ( ) lim cot( ) cot( )

2 1 4sin ( ) 2
n

n n

n
K

n


  

→ →

  + 
= − =  

+   
.   This shows that 

(S) is (C,1) summable to 
1

cot
2 2

 
 
 

 for  not a multiple of 2. 

Observe that (C) diverges for all  and (S) converges only when it is a trivial 

series when  is a multiple of . 

If  0

1

1
( )

2
k

k

a A 


=

+    is a trigonometric series, then its conjugate series is defined 

to be                                
1

( )k

k

B 


=

  ,             ----------------------------  (18) 
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where  ( ) cos( ) sin( )k k kB b k a k  = − . 

If  ( ) 0nB  →  or when (Bn()) is bounded,  then the series 

                       
1

( , ) ( )k

k

k

v r r B 


=

=     ---------------------------------------  (19) 

converges absolutely for | r | < 1. 

This is the case when (19) is the conjugate series of the Fourier series of a 

periodic Lebesgue integrable function f. 

Assume now that (19) is such a series.  Then 

 

( )
1 1

( )sin( ( )) ( ) sin( )cos( ) cos( )sin( )f t k t dt f t kt k kt k dt
 

 
  

 − −
− = −    

     ( )
1 1

( )sin( ) cos( ) ( ) cos( ) sin( )f t kt dt k f t kt dt k
 

 
 

 − −
= −   

    cos( ) sin( ) ( ).k k kb k b k B  = − =   

Therefore, for 0 ≤  r  < 1, 

1

1
( , ) ( )sin( ( ))k

k

v r r f t k t dt



 





−
=

= −   

        
1

1
sin( ( ) ( )k

k

r k t f t dt









−
=

 
= − 

 
  

       
2

1 sin( )
( )

1 2 cos( )

r t
f t dt

r r t







 −

−
=

+ − − ,     -------------------------------    (20) 

                                                                                               by using (10), 

       
1

( , ) ( )Q r t f t dt





 −
= − .                   ----------------------------------    (21) 

The integral in (20) is called the conjugate Poisson integral of f and Q(r, t-) is 

its associated conjugate Poisson kernel. 
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For the conjugate Poisson kernel Q(r, x) we have that  

                                   ( , ) 0Q r x dx


−
= .    ---------------------------  (22) 

We can use complex variable technique to evaluate this integral.  

Let  
1

1
( )

(1 )(1 ) (1 )( )

z z
f z

rz rz iz i rz z r−
= =

− − − −
 .   Let ( ) ixx e =  ,  − ≤ x ≤ 

parametrize the unit circle |z| = 1.   Then  

                   
2

sin( )
Im ( )

1 2 cos( )

r x
dx f z dz

r r x



 −
=

+ −  . 

For 0 < r < 1, f (z) has only one simple pole r in the unit disk |z| < 1.   The 

residue of f at r is given by  

                 
2

( , ) lim( ) lim
(1 )( ) (1 ) (1 )z r z r

z z r
res f r z r

i rz z r i rz i r→ →
= − = =

− − − −
 . 

Therefore, 

                        
2 2

2
( ) 2

(1 ) 1

r r
f z dz i

i r r


= =

− − , 

and so                      
2

sin( )
0

1 2 cos( )

r x
dx

r r x



−
=

+ −  

and                         
2 2

cos( ) 2

1 2 cos( ) 1

r x r
dx

r r x r






−

=
+ − − .   ------------------ (22)*         

Consequently, Im ( ) 0.f z dz


=  

We may of course use the Dominated Riemann Convergence Theorem to 

integrate Q(r, x) term by term to give 0. 

 

Theorem 5.  ( , )  and  ( , )u r v r   are harmonic function and 

( , ) ( , )u r iv r −  is analytic in the unit disk |z| < 1. 
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Proof.  We shall show that both ( , )  and  ( , )u r v r   satisfy the Laplace 

equation. 

In polar co-ordinate the Laplace equation is 

                               
2 2

2 2 2

1 1
0

r r r r

  



  
+ + =

  
       

Or                           

2 2

2
0r

r






  
+ = 

  
.  ---------------------------  (23) 

We begin by writing u(r,) in a different form.        

Define   and n n n na a b b− −= = −  for n > 0 and b0 = 0.   Let 
1

( )
2

n n nc a ib= − .   

Then n n na c c−= +   and    ( )n n nb i c c−= −  .  We now rewrite u(r,  ). 

0 0

1

1
( , ) ( )

2

kk k i

k k

k k

u r a r A c c r e  
 

= =−

= + = +   

           0

1 1

k k i k k i

k k

k k

c c r e c r e 
 

−

−

= =

= + +     ----------------------------  (24) 

We assume as before that  an  and  bn are bounded and so u(r, ) is absolutely 

convergent for 0 ≤  r  <1. 

Observe that, 

            
1 1

( , ) k k i k k i

k k

k k

r u r c k r e c k r e
r

 
 

−

−

= =

 
= + 

 
   ,  

          
2

2 2

1 1

( , ) k k i k k i

k k

k k

r u r c k r e c k r e
r

 
 

−

−

= =

 
= + 

 
  , 

           
1 1

( , ) k k i k k i

k k

k k

u
r c i k r e c i k r e 



 
−

−

= =


= −


   and 

            
2

2 2

2
1 1

( , ) k k i k k i

k k

k k

u
r c k r e c k r e 



 
−

−

= =


= − −


  . 
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It follows that 

2 2

2
0

u
r u

r 

  
+ = 

  
.  Thus u(r,) is harmonic in the open unit 

disk. 

Let  iz re =  .  Then from (24),          

           0 0

1 1 1 1

( , )
kk k k

k k k k

k k k k

u r c c z c z c c z c z
   

−

= = = =

= + + = + +          ---------- (25) 

since k kc c −=  . 

Now let 0

1

( ) 2 k

k

k

F z c c z


=

= +  .   Plainly, F(z) is analytic in the open unit disk. 

Observe that  

                      
1

( , ) ( ( ) ( )) Re ( )
2

u r F z F z F z = + = .  ----------------------  (26) 

Hence u(r, ) is harmonic in the open unit disk. 

Note that the imaginary part of F(z) is 

                                     ( ) ( ( ) ( ))
2

i
V z F z F z= − −      ----------------------- (27) 

Observe that  

       
1 1 1 1

( ) ( )
( , )

2

kk k k

k k k k

k k k k

F z F z
v r i c z c z i c z c z i

   

−

= = = =

−   
= − = − =   

   
    . 

Hence, ( , ) ( )v r V z = − .   Since V(z), being the imaginary part of an analytic 

function in the open unit disk, is harmonic in the open unit disk, v(r, ) is 

harmonic in the open unit disk.  Note that V(z) is the harmonic conjugate of u(r, 

 ) in the sense of harmonic function.  But ( , ) ( )v r V z = −  is conjugate function 

of u(r, ) in the Fourier series sense. 

We list some properties of these harmonic functions.  

(1) ( ) ( , ) ( , )F z u r i v r = − ,   
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 (2)  ( )

0

1

( ) ( ( , ) ( , )) 2im im im k i k m

k

k

F z e u r iv r e c e c r e    


− − − −

=

= − = +   , 

(3) 
0

2   if  01
( ( , ) ( , ))

2     if  0

m

im mc r m
u r iv r e d

c m





  



−

−

 
− = 

=
 , 

(4)  
1

( ( , ) ( , )) 0  for 0
2

imu r iv r e d m





  

 −
− =  . 

Similarly, 

(5)  
1

( ( , ) ( , )) 0  for 0
2

imu r iv r e d m





  



−

−
+ =  , 

(6)   
1

( , ) 2   for 0im m

mu r e d c r m





 



−

−
=  , 

(7)  ( , ) 2   for 0im m

m

i
v r e d c r m





 



−

−

−
=  . 

 

Properties of Poisson Kernel  

(1)  
2

2

1
( , )

2(1 2 cos( ))

r
P r

r r




−
=

+ −
 is even in  . 

(2)   For 0 < r < 1, maximum of P(r,  ) occurs at   = 0 and is equal to 
1

2(1 )

r

r

+

−
. 

