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The following question is of some interest.  If we extend our theory of integration to

the Lebesgue theory of integration, when is a bounded function Lebesgue integrable?  This

would involve in some sense the theory of measure.  Think of this as a kind of generalization

of length.  Our set of domain involved must be admissible to some kind of “measure”.  Our

next question is: Is a Lebesgue integrable function of a continuous function necessarily

Lebesgue integrable?  This question will be answered in the negative.

  The length or measure ( I  ) of a bounded interval I =(a, b) or [a, b) or (a, b] or [a, b]

is b  a  and for unbounded interval it is defined to be +.   Let E be an arbitrary subset of R.

Then there exists a countable  cover   of disjoint open intervals.   That is  is a countable

collection of  open intervals {Ii : i =1,} such that Ii  Ij =  for i  j  and   E  4 {Ii  :  i   

some index set}.  We define  (   ) =  .  The length of E is defined to be ( E) =�
i1

∞

�I i

Infimum { (   ) :    covers E  and is a countable cover of disjoint open intervals}.  Then this

definition is translation invariant.  That is,  ( E + r) =( E), where  E + r ={ x  + r: x  E}.

We also have ( ) = 0 and ( x) = 0.  should be non negative and has the following

properties.  

1.  If  A   B , then (A) (B ).

2.     for any countable family F of subsets of R.  � 4
Ec�

E [ �
Ec�
�E

We then have that  if  E is a countable subset of R, say E = {xi : i  N}, then

.  Therefore,  ( E) = 0.�E  � 4
icN

x i [�
i1

∞

�x i  0

The function  on the collection of all subsets of R is called the Lebesgue outer measdure.

A subset E of  R is said to be Lebesgue measurable if and only if for all subset X of  R,

 ( X) =( XE)( X  E ) 

or equivalently, ( X) ( XE)( X  E ).

Then if  E1 , E2 , , En are disjoint and Lebesgue measurable, then for any subset X of R, 

.� X 34
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In particular, if Ei , i =1, 2,   is a countable collection of Lebesgue measurable subsets, then

the union   is also Lebesgue measurable.   The following is easily observed.4
i1
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3.  Every subset E of R with ( E) = 0  is Lebesgue measurable.  Therefore, any subset

of such a set is also measurable.

4.  Every open subset of R is Lebesgue measurable.  Hence any Borel subset (which is

generated by open subsets) is also Lebesgue measurable.

Definition 1.   A function   f : E  R  is said to be measurable if for any open subset

U of R,  f  1(U) is (Lebesgue) measurable. 

We have then the following theorem



Theorem 1.  Suppose  f : E  R is a bounded function, where E is Lebesgue

measurable.  Then  f  is measurable, if and only if, the lower and upper Lebesgue integrals are

the same, i.e.,   , including the possibility of equaling infinity in the¶
 E

f d�  ¶
E



f d�

extended real numbers.

Suppose  f : E  R is a bounded function, where E is Lebesgue measurable and ( E)

is finite,  Then  f  is measurable, if and only if,  f  is Lebesgue integrable.  This then reduces

the question about Lebesgue integrability over a bounded interval to a question about

measurability.  Thus, if  f  is not measurable over a bounded interval, then  f  is not Lebesgue

integrable over the same interval.

Does non measurable set exist?  This depends on our system of set theory.   If we

admit the Axiom of Choice, then it does.  If we don't  admit the Axiom of Choice, then every

set is Lebesgue measurable, that is,  if we replace Axiom of Choice by Solovay Axiom that

every f : R n  R is measurable.  The two systems of  axioms for set theory

(Zermelo-Fraenkel plus Axiom of Choice and Zermelo-Fraenkel plus Axiom of Solovay) are

mutually incompatible although they are both consistent.  The following is thus of interest to

those ardent supporters of the Zermelo-Fraenkel plus Axiom of Choice.  

