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It is natural to ask whether composition of Riemann integrable functions is again

Riemann integrable.  Unlike the case for differentiable functions, where composition

of differentiable functions is again differentiable, composition of Riemann integrable

functions need not be Riemann integrable.  The starting point is of course to establish

that non-Riemann integrable functions exist.  The following example will be used in

subsequent proceeding.

Example 1.   The function  h : [0, 1] → R , defined by

  ,h(x) =
 

 
 

0, if x is irrational

1, if x is rational

is not Riemann integrable.

We shall prove that h is not Riemann integrable, using Theorem 1 of  Riemann

Integral and Bounded function or more precisely part 1 of this theorem.  

Let  P : 0 = x0 < x1 < x2 < … < xn = 1 be any partition for the interval [0, 1].  Then by

the density of the rational numbers and irrational numbers, in each of the subinterval

[xi - 1 , xi ], (i = 1,…, n) we can always find a rational number and an irrational number.

Hence for  i = 1,…, n.,  {h(x): x ∈[xi - 1 , xi ]} = {0, 1}.  Therefore, for each i = 1,…, n,

Mi (P, h) = sup{h(x): x ∈[xi - 1 , xi ]} = sup{0, 1}= max{0, 1}= 1  and

mi (P, h) = inf{h(x): x ∈[xi - 1 , xi ]} = inf{0, 1}= min{0, 1}= 0.

Therefore, the upper Riemann sum with respect to the Partition P is 

U(P, h) =�
i=1

n

M i(P, h)�x i =�
i=1

n

�x i = 1

and the lower Riemann sum with respect to the Partition P is

.L(P, h) =�
i=1

n

m i(P, h)�x i = 0

The above is true for any partition P for [0, 1].  Hence, the lower Riemann integral of  

h,

  ¶
−

h = sup{L(P, h) : P is a partition for [0, 1]} = max{0} = 0

and the upper Riemann integral of h,

.¶
_

h = inf{U(P, h) : P is a partition for [0, 1]} = min{1} = 1

Therefore, the lower Riemann integral    is not equal to the upper Riemann integral ¶
−

h

 and so by Theorem 1 of Riemann Integral and Bounded Function,  h is not¶
_

h

Riemann integral over [0, 1].

There is a deeper theorem that we can invoke, namely the Theorem of Lebesgue.

Theorem 1 (Lebesgue).   A bounded real valued function  f : [a, b] → R from the

closed and bounded interval [a, b] into R is Riemann integrable if and only if  f  is

continuous except perhaps on a set of measure zero in [a, b]. 
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Here we have a new concept, more precisely, the concept of Lebesgue measure.  This

is a kind of generalisation of length.  How can we use this theorem?.  It is useful to

know that the set of rational numbers is a set of measure zero and that the set of

irrational numbers in a non-trivial interval is not zero.   We shall also use other exotic

sets of non-zero measure.  For now what we need to examine is the set of

discontinuities of h.

Assertion 1.  h is nowhere continuous on [0, 1].

Proof.   Let x be an irrational number in [0, 1].   Then h(x) = 0.  Take any ε > 0 with ε
< 1, for any δ > 0, there exists, by the density of rational numbers, a rational number

pδ  in (x − δ, x + δ)∩[0,1] such that |h(pδ) − h(x)| = |1 − 0| = 1 > ε.   Hence, 

  Therefore,  h is not continuous at x.   Similarly let x be a rational
y d x
lim h(y) ! h(x).

number in [0, 1].   Then h(x) = 0.  Take any ε > 0 with ε < 1, for any δ > 0, there

exists, by the density of the irrational numbers, an irrational number qδ  in (x − δ, x +

δ)∩[0,1] such that |h(qδ) − h(x)| = |0 − 1| = 1 > ε.   Hence   Therefore,  
y d x
lim h(y) ! h(x).

h is not continuous at x. 

For our purpose we only need to know that the function h is discontinuous on the set

of irrational numbers in [0, 1] and that the measure of the irrational numbers in [0, 1]

is not zero (in fact, the measure is equal to 1).  We cannot easily establish the fact that

the measure of the irrational numbers in [0, 1] is not zero without going into the

theory of Lebesgue measure.  Also the measure of [0, 1] is 1.  For now we accept

these facts.  

Another proof of the non Riemnann integrability of  h.

By assertion 1,  h is discontinuous on a set of measure bigger than zero.  By Theorem

1,  h is not Riemann integrable on [0, 1].

 

How can we produce a counter example to the assertion that composite of Riemann

integrable functions is Riemann integrable?   If we factor h into a composite of

Riemann integrable functions, then we are done.  Indeed, we can do so.   Let us first

describe the factors.

