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These are very important theorems.  They all have very close connection with the

completeness property of the real numbers.   They can be shown to be equivalent to the

completeness property of the real numbers.

Theorem 1 (Boundedness Theorem).   If  f : [a, b] → R is continuous,  then  f  is bounded.

Proof.  If a = b, we have nothing to prove.  We assume a < b, that is, [a, b] is a non-trivial

interval.  Let  K = { x ∈ [a, b]:  the restriction of   f  to [a, x],   f | [a,  x]:[a, x] →R is bounded }.

 Then obviously K is bounded and K is non-empty for it obviously contains a.  Let C =

supremum of K , sup K.  C exists by the completeness property of R because K is bounded

above by b.  By definition of C,  C ≤ b because b is an upper bound for K.  We claim that       

C > a.  Why is this so?  Since  f  is continuous at x = a,  given any ε > 0, there exists a δ > 0

such that  for any x  in [a, b] with  a ≤ x < a + δ, we get  f (a) − ε < f (x) <  f (a) + ε.  Now

choose any δ ' > 0 with  δ ' < min(δ, b − a) then for any x  with  a ≤ x ≤ a + δ ',  we get then f

(a) − ε < f (x) <  f (a) + ε.  That is to say  f | [a,  a + δ ']:[a, a + δ '] →R is bounded.   Hence a + δ '

∈ K  and so a < a + δ ' ≤ sup K = C.  This proves the claim.

We next claim that  C = b.  Suppose on the contrary that  C < b, then  a < C < b.  Then since  

f  is continuous at C,  following the same argument as above we can show that there exists a   

δ > 0 such that  f  is bounded on the interval [C −δ, C + δ] ⊆ [a, b], where C + δ < b.   That

means there exists a M > 0 such that for all x in [C −δ, C + δ], |  f (x) |< Μ.   Now since C −δ

< C,  and sup K = C,  there exists a x in K such that C −δ < x ≤ C.  That means  f  is bounded

on [a, x], say by  N, and so  f  is bounded on [a,  C + δ] =[a, x]∪[C −δ, C + δ] by max (M, N).

I.e.,  for all x in [a, C + δ], |  f (x) |< max (M, N ).  Therefore, C + δ ∈ K.  Hence C + δ ≤ C.

contradicting δ > 0.    Hence C = b. (This means that for any x such that a ≤ x < b,  f  is

bounded on [a, x] . Why?  The reason is as follows.  There exists a y in K such that a ≤ x < y

≤ b and  f  is bounded on [a, y] and so f  is bounded on [a, x].) 

Now we observe that by the continuity of  f  at b,  for a fixed choice of an ε > 0, we have that

there exists a δ > 0 such that  for any x  in [a, b] with  b − δ < x ≤ b, we get  f (b) − ε < f (x) <  

f (b) + ε.  Hence  f  is bounded on  [x, b]  by  max (| f (b) − ε| ,  | f (b) + ε|) for some x in K

with b − δ < x ≤ b since b = C = sup K .  Therefore,  f   is bounded  on [a, x] say by  M1 .

Therefore,   f  is bounded on  [a, b] = [a, x]∪ [x, b]  by max ((| f (b) − ε| ,  | f (b) + ε|, Μ 1 ).
This completes the proof.

                      

Theorem 2 (Extreme Value Theorem).  A continuous function on a closed and bounded

interval attains its supremum and infimum.  That is, if  f : [a, b] → R is continuous, then  

there exist c and d in [a, b] such that f (c) = supremum f ([a, b])  and f (d) = infimum f ([a, b]).

Proof.   Again if a = b, we have nothing to prove.  Assume a < b.  Consider the range  f ([a,

b]).  Let M =  supremum f ([a, b]).   Suppose M does not lie in the range, i.e., there does not

exist c in [a, b] such that f (c) = M.  Then  f (x) < M for all x in [a, b].  That means M −  f (x) >

0 .  Since  f is continuous on [a, b], the function defined by h(x) = M −  f (x) for x in [a, b] is

also continuous and h(x) > 0 for all x in [a, b].  Therefore, since h(x) is non-zero,  g(x) =

1/h(x) is also continuous on [a, b].  Hence by Theorem 1,  g  is bounded and so is bounded
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above.  Hence the sup of its range exists by the completeness property of R.  Let K =

supremum g([a, b]).  Because h(x) > 0 for all x in [a, b], g(x) > 0 for all x in [a, b].  Thus K >

0 and  so 0 < g(x) ≤ K  for all x in [a, b]. Hence h(x) = 1/g(x)≥ 1/K for all x in [a, b].  That

means M −  f (x)≥ 1/K  and hence f (x) ≤ M − 1/Κ. for all x in [a, b]. Therefore, M − 1/K  ≥ M  

since M =  supremum f ([a, b]) and so 1/K ≤ 0 contradicting K > 0.

We conclude that there exists c in [a, b] such that f (c) = M.