We shall use the Axiom of Choice to define a non-measurable subset of [0,1].  Define

an equivalence relation R on [0, 1] by x R y if, and only if, x  y is a rational number.   This

then partitions [0, 1] into disjoint equivalence classes.  Choose a point from each of these

equivalent classes to form a subset E of [0, 1].  That is, E intersects each equivalence class in

exactly one point.  (By the Axiom of Choice this can be done.)  Then E is not Lebesgue

measurable.  To see this, consider the set [0, 1]  [0, 1] = [1, 1].  The set of rational

numbers in [1, 1] is countable.  Let  { an : n = 1, } be an enumeration of the set of rational

numbers in [1, 1].  Then for each n,  En = {an + x : x  E } =  E + an is Lebesgue measurable

if E is.  Obviously, En Em = if  n  m.  This is because if  x  En Em , then  x = z + a n  

for some z in E and  x = z' + a m  for some z' in E .  Therefore,  0 = z   z'   (am  a n ) and so z

  z'  = (am  a n )  and so  z R z' .  But since if z  z', then z and z ' would come from different

equivalence classes and so  z R z'  cannot hold.  Thus z  z'  and so am = a n  contradicting am 
a n .   For x in [0, 1] either x is in E or x R y  for some y in E.  Therefore, x y is a rational

number in [1, 1].   Thus x y = a j for some j.  Hence x = y + a j  E + {aj } = Ej .  We have

thus shown that [0, 1]   .  Note that each En is a subset of [1, 2]  and so   [1,4
i1

∞
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2] .   Now,  for each i,  ( Ei ) = ( E + ai ) =( E) as  is translation invariant. Since each  Ei

is measurable and E n E m = for  n  m,

              � 4
i1

∞

E i �
i1

∞

�E i 
n d ∞
lim n�E [ �1, 2  3.

This is only posible if ( E) = 0.  Therefore,  .  But then we have, because [0, 1]� 4
i1

∞

E i  0

 ,    which is absurd.  Therefore,  E is not Lebesgue4
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measurable.  This construction is shorter but the following is a general way of getting a

non-measurable set.
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Another device we would be using is the algebraic difference of two sets.   This time

we obtain a non-measurable subset of R.   Define the same relation as before but now denote

by ~ , on R as follows.   x ~ y if and only if x  y is a rational number.  This is obviously an

equivalence relation on R.  Denote the set of equivalence classes by R/~.  Each equivalence

class has the form 

{ x + r :  r   Q}.

Thus the set of rational numbers constitutes one class,  {2+ r :  r   Q} is another and { +

r :  r   Q} is yet another.  Obviously each equivalence class is countable and so since the set

of real numbers R is uncountable, the number of equivalence classes is uncountable.  This is

because if the number of equivalence classes were countable then R being the union of

countable  number of equivalence classes, each of which is countable, would be countable

and thus contradicts the fact that R is uncountable.  By the Axiom of Choice, we can choose a

point from each equivalence class to form an uncountable set F.  We claim that this set is

non-measurable.  This is because the set of algebraic difference

F  F = { x  y: x, y  F }

cannot contain an interval.   Because any two distinct points of  F must differ by an irrational

number and since F contains only one rational number, F  F contains exactly one rational

number namely 0.  If F  F were to contain an interval, it would contain rational number

different from zero which is not possible.   Hence by the following lemma, either F is not

measurable or  (F) = 0.

Lemma 2.  If  E  is a Lebesgue measurable subset of R with positive Lebesgue

measure, i.e.,  (E) > 0 , then E  E contains a non-trivial interval centred at the origin.

We shall prove this lemma later.  Enumerate the set of rational numbers as {an : n = 1,

}.  Now define Fn = {an + x : x  F } =  F + an .   Then by the definition of F, we have 

.   ----------------  (1)R4
n1

∞

Fn

If  (F) = 0, then since is translation invariant, (Fn) =(F + an ) (F) = 0.   Thus,

 implies that (R) = 0, which is not true.   Hence (F)  0.�R  � 4
n1

∞

Fn [ �
n1

∞

�Fn  0

Therefore, by Lemma 2, F is not measurable.

We have thus produced two non-Lebesgue measurable subsets, one in [0, 1] and one

in R.  We shall make use of F to produce other non-Lebesgue measurable set.

Now for the proof of Lemma 2.

Proof of Lemma 2.   First we take a special open set G containing E such that 

( G ) <(1 + )(E).

How can we obtain G?   Recall that 

( E) = Inf{(   ) :    covers E  and is a countable cover of disjoint open intervals}.

