
Concavity and Lines.

By Ng Tze Beng

Not all calculus text books give the same definition for concavity.  Most would

require differentiability.  One is often asked about the equivalence of various differing

definitions of concavity.   Some of the observation of the equivalence is that any non vertical

line can only intersect the graph of a function whose graph is concave upward or downward

on an open interval in at most two points.  We start with our definition 1.  Then we show that

under certain condition this is equivalent to some other property which is written into an

equivalent definition.

Recall the following definition of concavity.

Definition 1.    Suppose  f : D → R is a continuous function defined on an interval D.    

Suppose a is a point in the interior of D.  Then the graph of  f  is concave upward

(respectively concave downward) at x = a if there exists a small neighbourhood N of a such

that in this small neighbourhood the graph of  f  lies above (respectively below) the tangent

line to the graph of  f  at (a,  f (a)) except for the point of tangency.  That is to say, the graph

of  f  is concave upward (respectively concave downward) at x = a if there exists a δ > 0 such

that for all  x not equal to a in (a−δ, a+δ), f (x) > f (a) + f ′ (a)(x − a) ( respectively  f (x) < f

(a) + f ′ (a)(x − a) ).  We say the graph of  f  is concave upward (respectively concave

downward) on an open interval  I  if the graph of  f  is concave upward (respectively concave

downward) at x for all x in I.

Theorem 1.   Suppose the graph of a function  f  is either concave upward or concave

downward on an open interval  I.   Then any tangent line to the graph of  f  can only intersect

the graph of  f at the point of tangency.

Proof.   We shall prove the theorem for the case  f  is concave upward on the open interval  I.

Note that since the graph of  f  is concave upward on I, the function  f  is differentiable on I.    

Suppose there exists a point k in I such that the tangent line at (k,  f (k)) meets the graph again

at  the point (p, f (p)).   We may assume that k < p.    Then the equation of the tangent line at x

= k is given by y = f (k) + f ′ (k)(x − k).  We now proceed by “tilting the graph”.   Let g :[k, p]

→ R be defined by g(x) =  f (x) −  f (k) − f ′ (k)(x − k).  Then since  f  is differentiable  on [k,

p]  g is also differentiable on (k, p) and continuous on [k, p].   By the Extreme Value

Theorem, there exists an absolute maximum of g on [k, p].  Note that g(k) = 0 and g(p) = 0

since  f (p) lies on the tangent line to the graph of  f  at x = k  so that  f (p) = f (k) + f ′ (k)(p −
k).    Since the graph of  f  is concave upward at x = k,  there exists δ > 0 such that for all x in

(k, k + δ),  f (x) >  f (k) +  f ′ (k)(x − k) and so g(x) > 0.   Hence the absolute maximum of g can

only occur in the interior of  [k, p].   Suppose that it occurs at x = d in the interior of  [k, p].

Then for all x in [k, p] ,  g(x) =  f (x) −  f (k) − f ′ (k)(x − k) ≤ g(d) = f (d) −  f (k) − f ′ (k)(d − k).

  In particular  f ′ (d)  =  f ′ (k).  This is because since g(d) is a relative maximum,  g′(d) = 0

and so since g′ (x) = f ′ (x) − f ′ (k) for x in (k, p), g′ (d) = 0 implies that f ′ (d) = f ′ (k).

Therefore, we have that for all x in [k, p],  f (x) ≤  f (d) + f ′ (d)(x − d), which is derived from

g(x) ≤ g(d).  But since the equation of the tangent line to f at the point x = d is given by y =       

f (d) + f ′ (d)(x − d), we therefore conclude that  there exists a δ > 0 such that (d − δ, d + δ) ⊆
[k, p]  and   f (x) > f (d) +   f ′ (d)(x − d)  for x ≠ d in (d − δ, d + δ).   But we have just shown
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that for x ≠ d  in (d − δ, d + δ),  f (x) ≤ f (d) + f ′ (d)(x − d).  This contradiction shows that the

tangent line at any point k cannot meet the graph of f  at (p, f (p)).  If p < k, we can show

similarly, that the tangent line cannot meet the graph of  f at ( p, f (p)) too.   Hence any tangent

line to the graph of  f at any point (x,  f (x)) cannot intersect the graph of  f  other than the

point of  tangency (x,  f (x)).

