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Change of Variable or Substitution in Riemann and Lebesgue Integration 

 

By Ng Tze Beng 

 Because of the fact that not all derived functions are Riemann integrable (see Example 

2.2.2.7 on page 139 of Theorems and Counterexamples in Mathematics by B.R. Gelbaum and 

JMH Olmsted), in applying the change of variable formula to Riemann integration we need to 

be a little careful. 

 Suppose F and g are differentiable functions, which can be composed to give the 

composite F g.  Then F g is differentiable and by the Chain rule for differentiation, 

(F g)(x) = F'(g(x)) g' (x) =   f (g (x)) g' (x), 

where F' (x) = f (x).   Thus, F g is an antiderivative of  f (g(x)) g' (x)  and  F  is an 

antiderivative of  f  and so we can write  

 f (g (x)) g' (x)dx = F (g(x)) + C. 

This is a statement about antiderivative and not about Riemann integration.  For instance,         

f (g (x)) g' (x) need not be Riemann integrable.   Here is an example when this is the case. 

Example 1.   Let F :[0, 1] → R be the function as given in Example 2.2.2.7 on page 139 of 

Theorems and Counterexamples in Mathematics by B.R. Gelbaum and JMH Olmsted.  F is 

differentiable on [0, 1] but the derivative F' = f is not continuous on a Cantor set of positive 

measure in [0, 1] and so f is not Riemann integrable. Now define g:[−1,0] → [0,1] by g(x) = x 

+ 1 for x in [−1, 0].  Then g is differentiable on [−1,0] and g' (x) = 1 for x in [−1,0]. We also 

have that f (g (x)) is not Riemann integrable since it is discontinuous on a set of positive 

measure, which is a translation of the Cantor set of positive measure in [0,1].  This set is of 

positive measure because Lebesgue measure is translation invariant.  Therefore, f (g (x)) g' (x) 

has an antiderivative even though it is not Riemann integrable.  The formula 

                            
0 (0)

1 ( 1)
( ( )) ( ) ( )

g

g
f g x g x dx f x dx

− −
 =   

does not hold since the integrands on both sides are not Riemann integrable. 

Example 2.   Even if  f  is continuous, the formula may not hold because f (g (x)) g' (x) may 

not be Riemann integrable simply because g' (x) is not Riemann integrable.   We may take f (x) 

= exp(x) the exponential function and g :[0, 1] → R be the function as given in Example 

2.2.2.7 on page 139 of Theorems and Counterexamples in Mathematics by B.R. Gelbaum and 

JMH Olmsted.  That is, g' (x) is discontinuous on a Cantor set C of positive measure in [0,1].  

Then it is easy to see that  f (g (x)) g' (x) is also discontinuous at every point x in C using the 

fact that f  g is continuous and non-zero and g' (x) = 0 on C.  Once again, the formula 

1 (1)

0 (0)
( ( )) ( ) ( )

g

g
f g x g x dx f x dx =   

does not hold simply because the left hand side does not exist. 
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 Now suppose g:[a, b] → [c, d]  is a differentiable function and  f : [c, d] → R is a 

bounded function.  A necessary condition for the change of variable formula, 

   
( )

( )
( ( )) ( ) ( )

b g b

a g a
f g x g x dx f x dx =  ,    ----------------------  (A)  

to hold is that 

1.   f (g (x)) g' (x) is Riemann integrable on [a, b] and 

  2.   f  is Riemann integrable over a domain containing the range of g. 

 Theorem 1.  If g: [a, b] → [c, d]  is a differentiable function and  f : [c, d] → R is 

Riemann integrable and has an antiderivative and if  f (g (x)) g' (x)  is Riemann 

integrable on [a, b], then formula (A)  holds. 

 Proof.   Let F be an antiderivative of  f.  Then F' =  f  .  Also we have that F (g(x)) is an 

antiderivative of  f (g (x)) g' (x) by the Chain rule. Then, since f (g (x)) g' (x) is Riemann 

integrable, by Darboux Theorem, 

   ( ( )) ( ) ( ( )) ( ( ))
b

a
f g x g x dx F g b F g a = − . 

 Since  f  is Riemann integrable with antiderivative F,  again by Darboux Theorem,  

   
( )

( )
( ) ( ( )) ( ( ))

g b

g a
f x dx F g b F g a= − .  