Example 2.   The function  f : [0, 1] → R defined by  f (x) = 0 if x = 0 and  f (x) = 1,

for  0 < x ≤ 1  is Riemann integrable.

Proof.   We shall use the method of Example 9.2.6 of Calculus, An Introduction to

show this. Given any ε > 0, there exists a positive integer m such that 1/m < ε.    Take

any partition P : 0 = x0 < x1 < x2 < … < xn = 1 such that the norm of P,  ||P|| =  max{xi -

xi - 1 : i = 1, …, n}  < 1/m.   Then the difference of the upper and lower Riemann sum,

                U(P,  f ) − L(P,  f ) = ,�
i=1

n

M i(P, f )�x i −�
i=1

n

m i(P, f )�x i

                   where Mi (P,  f ) = sup{ f (x): x ∈[xi - 1 , xi ]} and 

                                                     mi (P,  f ) = inf{ f (x): x ∈[xi - 1 , xi ]},

=  (M1 (P,  f ) − m1 (P,  f ))(x1  - x0 ),

       since  Mi (P,  f ) = mi (P,  f ) = 1 for i > 1 ,

= (x1 − x0),   since M1 (P,  f ) = 1 and m1 (P,  f ) = 0,
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≤  ||P|| < 1/m < ε.

Hence, by the Riemann's condition (Theorem 1,  Riemann Integral and Bounded

Function),  f  is Riemann integrable.

We consider now the next example.

Example 3.    The real valued function g : [0, 1] → [0, 1] defined by 

.g(x) =

 

 

 
 

 

0, x is irrational
1
q , 0 < x < 1 and x =

p
q in its lowest term

1, x = 0 or 1

is Riemann integrable.

Before we show that g is Riemann integrable we observe that  f and g are the required

factors for our counter example.

Example 4.   The functions  f, g and h as defined in example 1, 2 and 3 satisfy

 h =  f — g .  The functions  f  and g are Riemann integrable but h is not Riemann

integrable.

Proof.  If  x is an irrational number in [0, 1], then  f — g (x) = f (g(x)) = f (0) = 0 = h(x).

Suppose now that x is a rational number in [0, 1].  Then by the definition of g, 0 < g(x)

≤ 1.  Hence by the definition of  f,  f — g (x) = f (g(x))= 1 = h(x) for any rational number

in [0, 1].  Thus, for all x in [0, 1],  f — g (x) =  h(x).  Therefore, h =  f — g.

Assertion 2.  The function g: [0, 1] →→→→ [0, 1] as defined in Example 3 is Riemann

integrable. 

We shall use Lebesgue theorem.   This requires us to show that g is continuous at

every irrational point in [0, 1].   Thus, since the rational numbers in [0, 1] is of

measure zero, by the Lebesgue Theorem,  g is Riemann integrable.  Since the proof of

the continuity at irrational points is of  some interest, especially the simple logic

involved, we shall present the proof along this line.  We shall do more, we shall prove

that g is discontinuous at every rational point in [0,1].  Given any ε > 0, by the

Archimedean property of R, there exists a positive integer m > 1 such that 1/m < ε.

Next we observe that there can only be a finite number of reciprocals of integers that

are greater than or equal to 1/m:  For any rational number p/q  with p/q in its lowest

terms and 0 < p/q ≤ 1,  g(p/q) ≥ 1/m if and only if 1/q ≥ 1/m if and only if 1≤ q ≤ m .   

This means that 1 ≤ p ≤ q and the greatest common divisor of p and q is 1.  Thus, the

number of rational numbers in [0, 1] that have values greater than or equal to 1/m is

finite and this set includes the point 0 since g(0) = 1.   That is, the finite set Sm = { p/q:

 q = 1, …, m; p = 1, …, q}∪{0} is precisely the set on which the values of g are

greater than or equal to 1/m.  Take an irrational number x in [0, 1].  Then let δ =

min{|x − y| : y ∈ Sm }.  Then δ > 0 since x is irrational.  Obviously, the open interval (x

− δ, x + δ) do not meet Sm . This is because if (x − δ, x + δ)∩ Sm ≠ ∅, then there exists

p/q in Sm such that |x − p/q| < δ contradicting that |x − p/q| ≥ δ.   That means for all y in
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(x − δ, x + δ)∩ [0, 1], y ∉ Sm and so consequently, g(y) < 1/m < ε.   Therefore, |g(y) −
g(x)| = |g(y) − 0| = g(y) < ε.  Hence, for all y in [0, 1] such that |y − x| < δ we have |g(y)

− g(x)| < ε.  Thus g is continuous at x.    Now we shall show that g is discontinuous at

rational point x.   For any rational point x in [0, 1], g(x) > 0.  Let ε = g(x)/2 > 0.  Then

for any δ > 0, by the density of the irrational numbers in any interval, there exists an

irrational number yδ in (x − δ, x + δ)∩ [0, 1].   Then  |g( yδ) − g(x)| = |0 − g(x)| = g(x) >

g(x)/2 = ε.    That means g is not continuous at x.  Hence g is not continuous at any

rational number in [0,1].  This completes the proof of the assertion.