(3)  For  0 < r < 1,  P(r,  ) is monotone decreasing in 0 ≤  ≤  with a 

maximum at  = 0 and a minimum of 
1

2(1 )

r

r

−

+
 at  =  .   Thus, P(r,  )  > 0 for  

0 ≤ r < 1. 

(4)   For 0 ≤ r < 1, 
1

( , ) 1P r x dx


 −
= . 

Let 
2

2

1
( )

2(1 2 cos( ))
r

r
g

r r




−
=

+ −
.  Then 

2

2 2

(1 )sin( )
( )

(1 2 cos( ))
r

r r
g

r r




 

 − −
=

 + −
. 
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Therefore, ( ) 0rg 






 for 0 < r < 1 and 0 <  < .    Hence, ( )rg   is 

decreasing in [0, ] and increasing in [−, 0].  Maximum value of ( )rg   occurs 

at  = 0 and is equal to 
1

2(1 )

r

r

+

−
 and minimum value of 

1

2(1 )

r

r

−

+
 occurring at  = 

. 

 

Section C 

Convergence Theorems 

Before we state the theorem on the A-summability of Fourier series, we prepare 

some preliminary definition. 

We shall assume f is a Lebesgue integrable periodic function of period 2.  Let  

( )
1

( ) ( ) ( ) 2
2

cg t f t f t c = + + − − .   

The function f is said to satisfy condition c  if 
00

1
lim ( ) 0

t

c
t

g x dx
t→

= .  The 

function f is said to satisfy the stronger condition Lc  if  
00

1
lim ( ) 0

t

c
t

g x dx
t→

= .   

Plainly, Lc implies c .   

 

Our main theorem is: 

Theorem 6.  Suppose f is a Lebesgue integrable periodic function of period 2.  

The Fourier series of f (t), for t = ,  is A-summable to f ( ) at a point of 

continuity and to  ( )
1

( ) ( )
2

f f + + −  at a point of jump discontinuity and is 

uniformly A-summable in any closed interval of continuity.   It is A-summable 

to c at any point  at which f satisfies c  and to f ( ) almost everywhere.  

Moreover,  ( , ) ( )u r f →  in the L1 norm. 
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It is useful to use a closed form of the Poisson integral,             

                                 
2

2

1

2(1 2 cos( ))

r
d

r r




−

+ − , 

to investigate behaviour of the harmonic function u(r,  ) near the boundary of 

the unit disk.  

We shall use trigonometric substitution to do this.  Let  tan
2

u
 

=  
 

 .  Then 

               2 2 21 1 1
sec 1 tan (1 )

2 2 2 2 2

du
u

d

 



    
= = + = +    

    
  

and  

 
2

2

2 2

2 2 21

1

1 1 2

2(1 2 cos( )) 2(1 2 ) 1u

u

r r
d du

r r r r u


 −

+

− −
=

+ − + − +   

2 2

2 2 2 2 2 2

1 1

(1 )(1 ) 2 (1 ) (1 ) (1 )

r r
du du

r u r u r u r

− −
= =

+ + − − + + −   

2 2
1

2 2 2 21
1

1 1 1 1 1
tan

(1 ) ( ) (1 ) 1 1r
r

r r r r
du u C

r u r r r

−

−
+

− − + + 
= = + 

+ + + − − 
  

1 1

2

1 1
tan tan tan( )

1 1

r r
u C C

r r
− −+ +   

= + = +   
− −   

. 

Thus, for any h > 0,   

2
1

220 0

1 1
( , ) tan tan( )

2(1 2 cos( )) 1

h h
h

r r
P r d d

r r r
  



−− + 
= =  

+ − − 
  .  ---------- (28) 

If  0  and   as  1  
1

r
r

h
h a r

r

−→ → →
−

 , then            

                       2
2

2 2

1 1 sin( ) 1
tan( )

1 2 ( ) 1 cos( )

r

r

r r

h
h r

h h

r h r
a

r r

+ +
= →

− −
  as  1  r −→ . 

Hence, we have from (28), the next theorem. 
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Theorem 7.   If  0  and   as  1  
1

r
r

h
h a r

r

−→ → →
−

,  then 

            ( )
2

1

20 0

1
( , ) tan

2(1 2 cos( ))

r rh h r
P r d d a

r r
  



−−
= →

+ −   as 1r −→  . 

 

We now examine the Poisson integral of f to write it in a more useful form. 

2

2

1 1 1
( , ) ( , ) ( ) ( )

2(1 2 cos( ))

r
u r P r t f t dt f t dt

r r t

 

 
 

  − −

−
= − =

+ − −  .        

  
2

2

1 1
( )

2(1 2 cos( ))

r
f u du

r r u

 

 




−

− −

−
= +

+ − , by a change of variable u = t −  , 

 
2

2

1 1
( )

2(1 2 cos( ))

r
f u du

r r u






 −

−
= +

+ − , by periodicity of f, 

2 2
0

2 20

1 1 1 1
( ) ( )

2(1 2 cos( )) 2(1 2 cos( ))

r r
f u du f u du

r r u r r u




 

  −

− −
= + + +

+ − + −   

2 2

2 20 0

1 1 1 1
( ) ( )

2(1 2 cos( )) 2(1 2 cos( ))

r r
f u du f s ds

r r u r r s

 

 
 

− −
= + + − +

+ − + − −   

2 2

2 20 0

1 1 1 1
( ) ( )

2(1 2 cos( )) 2(1 2 cos( )

r r
f u du f u du

r r u r r u

 

 
 

− −
= + + − +

+ − + −   

 
2

20

1 1
( ) ( )

2(1 2 cos( ))

r
f u f u du

r r u



 


−
= + + −

+ −  

 
0

1
( , ) ( ) ( )P r u f u f u du



 


= + + − .                        -------------------------  (29) 

 Then 

 
0

1 1
( , ) ( , ) ( ) ( ) ( , )u r c P r u f u f u du c P r u du

 

 


  
  −

− = + + − −  ,  

                                                                       since 
1

( , ) 1P r u du


 −
= , 
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0

1
( , ) ( ) ( ) 2P r u f u f u c du



 


= + + − − , since P(r, u) is even in u, 

0

2 ( ) ( )
( , )

2

f u f u
P r u c du





 



+ + − 
= − 

 
 .            ---------------------------  (30) 

 

Let 
( ) ( )

( , )
2

f u f u
u

 
 

+ + −
=   and ( ) ( , )cg u u c

  = − .   Then  

                       
0

2
( , ) ( , ) ( )cu r c P r u g u du








− =  .     --------------------------- (31) 

Thus, 

           
01 1

2
lim ( , ) lim ( , ) ( ) 0c
r r

u r c P r u g u du





− −→ →

=  =  .   ----------------- (32) 

We shall now investigate the behaviour of the Poisson integral, 

                                   
0

2
( , ) ( )cP r u g u du





  . 

Take a fixed  > 0 such that 0 <  <   and  consider splitting the Poisson 

integral   

          
0

2 2
( , ) ( , ) ( ) ( , ) ( )c cu r c P r u g u du P r u g u du

 

 





 

− = +  . ----------  (33) 

Lemma 8.   ( , ) ( ) 0  as  1cP r u g u du r






−→ → .   If  c  is bounded in the 

interval (a, b), then the convergence is uniform in   in (a, b) as 1r −→  .  

Proof.    

Since P(r,  ) is non-negative and monotone decreasing in 0 ≤  ≤  , 

       ( , ) ( ) ( , ) ( ) ( , ) ( )c c cP r u g u du P r u g u du P r g u du
  

  

  
    .  ------- (34) 

Now,  
( ) ( )

( )
2

c

f u f u
g u du c du



 


 

 + + −
= −   
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                               ( )f u du c






−

 + .                     -----------------------  (35) 

Since 
2

2

1
( , ) 0  as  1

2(1 2 cos( ))

r
P r r

r r




−−
= → →

+ −
, it follows from (34) and 

(35) that  ( , ) ( ) 0  as  1cP r u g u du r






−→ → .  Consequently        

                            ( , ) ( ) 0  as  1cP r u g u du r






−→ → . 

If  c  is bounded in the interval (a, b), then from (35),  ( )cg u du




  is 

uniformly bounded in   in (a, b).   Hence ( , ) ( ) 0  as  1cP r u g u du r






−→ →  

uniformly in   in (a, b).    