(This argument also applies to the case when the graph of   f  is concave downward on the

open interval I. ) This completes the proof.

Theorem 2.     If   the function  f  is concave upward on an open interval  I,  then  the derived

function  f ′  is increasing  on I.

Proof.  Take any two points c < d in I.  By Theorem 1,  since the tangent line at any point on

the graph can only meets the graph exactly once, and since the graph of  f  is concave upward

on I,  for any point k in I,

                   f (x) > f (k) + f ′ (k)(x − k)  for x ≠ k.

Thus we have 

                f (x) > f (c) + f ′ (c)(x − c)  for x ≠ c in I             ---------------   (1)

And 

                 f (x) > f (d) + f ′ (d)(x − d)  for x ≠ d in I       -------------------- (2)      

Hence, from (1), putting x = d,  f (d) > f (c) + f ′ (c)(d − c) so that  .   We
f (d) − f (c)

d − c
> f ∏(c)

also have  by setting x = c in (2),  f (c) > f (d) + f ′ (d)(c − d) so that  .   
f (d) − f (c)

d − c
< f ∏(d)

Therefore,    .  This shows that  f ′  is (strictly) increasing.f ∏(c) <
f (d) − f (c)

d − c
< f ∏(d)

Theorem 3.   If   the function  f  is concave downward on an open interval  I,  then  the

derived function  f ′  is decreasing  on I.

The proof of Theorem 3 is similar to Theorem 2.

Theorem 4.   The converse of Theorem 2 is also true.  That is, if the derived function  f ′  is
increasing  on an open interval  I , then the graph of the function  f   is concave upward on an

open interval  I.

Proof.   The proof makes use of a similar construct as in the proof of Theorem 1.   

Take any point c in I.   Define g(x) =  f (x) −  f (c) − f ′ (c)(x − c) for any x in I.  Then g is

differentiable on  I   and  g′ (x)  =  f ′ (x) − f ′ (c) for any x in I.    Now for  x > c in I ,  f ′ (x) >   
   f ′(c).  Therefore, x > c in I implies that g′ (x)  =  f ′ (x) − f ′ (c) > 0.    Therefore,  g is

increasing on the interval [c,  ∞) ∩ I .    Now note that g(c) = 0.   Hence we can conclude that

x > c in I implies that g(x) > g(c) = 0.  This means  f (x) −  f (c) − f ′ (c)(x − c) > 0 for any  x >

c in I.   Hence, for any x > c in I, we have 

                                                 f (x) >  f (c) + f ′ (c)(x − c).

Similarly for any x < c in I,  f ′ (x) <  f ′ (c).  Therefore, for any x < c in I, g′ (x)  =  f ′ (x) −        

f ′(c) < 0.  We can now conclude that g is decreasing on (−∞, c]∩ I .  Therefore, for any x < c

in I,  g(x) > g(c) = 0.   Hence for any x < c in I ,  f (x) −  f (c) − f ′ (c)(x − c) > 0.  We then  

have for any x < c in I,

f (x) >  f (c) + f ′ (c)(x − c).
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In this way we have shown that for all x ≠ c in I,  f (x) >  f (c) + f ′ (c)(x − c).  Therefore, by

definition 1,  the graph of  f  is concave upward at x = c.  Since this is so for any c in I, the

graph of  f  is concave upward on I.   We have proved much more.   For any x > c in I,  

and for any  x < c in I,  .   The case when the derived
f (x) − f (c)

x − c > f ∏(c)
f (x) − f (c)

x − c < f ∏(c)
function  f ′  is decreasing is proven similarly.

Theorem 5.  If the function f  is differentiable and the derived function  f ′  is decreasing  on

an open interval  I , then the graph of the function  f   is concave downward on an open

interval  I.

The proof of Theorem 5 is similar to that of Theorem 4, almost word for word except for the

change of inequality. 

Theorem 4 and Theorem 5 set the stage for the alternative definition of concavity on open

intervals.

Theorem 6.  Suppose the function  f  is differentiable on an open interval I.   Then

1.  The graph of  f  is concave upward on I , if and only if, the derived function f ' is

increasing on I.

2.  The graph of  f  is concave downward on I , if and only if, the derived function  f ' is

decreasing on I.