Another proof of assertion 2.  

We shall show that g satisfies the Riemann's condition.   For any ε > 0, take any

positive integer m > 1 such that 1/m < ε/2.  Recall that the finite set Sm is precisely the

set {y ∈[0, 1]: g(y) ≥ 1/m}.  Note that 0 , 1 ∈ Sm.  Let the number of points of  Sm be k

+1.   Order the elements y0 , y1 , y2 , …, yk of Sm.as follows: 

                     0 = y0 < y1 < y2 < … yk  −1 < yk = 1.  

Choose k−1 pair of points, each pair constitute an interval containing each yi in its

interior and of length < ε/2 for i =1, 2, …, k−1 and such that they are all mutually

disjoint. That is, we choose x0 < x1 < x2 < … < x2k−2 such that

  0 = y0 < x1 < y1 < x2 < x3 < y2 < x4 < x5 < … x2k  − 4 <  x2k  − 3 < yk  −1 < x2k  − 2 < yk =1

We choose further two more points, x0 and x2k  − 1  and name y0 as x − 1 , yk as x2k   such

that  0 = x − 1 =  y0 <  x0 < x1  and  x2k  − 2 < x2k  − 1 < x2k  = yk =1.    We further require that

                           . ---------------------------   (1)�
j=0

k

(x2j − x2j−1) < �
2

Obviously,

P:  0 = x−1 < x0 < x1 < x2 < x3 < x4 < x5 < … x2k  − 4 <  x2k  − 3 < x2k  − 2 < x2k  − 1 < x2k  =1 

forms a partition for [0, 1].

Now, by the density of the irrational numbers in any interval, for i = 0, 1, …, 2k ,

     m i (P,  g ) = inf{ g (x): x ∈[xi - 1 , xi ]}= 0. ----------------  (2)

For each  j = 0, 1, 2,  …, k,  yj ∈ [x2 j  −1 ,  x2  j ] and so by the definition of Sm , 

M 2 j (P,  g ) = sup{ g (x): x ∈[x2 j - 1 , x2 j ]}= g (yj ) ------------------- (3).

  for j = 0, 1, 2,  …, k .

Now because for  j = 1, 2,  …, k , [x2 j - 2 , x2 j − 1 ]∩ Sm = ∅, 

M 2 j -1 (P,  g ) = sup{ g (x): x ∈[x2 j - 2 , x2 j − 1 ]}< 1/m,   ---------------- (4).

for j = 1, 2,  …, k .

Hence, U(P,  g ) − L(P,  g ) = ,�
i=0

2k

M i(P, g )�x i −�
i=0

2k

m i(P, g )�x i

=  , by (2),�
i=0

2k

M i(P, g )�x i

=  �
j=0

k

M2j(P, g )�x2j +�
j=0

k

M2j−1(P, g )�x2j−1

≤   , by (3) and (4),�
j=0

k

g(y j)�x2j +�
j=0

k
1
m�x2j−1

≤   ,  since g (yj ) ≤ 1,�
j=0

k

�x2j + 1
m �

j=0

k

�x2j−1

< ε/2 +  , by (1),
1
m �

j=0

2k

�x j
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< ε/2 + 1/m , since  ,�
j=0

2k

�x j = x2k − x−1 = 1

< ε/2 + ε/2 = ε.
Thus g satisfies the Riemann's condition and so by Theorem 1 of  Riemann Integral

and Bounded Function ,  g is Riemann integrable.  This completes the proof.

This wraps up our demonstration of a counter example.   It is then natural to ask:

Under what condition can we deduce that the composite of two Riemann integrable

functions is Riemann integrable?   In view of Lebesgue's Theorem, it is necessary to

examine the set of discontinuities of the composite function.  If the set of

discontinuities of the composite function is contained within the set of discontinuities

of the first function, then it becomes an easy matter to make a deduction.  Note that it

is the set of discontinuities that determines the Riemann integrability of a function.

We have the following theorem.

Theorem 2.    Suppose g: [a, b] → R is a Riemann integrable function and  f : [c, d]

→ R is a continuous function such that the range of g, g( [a, b] ) is contained in [c, d].