 Therefore, we have 
( )

( )
( ( )) ( ) ( )

b g b

a g a
f g x g x dx f x dx =  .  This completes the proof. 

   

 Remark 1.  1.  It is not necessary that the function g be differentiable at the end points 

a and b for the application of Darboux Theorem.  We can replace the condition on g:[a, 

b] → R by requiring that g be continuous on [a, b] and differentiable on the open 

interval (a, b).  We then further require that the range of g be contained in the domain 

of  f  so that the composite function  f  g  can be defined.   Then the conclusion of 

Theorem 1 follows. 

  2.  If the function  f  is  continuous on its domain, then  f  is Riemann integrable 

and has an antiderivative given by the Fundamental Theorem of Calculus.   Thus, we 

often replace the condition on  f   by continuity as in Theorem 2 below. 

 

 The following is the usual version of change of variable formula or substitution. 

 

 Theorem 2.  If g: [a, b] → [c, d] is a continuous function, differentiable on the open 

interval (a, b) so that g' : (a, b) → R is continuous and bounded and if  f : [c, d] → R is 

continuous, then formula (A) holds. 

  

 Proof.  By assumption f g is continuous on [a, b] and so is bounded on (a, b).   Since  

g' : (a, b) → R is continuous and bounded,  f (g (x)) g' (x) or ( f g) g'  is continuous 

and bounded on (a, b).  Therefore, ( f g) g' is bounded and continuous almost 

everywhere on [a, b] and so by Lebesgue Theorem, ( f g) g'  is Riemann integrable on 

[a, b].  Since  f  is continuous on [c, d], by the Fundamental theorem of Calculus ,  f  
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has an antiderivative on [c, d], given by ( ) ( )
x

c
F x f t dt=  .  Therefore, by Theorem 1 and 

the remark following Theorem 1, formula (A) holds. 

 

 Under what condition can we guarantee the Riemann integrability of ( f g) g'  on [a, 

b]?    Formula (A) requires that  f  be Riemann integrable on a domain containing the range of  

g.  If we impose sufficient condition on g' , we can deduce that ( f g) g'  is Riemann integrable 

on [a, b].  It is not true in general that if  f  is Riemann integrable and g is continuous, then     

f g  is Riemann integrable.  For a counter example see Example 5 of Composition and 

Riemann Integrability. 

 

 Theorem 3.  Suppose  f : [c, d] → R is Riemann integrable and g: [a, b] → [c, d] is a 

continuously differentiable strictly increasing function mapping  [a, b] onto [c, d].  

Then ( f g) g' is Riemann integrable on [a, b] and formula (A) holds, that is, 

( ( )) ( ) ( )
b d

a c
f g x g x dx f x dx =  . 

 

 Remark 2.  In theorem 3 we do not require that  f  has an antiderivative. This includes 

simple step functions. 

 

 Proof of Theorem 3.  Since  f  is Riemann integrable on [c, d], given any  > 0, there 

exists a partition W  for [c, d], 

 W: c = l0 < l1< ... < ln = d 

such that  

                                U(W, f ) − L(W, f ) < /2 .    --------------------------- (1) 

(See Theorem 1 of Riemann integral and bounded function.) 

Now, since g: [a, b] → [c, d] is a strictly monotonic increasing bijective map, its 

inverse is also a strictly monotonic increasing bijection and so 

g −1W: a = z0 < z1< ... < zn = b , 

where zi = g −1 li  , i =1,2, , n,  is a partition for [a, b] 

Because  f  is Riemann integrable,  f  is bounded on [c, d].  That is, there exists a real 

number M > 0 such that | f (x) | < M for all x in [c, d].  Since g' :[a, b] →R is continuous 

on [a, b], g' is uniformly continuous.  Therefore, given  > 0, there exists  > 0 such 

that  

         |x − y | <   |g' (x) − g' (y) | < /(2(3M+1)(b−a)) .         ------------ (2) 

Now refine the partition g −1W, by adding points if need be, to get a partition, 

     Q:  a = x0 < x1< ... < xk = b , where k  n, 

with || Q || = max {xi − xi−1 : i =1, 2,, k} < .  This means g −1W  Q.  Then gQ = P  is 

a refinement of W  since W   g(Q) = P.   Let  

P:  c = y0 < y1< ... < yk = d , 

then yi = g (xi), i =1, 2,, k.  Therefore, by the definition of upper and lower Riemann 

sums, (see for example Riemann integral and bounded function), 

L(W, f )  L(P, f )   U(P, f )  U(W, f )  

and so we have, U(P, f ) − L(P, f )   U(W, f ) − L(W, f ) < /2,  that is, 

                           U(P, f ) − L(P, f )  /2.                    ----------------------  (3) 