 

It follows from Lemma 8 the following A-summable criterion. 

Theorem 9.   Suppose the function f is a Lebesgue integrable periodic function 

of period 2.   Then ( , )   as   1u r c r −→ →  if, and only if, there exists 0 <  < 

  such that  
0

2
( , ) ( ) 0  as  1cP r u g u du r







−→ → .  If  c  is bounded in the set  

E , then ( , )   uniformly in  as   1u r c E r −→ →  if, and only if,   

               
0

2
( , ) ( ) 0  uniformly in  as  1cP r u g u du E r







−→ →  . 

The Fourier series of f (t), for t = ,  is A-summable to c if there exists 0 <  < 

  such that 

                  
0

2
( , ) ( ) 0  as  1cP r u g u du r







−→ → .   

If  c  is bounded in the set E, then the Fourier series of f (t), for t = , is 

uniformly A-summable to c  in E if there exists 0 <  <   such that 

                  
0

2
( , ) ( ) 0  uniformly in  as  1cP r u g u du E r







−→ →  .   
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We now look at situation when A-summability is possible. 

Theorem 10.  Suppose the function f is a Lebesgue integrable periodic function 

of period 2.    

(1) If  
0 0

( ) ( )
lim ( , ) lim

2u u

f u f u
u

 
 

+ +→ →

+ + −
=  exists and equals  ( +), then

( , ) ( )  as   1u r r   −→ + → .   That is, the Fourier series of f is A-summable to 

( )  + .   

Consequently:  

(2) The Fourier series of f (t) at t =   is A-summable to f ( ) at a point of 

continuity and to 
( ) ( )

2

f f + + −
 at a point of jump discontinuity.   The Fourier 

series of f is uniformly A-summable to f in any closed interval of continuity. 

(3) If f is bounded in (a, b)  [− , ], then ( , )u r   is bounded in any closed 

interval in (a, b).  Thus, if ( , )u r   converges in a subset E in a closed interval in 

(a, b) as  1r −→ , it converges boundedly in E.  That is to say, if the Fourier 

series is A- summable in E, then it is boundedly A-summable in E. 

Proof.     

Parts (1) and (2): 

Choose a  > 0 such that  <  .  Since 

                       
0 0

( ) ( )
lim ( , ) lim ( )

2u u

f u f u
u

 
   

+ +→ →

+ + −
= = + , 

there exists positive   such that   <   and    

                   ( ) ( , )cg u u c
   = −   for | u | <  ,             ----------------  (36)        

where ( )c  = + . 

Then   
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0 0

2 2 2
( , ) ( ) ( , ) ( ) ( , ) ( )c c cP r u g u du P r u g u du P r u g u du

  

  

  
 +    

 
2 2 2

( , ) ( , ) ( ) ( , ) ( )c cP r u du P r u g u du P r u g u du
 

  

  
 

  −
 +  +   .  -- (37) 

As in the proof of Lemma 8,  ( , ) ( ) 0  as  1cP r u g u du r






−→ → .   It follows 

then from (37), 

                            
0

1

2
limsup ( , ) ( )c

r

P r u g u du





−→

 . 

Since   is arbitrary, 
01

2
lim ( , ) ( ) 0c
r

P r u g u du




−→
=   and so

( , ) ( )  as   1u r r   −→ + →   . 

At a point of continuity ( ) ( )c f   = + =  and at a point of jump discontinuity,  

 
( ) ( )

( )
2

f f 
 

+ + −
+ = .    Therefore, the Fourier series of f (t) at t =   is A-

summable to f ( ) at a point of continuity and to 
( ) ( )

2

f f + + −
 at a point of 

jump discontinuity.  If f is continuous in [a, b], then f is uniformly continuous in 

[a, b] and  ( ) ( )c f   = + =  is bounded in [a, b].   We may thus choose the 

same    for all  in [a, b] so that 

                   
2

( , ) ( ) 0 uniformly in  in [ , ]  as  1cP r u g u du a b r









−→ → . 

It follows then from (37), that   

                     ( , ) ( )  uniformly in  in [ ,  ] as   1u r f a b r   −→ → . 

Thus the Fourier series of f is uniformly A-summable to f in any closed interval 

of continuity. 

Part (3): 

We now take a different perspective.   Suppose f is bounded in (a, b) or [a, b]. 

Assume that | f (x) |  ≤  M for all x  in  (a, b). 
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Let [a1 , b1]  (a, b).   Let d =  ½ min { distance of a to [a1 , b1], distance of b to 

[a1 , b1]}.   Let 0 <  < min(, d ).  Thus, for any  in [a1 , b1], 

                                [ , ] ( , )d d a b − +   . 

In particular, for any   in  [a1, b1], 

                         | | , [ , ] ( , )u u u a b        + −  − +  . 

Thus for all   in [a1 , b1] and  | |u  , 

            
( ) ( ) ( ) ( )

( , )
2 2 2

f u f u f u f u
u M

   
 

+ + − + −
=  +  .  -----  (38) 

Hence, for all    in [a1, b1], 

0 0

2 2 2
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )u r P r u u du P r u u du P r u u du

  


      

  
=  +            

             
0

2 2
( , ) ( , ) ( , ) ( , )P r u u du P r u u du

 


   

 
 +   

             
0

2 2
( , ) ( , ) ( , )M P r u du P r u du

 


  

 
 +   

              
0

2 2
( , ) ( , ) ( )M P r u du P r f u du

 




  −
 +   

              
2

( , ) ( )M P r f u du





 −
 +  . -----------------------------   (39) 

But 
2 2

2 2 2 2

1 1 1
( , )

2(1 2 cos( )) 2(( cos( )) sin ( )) 2sin ( )

r r
P r

r r r


   

− −
= = 

+ − − +
.   

Hence, for all  in  [a1 , b1], 

                      
2

1
( , ) ( )

sin ( )
u r M f u du






  −
 +  . 

This means u(r,  ) is uniformly bounded in r and in   in [a1 , b1].  Therefore, if 

the limit of u(r,  ) as 1r −→  exists  on a subset E contained in any closed 
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interval in (a, b), then the convergence is boundedly.   The corresponding 

statement about bounded A-summability in E follows. 

 

Next we have that u(r,  ) converges to f ( ) in the L1 norm.   Note that in 

general u(r,  ) need not converge (pointwise)  to f ( ). 

 

Theorem 11.  Suppose the function f is a Lebesgue integrable periodic function 

of period 2.  Then  ( , ) ( )u r f →  in the L1 norm. 

 

The next result gives some insight into the behaviour of u(r,  ) at the boundary 

of the unit disk. 

Theorem 12.  If  0  as  1rh r −→ →  , then ( , ) ( )ru r h f + →  at a point of 

continuity  , and at a point of jump discontinuity,  

      ( ) ( )
0

1 1
( , ) ( ) ( ) ( , ) ( ) ( )

2

rh

ru r h f f P r u du f f    


+ − + − − → + + − . 

Proof.   

If f is continuous at  ,  then given   > 0, there exists  > 0 such that  

        | | | ( ) ( ) |u f u f     + −  .  ----------------------  (40) 

If  0  as  1rh r −→ → , then for this value of  , there exists 1 > 0 such that 

                                   11 1 | |
2

rr h


−      .  ----------------------------  (41) 

Therefore, for  11 1r−    , 

1
| | | ( , ) ( ) | ( ) ( ) 2 ( )

2 2
r r ru h u f f h u f h u f


       + − = + + + + − −  

            ( ) ( )
1 1

( ) ( ) ( ) ( ) 2
2 2

r rf h u f f h u f      + + − + + − −  = . ----- (42) 
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Therefore, for  11 1r−   , 

 
0

2
( , ) ( ) ( , ) ( , ) ( )r ru r h f P r u h u f du



    


+ − = + −  

    
/2

/2 0

2 2
( , ) ( , ) ( ) ( , ) ( , ) ( )r rP r u h u f du P r u h u f du

 


     

 
 + − + + −            

/2

/2 0

2 2
( , ) ( , ) ( ) ( , ) ( , ) ( )r rP r u h u f du P r u h u f du

 


     

 
 + − + + −   

/2

/2 0

2 2
( , ) ( , ) ( ) ( , )

2
rP r h u f du P r u du

 




   

 
 + − +   

 2
( , ) ( ) ( )

2
P r f u du f






  

 −
 + + .   -------------------------------------  (43) 

Since ( , / 2) 0  as  1P r r −→ →  , it follows from (43) that 

                       
1

limsup ( , ) ( )r
r

u r h f  
−→

+ −  . 