Then the composite function  f — g :[a, b] → R  is Riemann integrable on [a, b].

Proof.   We shall prove this using Lebesgue's theorem.  Note that if g is continuous at

a point x in [a, b], then since  f  is continuous at g(x) (because  f  is a continuous

function),  f — g is continuous at x.  This means that whenever g is continuous at x the

composite f — g is also continuous at x.  Hence the set of discontinuities of the

composite function  f — g,  D f — g   is contained in the set of discontinuities of  g,  D g .

Since g is Riemann integrable,  D g is of measure zero and since D f — g ⊆ D g ,  D f — g too

is of measure zero.  Therefore, by Lebesgue's theorem  f — g is Riemann integrable.

This proof demonstrates the power of Lebesgue's theorem.   But one need not use

Lebesgue's theorem.   One can make use of the uniform continuity of g too.  It will

involve a clever manipulation of the Riemann sums.

Another Proof of Theorem 2.  

As  f : [c, d] → R is a continuous function, by Theorem 1 of The Boundedness

Theorem, Extreme Value theorem and Intermediate Value Theorem,  f  is bounded.

Therefore, there exists a real number M > 0, such that | f (x) | < M for all x in  [c, d].

Also by Theorem 9 of  Closed and bounded sets, Heine Borel Theorem, etc,  f  is

uniformly continuous.  Therefore, given any ε > 0, there exists 0 < δ < ε such that for

all x, y in [c, d],

            |x −  y| < δ implies that | f (x) − f ( y)| <   ------------------ (5).
�

4(b − a)
Next, since g is Riemann integrable by Theorem 1 of Riemann Integral and Bounded

Function,  we can find a partition P :  a = x0 < x1 < x2 < … < xn = b for [a, b] such that 

                       U(P,  g ) − L(P,  g ) < δ 2 /(4M),

where , for i = 1, …, n,U(P, g) =�
i=1

n

M i(P, g )�x i, L(P, g) =�
i=1

n

m i(P, g )�x i

M i (P,  g ) = sup{ g (x): x ∈[xi - 1 , xi ]} and m i (P,  g ) = inf{ g (x): x ∈[xi - 1 , xi ]}.

Note that  

                           U(P,  g ) − L(P,  g ) =  < δ 2 /(4M)  ---- (6)�
i=1

n

(M i(P, g ) − m i(P, g ))�x i
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 Now,

  M i (P,  g ) − m i (P,  g ) = sup{ g (x): x ∈[xi - 1 , xi ]}−  inf{ g (x): x ∈[xi - 1 , xi ]}

                            = sup{g (x) − g(y): x, y ∈[xi - 1 , xi ]}.

 Similarly, 

                           M i (P,  f — g ) − m i (P,  f — g ) = sup{f — g (x) − f — g(y): x, y ∈[xi - 1 , xi ]}.

Therefore, using the same partition  P  for the composite  f — g, the difference of the

upper and lower Riemann sum with respect to P for  f — g is,

             U(P,  f — g ) − L(P,  f — g ) = .�
i=1

n

sup{f ) g(x) − f ) g(y) : x, y c [x i−1, x i]}�x i

Let  J = {i : 1 ≤ i ≤ n, sup{g (x) − g(y): x, y ∈[xi - 1 , xi ]}< δ}.  So we can rewrite the 

above difference as

U(P,  f — g ) − L(P,  f — g ) = �
i c J

sup{f ) g(x) − f ) g(y) : x, y c [x i−1, x i]}�x i

    +   . ----- (7)�
i " J

sup{f ) g(x) − f ) g(y) : x, y c [x i−1, x i]}�x i

If J ≠ ∅, then for i ∈ J , 

sup{f — g (x) − f — g(y): x, y ∈[xi - 1 , xi ]}

 = sup{| f (g(x)) − f (g(y))|: x, y ∈[xi - 1 , xi ]} ≤  ,  by  (5),
�

4(b − a)
because for any x, y ∈[xi - 1 , xi ] , | g(x) − g(y)| ≤ sup{g (x) − g(y): x, y ∈[xi - 1 , xi ]}< δ .

Hence,

�
i c J

sup{f ) g(x) − f ) g(y) : x, y c [x i−1, x i]}�x i

.[ �
i c J

�

4(b − a)�x i [
�

4(b − a) �i c J
�x i [

�

4(b − a) �i =1

n

�x i < �
2

                                               ------------------------   (8)

If {1, …,n} − J ≠ ∅ , then  i ∈ {1, …,n} − J implies that M i (P,  g ) − m i (P,  g ) ≥ δ.