Now (1 + )(E) > (E).  Therefore, by the definition of infimum, there exists a 

countable cover  of E by disjoint open intervals such that  

 (1 + )(E) >  (   )  (E).
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Let   .   Then G   E and ( G )() < (1 + )(E).    We can use an G  4
I c �

I

enumeration of    as  {In : n = 1, }.  Then  .  Now let En = E In .   G 4
n1

∞

In r E

Then  

.E  E 3G  E 3 4
n1

∞

In  4
n1

∞

E 3 In  4
n1

∞

En

It follows that each En is measurable since it is the intersection of two measurable sets.

Note that since { In : n = 1, } is a collection of disjoint sets, { En : n = 1, } is a

collection of disjoint measurable subsets. Thus,

.�E  � 4
n1

∞

En  �
n1

∞

�En

Note that  .   Since ( G ) <(1 + )(E),  for some  j we �G  � 4
n1

∞

In  �
n1

∞

�In

must have

( Ij) <(1 + )(Ej).              -------------------   (1)

Let  I = Ij  and  J = Ej .   Then J = Ej = E  Ij  Ij  = I.

Take  = 1/3.  Then by (1),  (I) <(4/3)(J).  That is,

             (J)  (3/4) (I) .  -------------------------  (2)

We now claim that if  J  is translated by any number d with |d| < (1/2(I), the 

translated set  Jd has points in common with J.   If this is not the case, then since

J Jd   I Id , and assuming J Jd = ,

2(J) = (J) + (Jd) = (J Jd )  (I Id ) (I) + |d| < (I) + (1/2(I)= (3/2)(I).  

We would get (J)  (3/4) (I) contradicting (2).

This means for some y = x + d in Jd , where x is in J, y is also in  J.  Therefore,  d = y 
x is in J J.  This is true for any d with |d| < (1/2(I) and so,

((1/2)(I), (1/2(I))  J J  E E.

This proves lemma 2.

Theorem 2.    For any subset A of R with positive outer measure, i.e., (A) > 0,  

            there is a non-Lebesgue measurable subset B 

Proof.Suppose (A) > 0.   By (1),    and so R4
n1

∞

Fn

.A  A 3R A 3 4
n1

∞

Fn 4
n1

∞

A 3 Fn

Therefore, 

  . ----------------  (2)�A  � 4
n1

∞

A 3 Fn [ �
n1

∞

�A 3 Fn

If   A  Fn  is Lebesgue measurable, then since A  Fn  A  Fn does not contain a

non trivial interval (because Fn  Fn dose not contain a non trivial interval, a

consequence of the fact that F  F dose not contain a non trivial interval), by Lemma

2, (A  Fn) = 0.  Therefore,  since (A) > 0,  A  Fn  cannot be Lebesgue measurable

for all integer n.  This is because if A  Fn  were measurable for all integer n, then by

(2),  (A )   0 contradicting (A) > 0.  Hence, for some integer j,  A  Fj  is

non-Lebesgue measurable.  Take B = A  Fj .

Next we shall show that the Lebesgue integrable function of a continuous function 

neeed not be Lebesgue integrable.
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Let  f: [0, 1]  [0,1] be the continuous strictly increasing bijection  f : [0, 1]  [0,1]

defined in Lemma 1 of Composition and Riemann integrability mapping the Cantor set Ck of

positive measure k for some 0 < k < 1 onto the Cantor set C0 of measure 0.  Then by Theorem

2,  Ck contains a non measurable subset D.   Now let  K = f (D)  C0 .  Since C0 is of measure

zero, K is measurable.   Thus the characteristic function K  is measurable, where K  is

defined by  K (x) = 1 if x is in K and K (x) = 0 if x is not in K.   Therefore, K  is Lebesgue

integrable on [0, 1].   But the composite  K )  f  = D : [0, 1] R  is not measurable simply

because D is not measurable.  Therefore,  K )  f  is not Lebesgue integrable.

Note that if  f : E  R is Lebesgue measurable and g : B  R is continuous, where

the range of  f  ,  f (E)  B, then g — f  E  R  is Lebesgue measurable.   This is because for

any open set U in R, ( g — f  ) (U) =   f  ( g  (U )) is measurable.  This is seen as follows.

The set  g  (U) is open in B since g is continuous.  Therefore, f ( g  (U)) is measurable

because  f  is measurable.   Remember that  f  is measurable, if and only if, for any open V ,      

  f (V) is measurable.
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