This means, 

                1

1

sup ( ) ( ) : , [ , ]
2

k

i i i

i

f x f y x y y y y


−

=

−     .     ----------------------    (4)       
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Since g is differentiable, by the Mean Value Theorem, there exists i  [xi−1 xi] such 

that 

           yi =  yi − yi−1 = g (xi ) − g (xi−1 ) = g' (i )( xi − xi−1) = g' (i ) xi  and    

          g' (i ) > 0 for i =1, 2,, k .                          ----------------------------  (5) 

 

We shall now show that ( f g) g' satisfies Riemann's condition to conclude that it 

is Riemann integrable. 

 U(Q, ( f g) g' ) − L(Q, ( f g) g' ) 

            1

1

sup ( ) ( ) ( ) ( ) : , [ , ]
k

i i i

i

f g x g x f g y g y x y x x x−

=

 = −   .   ----------------(6) 

But for x, y in [xi−1 xi], 

   | f g (x) g' (x) −  f g (y) g' (y)|  

=|[ f g (x)−  f g (y)] [g' (x) − g' (i )] + [ f g (x)−  f g (y)] g' (i ) 
      +  f g (y)] [g' (x) − g' (y )]| 

  | f( g (x))−  f(g (y))| |g' (x) − g' (i )| + | f( g (x))−  f(g (y))|g' (i ) 

     +  | f(g (y))| |g' (x) − g' (y )| 

   2M /(2(3M+1)(b−a)) + | f( g (x))−  f(g (y))|g' (i ) + M /(2(3M+1)(b−a)) 

   /(2(b−a)) + | f( g (x))−  f(g ( y))|g' (i ). 

 

Therefore, for each i =1, 2,, k , 

 sup{| f g (x) g' (x) −  f g (y) g' (y)|: x, y  [xi−1 xi]} 

  /(2(b−a)) + sup{ | f( g (x))−  f(g ( y))|: x, y  [xi−1 xi]}|g' (i ). 

 =  /(2(b−a)) + sup{ | f( x)−  f( y)|: x, y  [yi−1 yi]}g' (i ) , 

since g is a bijection and g([xi−1 xi]) = [yi−1 yi] , where yi = g (xi). 

Therefore,  

U(Q, ( f g) g' ) − L(Q, ( f g) g' )  

             1

1

sup ( ) ( ) ( ) ( ) : , [ , ]
k

i i i

i

f g x g x f g y g y x y x x x−

=

 = −    

  1

1 1

sup ( ) ( ) : , [ , ] ( )
2( )

k k

i i i i i

i i

x f x f y x y x x g x
b a


−

= =

  + −  
−

               

            1

1

sup ( ) ( ) : , [ , ]
2

k

i i i

i

f x f y x y x x y


−

=

= + −   , by  (5) , 

 
2 2

 
 + =   by (4). 

Therefore, U(Q, ( f g) g' ) − L(Q, ( f g) g' ) <   and so  ( f g) g'  satisfies the 

Riemann's condition and so it is Riemann integrable on [a, b]. (See Theorem 1 of 

Riemann integral and bounded function.)   

 

We can also show that the upper and lower Riemann integrals of ( f g) g' are the 

same to conclude that ( f g) g' is Riemann integrable. (See Theorem 1 of Riemann 

integral and bounded function.)  This will turn out to be a more efficient way to prove 

the theorem. 

 

We shall use what we have just proved.  Note that the upper Riemann sum of ( f g) g' 

with respect to the partition Q (as given before with ||Q|| <  ) is defined to be 
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  U(Q, ( f g) g' ) =  1

1

sup ( ) ( ) : [ , ]
k

i i i

i

f g x g x x x x x−

=

   . 