Similarly if there does not exists d in [a, b] such that f (d) = N = infimum f ([a, b]), we

can arrive at a contradiction.  We use  h(x) = f (x) − N > 0.  Then g(x) = 1/h(x) > 0 for all x in

[a, b] and g is continuous on [a, b]. Let L = supremum g([a, b])  > 0.  L exists by Theorem 1.

Thus, 0 < g(x) ≤ L  for all x in [a, b].  Therefore, h(x) = 1/g(x) ≥ 1/L for all x in [a, b].  That

means f (x) − N ≥ 1/L  and hence f (x) ≥ N + 1/L  for all x in [a, b].  Therefore,  N + 1/L ≤ Ν

since N = infimum f ([a, b]), contradicting 1/L > 0.  Hence, there exists a d in [a, b]  such that

   f (d) = infimum f ([a, b]).  (See Figure 1 below for illustration.)
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Theorem 3  Intermediate Value Theorem.   Suppose  f : [a, b] → R  is continuous.   If  γ is

an intermediate value between   f (a) and  f (b), i.e. either f (a) ≤ γ ≤  f (b) or f (b) ≤ γ ≤  f (a),

then there exists  c in [a, b] such that  f (c) = γ .

Proof.    Again if a = b, we have nothing to prove.  Assume a < b.  Without loss of generality

we may assume that  f (a) <  f (b).   If  γ =  f (a) or  f (b), we have nothing to prove.   Now take

any  γ  such that f (a) < γ <  f (b).  Then define  g : [a, b] → R  by  g(x) =  f (x) − γ  for x in [a,

b].  Then g is a continuous function,  g(a) < 0 and g(b) > 0.  We are going to find a point κ in

[a, b] such that g(κ) = 0.  We do this by using the completeness property of the real numbers

R.  Let F =  { x ∈ [a, b]: g(x) < 0}.  Then F ≠ ∅ since a ∈ F because g(a) < 0.   Obviously

F is bounded above by  b.  Hence by the completeness property of R,  supremum of F

exists.   Let κ = sup F. Since g is continuous at a and g(a) < 0, there exists δ > 0 such that for

all x with a ≤ x < a + δ < b , g(x) < 0.  ( Take ε =  − g(a)/2.  By continuity of  g at a, there

exists δ1 > 0 such that for all x in [a, b] with a ≤ x < a + δ1 , |g(x) − g(a)| < − g(a)/2 or  3g(a)/2

< g(x) <  g(a)/2 < 0.  Take δ = min(δ1 , (b −−−−a)/2). ) This means κ ≥ a + δ ' > a for any  δ '  with

0 < δ ' < δ.  Therefore,  κ > a.  Thus  a < κ ≤ b.  Now by the continuity of g at b and the fact

that g(b) > 0, there exists δ2 > 0 such that  for all x with a < b − δ2 < x ≤ b , g(x) > 0.  That

means  for any  k with b − δ2 < k < b,  k ∉ F and consequently any  k with b − δ2 < k < b is an

upper bound for F . Thus  κ = sup F ≤ b − δ2 < b.  Hence a < κ < b.

We now claim that g(κ) = 0.  That is  f (κ) = γ.   
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Suppose g(κ) < 0.  Then by the continuity of g at κ, there exists δ3 > 0 such that for any x with

a < κ − δ3 ≤ x ≤ κ + δ3 < b,  we have g(x) < 0.  This means κ + δ3  ∈ F .  Thus κ + δ3 ≤ sup F =

κ, and δ3 ≤ 0 contradicting δ3 > 0.  Hence g(κ) ≥ 0.   Similarly if g(κ) > 0, then by the

continuity of g at κ, there exists δ4 > 0 such that for any x with a < κ − δ4 ≤ x ≤ κ + δ4 < b,  we

have g(x) > 0.  Then any x in [a, b] and g(x) < 0 would imply that x < κ − δ4.  Thus κ − δ4 is

an upper bound for F and hence κ ≤ κ − δ4 giving δ4 < 0 contradicting δ4 > 0.  Hence g(κ) = 0.

We now take c = κ and f (c) = γ.

If  f (a) >  f (b), then multiply by −1, we get  − f (a) >  − f (b).  Replace f above by − f  , γ  by  

− γ and the proof proceeds in exactly the same manner as above to obtain a c in [a, b] such

that   − f (c) =  − γ and that is the same as  f (c) = γ .   This completes the proof.
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Theorem 4. (Compactness Theorem).   If  f : [a, b] → R  is a continuous function defined

on a closed and bounded interval [a, b], then its range is also a closed and bounded interval.

Proof.   By the Extreme Value Theorem, Theorem 2 above, the range of  f  ,  f ( [a, b]) ⊆ [inf

f ( [a, b]), sup f ( [a, b])] = [ f (c), f (d)] for some c and d in [a, b].   But by the Intermediate

Value Theorem, Theorem 3 above, [ f (c), f (d)] ⊆ f ( [a, b]).  Hence f ( [a, b]) = [ f (c), f (d)]

and [ f (c), f (d)] is a closed and bounded interval.  That means the range  f ( [a, b]) is a closed

and bounded interval.  ( See figure 3 below.)
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