Proof.   Just combine Theorems 2, 3, 4 and 5.

Theorem 7.  If the graph of a function defined on an open interval I is either concave upward

or concave downward, no line can intersect the graph of  f  in more than two points.

Proof.   We shall prove the case when the graph of  f  is concave upward on I.    By

Theorem 4,   f ′  is increasing.   Any vertical line can only intersect the graph of  f  in at most

one point.  Now assume that  l is a line of gradient m.  Suppose l intersects the graph of  f  in

more than two points.  That means there exist a < b < c in the domain of  f  such that the

graph of  f  intersects the line l at x = a, b and c.    Then as in the proof of  Theorem 4,  we

have .   We also have   .  But then these arem =
f (b) − f (a)

b − a
< f ∏(b) f ∏(b) < m =

f (c) − f (b)
c − b

contradictory statements.   Therefore,  the line l  cannot  intersect the graph of  f   in more

than two points.  Similarly, we can prove the case when the graph of  f  is concave downward

on I.

However it is possible that the graph of a function is concave upward at a point does not

necessarily give information whether the derived function  f ' is increasing in a neighbourhood

of that point.

Example 8.    Let  .   Then  f  is differentiable on R, thef (x) =
 

 
 

x2 + 10000x4 sin(1/x), x ! 0

0, x = 0

derivative at x = 0, f '(0) is equal to 0 by the Squeeze Theorem.   The derived function is given

by 

                    f ∏(x) =
 

 
 

2x + 40000x3 sin(1/x) − 10000x2 cos(1/x), x ! 0

0, x = 0
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and the second derived function is

   .f ∏∏(x) =
 

 
 

2 + 120000x2 sin(1/x) − 60000x cos(1/x) − 10000 sin(1/x), x ! 0

2, x = 0

The large constant is given here for a help to plot the graph of this function to observe the

perpectual small oscillation.   Note that when x =1/((2k+1)π/2),   sin(1/x) = 1 when k is even

and −1 when k is odd.    Thus, for any δ > 0, choose integer k such that 1/((2k+1)π/2) < min(δ,

1/100).  Let xδ to be 1/((2k+1)π/2).  Then obviously, for even k ,

.  Then since f ''  is continuous at xδ,  theref ∏∏(x�) = 2 + 120000x�
2 − 10000 < 14 − 10000 < 0

exists a small open neighbourhood Nδ of  xδ  in (0, δ) such that f ''(x) < 0 for all x in this

neighbourhood.  Therefore  f '  is decreasing in Nδ.    Thus, for any δ > 0, we can find a

neighbourhood (an interval) Nδ  such that  f '  is decreasing in Nδ.   Note that f ''(0) =2 > 0.

Therefore, the graph of  f  is concave upward at the point x = 0.   But by the above remark f '  

cannot be increasing in any neighbourhood containing x = 0.   The derived function  f '  fails

to be increasing in any open interval containing x = 0 simply because we can always find a

subinterval on which f ' is decreasing.   Because we can always find arbitrarily small  xδ such

that f ''(xδ) < 0, we can thus find arbitrary small xδ such that the graph of  f  is concave

downward at x = xδ .  For this function, there is no open interval containing 0 on which the

function f  is concave upward.  Therefore, we cannot apply Theorem 6 to give any conclusion.

Below is a sketch of the function.                                                                                                 

                       

                    

A related question is the following.

The notion of 'increasing' is one involving a non-trivial interval.  A local information like

derivative of  f  at a point a is positive does not guarantee that the function is increasing upto

and including a or after a and including a or in any interval containing a.  A case in point is

the derived function f ' in Example 8 at the point x = 0.

