## A Forinula of Euler and Apprecietitig calculus

A presentation brought to you by
Ng Tze Beng

## Irfitionducitorn

7 Euler produced a staggering 900 treatises, books and papers.
7 His callected works are still being aublished under the title Opera Omnia.
7 His work has touched on almost every field of mathematics including some which were his creation.

## Young Euler

$\square$ Borin Ïnn Pasell, Switzzerland inn 17,07/ AD.
$\square$ rimishieal colllege atine age of 15 .
1 Stualieall waitinn J Jonann Bernoullit.
141 yearss latier won an prize from the Parisiam Acadeny/ of Sciences for the optiimum placementi off masts upon a sailing shijp.

## Depth

$\square$ Most of Euller's woiks are still as fresh ล5 when he firist created them
= ap testinnany to tine eternal nature of ninatineniotics as atosolute truth.
1 Some of Euler's works are deep. Among them is Euler number for a surface or indleed for a combinatorial manifold. The invariance of Euler number was proved only when homology theory was invented.

## Aspreciation

a W/e shall describe a famous formula of Euler with a view to appreciate the beauty and nature of mathematics
$=$ in this case

## Calculus.

## The Formula is

$$
\frac{1}{1^{2^{2}}}+\frac{1}{2^{2^{2}}}+\ldots+\frac{1}{n^{2^{2}}}+\ldots=\frac{\pi^{2}}{6}
$$

Thiss series haod bofflled Leibniz and the Bernoullij brothers. Euler gave this summation in 1734 AD.
This series is still regarded too difficult to be ineluded in most calculus text books.

## Tihe Connection

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\ldots+\frac{1}{n^{2}}+\ldots=\frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} x^{2} d x
$$

This remindes uss of
The Fludamental Theorem of Calculus.

## GLUE?

$\square$ The grop p of $y=4 x^{2} / \pi$

$$
\frac{15}{v_{\pi}}
$$

$\frac{\pi^{2} / 6}{\pi / 2}$

## Vanishing clue?

Tithe only gitue of red herring is

$$
\frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} x^{2} d x=\frac{4}{\pi}\left[\frac{x^{3}}{3^{3}}\right]_{0}^{\frac{\pi}{2}}=\frac{\pi^{2}}{6}
$$

## Inspiration?

-Thhis will come from

$$
I_{N}=\int_{0}^{\frac{\pi}{2}} \cos ^{2 N}(x) d x
$$

7 To evaluate this we shall need integration by paits:
$\int_{a}^{b} F(x) G^{\prime}(x) d x=[F(x) G(x)]_{a}^{b^{b}}=\int_{a}^{b} F^{\prime}(x) G(x) d x$

## The Initial comeutation

$$
\begin{aligned}
I_{N} & =\int_{0}^{\frac{\pi}{2}} \cos ^{2 N-1}(x) \cos (x) d x \\
& =\frac{2 N-1}{2 N} \int_{0}^{\frac{\pi}{2}} \cos ^{2 N-2}(x) d x
\end{aligned}
$$

Done by integration by parts :

## $I_{N}$

Repeated use of $/ N$ yieldls

$$
\begin{aligned}
\bar{I}_{N} & =\frac{(2 N-1)\left(2 N^{N}-3\right) \cdots 1}{2 N(2 n-2) \cdots 2} \bar{I}_{0} \\
& =\frac{\left(2 N^{N}-1\right)\left(2 N^{N}-3\right) \cdots 1}{2 N^{N}(2 n-2) \cdots 2} \frac{\pi^{\pi}}{2} \\
& =\frac{\left(2 N^{N}-1\right)!!}{\left(2 N^{N}\right)!!} \frac{\pi^{\pi}}{2}
\end{aligned}
$$

## The other Way to IN

$$
\begin{aligned}
I_{N}= & \int_{0}^{\frac{\pi}{2}} 1 \cdot \cos ^{2 N}(x) d x \\
= & N(2 N-1)] \int_{0}^{2 \frac{\pi}{2}} x^{2} x^{2} \cos ^{2 N-2}(x) d x \\
& -2 N^{2} \int_{0}^{\frac{\pi}{2}} x^{2} x^{2} \cos ^{2 N}(x) d x
\end{aligned}
$$

## Then eames the realisation....

$$
\begin{aligned}
& N(2 N-1) \int_{0}^{-\frac{2^{2}}{2}} x^{2} \cos ^{2 N N}(x) d x \\
& =2 N^{2} \int_{0}^{2 \pi} x^{\frac{\pi}{2}} x^{2} \cos ^{2 N}(x) d x \\
& =\frac{(2 N-1)!!}{(2 N)!!} \frac{\pi}{2}
\end{aligned}
$$

IShoo! $1 / N^{2}$ is somewhere here.

$\square$ This is true for $N>1$.

