Question 1

The function f is defined by

$$
f(x)=\left\{\begin{array}{rl}
\frac{2}{3} x^{3}+\frac{1}{3}, & x>1 \\
x^{2} \sin \left(\frac{\pi}{2 x}\right), & -1 \leq x \leq 1 \text { and } x \neq 0 \\
x^{3}-1, & x<-1 \\
0, & x=0
\end{array} .\right.
$$

(a) For $x<-1, f(x)=x^{3}-1<-2$.

Also, for $x<-1, x^{3}-1<-2 \Leftrightarrow x<-1$.
Thus f maps $(-\infty,-1)$ onto $(-\infty,-2)$.
(Because for any $y<-2$, we can take $x=\sqrt[3]{y+1}$ so that $f(x)=y$)
Also, for $-1 \leq x \leq 1,-1 \leq f(x) \leq 1$.
This is seen as follows.
For $-1 \leq x \leq 1$ and $x \neq 0, \quad|f(x)|=\left|x^{2} \sin \left(\frac{\pi}{2 x}\right)\right| \leq x^{2} \leq 1$.
Also we know $f(0)=0$.
Thus $-1 \leq f(x) \leq 1$. Therefore, $f(1)=1$ is the absolute maximum of f on $[-1,1]$ and $f(-1)=-1$ is the absolute minimum of f on $[-1,1]$.

Assuming that f is continuous on $[-1,1]$ (as we shall show in part (d) below), by the Intermediate Value Theorem) f maps the interval $[-1,1]$ onto $[-1,1]$.
Finally for $x>1, f(x)=\frac{2}{3} x^{3}+\frac{1}{3}>1$.
And for any $y>1$, we can take
$x=\sqrt[3]{\frac{3 y-1}{2}}>1$ so that $f(x)=y$.
Hence f maps $(1, \infty)$ onto $(1, \infty)$.
Hence the range of f is
$(-\infty,-2) \cup[-1,1] \cup(1, \infty)=(-\infty,-2) \cup[-1, \infty)$
(b) By part (a) Range $(f)=$

$$
(-\infty,-2) \cup[-1, \infty) \neq \mathbf{R}=\operatorname{codomain}(f),
$$

therefore f is not surjective.
(c) (i) By part (a)

1 is in the image of $[-1,1]$ under f.
Thus, to find the preimage we need to solve the equation

$$
x^{2} \sin \left(\frac{\pi}{2 x}\right)=1 \text { for } x \text { in }[-1,1]-\{0\}
$$

For $x \neq 0$ and $-1<x<1,\left|x^{2} \sin \left(\frac{\pi}{2 x}\right)\right| \leq x^{2}<1$. Since we know $f(1)=1$, and $f(-1)<0, x=1$.
(ii) From part (a)

- 2 is not in the range of f.

Thus, the solution of $f(x)=-2$ does not exist. Therefore, there is no value of x such that $f(x)=-2$
(d) When $x<-1, f(x)=x^{3}-1, f$ is continuous on $(-\infty,-1)$. When $-1<x<1$ and $x \neq 0, f(x)=x^{2} \sin \left(\frac{\pi}{2 x}\right)$.
Since $x^{2} \sin \left(\frac{\pi}{2 x}\right)$ is continuous on $(-1,0)$ and on $(0,1)$,
f is continuous on the union of these two intervals.
When $x>1, f(x)$ is a polynomial function and so it is continuous for $x>1$.
Thus it remains to check if f is continuous at $x=-1,0$ or 1 .
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{2} \sin \left(\frac{\pi}{2 x}\right)=1^{2} \sin \left(\frac{\pi}{2}\right)=1$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{2}{3} x^{3}+\frac{1}{3}=\frac{2}{3}+\frac{1}{3}=1=f(1)$
Therefore, $\lim _{x \rightarrow 1} f(x)=f(1)$ and so f is continuous at $x=1$.
Now $\lim _{x \rightarrow(-1)^{-}} f(x)=\lim _{x \rightarrow(-1)^{-}} x^{3}-1=-2$
$\lim _{x \rightarrow(-1)^{+}} f(x)=\lim _{x \rightarrow(-1)^{+}} x^{2} \sin \left(\frac{\pi}{2 x}\right)=1^{2} \sin \left(-\frac{\pi}{2}\right)=-1$
Thus the left and the right limits of f at $x=-2$ are not the same and so f is not continuous at $x=-1$.

