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Most of Euler’s works are still as fresh 
as when he first created them 
– a testimony to the eternal nature of 
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Among them is Euler number for a 
surface or indeed for a combinatorial 
manifold. The invariance of Euler 
number was proved only when 
homology theory was invented. 
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to be included in most calculus text 
books.
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Vanishing Clue?Vanishing Clue?Vanishing Clue?
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Inspiration?Inspiration?Inspiration?
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The Initial ComputationThe Initial ComputationThe Initial Computation

Done by integration by parts .Done by integration by parts .Done by integration by parts .
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The Other Way to INThe Other Way to The Other Way to IINN
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Then comes the realisation…..Then comes the realisationThen comes the realisation……....

Shoo!  1/N 2 is somewhere here.Shoo!  1/Shoo!  1/N N 22 is is somewheresomewhere here.here.
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This is true for N > 1.This is true for This is true for NN > 1.> 1.
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Ah!  We defineAh!  We defineAh!  We define
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You guess it!You guess it!You guess it!
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PrecisionPrecisionPrecision
Equation (B) is not much good if JN 
does not get closer and closer to 0 as 
N gets larger and larger.
So we need to scrutinise JN  more 
closely.
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Getting acquainted with JNGetting acquainted with Getting acquainted with JJNN

Like all inquisitive children, we should 
try to understand more about KN .
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Ah... the limit we go to …...Ah... the limit we go to Ah... the limit we go to ……......
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Getting to know KN……..Getting to know Getting to know KKNN…………....

We shall look at the integrand of KN .
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Good old Fermat……..Good old FermatGood old Fermat…………....

gN is a function with domain the closed 
interval [0, π/2].
We should try to know a few things 
about gN as a function.
– gN is continuous on [0, π/2].
– gN is differentiable on (0, π/2).
– gN is non-negative on [0, π/2].

What is its absolute maximum value?
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The peak and a new functionThe peak and a new functionThe peak and a new function

Since gN is non-negative on [0, π/2] 
and gN (0) = gN (π/2)=0,
gN (tN) is the absolute maximum value 
on the closed interval [0, π/2].
To track the absolute maximum, we 
shall look at the function involved in 
(D). We shall call it  f  .

Since Since ggNN is nonis non--negative on [0, negative on [0, π/2π/2] ] 
and and ggNN (0) = (0) = ggNN ((π/2π/2)=0,)=0,
ggNN ((ttNN) is the absolute maximum value ) is the absolute maximum value 
on the closed interval [0, on the closed interval [0, π/2π/2].].
To track the absolute maximum, we To track the absolute maximum, we 
shall look at the function involved in shall look at the function involved in 
(D). We shall call it  (D). We shall call it  f  f  ..




“The hills are not insurmountable.”““The hills are not The hills are not insurmountableinsurmountable..””
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Beginning to see the hill……..Beginning to see the hillBeginning to see the hill…………....

For 0 < x < tN , we have
f (x) = x tan(x) < f (tN) = 1/N
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Thus gN is increasing on [0, tN ] and
gN is decreasing on [tN , π/2]
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In praise of continuity……..In praise of continuityIn praise of continuity…………....

because f -1 is continuous at x = 0.because because f f --11 is continuous at is continuous at xx = 0.= 0.
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A little goes a long way…….A little goes a long wayA little goes a long way…………..
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Returning to KN ……….ReturningReturning to to KKNN ………………..
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Still on KN ……….StillStill on on KKNN ………………..
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Vanish we will, eventually…...Vanish Vanish wewe will, eventuallywill, eventually……......
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Still vanishing……….Still vanishingStill vanishing………………..
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Being precise is close to the truthBeing precise is Being precise is closeclose to the truthto the truth
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At long last……….At long lastAt long last………………..
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Fundamental Theorem of CalculusFundamental Theorem of CalculusFundamental Theorem of Calculus
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