But   

 sup{ f g (x) g' (x): x  [xi−1 xi]} 

 = sup{ f g (x) (g' (x) − g'(i))+ f g (x) g' (i): x  [xi−1 xi]} 

  sup{ M /(2(3M+1)(b−a)) + f g (x) g' (i): x  [xi−1 xi]},  by (2), 

 < /(6(b − a)) + sup{ f g (x) :x  [   xi−1 xi]}g' (i), since g' (i) > 0, 

 = /(6(b − a)) + sup{ f(x) :x  [yi−1 yi]}g' (i) , since g is a bijection. 

 

Therefore, 

U(Q, ( f g) g' ) <  1

1 1

sup ( ) : [ , ] ( )
6( )

k k

i i i i i

i i

x f x x y y g x
b a


−

= =

 +  
−

   

               1

1

sup ( ) : [ , ] ( , )
6 6

k

i i i

i

f x x y y y U P f
 

−

=

= +   = +    

                   < /6 + L(P,  f) + /2  by  (3). 

Thus, using the fact that the upper Riemann integral of  ( f g) g'  U(Q, ( f g) g' ) and 

that L(P,  f)  lower Riemann intergral of   f , we have, 

       ( ) ( ) ( ,( ) ) ( )
b d

a c
U f g x g x dx U Q f g g L f x dx    +  , 

where ( ) ( )
b

a
U f g x g x dx  is the upper Riemann integral of  ( f g) g' and ( )

d

c
L f x dx

is the lower Riemann integral of  f . 

Since this is true for arbitrary  > 0, we have that 

                     ( ) ( ) ( )
b d

a c
U f g x g x dx L f x dx   .  ---------------  (7) 

(More precisely, the upper Riemann integral of ( f g) g' on [a, b]  lower Riemann 

integral of  f  on [c, d].) 

 

Now the lower Riemann sum of ( )f g g  with respect to the partition Q is defined to 

be 

                  1

1

( , ( ) ) inf ( ) ( ) : [ , ]
k

i i i

i

L Q f g g f g x g x x x x x−

=

 =    . 

But inf{ f g (x) g' (x): x  [xi−1 xi]} 

 = inf{ f g (x) (g' (x) − g'(i))+ f g (x) g' (i): x  [xi−1 xi]} 

  inf{− M /(2(3M+1)(b−a)) + f g (x) g' (i): x  [xi−1 xi]} 

 > −/(6(b − a)) + inf{ f g (x) :x  [xi−1 xi]}g' (i), since g' (i) > 0, 

 = −/(6(b − a)) + inf{ f(x) :x  [yi−1 yi]}g' (i), since g is a bijection. 

Therefore,  

 1

1 1

( , ( ) ) inf ( ) : [ , ] ( )
6( )

k k

i i i i i

i i

L Q f g g x f x x y y g x
b a


−

= =

  −  +  
−

   

             1

1

inf ( ) : [ , ] ( , )
6 6

k

i i i

i

f x x y y y L P f
 

−

=

= − +   = − + . -------------  (8)  

Now,  

                   ( ) ( , ) ( , )
2

d

c
U f x dx U P f L P f


  + ,  by (3), 
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                                              ( , ( ) )
6 2

L Q f g g
 

 + + ,  by (8) above, 

                                              ( ) ( )
b

a
L f g x g x dx  + , 

using the fact that the upper Riemann integral of  f    U(P,  f)  and that L(Q, ( f g)g’) 

 the lower Riemann integral of ( f g) g' . 

Since this is true for any  > 0, ( ) ( ) ( )
d b

c a
U f x dx L f g x g x dx  .  (More precisely, the 

upper Riemann integral of  f on [c, d]  lower Riemann integral of  ( f g) g'  on [a, b].)  

Therefore, because lower Riemann integral is always less than or equal to the upper 

Riemann integral, we have ( ) ( ) ( ) ( )
b b

a a
L f g x g x dx U f g x g x dx   .   This then with 

(7) and the above inequality gives us, 

               ( ) ( ) ( ) ( ) ( ) ( )
d b b d

c a a c
U f x dx L f g x g x dx U f g x g x dx L f x dx       . 

Since  f  is Riemann integrable on [c, d], ( ) ( )
d d

c c
U f x dx L f x dx=   and so  

                      ( ) ( ) ( ) ( ) ( )
b b d

a a c
L f g x g x dx U f g x g x dx f x dx = =   . 

Hence ( f g) g'  is Riemann integrable on [a, b] and  

                     ( ) ( ) ( ) ( ) ( )
b b d

a a c
f g x g x dx U f g x g x dx f x dx = =   . 