Now $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{\pi}{2 x}\right)=0$ by the Squeeze Theorem.

Since $f(0)=0, f$ is continuous at $x=0$.
Hence f is continuous at x for all $x \neq-1$.
(e) f is differentiable at $x=1$. This is seen as follows.

$$
\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{x^{2} \sin \left(\frac{\pi}{2 x}\right)-1}{x-1}
$$

$$
=\lim _{x \rightarrow 1^{-}} \frac{2 x \sin \left(\frac{\pi}{2 x}\right)-\frac{\pi}{2} \cos \left(\frac{\pi}{2 x}\right)}{1} \text { by L'Hôpital's Rule }
$$

$$
=2
$$

$\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{\frac{2}{3} x^{3}+\frac{1}{3}-1}{x-1}$
$=\frac{2}{3} \lim _{x \rightarrow 1^{+}} \frac{x^{3}-1}{x-1}=2$.
Thus f is differentiable at $x=1$ and $f^{\prime}(1)=2$.
(f) Note that f is an odd function on the interval $[-1,1]$, since $f(-x)=x^{2} \sin (-\pi /(2 x))=-x^{2} \sin (\pi /(2 x))=-f(x)$.
$\int_{-1}^{0} f(x) d x=-\int_{1}^{0} f(-t) d t$ where $t=-x$
$=\int_{1}^{0} f(t) d t=-\int_{0}^{1} f(t) d t$
Therefore,

$$
\int_{-1}^{1} f(x) d x=\int_{0}^{1} f(x) d x+\int_{-1}^{0} f(x) d x=0 .
$$

Question 2

(a) $\lim _{x \rightarrow \infty} \frac{61 x^{7}+2 x^{3}+1}{907 x^{7}+7 x^{3}+5 x^{2}+7}$
$=\lim _{x \rightarrow \infty} \frac{61+\frac{2}{x^{4}}+\frac{1}{x^{7}}}{907+\frac{7}{x^{4}}+\frac{5}{x^{5}}+\frac{7}{x^{7}}}=\frac{61+0+0}{907+0+0+0}=\frac{61}{907}$.
(b) $\lim _{x \rightarrow 0} \frac{\sqrt{7 x^{2}+121}-11}{14 x^{2}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{7 x^{2}}{14 x^{2}\left(\sqrt{7 x^{2}+121}+11\right)} \\
& =\lim _{x \rightarrow 0} \frac{1}{2\left(\sqrt{7 x^{2}+121}+11\right)}=\frac{1}{44}
\end{aligned}
$$

(c) $\lim _{x \rightarrow \infty} \frac{x^{5}}{e^{x^{2}}}=\lim _{x \rightarrow \infty} \frac{5 x^{4}}{2 x e^{x^{2}}}$

$$
\begin{aligned}
& =\frac{5}{2} \lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x^{2}}}=\frac{5}{2} \lim _{x \rightarrow \infty} \frac{3 x^{2}}{2 x e^{x^{2}}} \\
& =\frac{15}{4} \lim _{x \rightarrow \infty} \frac{x}{e^{x^{2}}}=\frac{15}{4} \lim _{x \rightarrow \infty} \frac{1}{2 x e^{x^{2}}}=0
\end{aligned}
$$

by repeated use of L' Hôpital's rule and $\lim _{x \rightarrow \infty} 2 x e^{x^{2}}=\infty$ so that the limit of the reciprocal function $\lim _{x \rightarrow \infty} \frac{1}{2 x e^{x^{2}}}$ is 0 .

(d) $\lim _{x \rightarrow 0} \frac{\sin (\tan (x))}{\tan (\sin (x))}$

$=\lim _{x \rightarrow 0} \frac{\cos (\tan (x)) \sec ^{2}(x)}{\sec ^{2}(\sin (x)) \cos (x)}$ by L'Hôpital's rule

$$
=\frac{\cos (\tan (0)) \sec ^{2}(0)}{\sec ^{2}(\sin (0)) \cos (0)}=1
$$

(e) Let $y=\left(e^{\left(x^{3}\right)}+3 x^{2}\right)^{\left(1 / x^{2}\right)}$.