Consequently, since  is arbitrary, ( )
1

lim ( , ) ( ) 0r
r

u r h f 
−→

+ − = .  This means  

( , ) ( )ru r h f + →  as 1r −→ . 

Suppose now f has a jump discontinuity at .   By redefining f at  , we may 

assume that  ( )
1

( ) ( ) ( )
2

f f f  = + + − . 

Let  ( ) ( )d f f = + − − .  Let 
1

sin( ( ))
( )

n

n t
t

n






=

−
− =   . 

Let ( ) ( ) ( ) ( ) ( )
d

g t f t t f t k t


= − − = − ,  ( ) ( )
d

k t t 


= − . 

Observe that 
1

( ) ( ( ))  for  0 2
2

t t t    − = − −  −  .  Note that  
1

sin( )

n

n t

n



=

  

converges boundedly to the function 
1

( ) ( )
2

t t= −  for 0 < t < 2  and (0) 0=

.  It converges uniformly in any closed interval free from multiples of 2.  (See 
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Integrating a Fourier series in Ideas of Lebesgue and Perron Integration in 

Uniqueness of Fourier and Trigonometric Series, page 34.) 

(See also Theorem 9 and Theorem 14 in Fourier Cosine and Sine Series, page 

45.) 

( )t  is odd and has a jump of  at 0. 

Note that ( )
1

( ) ( ) ( ) ( )
2

g f f f   = = + + − .   Observe that  

lim ( ) ( ) lim ( ) ( )
2t t

d d
g t f t f

 


  

 + +→ →
= + − − = + −  

           ( ) ( )
1 1

( ) ( ) ( ) ( ) ( )
2 2

f f f f f    = + − + − − = + + −  and   

lim ( ) ( ) lim ( ) ( )
2t t

d d
g t f t f

 


  

 − −→ →
= − − − = − +  

             ( ) ( )
1 1

( ) ( ) ( ) ( ) ( )
2 2

f f f f f    = − + + − − = + + − . 

Hence, ( )
1

lim ( ) ( ) ( ) ( )
2t

g t f f g


  
→

= + + − =  and g is continuous at  . 

Plainly, g is periodic and Lebesgue integrable and so has a Fourier series.  

Therefore, by what we have just proved for a point of continuity, 

    ( )
1

( , , ) ( ) ( ) ( )
2

ru r h g g f f   + → = + + −   as 1r −→  .  ---------------- (44) 

Here, we add an additional third parameter to the notation ( , , )u r g  to include a  

reference to the function g whose Fourier series is used.     

Now we consider the function k, which is of course periodic and Lebesgue 

integrable.   

 
0

2 ( ) ( )
( , , ) ( , )

2

r r
r

k h t k h t
u r h k P r t dt

  




+ + + + − 
+ =  

 
  

                        
0

2 ( ) ( )
( , )

2

r rd h t h t
P r t dt



 

+ + − 
=  

 
   . ----------------- (45) 
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Now,  

1 1
( ) ( ),  0  

2 2
( ) ( )

1 1
( ) ( ( )),  

2 2

r r r

r r

r r r

h t h t t h

h t h t

h t t h h t

 

  


− − + − +  

+ + − = 
 − − − − −  


 

                             
,  0  

, 

r r

r r

h t h

h h t





−  
= 

−  
.    _-------------------------  (46) 

Therefore, in view of (45) and (46), we have, 

( , , )ru r h k +

   
2 20

( , ) ( ) ( ) ( , ) ( ) ( )
r

r

h

r r r r
h

d d
P r t h t h t dt P r t h t h t dt



 
= + + − + + + −   

 ( )
2 20

( , ) ( , )
r

r

h

r r
h

d d
P r t h dt P r t h dt




 

= − −   

20 0 0
( , ) ( , ) ( , )

2

r rh h

r r

d d d d
P r t dt h P r t dt P r t dt h



   
= − = −   .   -----   (47) 

 

Now, ( , , ) ( , , ) ( , , )r r ru r h f u r h g u r h k  + = + + +  

                            
0

( , , ) ( , )
2

rh

r r

d d
u r h g P r t dt h

 
= + + − . 

Therefore, 

0
( , , ) ( , ) ( , , ) ( )

2

rh

r r r

d d
u r h f P r t dt u r h g h g  

 
+ − = + − → as  1r −→ . 

This completes the proof. 

 

The following gives the bounds for the harmonic function u(r,  ) a kind of  

“maximum and minimum principle” for such a harmonic function. 
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Lemma 13.  Suppose the function f is Lebesgue integrable and of period 2. 

(1)   If max { | f ( ) | :   [−, ]} exists, then   

          | ( , ) | max{ ( ) : [ , ]}u r f      −    . 

(2)    
1 1

| ( , ) | ( )u r d f d
 

 
   

 − −
   . 

Proof.   

(1) If max { | f ( ) | :   [−, ]} exists and equals K, then  

                   
1 1

( , ) ( , ) ( ) ( , )u r P r u f u du K P r u du K
 

 
 

 − −
= +  =  , 

since 
1

( , ) 1P r u du


 −
= . 

(2)  
2

1 1
| ( , ) | ( , ) ( )u r d P r u f u du d

  

  
   

 − − −
 +    

           ( )2

1
( , ) ( )P r u f u du d

 

 
 

 − −
 +   

              ( )2

1
( , ) ( )P r u f u d du

 

 
 

 − −
= +  ,       

                                by Fubini Theorem for non-negative functions, 

             ( )2

1
( , ) ( )P r u f u d du

 

 
 

 − −
= +   

              
2

1
( , ) ( )P r u du f u d

 

 
 

 − −
= +   

              
1

( )f d



 

 −
=  ,   

                            since f is periodic of period 2  and 
1

( , ) 1P r u du


 −
= . 
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Proof of Theorem 11. 

The proof is similar to the proof of that the sequence of (C,1) means of the 

Fourier series of f converges to f in the L1 norm as in Theorem 12* in Fourier 

Cosine and Sine Series. Indeed the proof can be carried out in exactly the same 

manner as in  the proof of Theorem 12* in Fourier Cosine and Sine Series, 

replacing the Fejér kernel by the Poisson kernel and taking limits as r tends to 1 

on the left.  The following proof differs in detail by not using explicitly the 

continuity of the function ( ) ( ) ( )u f x u f x dx





−
= + −  and that the Fourier series 

of  at u = 0 is A-summable to 0. (Theorem 10 part 2).  The proof below may be 

applied to summation method with kernel having properties similar to Fejér 

kernel.  We may of course prove Theorem 12* using the method below.    

By Theorem 13 of Fourier Cosine and Sine Series, we may take a continuous 

approximation f * of f such that  

                                *( ) ( )
3

f t f t dt





−

−    .  ---------------------- (48) 

We can extend f * to a periodic function on . 

Then          ( ) *( ) ( ) *( )
3

f u f u du f u f u du
 

 


 

− −
+ − + = −   .  --------  (49) 

1
( , , ) ( , , *) ( , ) ( ) ( , ) *( )u r f u r f P r u f u du P r u f u du

 

 
   

 − −
− = + − +   

( )
1

( , ) ( ) *( )P r u f u f u du



 

 −
= + − +  

 
1

( , ) ( ) *( )P r u f u f u du



 

 −
 + − + .               ----------------  (50) 

Therefore, 

( )1
( , , ) ( , , *) ( , ) ( ) *( )u r f u r f d P r u f u f u du d

  

  
     

− − −
−  + − +    

                                             ( )1
( , ) ( ) *( )P r u f u f u d du

 

 
  

 − −
= + − +  ,     



29 
 

                                                                           by Fubini Theorem, 

                                             
1

( , ) ( ) *( )P r u du f u f u d
 

 
  

 − −
= + − +          

                                               ( ) *( )
3

f u f u d





  

−
= + − +  ,   ------- (51) 

                                                                                                       by (49). 