## Aht W/e define

$$
\begin{aligned}
J_{N}= & \frac{4}{\pi} \frac{(2 N)!!}{(2 N-1)!!} \int_{0}^{\frac{\pi}{2}} x^{2} \cos ^{2 N}(x) d x \\
& \text { for } N \geq 1 \text { and } \\
J_{0} \equiv & \frac{4}{\pi^{\pi}} \int_{0}^{\frac{\pi}{2}} x^{2} d x=\frac{\pi^{2}}{6}
\end{aligned}
$$

Then things look simpler!

## The connection in olace .....

$$
\begin{aligned}
& \text { Forn } N \geq 1, \\
& J_{N-1}-J_{N}=\frac{1}{N^{2}}=--(\mathrm{A})
\end{aligned}
$$

-Ah! Ahbhhb! $\int_{0}=$ ?

## You guess it

$$
\begin{aligned}
J_{0}= & \left(J_{0}-J_{1}\right)+\left(J_{1}-J_{2}\right)+\cdots+\left(J_{N-1}-J_{N}\right) \\
& +J_{N} \\
= & \frac{1}{1^{2}}+\frac{1}{2^{2^{2}}}+\frac{1}{3^{2}}+\cdots+\frac{1}{N^{2}}+J_{N} \\
---- & \text { (B) }
\end{aligned}
$$

This we see is derived from (A).

## Presision

 ajoes inat get closer and dloser to 0 as N/gets laniger anid largen.
I So we needl to scrutinise / / more बlosely.
I We want to show that

$$
J_{N} \Rightarrow 0 \mathrm{aS} \mathbb{N} \Rightarrow \infty
$$

## Getting accuainted with $J_{N}$

For: $\mathbb{N} \geq 1$,
$0 \leq J_{N}=\frac{4}{\pi} \frac{(2 N)!}{(2 N-1)!!} \int_{0}^{\frac{\pi}{2}} x^{2} \cos ^{2 N}(x) d x$
$\leq \frac{83}{\pi} \int_{0}^{\frac{\pi \pi}{2}} N x^{2} \cos ^{2 N}(x) d x=\frac{8}{\pi} K_{N}-(C)$
7 Like all inguisitive children, we should try to understand more about $K_{N}$.

## An., the limit we go to ......

- vye hepe te singw that

$$
\begin{aligned}
& K_{N V}=\int_{0}^{\frac{\pi}{2}} \operatorname{NN}^{x^{2}} \cos ^{2 N^{N}}(x) d x \rightarrow 0 \\
& \text { dSS } \mathbf{N} M \rightarrow \infty .
\end{aligned}
$$

7 That ist

$$
\lim _{N \rightarrow \infty} K_{N^{N}} \equiv 0
$$

## Geiting toknow K K ........

7 We shaill look at the integrand of $k_{N}$. It is is, for Bech integer $N>0$,

$$
\begin{aligned}
& \mathcal{G}_{N}(x)=N_{x} x^{2} \cos ^{2 N}(x) \text { and } \\
& K_{N}=\int_{0}^{\frac{\pi}{2}} \boldsymbol{g}_{N_{N}}(x) d x
\end{aligned}
$$

## Geفal olal Fermat ......

$\square g_{n}$ is al function with olomain the closed interval [ $0, \pi / 2 / 2]$.
7 We shoulal try to know a few things aboult gn as a function.
$=9_{N}$ is continuous on $[0, \pi / 2]$.
= of is differentiable on $(0, \pi / 2)$.
= onv $_{w}$ is non-negative on $[0, \pi / 2]$.
$\square$ What is its absolute maximum value?

## Going to the peak

7 The derivative of $g_{N}$ for $N>0$, on $(0, \pi / 2)$,

$$
g_{N}^{\prime}:(0,7 / 2) \rightarrow \mathbf{R}
$$

is given by
$g_{N^{N}}^{\prime}(x)=2 N^{2} x \cos ^{2 N}(x)\left(\frac{1}{N}-x \tan (x)\right)$

## Lecating the critical point

1 There is only one critical point of $g_{N}$ in (0), $\pi / 2$ ) given by

$$
t_{N} \text { in the interval }\left(0, \frac{\pi}{2}\right)
$$

deffineal by the equation

$$
t_{N} \tan \left(t_{N}\right)=\frac{1}{N}----(\mathrm{D})
$$

## The peak and a new function

$\square$ Since gn is non-negative on $[0, \pi / 2]$䒬的 $g_{N}(0)=g_{N}(\pi \pi / 2)=0$,
GN $\left(t_{N}\right)$ is the absolute maximum value on the slosed interval [ $0, \pi / 2]$.
ᄀTo triack the absolute maximum, we shall look at the function involved in (D). We shall call it $f$.