This completes the proof. 

 

The case when g is strictly decreasing is given as follows. 

 

 Theorem 4.  Suppose f : [c, d] → R is Riemann integrable and g: [a, b] → [c, d] is a 

continuously differentiable strictly decreasing function mapping [a, b] onto [c, d].  

Then ( f g) g' is Riemann integrable on [a, b] and 

                                 ( )( ( )) ( ) ( ) ( )
b c d

a d c
f g x g x dx f x dx f x dx = = −   . 

 

The proof is exactly the same except that we use the function − f instead of  f  and 

noting that this time round, g' (i ) < 0  and in the equation  

                       yi = g' (i ) xi ,     

the points yi are oriented in the opposite direction, that is, 

                         d = y0 > y1> ... > yk = c , 

where yi = g (xi), i =1, 2,, k.  Care should be exercised when taking supremum or 

infimum, use − g' (i ) > 0.  For instance, 

sup{ f g (x) g' (x): x  [xi−1 xi]} 

 = sup{ f g (x) (g' (x) − g'(i)+ f g (x) g' (i): x  [xi−1 xi]} 

  sup{ M /(2(3M+1)(b−a)) + f g (x) g' (i): x  [xi−1 xi]} 

 < /(6(b − a)) + sup{− f g (x) :x  [xi−1 xi]}(−g' (i)), since − g' (i) > 0. 

 

There is a version of Theorem 1 for Lebesgue integrals.  We shall state the result as 

follows.  Note that it is a consequence of the following theorem. 

 

Theorem 5.  Suppose  f : [a, b] → R is differentiable on [a, b] and its derivative  f  is 

bounded, that is, there exists a number K  0 such that for all x in [a, b], | f (x)|  K. 

Then    (1)   f  is absolutely continuous and 
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             (2)  the derived function  f : [a, b] → R is Lebesgue integrable, and for any x in 

[a, b], the Lebesgue integral, 

                   ( ) ( ) ( )
x

a
f t dt f x f a = − . 

 

This is a well known result from Lebesgue integration theory.  Part of the theorem is a 

consequence of the characterisation of functions satisfying the conclusion of Darboux 

Theorem or “Fundamental Theorem of Calculus” with Riemann integral replaced by 

Lebesgue integral and Riemann integrability replaced by Lebesgue integrability in 

terms of absolute continuity.  This is a concept, which says that  f : [a, b] → R is 

absolutely continuous if for any  > 0, there exists some  > 0 such that for any finite 

number of disjoint open intervals, (a1, b1), (a2, b2),, (an bn) in [a, b], such that

1

( )
n

i i

i

b a 
=

−  , then we have 
1

( ) ( )
n

i i

i

f b f a 
=

−  .    Obviously, absolute continuity 

implies continuity.  If  f  is differentiable and has a bounded derivative, it follows from 

the Mean Value Theorem that  f  is absolutely continuous on [a, b].  Thus, Theorem 5 is 

just the characterisation of functions satisfying the conclusion of the “Fundamental 

Theorem of Calculus” for Lebesgue integrals, with bounded derivative guaranteeing the 

absolute continuity of  f . 

 

 

Theorem 6.  If  g: [a, b] → [c, d]  is a differentiable function such that its derivative is 

bounded and if  f : [c, d] → R is a bounded function, which has an antiderivative, then 

we have the following equality for Lebesgue integrals. 
( )

( )
( ( )) ( ) ( )

b g b

a g a
f g x g x dx f x dx =  . 

 

Proof.   Suppose F  is an antiderivative of  f .  Then since its derivative  f  is bounded 

on [c, d],  F is absolutely continuous.  By Theorem 5,   F  =  f  is Lebesgue integrable.  

Also the composite function  F g  is differentiable and its derivative, by the Chain 

Rule, is given by ( f g)g , which is bounded since both  f g and g  are bounded.  

Therefore, by Theorem 5,  

            ( )
( )

( )
( ( )) ( ) ( ) ( ( ) ( ( )) ( )

b b g b

a a g a
f g x g x dx F g x dx F g b F g a f x dx = = − =   . 

This proves the theorem. 

 

Remark 3.   For the functions  f  and g as given in Example 2, by Theorem 6, formula 

(A)  for Lebesgue integrals holds.  Though ( f g)g  there is not Riemann integrable, it 

is nevertheless Lebesgue integrable. 