 

( , , ) ( ) ( , , ) ( , , *)u r f f d u r f u r f d
 

 
     

− −
−  −   

                                        ( , , *) *( ) ( ) *( )u r f f d f f d
 

 
     

− −
+ − + −   

                                       
2

( , , *) *( )
3

u r f f d



   

−
 − + , by (49) and (51). 

                                                                                         ------------------ (52). 

By Theorem 10 part (2), since f * is continuous, 

                     ( , , *) *( ) uniformly in  as   1u r f f r   −→ → . 

This means there exists  2 > 0 such that for all  , 

                0 < r − 1 < 2    ( , , *) *( )
6

u r f f


 


 −   .     ---------------  (53) 

It follows then from (52) and (53), that         

                  
2

( , , ) ( ) 2
6 3

u r f f d





     

−
−  + =   

for 1 − 2  < r < 1. That is to say, ( , ) ( )u r f →  in the L1 norm. 

 

Theorem 14.  Suppose the function f is a Lebesgue integrable periodic function 

of period 2.     
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(1) Suppose at a point  ,  f satisfies c .   That is, 
00

1
lim ( ) 0

t

c
t

g x dx
t→

= , where 

( )
1

( ) ( ) ( ) 2
2

cg t f t f t c = + + − − .   Then  

                               ( , )  as   1u r c r −→ →  . 

This means the Fourier series of f is A-summable at a point   where  f satisfies 

c .    

(2)  Since f is Lebesgue integrable, almost every point is a Lebesgue point, i.e., 

at almost every point  , f satisfies ( )f  .   The Fourier series of f is A-

summable to f ( ) almost everywhere. 

Proof.   

(1)  Observe that the partial derivative of the Poisson kernel,  

             ( , ) ( , ) 0
P

P r t r t
t


 = 


  

for 0 ≤ r < 1 and 0 ≤ t ≤ .    (See properties of P(r,t).) 

By integration by parts, 

             
00 0

( , ) ( , ) ( , )tP r t dt tP r t P r t dt
 

 = −    

                               
1

( , )
2 2 1 2 1

r r
P r

r r

  
  

−
= − = − = −

+ +
 ,  ------------  (54)    

                                                               since 
0

2
( , ) 1P r t dt




= . 

Therefore, for 0 ≤ r < 1, 

        
0 0

( , ) ( , )
1 2

r
t P r t dt tP r t dt

r

  
 = − = 

+  .   ---------------- (55) 

Since 
00

1
lim ( ) 0

t

c
t

g x dx
t→

= , given  > 0, there exists  > 0 such that 
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0 0

1
0 ( ) ( )

t t

c ct g u du g u du t
t

         .        -------------  (56) 

For this value of   , 

 
00 0

( , ) ( ) ( ) ( , ) ( ) ( , )cP r t g t dt t P r t t P r t dt
 

=  −   , 

                                                               where  
0

( ) ( )
t

ct g u du =  , 

                         
0

( ) ( , ) ( ) ( , )P r t P r t dt


  =  −  .           --------------------  (57) 

Therefore, 

0 0
( , ) ( ) ( ) ( , ) ( ) ( , )cP r t g t dt P r t P r t dt

 

    +    

                    
0 0

( , ) ( ) ( ) ( , )cP r g u du t P r t dt
 

  +    

                    
0

( , ) ( , )P r t P r t dt


    +  ,  by (56) 

                    
2

2

1

2(1 2 cos( )) 2

r

r r


 



−
 +

+ −
  by (55). 

Therefore, 

                  
0

1

limsup ( , ) ( )
2

c
r

P r t g t dt
 


−→

 . 

Since  is arbitrary, 
01

lim ( , ) ( ) 0c
r

P r t g t dt


−→
= . 

Hence, by Theorem 8,  the Fourier series is A-summable to c. 

(2).  Suppose   f   is  Lebesgue integrable.   Then by Lemma 10 of Convergence 

of Fourier Series  (Page 9), almost every point is a Lebesgue point of  f . 

 

That is to say, for almost every  in [−, ], 
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00

1
lim ( ) ( ) 0

h

h
f x f dx

h
 

→
+ − = .               ------------  (58) 

Plainly, this implies 
00

1
lim ( ) ( ) 0

h

h
f x f dx

h
 

→
− − =  for almost every  in [−, 

]. 

Now, for h  0,   

( )( )
0 0

1 1 1
( ) ( ) ( ) 2 ( )

2

h h

fg x dx f x f x f dx
h h

   = + + − −   

 ( ) ( )
0 0

1 1 1 1
( ) ( ) ( ) ( )

2 2

h h

f x f dx f x f dx
h h

    + − + − −   

0 0

1 1 1 1
( ) ( ) ( ) ( )

2 2

h h

f x f dx f x f dx
h h

    + − + − −  .    ------------ (59) 

Therefore, by the Comparison Test and using (58) and (59), we deduce that, for 

almost all  , ( )
00

1
lim ( ) 0

h

f
h

g x dx
h


→

=  and so 
( )

00

1
lim ( ) 0

h

f
h

g x dx
h


→

= . 

Hence, f satisfies condition ( )f   at    for almost all  . 

Therefore, by part (1), for almost all ,  ( , ) ( ) as   1u r f r  −→ → .   That is, for 

almost all  ,  the Fourier series of  f ( ) is A-summable to  f ( ).  

This completes the proof.    

 

Proof of Theorem 6.     

Theorem 6 is now a consequence of Theorem 10, Theorem 11 and Theorem 14. 

 

Application to Harmonic Functions  

Theorem 15 . Uniqueness Theorem  

Suppose  H is a function continuous in the closed unit disk and harmonic in the 

open unit disk.  Let f ( ) =  H(1, ) , where H is expressed in polar coordinate.  
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Then the function ( , ) ( )  as  1u r f r  −→ →  .   u(r,  ) is harmonic in the open 

unit disk and ( , ) ( , )u r H r =  identically in the closed unit disk.   Moreover, 

the Fourier series of f ( )  is A –summable to f ( ).  

Proof.  

We know by Theorem 5 that u(r,  ) is harmonic in the open unit disk.  

Moreover, since f is continuous, by Theorem 12, we can extend u(r,  ) to the 

boundary of the unit disk to obtain a continuous function on the closed unit 

disk.  By Theorem 10 part (2), ( , ) ( ) (1, )  as  1u r f H r   −→ = →  for all .  

Since now the extended function agrees with H on the boundary of the closed 

unit disk,  ( , ) ( , )u r H r =  identically in the closed unit disk.  Of course the 

Fourier series of  f ( )  is A –summable to  f ( ).  

 

So long as f is Lebesgue integrable, ( , )u r   is harmonic in the open unit disk. 

If   f   is continuous at two different points with two different values, then 

( , )u r   tends to these two different values as  1r −→ .  Consequently, ( , )u r   is 

non-constant.   Hence, by the maximum-minimum principle of harmonic 

function, ( , )u r   cannot attain its maximum nor minimum in the open unit disk. 

Thus, we have the following special case of harmonic function derived from the 

Poisson integral. 

Theorem 16.  Suppose the function f is a Lebesgue integrable periodic function 

of period 2.   Suppose f is continuous at two distinct points in [−, ] with two 

distinct values.   Then  ( , )u r   is harmonic in the open unit disk and does not 

have an absolute maximum nor minimum in the open unit disk. 

 

Suppose f is a Lebesgue integrable periodic function of period 2.  Suppose  f is 

not equal to a constant function almost everywhere.   Suppose f  attains its 

maximum M  and minimum m at  1 and  2 with  m < M.   Since almost every 

point in [−, ] is a Lebesgue point and f is non-constant almost everywhere, 

there must exist two points  1 and 2   in [−, ] such that 1 2( ) ( )f f   with 
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1 1 2 2( , ) ( )  and ( , ) ( )as  1u r f u r f r    −→ → → .  Consequently ( , )u r   is non-

constant in the unit open disk.  Moreover, 

            
1

1 1
( , ) ( , ) ( ) ( , ) ( )u r P r u f u du M P r u du M f

 

 
  

 − −
= +  = =   

and     2

1 1
( , ) ( , ) ( ) ( , ) ( )u r P r u f u du m P r u du m f

 

 
  

 − −
= +  = =  .  