Therefore,

                     .  �
i " J

(M i(P, g ) − m i(P, g ))�x i m � �
i " J
�x i

Hence, by (6),

 � �
i " J
�x i [ �

i " J
(Mi(P, g ) − m i(P, g ))�x i [ �

i =1

n

(Mi(P, g ) − m i(P, g ))�x i [
�2

4M

and so,

              .  --------------------------------  (9)�
i " J
�x i [

�

4M

Therefore, using (9),

.�
i " J

sup{f ) g(x) − f ) g(y) : x, y c [x i−1, x i]}�x i [ 2M �
i " J
�x i [ 2M

�

4M
= �

2
< �

2

                        ---------------------------- (10)  

Therefore, by (7), if  J = ∅  using (10), U(P,  f — g ) − L(P,  f — g ) < ε/2 < ε .  If  J = {1,

…,n}, by (8) U(P,  f — g ) − L(P,  f — g ) < ε/2 < ε.  If  J ≠ ∅ and J ≠ {1, …,n}, by (7),

(8) and (10), U(P,  f — g ) − L(P,  f — g ) < ε/2 + ε/2 =  ε.  Thus, by the Riemann's

conndition (Theorem 1 of  Riemann Integral and Bounded Function ),  f — g  is

Riemann integrable on [a, b].  This completes the proof.

Now we ask the question: If  g is Riemann integrable and  f  is a continuous function,

is it true that the composite  g — f  is Riemann integrable?  In fact it need not be the

case.  More specifically,  if   f : [a, b] → [c, d] is continuous and g : [c, d] → R  is

Riemann integrable, the composite function g — f : [a, b] → R need not necessarily be
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Riemann integrable, even if  f  is a monotonically increasing bijective continuous

function.  Our counter example will involve two types of Cantor set, one of measure

zero and another of positive measure.   We shall not go into the construction of these

Cantor sets.  But we shall state the properties these Cantor sets enjoy.

Example 5  Cantor sets.   There are Cantor sets in [0, 1] with measure k  with  0 ≤ k

< 1.  Let  Ck denote the Cantor set of measure k.   Thus  C0  is the Cantor set of

measure zero.  This is the usual cantor set we meet.  The construction of these Cantor

sets is similar.   They satisfy the following properties:

1.  Any Cantor set C is closed in [0,1].

2.  Any Cantor set C is nowhere dense, that is to say, C does not contain any interval,

meaning C has empty interior. 

3.  Any Cantor set is uncountable, more precisely, it has the cardinality of the real

numbers R.

4.  Any Cantor set is perfect, that is, it is its own accumulation points.

5.  At the n-th stage of the construction of Ck  for 1 > k > 0 there is left a disjoint

union of 2n closed intervals.  The (n+1)-stage is obtained by deleting from the centre

of each of these disjoint intervals, an open interval of length 2 − 2n −1(1− k).

6.  At the n-th stage of the construction of C0 , we have a disjoint union of 2n closed

intervals.  The (n+1)-stage is obtained by deleting from the centre of each of these

disjoint intervals, the middle open interval.

7.  The complement of any of these Cantor sets is a disjoint union of a countable set of

open intervals.

Our example for the continuous function  f  mentioned above will be given by the

following lemma.

Lemma 1.   For each k with 0 < k < 1, there exists a function  f : [0, 1] → [0, 1] such

that 

1.  f  is monotonically increasing and onto and so  f  is continuous. (Refer to Theorem

2 of  Monotonicity and Continuity of Inverse Function.)

2.  f  maps the Cantor set  Ck  onto the Cantor set C0 .

Proof.   We shall look at the complement of the Cantor set Ck and C0 .  They are

disjoint unions of open intervals.   Let  {I1 , I 2, I3, …, In , …} be the open intervals of

the complement of Ck , listed from left to right following the construction of  Ck in the

order of deletion and the natural ordering of the open intervals in each stage of the

construction .  Similarly, let  {J1 , J 2, J3, …, Jn , …} be the open intervals of the

complement of C0 , listed from left to right following the construction of  C0 .   For

each n denote In by (an , bn) and Jn by (cn , dn).  Now we shall define our function  f :

[0, 1] → [0, 1] as follows.

1.  f (0) = 0.

2. For x in In  = (an , bn),  f (x) = .  This maps In bijectively  
dn − cn

bn − an
(x − an) + cn

onto Jn.