 

There is a version of Theorem 3 in terms of Lebesgue integral.  The difficulty with the 

proof lies mainly in showing that the Chain Rule is true almost everywhere unlike 

Theorem 6 when the Chain Rule does apply easily. 

 

We state the theorem and then we shall describe the problem in detail. 

 

Theorem 7.  If  g: [a, b] → [c, d]  is a monotone increasing (not necessarily strictly 

increasing) absolutely continuous function mapping  [a, b] onto [c, d] and   f : [c, d] → 
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R is a Lebesgue integrable function, then we have the following equality for Lebesgue 

integrals. 
( )

( )
( ( )) ( ) ( ) ( )

b d g b

a c g a
f g x g x dx f x dx f x dx = =   . 

 

 

Now we set up the functions involved in the Theorem.   Since  f  is Lebesgue integrable 

on [c, d], we can define the indefinite integral on [c, d] by 

( ) ( )
x

c
F x f t dt=  , 

for any x in [c, d].   Then F: [c, d] → R is an absolutely continuous function, which is 

differentiable almost everywhere on [c, d] and  F = f  almost everywhere on [c, d].   

Since g :[a, b] → [c, d] is monotonic and absolutely continuous, the composite function 

F  g :[a, b] → R  is also absolutely continuous.  We shall phrase this result in the 

following proposition. 

 

Proposition 8.   Suppose g :[a, b] → [c, d] is monotonic and absolutely continuous and 

F: [c, d] → R is absolutely continuous.  Then F  g :[a, b] → R  is also absolutely 

continuous.    

 

Proof.  We shall assume that g is monotonic increasing and absolutely continuous.  

Since F is absolutely continuous, given any  > 0, there exists  > 0 such that for any 

finite disjoint open intervals, (c1, d1), (c2, d2),, (cn, dn) in [c, d],    

              1

1 1

( ) ( ) ( )
n n

i i i i

i i

d c F d F c 
= =

−   −   .   -----------------------  (9) 

Thus, for such a 1 > 0, since g is absolutely continuous, there exists 2 > 0 such that 

for any finite disjoint open intervals, (a1, b1), (a2, b2),, (ak , bk) in [a, b], with  

2

1

( )
k

i i

i

b a 
=

−  , we have 1

1

( ) ( )
k

i i

i

g b g a 
=

−  .  But then since g is monotonic 

increasing, the interval (g(ai), g(bi)) is either empty when g(ai) = g(bi) or a nontrivial 

open interval and the intervals (g(a1), g(b1)), (g(a2), g(b2)),, (g(ak), g(bk)) are then 

pairwise disjoint in [c, d].  Thus, it follows from (9) that 

        2

1 1 1

( ) ( ) ( ) ( ( )) ( ( ))
k k k

i i i i i i

i i i

b a F g b F g a F g b F g a 
= = =

−   − = −    . 

      

If g is monotonic decreasing, then the intervals, (g(b1), g(a1)), (g(b2), g(a2)),, (g(bk), 

g(ak)), are pairwise disjoint open intervals in [c, d].  Therefore, it follows from (9) that 

we can also conclude that given any  > 0, there exists  > 0 such that 

        2

1 1 1

( ) ( ) ( ) ( ( )) ( ( ))
k k k

i i i i i i

i i i

b a F g b F g a F g b F g a 
= = =

−   − = −    .  

Therefore, F  g is absolutely continuous. This completes the proof. 

 

 

Before we embark on the proof of Theorem 7, we shall establish some results that we 

shall use in the proof.  We shall be using the Vitali Covering Theorem, a very useful 

theorem for our purpose.  The theorem is stated later for reference. 
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From now on we shall use the term “measure” interchangeably with “Lebesgue outer 

measure”.  

 

Proposition 9.  Suppose g: [a, b] → R is an absolutely continuous function.   If E is a 

subset of [a, b] of measure zero, then its image g(E) is also of measure zero. 