Hence, we have: 

Theorem 16.  Suppose  f  is a Lebesgue integrable periodic function of period 

2 and f  is not equal to a constant function almost everywhere.  Then 

(1)  ( , )u r   is harmonic in the open unit disk and does not have an absolute 

maximum nor minimum in the open unit disk. 

(2) If f attains its maximum M and minimum m at  1 and  2 with m < M, then  

2 1( ) ( , ) ( )m f u r f M  =   =   for all 0 ≤ r < 1 and − ≤   ≤  . 

If f satisfies 
1( )f    at  1, then the supremum of ( , )u r   over the open unit disk 

is 1( )f  .  If f satisfies 
2( )f    at  2, then the infimum of ( , )u r   over the open 

unit disk is 2( )f  .   Consequently, if f is continuous at   1, then the supremum 

of ( , )u r   over the open unit disk is 1( )f   and if f is continuous at  2, then the 

infimum of ( , )u r   over the open unit disk is 2( )f   

 Proof.  

We only need to prove the last few statements in part (2). 

If f satisfies 
1( )f    at  1 , then 1 1( , ) ( )  as  1u r f r  −→ → .   Therefore, it 

follows from the fact that 1( , ) ( )u r f  , the supremum of ( , )u r   over the 

open unit disk is 1( )f  .   Similarly, if f satisfies 
2( )f    at  2, then 

2 2( , ) ( )  as  1u r f r  −→ →  and the infimum of ( , )u r   over the open unit disk 

is 2( )f  .  If f is continuous at  ,  then f satisfies ( )fL   and a fortiori, ( )f  at  .  

Therefore, the last statement in part (2) follows from the previous statement.  
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In general, we may not be able to extend u(r,  ) to the boundary of the unit disk  

to define a meaningful value at (1,  ) .   Suppose   f   has a jump discontinuity 

of  ( ) ( )d f f = + − −  at .  Then by Theorem 12, if  0  as  1rh r −→ → , 

     ( ) ( )
0

1 1
( , ) ( ) ( ) ( , ) ( ) ( )

2

rh

ru r h f f P r u du f f    


+ − + − − → + + − . 

And if we take any value a and choose a path (r, hr +  ) making an angle of 
1tan ( )a−  with the radial vector connecting the origin to (1,   ) in such a way 

that   0  and   as  1  
1

r
r

h
h a r

r

−→ → →
−

,  connecting say 1/2(1/ 2, )h +  to (1,   

), then by Theorem 7,   

            ( )
2

1

20 0

1
( , ) tan

2(1 2 cos( ))

r rh h r
P r d d a

r r
  



−−
= →

+ −   as 1r −→  . 

It then follows that 

      ( ) ( )11 1
( , ) ( ) ( ) tan ( ) ( ) ( )

2
ru r h f f a f f    



−+ → + − − + + + − , 

i.e.,  

              ( )1 1
( , ) tan ( ) ( ) ( )

2
r

d
u r h a f f  



−+ → + + + − . 

as 1r −→  . 

Thus, for different values of a, ( , )ru r h +  tends to different values. 

In particular when the path is tangential to the unit circle at (1,   ), when a = , 

( )
1

( , ) ( ) ( ) ( )
2 2

r

d
u r h f f f


   


+ → + + + − = +  as 1r −→  .   Along the radial 

line,  ( )
1

( , ) ( ) ( )
2

ru r h f f  + → + + −  as 1r −→  .  Therefore, we cannot 

extend the function u(r,  ) to the boundary of the unit disk at (1,   ) 

meaningfully. 
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Section D  

Derived Series of Fourier Series 

 

Definition 17.  Suppose g is a real valued-function defined in an open interval I.   

Let    be in I .   Suppose the limit  

                           
0

( ) ( )
lim

2h

g h g h

h

 

→

+ − −
  

exists.  Then we call this the generalised symmetric derivative of g at   and 

denote it by ( )Dg  .   

 

Suppose  f  is a periodic Lebesgue integrable function of period 2.   Let 

0
( ) ( )

t

k t f u du=  .   Then k  is absolutely continuous and differentiable almost 

everywhere. 

Suppose c is a real number and let ( )
1

( ) ( ) ( ) 2
2

cg t f t f t c = + + − − .  Recall 

that f satisfies condition c at , if 
00

1
lim ( ) 0

t

c
t

g x dx
t→

= .   The following is a 

sufficient condition for f to satisfy condition c   at  . 

 

Lemma 18.  Let 
0

( ) ( )
t

k t f u du=  .  Then the generalised symmetric derivative 

of f at  ,  ( )Dk   exists and is equal to c if, and only if, f satisfies condition c   

at  .  Consequently if ( )Dk c = , the Fourier series of f at  is A-summable to 

c.  

Proof. 

( )
0 0

1 1 1
( ) ( ) ( ) 2

2

t t

cg u du f u f u c du
t t

 = + + − −   
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( )
0

1 1
( ) ( )

2

t

f u f u du c
t

 = + + − −  

0 0

1 1
( ) ( )

2 2

t t

f u du f u du c
t t

 = + + − −   

1 1
( ) ( )

2 2

t t

f s ds f s ds c
t t

 

 

+ −

= − −   

0 0

1 1
( ) ( )

2 2

t t

f s ds f s ds c
t t

 + −

= − −              

0 0

1 1
( ) ( )

2 2

t t

f s ds f s ds c
t t

 + −

= − −   

( ) ( )

2

k t k t
c

t

 + − −
= −  

Thus,  
00 0

1 ( ) ( )
lim ( ) 0 lim

2

t

c
t t

k t k t
g x dx c

t t

 

→ →

+ − −
=  = . 

Hence, f satisfies condition c  at   if, and only if, the symmetric derivative of 

k(t) exists and is equal to c at .    Therefore, by Theorem 6, the Fourier series of  

f  at   is A-summable to c.  

 

Now we look at the situation with the derived series of the Fourier series of  a 

Lebesgue integrable function.  We can deduce a similar conclusion, if f has a 

generalized symmetric derivative at ,  then the derived series of the Fourier 

series at  is A summable to Df ( ).    

Suppose   

          ( )0 0

1 1

1 1
( ) cos( ) sin( )

2 2
k k k

k k

a A a a k b k  
 

= =

+ = + +  . ---------  (60) 

Then its derived series is given by a formal differentiation term by term of (60), 

                 ( )
1 1

cos( ) sin( ) ( )k k k

k k

k b k a k kB  
 

= =

− =   ,   ------------------ (61). 
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where  ( ) cos( ) sin( )k k kB b k a k  = − . 

We shall show that, if the generalized symmetric derivative at ,  Df ( ), exists, 

then   ( )
1

cos( ) sin( ) ( )k

k k

k

k b k a k r Df  


=

− →  as 1r −→  . 

We begin with 

    ( )0 0

1 1

1 1
( , ) ( ) cos( ) sin( )

2 2

k k

k k k

k k

u r a A r a a k b k r   
 

= =

= + = + +   

                
1 1

( , ) ( ) ( , ) ( )P r t f t dt P r t f t dt
 

 
 

 − −
= − = +  . 

  
1

( , ) ( , ) ( )u r P r t f t dt



 

   −

 
= −

       

               
1 1

( , ) ( ) ( , ) ( )P r t f t dt P r s f s ds
t t

  

  
 

 

−

− − −

 
= − − = − +

    

               
1

( , ) ( )P r s f s ds
t






 −


= − +

 ,by periodicity, 

               
0

0

1 1
( , ) ( ) ( , ) ( )P r s f s ds P r s f s ds

t t




 

  −

 
= − + − +

          

              
0

0

1 1
( , ) ( ) ( , ) ( )P r s f s ds P r s f s ds

t t




 

 

 
= − + + − − +

   .  ------- (62) 

But 
2

2 2

(1 )sin( )
( , )

(1 2 cos( ))

r r t
P r t

t r r t

 − −
=

 + −
 so that ( , ) ( , )P r s P r s

t t

 
− = −

 
 and so it 

follows from (62) that  

   
0 0

1 1
( , ) ( , ) ( ) ( , ) ( )u r P r s f s ds P r s f s ds

t t

 

  
  

  
= − + + − +

     

                   ( )
0

1
( , ) ( ) ( )P r s f s f s ds

t



 


 
= − + − − 

 
  

                    ( )
2

2 20

1 (1 )sin( )
( ) ( )

(1 2 cos( ))

r r s
f s f s ds

r r s



 


−
= + − −

+ − .  ------- (63) 
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Note that 
2 2

2 2

(1 )sin ( )
( , )sin( ) 0

(1 2 cos( ))

r r s
P r s s

t r r s

 −
− = 

 + −
 . 