3. For x ≠ 0 and x in Ck ,  
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 .f (x) = sup{ f (y) : y < x and y c4
n=1

∞

In} = sup{ f (y) : y < x and y c [0, 1] − Ck}

This is well defined by the completeness property of  R, since the set 

 is bounded above by 1.{ f (y) : y < x and y c 4
n=1

∞

In}

The function  f  is increasing on [0,1]−−−−Ck

Firstly, we shall show that  f  is increasing on the complement of Ck  and maps the

complement of Ck bijectively onto the complement of C0 in [0, 1].   

By definition  f   is increasing on each In  and maps In bijectively onto Jn .  At the

n-th stage of the construction of the Cantor set we obtained 2 n − 1 disjoint open

intervals, that have been deleted from [0, 1],  I1 , I 2, I3, …, .   The ordering ofI2n−1

these intervals is in the order of the deletion starting from the left to the right.  The

natural ordering defined as follows follows a very simple rule.     Ik <  Il , if and only

if, there exists some x in Ik such that x < y for some y in Il , if and only if, for any x

in Ik , x < y for all y in Il .   At the n-th stage we can map {I1 , I 2, I3, …, In , … }I2n−1

onto the set { j /  2 n : j = 1, 2, …, 2 n − 1} according to the order of dissection of [0,

1] into 2 n parts:  I1  corresponds to 2 n − 1 /2 n = 1/2,  I2  corresponds to 2 n − 2 /2 n = ¼,

I3  corresponds to 3×2 n − 2 /2 n = 3/4,  I4  corresponds to 2 n − 3 /2 n = 1/8,  I5  

corresponds to 3×2 n − 3 /2 n = 3/8 and so on.   This map g(n) : {I1 , I 2, I3, …, In , …
} → { j /  2 n : j = 1, 2, …, 2 n − 1} is canonical, meaning that it is exactly theI2n−1

same for any of the Cantor set.  Hence, the natural ordering follows the simple rule

Ik <  Il , if and only if, the corresponding image g(n)(Ik ) < g(n) (Il ).   Thus, we can

conclude that {J1 , J 2, J3, …, Jn , …} is ordered in exactly the same way and so Ij <

Ik  if and only if  Jj < Jk .   We now claim that  f  is increasing on the complement of  

Ck  in [0, 1] =  .    Let x,  y  be in [0, 1] − Ck  be such that x < y.   If  x and y are4
n=1

∞

In

in some Ik , then  since  f  is by definition increasing on Ik ,   f (x) <  f (y).   Suppose

now x is in  Ij  and  y is in  Il .  Then  x < y  implies that Ij < Il .  This is easily seen by

taking a positive integer m  such that max( j, l ) ≤  2 m − 1  and consider the ordering

map g(m) at the m-th stage of the construction of the Cantor set.  Hence  Jj < Jl .

Therefore,  f (x) <  f (y) since f (x) ∈ Jj and  f (y) ∈ Jl .  We have thus shown that  f  

is increasing on the complement of  Ck  in [0, 1].  Now for any y in  [0, 1] − C0  =  

 ,  y ∈ Jk  for some k.   Since  f  maps Ik onto Jk , there exists x in Ik such that     4
n=1

∞

Jn

f (x) = y.  Hence  f  maps the the complement of  Ck  in [0, 1] onto the complement

of  C0  in [0, 1].

The function  f  maps Ck  into  C0.

We shall next show that  f  maps  Ck  into  C0 .   For x = 0 ,  f (x) = 0 by definition.   

We now assume x ≠ 0 and x ∈ Ck .  Recall then that  

.f (x) = sup{ f (y) : y < x and y c4
n=1

∞

In} = sup{ f (y) : y < x and y c [0, 1] − Ck}

Suppose that f (x) ∉ C0 .  Then for some integer l ,  f (x) ∈ Jl  and since Jl =  f ( Il ) ,

there exists x0  in Il   such that   f (x0) =  f (x) .  Then  since Il  is open there exists  y0  in
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Il  with y0 < x0 such that f (y0) <   f (x0) =  f (x).   Thus, by the definition of supremum,

there exists y'  in [0, 1] − Ck  with  y'  < x and  f (y0) <  f (y' ) ≤  f (x) = f (x0).  Since  f  

is increasing  on [0, 1] − Ck ,   y0 <  y' < x.  Then since y0  ∈ Il  and so for all y in Il ,  y

< x for otherwise if there exists z in  Il with z  > x , then x would belong to ( y0 , z) ⊆
Il ⊆ [0, 1] − Ck ,  contradicting x ∈ Ck .  Now since  Il  is open, there exists x' in Il

such that x' > x0 .  Thus,  f (x' ) > f (x0) =  f (x).   Also since  x'  < x ,  f (x ') ≤ sup{  f

(y): y < x and y ∈ [0, 1] − Ck} = f (x), contradicting  f (x' ) > f (x).   We can thus deduce

that  f (x)  is in  C0.   Therefore, this shows that  f  maps Ck into C0. 