## The nills are not insurmountable."

## For $N \geq 1$,

$$
\mathfrak{g}_{\mathbb{N}}\left(t_{N}\right)=N t_{N}{ }^{2} \cos ^{2 N}\left(t_{N}\right)
$$



$$
\begin{aligned}
& =\frac{t_{N}}{\tan \left(t_{N}\right)} \cos ^{2 N}\left(t_{N}\right) \text { by (D) } \\
& \leq \cos ^{2 N}\left(t_{N}\right) \leq 1---(\mathrm{E})
\end{aligned}
$$

- The last inequality is deduced by using the mean value theorem.


## Gaing back to (E)

7 Since $t_{N M} \geqslant 0$, and all conditions for the Mean value Tineorem are met, by the theorem, we have a point c in $\left(0, t_{N}\right)$ such that

$$
\frac{\tan \left(t_{N_{N}}\right)-\tan (0)}{t_{N}}=\sec ^{c^{2}}(c) \geq 1 .
$$

This is what is required to proved (E).

## Taking stock

$\square$ Recall the function appearing in (D) is

$$
f:\left[0, \frac{\pi}{2}\right) \Longrightarrow \mathbf{R}
$$

given by $f^{f}(x)=x \tan (x)$.
〕 Theen its derivative

$$
\begin{aligned}
& f^{\prime}(x)=\tan (x)+x \sec ^{2}(x)>0 \\
& \text { for } 0<x<\frac{\pi^{2}}{2} \text {. }
\end{aligned}
$$

## Another look at ther

$\square$ Thus $f$ is increasing on $[0, \pi / 2)$.
$\square$ Since
$\lim _{x \rightarrow \frac{\pi \pi^{-}}{2}} f^{\prime}(x)=\lim _{x \rightarrow \frac{\pi}{2}^{-}} x \tan (x)=\infty$,
a moment's reflection with the help of the Intermedliate V/alue Theoren, will convince us, that $f$ is a bijection onto the interval $[0, \infty)$.

## Beginning to see the hill.......

ᄀ For ( ) $\approx x \approx$ 志, we have

$$
\left.f(x) \equiv x \tan (x)<f\left(x_{N}\right)\right)=1 / N
$$

since f is increasing.
7 For $x$ 们 $(0), \pi / 2)$,
G's $(x)>0$ if and only if $1 / N=f(x)>0$.
7 Thhtis $G_{N}{ }^{2}{ }^{s}$ inesreasing on $\left[0, t_{N}\right]$ and
I $g_{N}$ is decreasing on $\left[t_{N}, \pi / 2\right]$

## The inverse of $f$

7 The inverse off $f$

$$
f^{-1}:[0, \infty) \rightarrow\left[0, \frac{\pi}{2}\right)
$$

is a continuous, increasing function.
$\lrcorner$ From (D)

$$
t_{N} \equiv f^{-1}\left(\frac{1}{N^{N}}\right)>0 .
$$

## Diminishing twn

I For positive integers $N$ and $M$, fif $N>M$, then $1 / N \leqslant \mathbb{1} / M$ and since $f-1$ is increasing,

$$
t_{N_{N}} \equiv f^{-1}\left(\frac{1}{N^{N}}\right)<f^{-1}\left(\frac{1}{M^{T}}\right) \equiv t_{M} .
$$

7 Thuss, $\left\{t_{N}: N\right.$ is a natural number $\}$ is a decreasing sequence.

## In proise of continutity.......

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} t_{N}=\lim _{N \rightarrow \infty} f^{-1}\left(\frac{1}{N}\right) . \\
&=f^{-1}\left(\lim _{N \rightarrow \infty} \frac{1}{N}\right)=f^{-1}(0)=0 \\
&
\end{aligned}
$$

because $f=1$ is continuous at $x=0$.
$\square$ Hey! The foot of the peak marches towards 0 .

## A jitte goes along way.......

Given any $\varepsilon>0$,
thereexistsanininteger $N_{0}$ such that
if $N \geq \mathbb{N}_{0}$, then $0<t_{N}<\frac{\varepsilon}{2}$

$$
-=-----=--(G)
$$

- Shoo, we are going to make use of $t_{N}$.