Example 9.   Consider the function  .   Then f ′ (0) = 1 > 0 but  f (x) =
 

 
 

x + 4x2 cos( 1
x ), x ! 0

0, x = 0

f  is neither increasing nor decreasing on any interval containing 0. 
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This is because for any δ > 0 we can choose any integer n > 0 such that  δ > 1/(2nπ+π/2) >

1/(2nπ+π) >1/(2nπ+2π) > 0  but  f (1/(2nπ+π)) =1/(2nπ+π)− 4/(2nπ+π)2 <  1/(2nπ+2π)+

4/(2nπ+2π)2 = f (1/(2nπ+2π)) and that when 1/(2nπ+π/2) >1/(2nπ+3π/2),   f (1/(2nπ+π/2)) =

1/(2nπ+π/2) > 1/(2nπ+3π/2)= f (1/(2nπ+3π/2)). ]

Theorem 10.  Suppose f :[a, b] → R is continuous and  f  is differentiable on (a, b).   Suppose

 f ′  is strictly increasing on (a, b).  If  f  is differentiable at x = a,  where the derivative at x = a

is defined to be the right derivative at x = a , then   f ′  is strictly increasing on [a, b).  If  f  is

differentiable at x = b,  where the derivative at x = b is defined to be the left derivative at x =

a , then   f ′  is strictly increasing on (a, b].  Consequently, if  f  is differentiable at x = a and at

x = b,  then    f ′ is strictly increasing on [a, b]. 

Proof.   Suppose  f ′  is differentiable and  f ′  is strictly increasing on (a, b).   Suppose on the

contrary that f ′  is not strictly increasing on [a, b).  Then  there exists c in (a, b) such that         

 f ′ (a) ≥ f ′ (c).  Then for any e such that  a < e < c ,   f ′ (a) ≥ f ′ (c) > f ′ (e).  Thus, by the

intermediate value property of the derived function, (see my article “Intermediate Value

Theorem for the Derived Function”),  for any γ  such that  f ′ (a) > γ > f ′ (e),  there exists k  

such that a < k < e with  f ′ (k) = γ.  Since f ′ is increasing on (a, b)  f ′ (k) = γ <  f ′ (e) since k

< e.  But this contradicts γ > f ′ (e) and so  f ′  is strictly increasing on [a, b).   Similarly, we

can proved that, if  f  is differentiable at x = b, then  f ′  is strictly increasing on (a, b].   The

last assertion is just an assertion of both statements.

A similar result below holds when f ′  is strictly decreasing on (a, b).

Theorem 11. Suppose f :[a, b] → R is continuous and  f  is differentiable on (a, b).   Suppose  

f ′ is strictly decreasing on (a, b).  If  f  is differentiable at x = a,  where the derivative at x = a

is defined to be the right derivative at x = a , then   f ′  is strictly decreasing on [a, b).  If  f  is

differentiable at x = b,  where the derivative at x = b is defined to be the left derivative at x =

a , then   f ′  is strictly decreasing on (a, b].  Consequently, if  f  is differentiable at x = a and

at x = b,  then  f ′  is strictly decreasing on [a, b].

The proof of Theorem 11 is similar to that for Theorem 10 using the intermediate value

property of the derived function.

Theorem 12.  Suppose f :[a, b] → R is continuous and  f  is differentiable on (a, b).   Suppose

 the graph of  f  is concave upward on (a, b).  If  f  is differentiable at x = a (respectively x =

b),  the graph of  f lies above the tangent line at (a, f (a)) (respectively (b, f (b)) ) except for

the point of tangency. 

Remark.  By Theorem 1, The graph of  f  is above the tangent line at (x,  f (x)) for any x in (a,

b).  Theorem 12 says that the same is also true of the tangent line at the end point whenever  f  

is also differentiable there.  It is to be emphasized that in Theoorem 12, at the end point  a, it

is a portion of the graph of f on the right of a that is above the tangent line at (a, f (a)) and at

the other end point b, it is a portion of the graph on the left of b that is above the tangent line

at (b, f (b)).
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Proof of Theorem 12.  By Theorem 2,  f ′  is strictly increasing on (a, b).  Suppose f  is

differentiable at x = a, then by Theorem 10,  f ′  is strictly increasing on [a, b).

Thus, by the Mean Value Theorem, for any x in  (a, b], i.e., a < x ≤ b, there exists c in (a, x)

such that

                                     ,    -------------- (3) 
f (x) − f (a)

x − a = f ∏(c) > f ∏(a)
since  f ′  is strictly increasing on [a, b).  Therefore, multiplying (3) by (x − a) > 0 , we

obtained

                           f (x) >  f (a) + (x − a) f ′ (a).

This means the graph of  f  is above the tangent line at the point (a, f (a)) except for the point

of tangency.  