Now, for 0 ≤ r < 1, 

 
00 0

1 1
2sin( ) ( , ) 2sin( ) ( , ) 2cos( ) ( , )

s

s
s P r s ds s P r s s P r s ds

t

 

 

=

=


= −

  , 

                                                                          by integration by parts, 

       
0

1
2cos( ) ( , )s P r s ds




= −     

       
2

20

1 cos( )(1 )

1 2 cos( )

s r
ds

r r s





−
= −

+ −  

       
2 2

2 20

1 cos( ) 1

1 2 cos( ) 1

r s r r
ds r

r r s r

 

 

− −
= − = − = −

+ − − ,  by  (22)*. 

Therefore, 

 ( )
0

1
( , ) ( ) ( , ) ( ) ( ) ( )u r Df P r s f s f s ds Df

t



    
 

  
− == − + − − − 

  
  

( )
0 0

1 1 ( )
( , ) ( ) ( ) 2sin( ) ( , )

Df
P r s f s f s ds s P r s ds

t t r

  
 

 

  
= − + − − + 

  
   

0

1 ( )
( , ) ( ) ( ) 2sin( )

Df
P r s f s f s s ds

t r

 
 



  
= − + − − −  

  
 .   -----------  (64) 

Hence,   
1

lim ( , ) ( ) 0
r

u r Df 
−→


− =


  

01

1 ( )
lim ( , ) ( ) ( ) 2sin( ) 0
r

Df
P r s f s f s s ds

t r

 
 

−→

  
 − + − − − =  

  
 .   --  (65) 

Since  
0 0 0

( ) ( ) ( ) ( )
lim lim lim

2sin( ) 2 sin( )s s s

f s f s f s f s s

s s s

   
→ → →

+ − − + − −
=   

                                               
0

( ) ( )
lim 1 ( )

2s

f s f s
Df

s

 


→

+ − −
=  = , 
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given  > 0,  there exists   > 0  such that 

                    
( ) ( )

0 ( )
2sin( )

f s f s
s Df

s

 
  

+ − −
   −  .   ------------- (66) 

In view of (66), we write 

0

1 ( )
( , ) ( ) ( ) 2sin( )

Df
P r s f s f s s ds

t r

 
 



  
− + − − −  

  
  

             
0

1 ( )
( , ) ( ) ( ) 2sin( )

Df
P r s f s f s s ds

t r

 
 



  
= − + − − −  

  
  

                
1 ( )

( , ) ( ) ( ) 2sin( )
Df

P r s f s f s s ds
t r






 



  
+ − + − − −  

  
 .--- (67) 

We may choose   in (66) to satisfy 0 <   <  /2 . 

Note that for   ≤  s  ≤   and  0 ≤  r < 1, 

( )
( , ) ( ) ( ) 2sin( )

Df
P r s f s f s s

t r


 

  
− + − − −  

  
 

2

2 2

(1 )sin( ) ( )
( ) ( ) 2sin( )

(1 2 cos( ))

r r s Df
f s f s s

r r s r


 

−  
= + − − − 

+ −  
. 

For   ≤  s  ≤  −   and  0 ≤  r < 1, 

2 2 2

2 2 2 2 2 4

(1 )sin( ) (1 )sin( ) (1 )

(1 2 cos( )) (( cos( )) sin ( )) sin ( )

r r s r r s r r

r r s r s s 

− − −
= 

+ − − +
. 

For   −    ≤  s  ≤   and  0 ≤  r < 1, 

2 2
2

2 2 4

(1 )sin( ) (1 )
(1 )

(1 2 cos( )) sin ( )

r r s r r
r r

r r s 

− −
 − 

+ −
. 

Hence, for   ≤  s  ≤   and  0 ≤  r < 1, 

( )
( , ) ( ) ( ) 2sin( )

Df
P r s f s f s s

t r


 

  
− + − − −  
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2

4

( )(1 )
( ) ( ) 2

sin ( )

Dfr r
f s f s

r


 



 −
 + + − + 

 
. 

And so, for 0 < r < 1, 

1 ( )
( , ) ( ) ( ) 2sin( )

Df
P r s f s f s s ds

t r






 



  
− + − − −  

  
  

1 ( )
( , ) ( ) ( ) 2sin( )

Df
P r s f s f s s ds

t r






 



   
 − + − − −   

   
  

2

4

( )(1 ) 1
( ) ( ) 2

sin ( )

Dfr r
f s f s ds

r






 

 

 −
 + + − + 

 
  

2

4

1 (1 ) 2
2 ( ) ( )

sin ( )

r r
f s ds Df

r








  −

−  
 + 

 
 .  ------------------  (68) 

It follows then from (68) that 

    
1

1 ( )
lim ( , ) ( ) ( ) 2sin( ) 0
r

Df
P r s f s f s s ds

t r






 

−→

  
− + − − − =  

  
 .  ---- (69)    

Now, in view of (66), 

0

1 ( )
( , ) ( ) ( ) 2sin( )

Df
P r s f s f s s ds

t r

 
 



  
− + − − −  

  
  

0

1 ( ) ( ) ( )
2sin( ) ( , )

2sin( )

f s f s Df
s P r s ds

t s r

   



  + − − 
= − −  

  
  

0

1 ( ) ( ) 1
2sin( ) ( , ) ( ) 1 ( )

2sin( )

f s f s
s P r s Df Df ds

t s r

  
 



  + − −   
= − − + −    

    
 . 

0

1 ( ) ( )
2sin( ) ( , ) ( )

2sin( )

f s f s
s P r s Df ds

t s

  




  + − − 
= − −  

  
  

                          
0

1 1
2sin( ) ( , ) 1 ( )s P r s Df ds

t r






  
+ − −  

  
 . 

Therefore, 
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0

1 ( )
( , ) ( ) ( ) 2sin( )

Df
P r s f s f s s ds

t r

 
 



  
− + − − −  

  
  

0

1 ( ) ( )
2sin( ) ( , ) ( )

2sin( )

f s f s
s P r s Df ds

t s

  




  + − − 
 − −   

   
  

                          
0

1 1
2sin( ) ( , ) 1 ( )s P r s ds Df

t r






  
+ − −  

  
  

0 0

1 1 1
2sin( ) ( , ) 2sin( ) ( , ) 1 ( )s P r s ds s P r s ds Df

t t r

 

 
 

      
 − + − −     

      
   

0 0

1 1 1
2sin( ) ( , ) 2sin( ) ( , ) 1 ( )s P r s ds s P r s ds Df

t t r

 

 
 

      
 − + − −     

      
   

( )1 ( )r r Df  + − .                 ----------------------     (70) 

Therefore, it follows from (70) that 

0
1

1 ( )
limsup ( , ) ( ) ( ) 2sin( )

r

Df
P r s f s f s s ds

t r

 
  

−→

  
− + − − −   

  
 .   

                                                                                                          ----- (71) 

Therefore, from (67), 

0
1

1 ( )
limsup ( , ) ( ) ( ) 2sin( )

r

Df
P r s f s f s s ds

t r

 
 

−→

  
− + − − −  

  
  

1

1 ( )
limsup ( , ) ( ) ( ) 2sin( )

r

Df
P r s f s f s s ds

t r






 

−→

  
 − + − − −  

  
  

        
0

1

1 ( )
limsup ( , ) ( ) ( ) 2sin( )

r

Df
P r s f s f s s ds

t r

 
 

−→

  
+ − + − − −  

  
  

0   + = , by (69) and (71). 