 

Proof.   Since g is absolutely continuous, given any  > 0, there exists some  > 0 such 

that for any finite disjoint open intervals, (a1, b1), (a2, b2),, (an, bn), with  

                         ( )
1

n

i i

i

b a 
=

−  , we have  
1

( ) ( )
n

i i

i

g b g a 
=

−  .   ----------------  (10) 

At this point, it is useful to note that when proving statement about set being of 

measure zero, it is equivalent to proving the same of the same set minus a set of 

countable number of points, since such a set is of measure zero.  Very often for 

technical reason, we may also add countable or finite number of points to it.  One of the 

use of this device involves the fact that any open set in R is at most the union of 

countable open intervals, which are pairwise disjoint.  What we may actually need is 

the union of countable closed intervals, which are non-overlapping in the sense that any 

two sets in this collection can have at most one point in common.  Since the measure of 

{g(a), g(b)} is zero, we may assume that E  (a, b).  Because E is of measure zero, for 

this  > 0, there exists an open set I such that E  I  (a, b) and the measure m(I − E) < 

  Since m(E) = 0, m(I) < .  Now I , being an open set, is the union of countable 

number of disjoint open intervals, { Ii ,  i =1, , each of finite length.  The number of 

open intervals Ii may be finite.  Let  Ii =  (ai , bi)  and its closure Ji = [ai , bi].   Then E 

 J  [a, b], where J =  Ji .  Hence, g(E)  g(J) ( )i

i

g J= .  Since g is continuous 

and each Ji is closed and bounded, by the Extreme Value Theorem, each g(Ji) = [ci,  di] 

is also a closed and bounded interval, where ci is the absolute minimum of g on  Ji and  

di is the absolute maximum of g on Ji and there exist xi , yi in Ji such that g(xi) = ci,  

g(yi) = di , either xi   yi or yi   xi.  Denote the interval [xi yi] or [yi  xi] by Ki .  Then Ki  

  Ji and  g(Ki) = g(Ji ) for each i.  Thus, for any integer n, 

             
1 1 11 1

( ) ( )
n nn n n

i i i i i i i

i i ii i

y x m K m J b b m I m I 
= = == =

   
− =  = − =     

   
   .   

This implies by (10) that  

                ( ) ( )( ) ( )( )
1 1 11

( ) ( )
n n n n

i i i i i

i i ii

m g J m g J m g K g y g x 
= = ==

 
 = = −  

 
   .               

Since this is true for any integer n,  
1

( )i

i

m g J 


=

 
 

 
.  Hence,  

( )
1

( ) ( )i

i

m g E m g J 


=

 
  

 
.  Since this is true for any  > 0, m(g(E)) = 0.  This 

completes the proof. 

 

The next proposition will be useful for redefining the function  f.   

 

Proposition 10.  Suppose g :[a, b] → R is absolutely continuous and monotonic 

increasing. If E is the set {x  [a, b] : g (x) = 0}, then its image g(E) is of measure 

zero. 
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Proof.   If E is of measure zero, then the measure of g(E) is zero by Proposition 9.  So 

we now consider the case when the measure of E is greater than 0.  Since the measure 

of {g(a), g(b)} is zero, we may assume that E  (a, b).   (If need be, just remove both 

points a, b from E.)  Let g([a, b]) = [c, d].   

For each x in E, g (x) = 0 and so given any  > 0, there are arbitrary small intervals [x, 

x + h] such that ( ) ( ) ( ) ( )g x h g x g x h g x h+ − = + −  , where h  > 0. We may assume, 

without loss of generality, that each [x, x + h] is contained in (a, b).  Then these 

arbitrary small intervals form a Vitali covering of E.  As g is absolutely continuous, 

choose  > 0 for the given  > 0 satisfying (10) in the definition of absolute continuity.  

Then by the Vitali Covering Theorem, there is a finite disjoint collection of these 

intervals, Ii = [xi, yi], i = 1,2,,n, in [a, b], such that the measure of  
1

n

i

i

E I
=

−   is less 

than .  That is to say,  Ii , i = 1,2,, n covers all of E except for the subset 
1

n

i

i

E I
=

− of 

E,  of measure less than .  We order these intervals so that 

                   a   x1 < y1  x2 < y2  x3 <   xn < yn  b. 

Then the measure  

( ) ( ) ( )
1 11 1

( ) ( ) ( )
n n n n

i i i i i i

i ii i

m g E I m g I g y g x y x b a 
= == =

    
  = −  −  −    

    
  . 