Similarly, when f is differentiable at x = b, we can show that for all x such that a ≤ x < b,

                         f (x) >  f (b) + (x − b) f ′ (b).

     

A similar result stated below also holds true in the case when  f  is concave downward.

Theorem 13.  Suppose f :[a, b] → R is continuous and  f  is differentiable on (a, b).   Suppose

 the graph of  f  is concave downward on (a, b).  If  f  is differentiable at x = a (respectively x

= b),  the graph of  f lies below the tangent line at (a, f (a)) (respectively (b, f (b)) ) except for

the point of tangency.

The proof of Theorem 13 is similar to that of Theorem 12, where we use Theorem 3 and

Theorem 11 instead.

Theorem 14.  Suppose f :[a, b] → R is continuous.  Let x0 ∈ (a, b).  Suppose  f  is

differentiable on (a, b) except possibly at x0.   Suppose  there exists δ > 0 such that  a < x0 − δ
< x0 +δ < b  and the graph of  f  is concave upward on (x0 − δ ,  x0) and concave downward on  

(x0 , x0 + δ).

(1)  If  f  is differentiable at x0 , then 

                       f (x) >  f (x0 ) + (x − x0 ) f ′ (x0 )  for x0 − δ ≤ x <  x0

      and           f (x) <  f (x0 ) + (x − x0 ) f ′ (x0 )  for x0  < x  ≤  x0 + δ.

(2)  If  the left derivative of  f  at x0 ,  f −′ (x0),  exists, then 

                       f (x) >  f (x0 ) + (x − x0 ) f −′ (x0 )  for x0 − δ ≤ x <  x0.

(3)  If  the right derivative of  f  at x0 ,  f +′ (x0),  exists, then 

                       f (x) <  f (x0 ) + (x − x0 ) f +′(x0 )  for x0  < x  ≤  x0 + δ.

Proof.   We shall prove part (2) first.  If   f −′ (x0)  exists, then  f   restricted to (x0 −δ, x0] is

differentiable and part (2) follows from Theorem 12.  Similarly  Part (3) follows from

Theorem 13.  Part (1) is just part (2) and (3) put together since f is differentiable at x0 if and

only the left and right derivatives  of  f  at x0 exist and are the same.

Remark.

1.   Note that the concavity condition implies the following consequence.  If  f  is   concave

upward on (x0 − δ ,  x0) and the left derivative of at x0 exists, then by Theorem 10,  f ′  is
strictly increasing on  (x0 − δ ,  x0] and so is bounded above by the left derivative at x0 ,             

f −′ (x0).  Therefore, the limit  exists and so by either the intermediate value property
xd x0

−lim f ∏(x)
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of the derived function or L’ Hôpital’s Rule  .   Conversely, if the limit 
xd x0

−lim f ∏(x) = f −
∏ (x0)

 exists, then the left derivative of  f  at x0 exists and  .  Hence,  
xd x0

−lim f ∏(x)
xd x0

−lim f ∏(x) = f −
∏ (x0)

 exists, if and only if,   exists.    Similarly,  when  f   is concave downwardf −
∏ (x0)

xd x0
−lim f ∏(x)

on (x0 , x0 + δ),  exists, if and only if,   exists and  .f +
∏ (x0)

xd x0
+

lim f ∏(x)
xd x0

+
lim f ∏(x) = f +

∏ (x0)

2.   Note that Theorem 14 part (1) says that the tangent line at (x0, f (x0)) crosses the graph of  f

 there.   This property is sometimes taken to be the definition of a point of inflection.

A result stated below which is similar  to Theorem 14  holds true.

Theorem 15  Suppose f :[a, b] → R is continuous. Let x0 ∈ (a, b).  Suppose  f  is

differentiable on (a, b) except possibly at x0.  Suppose there exists δ > 0 such that  a < x0 − δ <

x0 +δ < b  and the graph of  f  is concave downward on (x0 − δ ,  x0) and concave up on  (x0 , x0

+ δ).

(1)  If  f  is differentiable at x0 , then 

                       f (x) <  f (x0 ) + (x − x0 ) f ′ (x0 )  for x0 − δ ≤ x <  x0

      and           f (x) >  f (x0 ) + (x − x0 ) f ′ (x0 )  for x0  < x  ≤  x0 + δ.