Since   is arbitrary, 
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0
1

1 ( )
limsup ( , ) ( ) ( ) 2sin( ) 0

r

Df
P r s f s f s s ds

t r

 
 

−→

  
− + − − − =  

  
  

and so 
01

1 ( )
lim ( , ) ( ) ( ) 2sin( ) 0
r

Df
P r s f s f s s ds

t r

 
 

−→

  
− + − − − =  

  
 . 

It follows from (65) that 
1

lim ( , ) ( )
r

u r Df 
−→


=


. 

That is, ( )
1

( , ) cos( ) sin( ) ( )k

k k

k

u r k b k a k r Df   




=


= − →


  as 1r −→  . 

This means the derived series of the Fourier series of  f  at   is A-summable to 

Df ( ) . 

We have thus proved the following theorem. 

Theorem 19.  Suppose  f  is a periodic Lebesgue integrable function of period 

2.   If  f  has a generalized symmetric derivative Df ( )  at ,  then the derived  

series of the Fourier series of  f  at , 

                        ( )
1 1

cos( ) sin( ) ( )k k k

k k

k b k a k kB  
 

= =

− =   

is A-summable to ( )Df  .  

 

Remark.  Note that the derived series of the Fourier series of  f  at   may not 

be a Fourier series. 

 

Observe that if  f  is a periodic Lebesgue integrable function of period 2 , then 

by Theorem 30 of Ideas of Lebesgue and Perron Integration in Uniqueness of 

Fourier and trigonometric series,  the series 

      0 0

1 1 1 1

1 cos( ) sin( ) 1 ( )

2 2

n n n n n

n n n n

b b nx a nx b B x
a x a x

n n n n

   

= = = =

−
+ − = + −    , 

where ( , )n na b  are Fourier coefficients of f, converges uniformly to 
0

( )
x

f t dt . 
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Thus,  
1 1 1 1

cos( ) sin( ) ( )n n n n n

n n n n

b b nx a nx b B x

n n n n

   

= = = =

−
− = −      is the Fourier series of 

0
0

1
( )

2

x

f t dt a x− .    Then 

            ( )0 0
0

1

( ) ( ) 1 sin( )
cos( ) sin( )

2 2

x h x h

n n

n

f t dt f t dt nh
a a nx b nx

h nh

+ −



=

−
= + +

 
   .---   (72) 

So, the symmetric derivative ( )Dk x  of 
0

( ) ( )
x

k x f t dt=   exists if, and only if,  

                             ( )0
0

1

1 sin( )
lim cos( ) sin( )

2
n n

h
n

nh
a a nx b nx

nh



→
=

+ +   exists. 

Thus, by Theorem 19, if  ( )Dk x  exists, then 

                          ( )0

1

1
cos( ) sin( ) ( )

2

n

n n

n

a a nx b nx r Dk x


=

+ + →   as 1r −→  . 

If  ( )0
0

1

1 sin( )
lim cos( ) sin( )

2
n n

h
n

nh
a a nx b nx c

nh



→
=

+ + =  , then we say the series  

                    ( )0

1

1
cos( ) sin( )

2
n n

n

a a nx b nx


=

+ +   -------------------- (*) 

is Lebesgue summable or L-summable to c .  We have shown that if the Fourier 

series is L-summable to c then it is A-summable to c.  The converse is generally 

not true.  Zygmund gave a sufficient condition for the convergence of a 

trigonometric series to imply Lebesgue summability.  There are other sufficient 

conditions for the converse.   For instance, if an and bn are of O(1/n), then the 

series is convergent if, and only if, it is Lebesgue summable.   If  

2 2

1

( )
n

k k

k

k a b O n
=

+ = , then A-summable to c implies Lebesgue summable to c 

(Vindas Theorem 3 in On the relation between Lebesgue summability and some 

other summation methods, J Math Anal Appl vol 411 2014 page 75-82.)   

 

It is worth noting that for Fourier series, Lebesgue summable to c implies by 

Lemma 18 and Theorem 32  of  Ideas of Lebesgue and Perron Integration in 

Uniqueness of Fourier and Trigonometric series, that the Fourier series is 

Riemann summable to the same value c.  Thus we can also conclude by 

Theorem 20 below that if  f  is a Lebesgue integrable periodic function, then its 

Fourier series is Riemann summable almost everywhere to  f . 
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If 
0 0

( ) ( )
lim ( , ) lim

2u u

f u f u
u

 
 

+ +→ →

+ + −
=  exists and is equal to c, then f satisfies 

condition c   at  .    We have the following Lebesgue summability Theorem. 

   

Theorem 20.  Suppose f is a periodic Lebesgue integrable function of period 

2.    

(1) If  
0 0

( ) ( )
lim ( , ) lim

2t t

f t f t
t

 
 

+ +→ →

+ + −
=  exists and equals   ( +), then the 

Fourier series of f is Lebesgue-summable to ( )  + .   

Consequently: 

(2) The Fourier series of f (t) at t =   is Lebesgue-summable to f ( ) at a point 

of continuity and to 
( ) ( )

2

f f + + −
 at a point of jump discontinuity. 

(3) The Fourier series of  f   is uniformly Lebesgue summable  to  f ( ) in any 

closed interval of continuity. 

(4) The Fourier series of  f   is Lebesgue summable almost everywhere to  f ( ). 

 

Proof. 

Note that we have shown in the proof of  Lemma 18 that 

       ( )0 0

0

( ) ( ) 1 1
( ) ( )

2 2

h h

hf t dt f t dt
f t f t dt

h h

 

 

+ −

−
= + + −

 
   

and so 

         ( )0 0

0 0

( ) ( ) 1 1 1
( ) ( ) 2 ( )

2 2

h h

h h

c

f t dt f t dt
c f t f t c dt g t dt

h h h

 

 

+ −

−
− = + + − − =

 
  . 

It follows from (72) that 

                    ( )0
0

1

1 sin( ) 1
cos( ) sin( ) ( )

2

h

n n c

n

nh
a a n b n c g t dt

nh h
 



=

+ + − =  .  ------------ (73) 
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Therefore, the Fourier series of  f  is Lebesgue summable at any point , where 

( )
0 00 0

1 1 1
lim ( ) lim ( ) ( ) 2 0

2

h h

c
h h

g t dt f t f t c dt
h h

 
→ →

= + + − − =  , that is to say, f 

satisfies condition c  . 

Since  
0 0

( ) ( )
lim ( , ) lim ( )

2t t

f t f t
t

 
   

+ +→ →

+ + −
= = + , given  > 0 

there exists  > 0 such that    

             ( ) ( , )cg t t c
   = −   for 0 <| t | <  ,        -------------------- (74)      

where ( )c  = + . 

Thus for  0 < h < , 

           ( ) ( )
0 0

1 1 1
( ) ( ) 2 ( , )

2

h h

f t f t c dt t c dt
h h

    + + − − = −   

            
0 0

1 1
( , )

h h

t c dt dt
h h

    −  =  . 

Since  is arbitrary, this shows that    

        ( )
0 00 0

1 1 1
lim ( ) lim ( ) ( ) 2 0

2

h h

c
h h

g t dt f t f t c dt
h h

 
→ →

= + + − − =  . 

Hence, the Fourier series of  f  is Lebesgue summable at  . 

This proves part (1). 

Part (2) follows from part (1) since at a point of continuity  , ( ) ( )f  + =  

and at a point of jump discontinuity, ( )
1

( ) ( ) ( )
2

f f   + = + + − . 

If f is continuous in [a, b],  then  f  is uniformly continuous in [a, b] and so we 

can choose the same  > 0 in (74) for all   in  [a, b].   This implies that 

( )
0

1
( ) 0

h

fg t dt
h

 →  uniformly in   in  [a, b].   Consequently, the Fourier series 

of  f   is uniformly Lebesgue summable  to  f ( ) in [a, b].   This proves part (3). 
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Since f is Lebesgue integrable, almost every point is a Lebesgue point of  f .  

Hence, as we have shown in the proof of Theorem 14, f satisfies condition 
( )f   

at  for almost all  .  Therefore, the Fourier series of  f   is Lebesgue summable 

almost everywhere to  f ( ). 