The function  f  is strictly increasing on [0, 1].

Next we shall show that  f  is (strictly) increasing on [0, 1].   We have already shown

that  f  is increasing on [0, 1] − Ck.   Thus if x, y are in [0, 1] −  Ck. and x < y, then f (x)

<  f (y ).   Suppose now x ∈ Ck  and y ∉ Ck  and x < y.    Then for any z ∈  , z < x4
n=1

∞

In

implies that z < y.  Therefore, since c and z are in  [0, 1] − Ck ,  f (z) <  f (y ).  Hence,     

f (x) = sup{  f (z): z < x and z ∈ }≤  f (y ).   Now since  f (x) ∈ C0  =[0, 1] − ,4
n=1

∞

In 4
n=1

∞

Jn

f (x) ≠ f (y ) and so f (x) <  f (y ).   

Suppose now  x ∈ Ck  and y ∉ Ck  and  x > y.   Then  f (y) ≤ sup{  f (z): z < x and z ∈ [0,

1] −  Ck}=  f (x ).  Again since f (x) ≠ f (y ), we must have  f (x) >  f (y ).

Suppose both x  and  y are in  Ck   and  x < y.   This time we shall use the property of

the Cantor set here.  Because  Ck  is nowhere dense, the intersection (x, y)∩([0, 1]−Ck)
≠ ∅.   Therefore, there exists z ∈ [0, 1] − Ck such that x < z < y.  By what we have just

proved  f (x) <  f (z) and f (z) <  f (y ).  Therefore, we can conclude that f (x) <  f (y ).

Hence, we have shown that  f  is strictly increasing on [0, 1].

The function  f  is onto and maps Ck onto C0 .

Now we shall show that  f  is onto.  Since f  maps the complement of  Ck  in [0, 1] onto

the complement of  C0  in [0, 1], it is sufficient to show that  f  maps Ck onto C0.  By

examining the definition of  f  we can consider a similar function mapping C0 into Ck

which is the inverse of   f .   We are going to use this inverse function to construct a

pre image of y in C0 under  f .    For  y = 0 in C0 , by definition of  f ,  f (0) = 0 and 0 is

also in Ck .  For a fixed y ≠ 0 in C0 , define the following 

x =  .    sup{ f −1(z) : z < y and zc 4
n=1

∞

Jn}

Note that this is well defined because   is in the range of  f , the set 4
n=1

∞

Jn

 is non-empty and bounded above by 1 and so the{ f −1(z) : z < y and zc4
n=1

∞

Jn}

supremum exists by the completeness property of R.    Note that we also have

x =  .sup{ f −1(z) : z < y and zc 4
n=1

∞

f (In)}

Essentially the same argument for showing that  for any l ≠ 0 in Ck ,  f ( l ) is in C0 ,

applies here to conclude that x ∈ Ck .  Now we claim that  f (x) =  y.  
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Note that  { f −1(z) : z < y and zc4
n=1

∞

f (In)}

= { x ∏ : f (x∏) < y and f (x∏) c 4
n=1

∞

f (In)}

.    = { x ∏ : f (x∏) < y and x∏ c4
n=1

∞

In}

Therefore, .   We now claim thatx = sup{ x ∏ : f (x∏) < y and x∏ c4
n=1

∞

In}

for any z'  in  ,  4
n=1

∞

In

z' < x  ⇔  f  (z' ) < y.   --------------------------  (*)

This is deduced as follows.  Let z' be in .4
n=1

∞

In

z' < x = sup{ x ∏ : f (x∏) < y and x∏ c4
n=1

∞

In}

⇔  there exists z0 in such that z' < z0 ≤ x{ x ∏ : f (x∏) < y and x∏ c4
n=1

∞

In}

⇒ there exists z0 in such that  f (z') < f (z0 ) < y{ x ∏ : f (x∏) < y and x∏ c4
n=1

∞

In}

⇒  f (z') <  y.

Conversely, if  z'  in  and f (z') <  y , then by definition of  x,  z' ≤  x  and so since  4
n=1

∞

In

z' ∈ [0, 1] -  Ck , z' <  x.   This proves our claim.

Therefore,

                       {  f (z' ): z' < x and z'  ∈ } =  {  f (z' ):  f (z' ) < y and z'  ∈ }4
n=1

∞

In 4
n=1

∞

In

={  y' :  y'  < y and  y'  ∈ }.4
n=1

∞

Jn

Thus,  

f (x) = sup{  f (z' ): z'  < x and z ∈ }= sup{  y' :  y'  < y and  y'  ∈ }= y .    4
n=1

∞

In 4
n=1

∞

Jn

This is seen as follows.  Obviously,  f (x) ≤ y.