$$
\text { Then } \ln (y)=\frac{1}{x^{2}} \ln \left(e^{\left(x^{3}\right)}+3 x^{2}\right) \text {. }
$$

$$
\text { Now } \lim _{x \rightarrow 0} \ln (y)=\lim _{x \rightarrow 0} \frac{\ln \left(e^{\left(x^{3}\right)}+3 x^{2}\right)}{x^{2}}
$$

$$
=\lim _{x \rightarrow 0} \frac{3 x^{2} e^{\left(x^{3}\right)}+6 x}{2 x\left(e^{\left(x^{3}\right)}+3 x^{2}\right)}
$$

$$
=\frac{3}{2} \frac{0+2}{1+0}=3
$$

Therefore, $\lim _{x \rightarrow 0} y=\lim _{x \rightarrow 0} e^{\ln (y)}=e^{\lim _{x \rightarrow 0} \ln (y)}=e^{3}$

Question 3

$$
\text { (a) } \begin{gathered}
\int \frac{d x}{\left(x^{2}+2\right)\left(x^{2}+3\right)}=\int\left(\frac{1}{x^{2}+2}-\frac{1}{x^{2}+3}\right) d x \\
=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)-\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+C
\end{gathered}
$$

(b) $\int \sin ^{-1}(4 x) d x=x \sin ^{-1}(4 x)-\int 4 x \frac{1}{\sqrt{1-16 x^{2}}} d x$ by integration by parts

$$
=x \sin ^{-1}(4 x)+\frac{1}{8} \int \frac{-32 x}{\sqrt{1-16 x^{2}}} d x
$$

$$
=x \sin ^{-1}(4 x)+\frac{1}{4} \sqrt{1-16 x^{2}}+C
$$

by change of variable or substitution using e.g. $u=\sqrt{ }\left(1-16 x^{2}\right)$
(c) $\int e^{2 x} \sin (5 x) d x=\frac{1}{2} e^{2 x} \sin (5 x)-\frac{1}{2} \int e^{2 x} 5 \cos (5 x) d x$

$$
\begin{gathered}
=\frac{1}{2} e^{2 x} \sin (5 x)-\frac{5}{2}\left[\frac{1}{2} e^{2 x} \cos (5 x)+\frac{1}{2} \int e^{2 x} 5 \sin (5 x) d x\right] \\
\left.=\frac{1}{2} e^{2 x} \sin (5 x)-\frac{5}{4} e^{2 x} \cos (5 x)-\frac{25}{4} \int e^{2 x} \sin (5 x) d x\right] \\
\text { by integration by parts. }
\end{gathered}
$$

Therefore,
$\frac{29}{4} \int e^{2 x} \sin (5 x) d x=\frac{1}{2} e^{2 x} \sin (5 x)-\frac{5}{4} e^{2 x} \cos (5 x)+C$
Thus
$\int e^{2 x} \sin (5 x) d x=\frac{2}{29} e^{2 x} \sin (5 x)-\frac{5}{29} e^{2 x} \cos (5 x)+C^{\prime}$.

Therefore,
$\int_{0}^{\frac{\pi}{5}} e^{2 x} \sin (5 x) d x=\frac{1}{29}\left[2 e^{2 x} \sin (5 x)-5 e^{2 x} \cos (5 x)\right]_{0}^{\frac{\pi}{5}}$

$$
\begin{aligned}
& =\frac{1}{29}\left[5 e^{0} \cos (0)-5 e^{\frac{2 \pi}{5}} \cos (\pi)\right] \\
& =\frac{5}{29}\left(1+e^{\frac{2 \pi}{5}}\right)
\end{aligned}
$$

(d) $\int \frac{x+3}{x^{2}+2 x+4} d x=\int\left(\frac{1}{2} \frac{2 x+2}{x^{2}+2 x+4}+\frac{2}{x^{2}+2 x+4}\right) d x$

$$
\begin{aligned}
& =\frac{1}{2} \ln \left(x^{2}+2 x+4\right)+2 \int \frac{1}{(x+1)^{2}+3} d x \\
& =\frac{1}{2} \ln \left(x^{2}+2 x+4\right)+\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{x+1}{\sqrt{3}}\right)+C
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \int_{0}^{2} \frac{x+3}{x^{2}+2 x+4} d x=\left[\frac{1}{2} \ln \left(x^{2}+2 x+4\right)+\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{x+1}{\sqrt{3}}\right)\right]_{0}^{2} \\
& =\frac{1}{2}\left((\ln (12)-\ln (4))+\frac{2}{\sqrt{3}}\left(\tan ^{-1}(\sqrt{3})-\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)\right)\right. \\
& =\frac{1}{2} \ln (3)+\frac{2}{\sqrt{3}}\left(\frac{\pi}{3}-\frac{\pi}{6}\right)=\frac{1}{2} \ln (3)+\frac{\pi}{3 \sqrt{3}}
\end{aligned}
$$