## Returing to $K_{N}:$

$$
\begin{aligned}
\text { Foin } N \geq & N_{0}, \bar{K}_{N}=\int_{0}^{\frac{\pi}{2}} g_{N}(x) d x \\
& =\int_{0}^{t_{x_{0} 0}} g_{N}(x) d x+\int_{i_{N_{0}}}^{\frac{\pi}{2}} g_{N}(x) d x \\
& \leq i_{N_{N_{0}}}+\int_{i_{N_{0}}} g_{N}(x) d x \\
& \leq \frac{\varepsilon}{2}+\int_{t_{N_{0}}}^{\frac{\pi}{2}} g_{N}(x) d x-\cdots \text { (H) }
\end{aligned}
$$

## Still बn $K_{y, \ldots m z}$

For $\mathbb{N} \geq \mathbb{N}_{0,}, t_{N} \leq t_{N_{0}}$, and so
$\boldsymbol{g}_{N}$ is decreasing on [ $\left.t_{N_{0}}, \frac{\pi}{2}\right]$. Tithus from ( H i) we get, for $N \geq N_{0}$,

$$
\begin{aligned}
K_{N} & \leqslant \frac{\varepsilon}{2^{2}}+\int_{t_{t_{N 0}}}^{\pi^{\frac{\pi}{2}}} \boldsymbol{g}_{N_{N}}\left(t_{N_{0}}\right) d x \\
& =\frac{\varepsilon}{2}+\boldsymbol{g}_{N_{N}}\left(t_{N_{0}}\right)\left(\frac{\pi}{2}-t_{N_{0}}\right)---(\mathrm{I})
\end{aligned}
$$

## Vanish we will, eventually......

- Tiake an numiber al $\geqslant 1$, then

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{x}}{a^{x^{x}}}=\lim _{x \rightarrow \infty} \frac{1}{\ln (a t) a^{x^{x}}} \\
& \text { by し' Hốpital's Rule } \\
&= 0 \text { sincee } \lim _{x \rightarrow \infty} a^{x^{x}}
\end{aligned}=-\infty . \quad .
$$

## Still vanishing.

$$
\begin{aligned}
& \text { Now } 0<t_{N_{0}}<\frac{\pi}{2} \text {, and so } \cos ^{2}\left(t_{N_{0}}\right)<1 \text {. } \\
& \lim _{N \rightarrow \infty} g_{N N}\left(t_{N_{N_{0}}}\right)=\lim _{N \rightarrow \infty} t_{N N_{0}}^{2_{N_{0}}^{2}} \mathbb{N} \cos ^{2 N^{2 N}}\left(t_{N_{0}}\right) \\
& =t_{N_{0}}^{2} \lim _{N \rightarrow \infty} \frac{N}{\left(\sec ^{2}\left(t_{N_{0}}\right)\right)^{N}} \\
& =t_{N_{0}}^{2} \cdot 0=0-\cdots(\mathrm{K}) \\
& \text { by (J). }
\end{aligned}
$$

## Being precise is slose to the truth


there exists an integer $M_{0}$ such that
if $N \geq M_{0}$, thein

$$
\begin{aligned}
\mathcal{G}_{N_{N}}\left(t_{N_{N_{0}}}\right) \leqslant \frac{\varepsilon}{2} & \frac{1}{\left(\frac{\pi^{\tau}}{2}-t_{N_{N_{0}}}\right)} \\
& -------(\mathrm{L})
\end{aligned}
$$

## Returning to $K_{N}$

IThus from ( $(\perp)$ and ( (L) , for any $\mathcal{E}>0$, if $\mathbb{N} \geq m a x\left(N_{0}, M_{0}\right)$, then

$$
\begin{aligned}
0 & \leqslant K_{N} \leqslant \frac{\varepsilon}{2}+\boldsymbol{g}_{N_{N}}\left(t_{N_{0}}\right)\left(\frac{\pi}{2^{2}}-t_{N_{0}}\right) \\
& \leqslant \frac{\varepsilon}{2^{2}}+\frac{\varepsilon}{2^{2}} \cdot \frac{1}{\left(\frac{\pi^{2}}{2^{2}-t} t_{\left.N_{0}\right)}\right)}\left(\frac{\pi}{2}-t_{N_{N_{0}}}\right)=\varepsilon .
\end{aligned}
$$

$$
\text { Thus } \lim _{N \rightarrow \infty} K_{N}=0
$$

## At long lestmone

7 Recall inequality (C):
For $N \geq 1,0 \leq J_{N} \leq \frac{8}{\pi} K_{N}$.
Therefre, by the squecze Theorem,

$$
\lim _{N \rightarrow \infty} J_{N^{N}}=0 .
$$

## The <br> End

$$
\int_{a}^{b} f^{\prime}(x) d x=[f(x)]_{a}^{b}
$$

A Theorem of Beauty and Greatness

## The Mean Value Theorem

If $h:[a, b] \rightarrow \mathbf{R}$ is
(1) continuous on $[a, b]$, and (2) differentiableon $(a, b)$, then there is a point $c$ in $(a, b)$ such that
$h^{\prime}(c)=\frac{h(b)-h(a)}{b-a}$.


## Intermealiate Value Theorem

If $f:[a, b] \rightarrow \mathbf{R}$ is continuous on the close interval $[a, b]$, then for any value $\gamma$ between $f(a)$ and $f(b)$, there is a point $c$ in $[a, b]$ such that $f(c)=\gamma$


Conntifurity off f att the point a