(2)  If  the left derivative of  f  at x0 ,  f −′ (x0),  exists, then 

                       f (x) <  f (x0 ) + (x − x0 ) f −′ (x0 )  for x0 − δ ≤ x <  x0.

(3)  If  the right derivative of  f  at x0 ,  f +′ (x0),  exists, then 

                       f (x) >  f (x0 ) + (x − x0 ) f +′ (x0 )  for x0 < x ≤  x0 + δ.

The proof of Theorem 15 is exactly the same as for Theorem 14.

Recall the definition of a point of inflection below.

Definition  16.  A point (c,  f (c)) is a point of inflection of the graph of the function  f   if   f  

is continuous at c and there is an open interval containing c such that the graph of   f   changes

from concave upward before c to concave downward after c or from concave downward

before c to concave upward after c .                                                                                  

Thus, when (c, f (c)) is a point of inflection and  f  is differentiable at c , then the tangent line

of  f at (c, f (c)) crosses the graph of  f  there by Theorem 14 and 15.  Hence the function can

never be concave up or concave down at the point (c, f (c)).   Therefore, if a function f  is a

twice differentiable function, then at any point, where the second derivative is positive, the

graph of  f  is concave up there, and at any point with negative second derivative there, the

graph of  f  is concave down there.  However, there does not exist a point c, where before the

point and including the point c the graph of  f  is concave up  and after the point c the graph

of  f  is concave down. 

Remark.

1.   Suppose  f  is a twice differentiable function.   Then for any  x,  f ″ (x)  is either positive,

negative or zero.   Therefore, we can decide the concavity of  the graph of  f   at (x,  f (x))

when the second derivative at x is not zero.  However, at points, where the second derivative

is zero, the graph of  f  may be concave upward, downward or neither.   For instance, for the

function 
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 f , defined by  , f ′ (0) =f ″ (0) = 0, the graph of  f isf (x) =
 

 
 
 

 

x4 + x6 sin( 1
x2 ), if x ! 0,

0 , if x = 0

concave upward at (0, 0) because for x ≠ 0,  f (x) > 0 but there is no interval containing 0 on

which the graph of  f   is concave upward since its second derivative 

     f ∏∏(x) =
 

 
 
 

 

12x2 + 30x4 sin( 1
x2 ) − 18x2 cos( 1

x2 ) − 4 sin( 1
x2 ), if x ! 0,

0 , if x = 0

can take on arbitrary sign in any interval containing 0.  But the function g(x) = x4  is concave

upward at (0,0) and on any interval containing the point 0.   By  considering the function − f ,

we see that (−f )″ (0) = 0  and the graph of  (− f ) is concave downward at (0,0).  On the other

hand the function g defined by   has second derivative given byg(x) =
 

 
 
 

 

x4 sin( 1
x ), if x ! 0,

0 , if x = 0

.   Now g′ (0) = g″ (0) = 0 but theg ∏∏(x) =
 

 
 
 

 

12x2 sin( 1
x ) − 6x cos( 1

x ) − sin( 1
x ), if x ! 0,

0 , if x = 0

graph of  g at (0, 0) is neither concave up nor concave down since g(x) can be positive or

negative in any interval containing 0.  But such a point is not a point of inflection since there

does not exists a δ > 0 such that the graph of  g  is either concave up or concave down on (0,

δ).   It is difficult to say if the tangent line of g at (0, 0) which is the x-axis, ‘crosses’ the graph

of g there without making a precise definition of a “crossing”.

2.   Here is a good definition of a crossing.   A non-vertical line H crosses the graph of a

function  f  at the point (x, f (x)) if there exists a δ > 0 such that the graph of  f  on the interval

(x − δ, x) is above the line H and on the interval (x, x+δ) the graph of  f  is below the line H

OR there exists a δ > 0 such that the graph of  f  on the interval (x − δ, x) is below the line H

and on the interval (x, x+δ) the graph of  f  is above the line H.   Thus, in view of Theorem 14

and Theorem 15 part(1), for a differentiable function  f  we can define a point of inflection to

be a point (x, f (x)) where the tangent line at the point (x, f (x)) crosses the graph of  f at the

point (x, f (x)). This is of course the same as Definition 16 for differentiable  f .
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