Question 4

(a) Let $f(x)=3 x-2$. First note that
$|f(x)-1|=|3 x-2-1|=3|x-1|$.
Therefore,

$$
\text { given any } \varepsilon>0, \text { take } \delta=\varepsilon / 3
$$

Thus,
$0<|x-1|<\delta \Rightarrow|f(x)-1|=3|x-1|<3 \delta=\varepsilon$.
Therefore, by the definition of limit,
$\lim _{x \rightarrow 1} f(x)=1$
(b) First note that f is differentiable at x for x in $(-\infty,-\pi)$ or (π, ∞) since on these intervals the function is the same as sine (x) and sine (x) is differentiable on these intervals.

Now for x such that $-\pi<x<\pi, f(x)$ is given by a polynomial and any polynomial is differentiable on the interval $(-\pi, \pi)$.

Then a necessary condition for f to be differentiable at π is that f be continuous at π.

That is, $\quad \lim _{x \rightarrow \pi^{-}} f(x)=\lim _{x \rightarrow \pi^{+}} f(x)=f(\pi)$.

Now $\lim _{x \rightarrow \pi^{-}} f(x)=\lim _{x \rightarrow \pi^{-}} a x^{3}+b x=a \pi^{3}+b \pi=f(\pi)$ and $\lim _{x \rightarrow \pi^{+}} f(x)=\lim _{x \rightarrow \pi^{+}} \sin (x)=\sin (\pi)=0$.

And so our first condition is

$$
\begin{equation*}
a \pi^{2}+b=0 \tag{1}
\end{equation*}
$$

Since we know the derivative of $\sin (x)$ is $\cos (x)$, that is

$$
\lim _{y \rightarrow x} \frac{\sin (y)-\sin (x)}{y-x}=\cos (x)
$$

$\lim _{x \rightarrow \pi^{+}} \frac{f(x)-f(\pi)}{x-\pi}=\lim _{x \rightarrow \pi^{+}} \frac{\sin (x)-0}{x-\pi}$
$=\lim _{x \rightarrow \pi} \frac{\sin (x)-\sin (\pi)}{x-\pi}=\cos (\pi)=-1$.

Similarly,

$$
\begin{aligned}
\lim _{x \rightarrow \pi-} \frac{f(x)-f(\pi)}{x-\pi} & =\lim _{x \rightarrow \pi^{-}} \frac{a x^{3}+b x-\left(a \pi^{3}+b \pi\right)}{x-\pi} \\
& =3 a \pi^{2}+b
\end{aligned}
$$

Therefore, in addition to equation (1), for differentiability at π, we must have

$$
\begin{equation*}
3 a \pi^{2}+b=-1 \tag{2}
\end{equation*}
$$

Solving (1) and (2) gives $b=\frac{1}{2}$ and $a=-\frac{1}{2 \pi^{2}}$.
For differentiability at $-\pi$, we get the same equations (1) and (2) above. Thus the same values for a and b above will guarantee differentiability at $-\pi$ too.
(c) Let $f(x)=2 x^{3}+3 x+1-3 \sin (x) \cos (x)$

$$
=2 x^{3}+3 x+1-\frac{3}{2} \sin (2 x)
$$

Then $f^{\prime}(x)=6 x^{2}+3-3 \cos (2 x)$

$$
\begin{aligned}
& =6 x^{2}+3\left(1-\cos ^{2}(x)+\sin ^{2}(x)\right) \\
& =6\left(x^{2}+\sin ^{2}(x)\right)
\end{aligned}
$$

Therefore, $f^{\prime}(x)>0$ for $x \neq 0$.
Since f is continuous on \mathbf{R}, f is continuous at $x=0$. Thus f is increasing on $(-\infty, 0]$ and on $[0, \infty)$ and so it is increasing on \mathbf{R}. Therefore, f is injective.