If  f (x) <  y,  then there exists y0 in  such that   f (x) < y0 < y since both  f (x) and4
n=1

∞

Jn

y are in C0 and C0 is nowhere dense.  Therefore, there exists x0 in   with 4
n=1

∞

In

f (x) < y0 = f (x0) < y.   Since  f  is increasing ,  x < x0.   But by (*),  f (x0) < y implies

that   x0 < x contradicting x < x0.  Therefore,  f (x) =  y.   Thus we have shown that f  

maps Ck onto C0 and consequently  f  is onto..

We have thus shown that  f  is a strictly increasing function mapping the closed and

bounded interval [0, 1] onto itself and so by Theorem 3 of Inverse Function and

Continuity,  f  is continuous on [0, 1].  This completes the proof of Lemma 1.

Example 5.  Riemann integrable function of a continuous function need not

necessarily be Riemann Integrable.

Let  g: [0, 1] → R  be defined by  g(x) = 0 if  x ∉ C0  and g(x) = 1 if x ∈ C0 .  Let  f :

[0, 1] → [0,1] be the continuous strictly increasing bijective function mapping a

Cantor set of positive measure Ck onto the Cantor set of measure zero C0 given by
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Lemma 1.   Then g is Riemann integrable,  f  is continuous but  g —  f  is not Riemann

integrable.

Proof.   The function g is obviously bounded.   Since [0, 1] − C0 =   is a4
n=1

∞

Jn

countable disjoint union of open interval and g is zero on each of these open intervals,

g is continuous on [0, 1] − C0.  The function g is discontinuous at every point in C0.

This is seen as follows.  Take ε = 1/2.  For any δ > 0 and any x in C0,  (x − δ, x + δ)∩
[0,1] M C0  because C0 is nowhere dense and so there exists xδ ∈ (x − δ, x + δ)∩ [0,1]

− C0 . Hence, | f (xδ) − f (x)| = |0 − 1| = 1 > ε = 1/2.   This implies that  f  is

discontinuous at x in C0 .  Since  C0 is of measure zero, by Lebesgue theorem,  g is

Riemann integrable. Take any k  such that 0 < k <1, for instance, k = 1/2 .  Then Ck is

of positive measure.  The function f  defined by Lemma 1 is a continuous bijection of

[0, 1] onto [0, 1] and maps the Cantor set of measure k , Ck , bijectively onto C0.   

Then 

.g ) f (x) =
 

 
 

0, if x " Ck

1, if x c Ck

Thus g —  f  is constant on the complement of  Ck in [0, 1] which is a disjoint union 

 of open intervals and so g —  f  is continuous on each of these intervals and so  g —4
n=1

∞

In

 f  is continuous on   = [0, 1] − Ck .   As before we can check that  g —  f  is4
n=1

∞

In

discontinuous at any point x in Ck .   Take  again ε = 1/2.  Then for any δ > 0 and any x

in Ck ,  (x − δ, x + δ)∩ [0,1] contains a point xδ not in Ck because Ck is nowhere dense.

Thus  | g —  f (xδ) −  g —  f (x)| = |0 − 1| = 1 > ε = 1/2.  This means  g —  f  is

discontinuous at any point in Ck .  Therefore, by Lebesgue's Theorem, since Ck is of

positive measure , g —  f   is not Riemann integrable.

There are other examples: one example would be to take g to be the function defined

on [0, 1] such that g(x) = 0 for all x, such that 0 ≤ x < 1 and g(x) =1 when x = 1 and   f  

to be a function on [0, 1] such that on each of the disjoint interval In  the graph of  f  is

a 'U' - shape graph with limit tending to 1 at both end points.  Then the composite g —  

f   would be the same as the composite in the above example. 

Example 5 inspires the next example.

Example 6.    Let  g: [0, 1] → R  be defined by  g(x) = 0 if  x ∉ Ck for k = 1/2 and g(x)

= 1 if x ∈ Ck.  Let  f  −1: [0, 1] → [0,1] be the inverse of the continuous strictly

increasing bijective function f ,  given by Lemma 1,  which maps a Cantor set of

positive measure Ck onto the Cantor set of measure zero C0.   Then g is not Riemann

integrable, f  −1 is continuous but  g —  f  −1  is Riemann integrable.

The next question that we would ask is: What about composite of Lebesgue integrable

functions?  This will be discussed next.
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