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-1 -—uh" odliced al »T% ermg 900
realisesibooks and papers.

= His) col!ected works are still being
yublished Uinder the title Opera Omnia.
- His\work‘has touched ‘on almost every

fleld' offmathematics including some
which were his creation.




Yot EUlSy

CBormunisasel sSwitzerland in 1707 AD.
“hEnistied oollege atithe age of 15.
CStuarea Wit donann Bernoullr.

- dlyearsijlaterawon a prize from the
Parisian Academy of Sciences for the
optimum placement:of masts upon a
sailing ship.
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= NVastiaiEllersavorks are still as fresh

asWWhenesirsticreated them

= :H LmonyAtoithe etert aI nature of
“’k:nﬂ SIatics) «Jisp* nsolute; truth.

: lﬁ@mﬂ; SiEUlers Works are deep.

~ Among|/thesr 5 Euler number for a
SUace @ eed for a combinatorial
manlfo d. The: invariance of Euler

number was proved only'when
homology theory was invented.
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~MVEIshallldesghibe a famous formula of
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ThisisEneshad. @* ed Leibniz and the
- Bernoull @Fj’ﬁﬁ 51 Euler' gave this
 sUmmationlin' 1734 AD.

This series _9 still regarded too difficult
to be included in'most calculus text
DOOKS.
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Thisreminds Usiof
The Fundameéental Theorem. of Calculus.
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S NilelsalyAclle ortred herring is
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1Bncomesithe realisation

(2N 1)|  cos: “(X)dx

Shoo! 1//N < is;'somewhere here.
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This Is true for N> 1.
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Then things look simpler!
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Jy = (Jy = 1)+ (I =30, LB E .y
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This we see Is derived from (A).
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chigood If J,,
5l W.closer to O as



Like all'inguisitive children, we should
try to understand more about K, .
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L Wetshalllosksattheintegrand of A, .
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_ ﬁtlable on (O, T/2).
gy Is non-negative: on. [0, w/2].

What'is its absolute maximum value? 4







- Nleresionlyionecritical point of g, in
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hithe interval (0, %
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ANIEW function

- Sincelgmishonsnegative:on [0, /2]
Al 7y (0) =y 20
gy(@)Nsithe absolute maximum value
opitesclosed interval [0, /2].
- TojtracK'the absolute maximum, we
shall'look<atithe function involved in
(D). We'shall'call'it. 7 .
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- 005" (t,) by (D)

all .

<cos?(t)<1---(E) |

The last inequality is deduced by
using the mean value theorem. |
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= SipceNE=A0and alilconditions for the
VeanNallENTiEoremiare met, by the
theoiemMve have a point ¢ in/ (0, t,)
sUchiltnats
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: —sec”(c) >1.

This 1s what'is required to proved (E).
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Then jts derivative
f'(X) =tan(x) + xsec”(x) >0
(i U< A <2
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convince us, that f IS a buectlon onto
the interval [0,0).



S EOHUSS=wWehaye:
AR IS xdan(x))< 1(¢) = 1/
SinceaISInceasing,
=i i (O, 72);
* gl(%))= 0lif-and only if 1/A/- £(x) > O.
Thus. g,is increasing 'on [0, ¢, ] and
g,Is decreasing on [Z, , ©/2]







Diminishing N

C Eoahositvelntegers) Vand M,
NS then 1/ < 1/M and since

75 ]iﬂé‘ﬁ’:&@@"mg, |

_ f e ) s S
ty =1 ' <f LSS
Thus, {' ty: Mis a natural number} is a

decreasing sequence.



lim &y = i i

N —>0 ‘ N —>m0

Hey! The foot of the peak marches

towards 0.
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SIWVenlanVie= 0,

hereExiss anlints
NS then

Shoo, we are going to make use of z,, .
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because of (E)
9y () dx === (H)
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because of (G) |
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o This fiom (H.)l"w jet, for N > N,
+l N(tNo)dx
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NOWAVSERSEand so cos® (t, ) <1.
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Pﬂ'_l”jl O (y, )= Pldlﬂ’} \ cos™ (t,, )
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G, 0=0----(K)

by (J). I
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(K) 3393 for any 2= 0%
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“NhlsFieomN@andi(l), forany ¢ >0,
FON =z Mr)! V') then

D<Ky <5 tNo)(% NO)

c £ £, z
, . _tNo) 2 t )
Thus lim'Ky = 0.
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= RecallNaegUality(C):

SO 0 < ]
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) ditietentableon (a,b), then
herelis’a peint'c in (a,b) such that







‘the close Interval
f(a)and f (b),
- f(C)=y

7 (a)
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