- Now $f(0)=1>0$ and $f(-\pi)=-2 \pi^{2}-3 \pi+1$ <0.
- Therefore, by the Intermediate Value Theorem, there exists a point c in \mathbf{R} such that $f(c)=0$.
- That is, f has a root in \mathbf{R}.
- Since f is injective, it has exactly one real root.

Question 5

Observe that

$$
f(x)=\left\{\begin{array}{cc}
\frac{2 x|x|}{1+x^{2}}, & x<1 \\
\frac{1}{x}, & x \geq 1
\end{array}=\left\{\begin{array}{cc}
-\frac{2 x^{2}}{1+x^{2}}, & x<0 \\
\frac{2 x^{2}}{1+x^{2}}, & 0 \leq x<1 \\
\frac{1}{x}, & x \geq 1
\end{array}\right.\right.
$$

We note that

1. f is continuous on $(1, \infty)$ because f is a rational function on $(1, \infty)$.
2. f is continuous on $(-\infty, 1)$ because f is a product of a rational function and $|x|$ and $|x|$ is a continuous function.

Now $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{1}{x}=1=f(1)$ and

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{2 x|x|}{1+x^{2}}=1
$$

Therefore, $\lim _{x \rightarrow 1} f(x)=f(1)$ and so f is continuous at $x=1$.
Thus f is continuous on \mathbf{R}.
Then

$$
f^{\prime}(x)=\left\{\begin{array}{c}
\frac{4 x}{\left(1+x^{2}\right)^{2}}, x<0 \tag{1}\\
\frac{4 x}{\left(1+x^{2}\right)^{2}}, 0<x<1 \\
-\frac{1}{x^{2}}, x>1
\end{array}\right.
$$

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left\{\begin{array}{c}
4 \frac{\left(3 x^{2}-1\right)}{\left(1+x^{2}\right)^{3}}, x<0 \\
-4 \frac{\left(3 x^{2}-1\right)}{\left(1+x^{2}\right)^{3}}, 0<x<1 \\
\frac{2}{x^{3}}, x>1
\end{array}\right. \\
& =\left\{\begin{array}{c}
12 \frac{\left(x^{2}-\frac{1}{3}\right)}{\left(1+x^{2}\right)^{3}}, x<0 \\
-12 \frac{\left(x^{2}-\frac{1}{3}\right)}{\left(1+x^{2}\right)^{3}}, 0<x<1 \\
\frac{2}{x^{3}}, x>1
\end{array}\right.
\end{aligned}
$$

(a) For $x<0,-4 x>0$ and so from (1)
$f^{\prime}(x)=\frac{-4 x}{\left(1+x^{2}\right)^{2}}>0$ for x in $(-\infty, 0)$ since $\left(1+x^{2}\right)>0$.

Thus f is increasing on the interval $(-\infty, 0]$ since f is continuous at $x=0$.
Now for x in $(0,1) f^{\prime}(x)=\frac{4 x}{\left(1+x^{2}\right)^{2}}>0$.
Therefore, f is increasing on $[0,1]$ since f is continuous at $x=0$ and at $x=1$.
Thus f is increasing on the interval $(-\infty, 1]$.

For $x>1, f^{\prime}(x)=-\frac{1}{x^{2}}<0$
Thus f is decreasing on the interval $[1, \infty)$ since f is continuous at $x=1$.
(b) Now $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{1}{x}=0$ and so the line $y=0$ is a horizontal asymptote of the graph of f.
Next we check the following limit.
$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}-\frac{2 x^{2}}{1+x^{2}}=\lim _{x \rightarrow-\infty}-\frac{2}{1+\frac{1}{x^{2}}}=-2$
Therefore, the line $y=-2$ is another horizontal asymptote of the graph of f.
(c) When $x<-\frac{1}{\sqrt{3}}$, from (2),

$$
f^{\prime \prime}(x)=12 \frac{\left(x^{2}-\frac{1}{3}\right)}{\left(1+x^{2}\right)^{3}}>0 \text { since }\left(x^{2}-\frac{1}{3}\right)>0
$$

Hence the graph of f is concave upward on the interval $\left(-\infty,-\frac{1}{\sqrt{3}}\right)$.
Also from (2), when $-\frac{1}{\sqrt{3}}<x<0$,
$f^{\prime \prime}(x)=12 \frac{\left(x^{2}-\frac{1}{3}\right)}{\left(1+x^{2}\right)^{3}}<0$.
Therefore, the graph of f is concave downward on the interval $\left(-\frac{1}{\sqrt{3}}, 0\right)$.

Again from (2), for $0<x<\frac{1}{\sqrt{3}}(<1)$,

$$
f^{\prime \prime}(x)=-12 \frac{\left(x^{2}-\frac{1}{3}\right)}{\left(1+x^{2}\right)^{3}}>0 \text { since }\left(x^{2}-\frac{1}{3}\right)<0
$$

Therefore, the graph of f is concave upward on $\left(0, \frac{1}{\sqrt{3}}\right)$.
For $\frac{1}{\sqrt{3}}<x<1, f^{\prime \prime}(x)=-12 \frac{\left(x^{2}-\frac{1}{3}\right)}{\left(1+x^{2}\right)^{3}}<0$ and therefore the graph of f is concave downward on $\left(\frac{1}{\sqrt{3}}, 1\right)$.

Finally for $x>1, f^{\prime \prime}(x)=\frac{2}{x^{3}}>0$ and so the graph of f is concave upward on $(1, \infty)$.
(d) Since from part (a) f is increasing on $(-\infty, 1]$ and decreasing on $[1, \infty), f$ has a relative maximum value at $x=1$.

- Indeed the relative maximum value is $f(1)=1$. Since f is increasing on $(-\infty, 1], f$ has no relative minimum in $(-\infty, 1]$.
- Likewise since f is decreasing on $[1, \infty), f$ has no relative minimum value in $[1, \infty)$,.
Therefore f has no relative minimum value.
(e)

From part (c), there are changes of concavity before and after the following points in the graph:
$\left.\left(-\frac{1}{\sqrt{3}}, f\left(-\frac{1}{\sqrt{3}}\right)\right)=\left(-\frac{1}{\sqrt{3}},-\frac{1}{2}\right)\right)$,
$(0, f(0))=(0,0)$,
$\left.\left(\frac{1}{\sqrt{3}}, f\left(\frac{1}{\sqrt{3}}\right)\right)=\left(\frac{1}{\sqrt{3}}, \frac{1}{2}\right)\right)$
and $(1, f(1))=(1$,
Therefore, these are the points of inflection.

(f) The graph of f (not drawn to scale)

Question 6

$$
\begin{aligned}
& \text { (a) } g(x)=\int_{-x}^{x^{3}} \frac{1}{1+\sin ^{2}(2 t)+t^{2}} d t \\
= & \int_{0}^{x^{3}} \frac{1}{1+\sin ^{2}(2 t)+t^{2}} d t+\int_{-x}^{0} \frac{1}{1+\sin ^{2}(2 t)+t^{2}} d t \\
= & \int_{0}^{x^{3}} \frac{1}{1+\sin ^{2}(2 t)+t^{2}} d t-\int_{0}^{-x} \frac{1}{1+\sin ^{2}(2 t)+t^{2}} d t \\
= & F\left(x^{3}\right)-F(-x) \\
& \quad \text { where } F(x)=\int_{0}^{x} \frac{1}{1+\sin ^{2}(2 t)+t^{2}} d t
\end{aligned}
$$

Therefore,

$$
\begin{array}{r}
g^{\prime}(x)=F^{\prime}\left(x^{3}\right) \cdot 3 x^{2}-F^{\prime}(-x) \cdot(-1) \\
\text { by the Chain Rule }
\end{array}
$$

$$
=\frac{3 x^{2}}{1+\sin ^{2}\left(2 x^{3}\right)+x^{6}}+\frac{1}{1+\sin ^{2}(-2 x)+x^{2}} \quad \text { by the FTC }
$$

(b) (i)

Since $k(x)=\int_{1}^{x} \frac{1}{\sqrt{1+t^{4}}} d t$, by the FTC,

$$
k^{\prime}(x)=\frac{1}{\sqrt{1+x^{4}}}>0 \text { since } 1+x^{4}>0 .
$$

Therefore, k_{k} is increasing on the whole of \mathbf{R}. Thus k is injective.
(ii) $\quad\left(k^{-1}\right)^{\prime}(0)=\frac{1}{k^{\prime}\left(k^{-1}(0)\right)}$.

- Need to know the value of $k^{-1}(0)$.
$k^{-1}(0)=x \Leftrightarrow k(x)=0 \Leftrightarrow \int_{1}^{x} \frac{1}{\sqrt{1+t^{4}}} d t=0$
Since $k(1)=\int_{1}^{1} \frac{1}{\sqrt{1+t^{4}}} d t=0$ and
k is injective, $x=1$.
Therefore,

$$
\left(k^{-1}\right)^{\prime}(0)=\frac{1}{k^{\prime}\left(k^{-1}(0)\right)}=\frac{1}{k^{\prime}(1)}=\frac{1}{\frac{1}{\sqrt{2}}}=\sqrt{2}
$$

(c) (i)

Let $f(x)=\int_{a}^{x} h(t) d t+\int_{h(a)}^{h(x)} h^{-1}(s) d s-x h(x)$

- We want to show that this is a constant function.
- At this point, it is reasonable to make some assumption that allows us to proceed to show that this is true under this assumption. We then assume that h is differentiable. This is to make sure that the function f is differentiable.
- Notice that f is continuous on $[a, b]$.

With this assumption, by the Fundamental Theorem of Calculus, f is indeed differentiable and

$$
\begin{aligned}
f^{\prime}(x) & =h(x)+h^{-1}(h(x)) h^{\prime}(x)-\left(h(x)+x h^{\prime}(x)\right) \\
& =h(x)+x h^{\prime}(x)-h(x)-x h^{\prime}(x)=0
\end{aligned}
$$

Therefore,

$$
f(x)=C \text { for some constant } C .
$$

Thus $C=f(a)=-a b(a)$.
Hence $\int_{a}^{x} h(t) d t=x h(x)-a h(a)-\int_{h(a)}^{h(x)} h^{-1}(s) d s$
In particular

$$
\int_{a}^{b} h(t) d t=b h(b)-a h(a)-\int_{h(a)}^{h(b)} h^{-1}(s) d s
$$

The solution to this part without assuming the differentiability of b is given at the end of the page
http://www.math.nus.edu.sg/~matngtb/ Calculus/test_paper/99ex1.pdf
(ii)

Let $h(x)=\sqrt{1+(x-1)^{\frac{1}{3}}}$ for x in $[0,1]$.
$h(x)=y$ if and only if
$1+(x-1)^{\frac{1}{3}}=y^{2} \Leftrightarrow(x-1)^{\frac{1}{3}}=y^{2}-1$ so that
$x=\left(y^{2}-1\right)^{3}+1=y^{6}-3 y^{4}+3 y^{2}$
Therefore $h^{-1}(y)=y^{6}-3 y^{4}+3 y^{2}$
Now $h(0)=0$ and $h(1)=1$.

- Before we use part (i), note that in part (i) we only require that b be differentiable on (a, b).

Hence by part (i),

$$
\begin{aligned}
& \int_{0}^{1} \sqrt{1+(x-1)^{\frac{1}{3}}} d x=h(1)-\int_{0}^{1}\left(y^{6}-3 y^{4}+3 y^{2}\right) d y \\
& =1-\left[\frac{1}{7} y^{7}-\frac{3}{5} y^{5}+y^{3}\right]_{0}^{1}=1-\left(1+\frac{1}{7}-\frac{3}{5}\right)=\frac{16}{35} .
\end{aligned}
$$

Or use substitution $u=1+(x-1)^{\frac{1}{3}}$.

Then $x=u^{3}-3 u^{2}+3 u$.
$\int_{0}^{1} \sqrt{1+(x-1)^{\frac{1}{3}}} d x=\int_{0}^{1}\left(3 u^{\frac{5}{2}}-6 u^{\frac{3}{2}}+3 u^{\frac{1}{2}}\right) d u$
$=3\left[\frac{2}{7} u^{\frac{7}{2}}-\frac{4}{5} u^{\frac{5}{2}}+\frac{2}{3} u^{\frac{3}{2}}\right]_{0}^{1}$

$$
=\frac{6}{7}-\frac{12}{5}+2=\frac{16}{35}
$$