Now, 
1

( , )
n

i

i

a b I
=

−  is an open set containing 
1

n

i

i

E E I
=

 = − .  Let k = m(E ).  Then since 

1

n

i

i

k m E I 
=

 
= −  

 
 , there exists an open set J containing E such that the measure 

( )
1

( )
2

m J E k−  − .  Thus,   

              
1 1

( ) ( ) ( ) ( ) ( )
2 2

m J m J E m J E k k k   = − +   − + = +  .   

We may assume that
1

( , )
n

i

i

J a b I
=

 − .  Since J is open, it is a union of countable 

pairwise disjoint intervals Ji = (ai, bi) i = 1,2,., N.  Here N may be infinity.  Then 

( )
1 1

( )
N N

i ii
i i

b a m J m J 
= =

− = =   .  Hence,  

      ( )( ) ( )( )
1 1

n N

i i

i i

m g E I m g E m g J m g J
= =

      
− =  =      

      
  

                                     ( )
1 1

( ( )) ( ) ( )
N N

i i i

i i

m g J g b g a 
= =

 = −   . 

This gives us: 

               
1 1

( ( )) ( 1)
n n

i i

i i

m g E m g E I m g E I b a
= =

      
=  + −  − +      

      
.  

Since  is arbitrary, this implies that m(g(E)) = 0.    

 

Remark. 
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 Actually, a stronger version of Proposition 10 is true. 

 

Proposition 10* 

Suppose g is defined and finite on [a, b]. Suppose E = {x  [a, b]: g is differentiable at 

x and g' (x) = 0}. Then ( ( )) 0m g E = . 

(See Theorem 3 of my article, Functions Having Finite Derivatives, Bounded 

Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallée 

Poussin's Theorem.) 

 

We state also a partial converse to Proposition 10*.  

 

Theorem 11*.  Suppose g has derivatives (finite or infinite) on a set E with m(g(E)) = 

0.  Then g' = 0 almost everywhere on E.  

 

(This is Theorem 2, in my article Change of Variables Theorems) 

 

We shall prove the assertion we make previously, namely the following proposition. 

 

Proposition 11.  Suppose g :[a, b] → R is an absolutely continuous and monotonic 

increasing function.  Suppose the range of g is [c, d] and E is a subset of [c, d] of 

measure zero.  Let H = {x  [a, b] : g (x)  0}.  Then the measure of g−1(E)  H is 

zero. Thus, 0g  = almost everywhere on 1( )g E− .  

Proof.   Let Hn = { x  [a, b] : |g (x)|  n}.   Then 
1

n

n

H H


=

= .   We shall show that 

the measure of g−1(E)  Hn = En is zero for each positive integer n.   

Suppose on the contrary that the measure m(g−1(E)  Hn) = m(En) = k > 0.  Since g(En) 

 E and E is of measure zero, the measure m(g(En)) is 0.  Thus, given any  > 0, there 

exists an open set G containing g(En) such that m(G ) < . Then G = g−1(G ) is an 

open set containing En .  For each x in En , there exists arbitrary small interval [x, x+h] 

such that  

                             
( ) ( ) 1g x h g x

h n

+ −
   or 

1
( ) ( )g x h g x h

n
+ −  ,    ------------  (11)  

where h > 0. 

We may assume that these intervals are in G.   Therefore, this collection forms a Vitali 

covering for En .  Then by the Vitali Covering Theorem, given any  > 0, there exists a 

finite collection of disjoint intervals, Ii , i = 1,2,, N , so that I = I1  I2      

covers a subset of En  of outer measure >  k −   But if we write Ii  = [xi, xi + hi] , then 

(11) implies that  

               ( )
1 1

1 1 1
( ) ( ) ( )

N N

i i i i

i i

g x h g x h m I k
n n n


= =

+ −  =  −     . 

But since g(I )  G'  and g is monotonic increasing , 

                 
1

( ) ( ) ( ( )) ( )
N

i i i

i

g x h g x m g I m G 
=

 + − =   .    
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So, if we choose 
2

k

n
  =  and  = k/2, we would obtain a contradiction.   This means 

m(En) = 0.  Since g−1(E)  Hn = En , 
1 1

1 1

( ) ( ) n n

n n

g E H g E H E
 

− −

= =

 =  = .  

As the measure ( )1

11

( ) ( )n n

in

m g E H m E m E
 

−

==

 
 =  

 
  and m(En) = 0 for each integer 

n, ( )1( ) 0m g E H−  = . This completes the proof. 

 

Similar result when g is a decreasing function also holds. 

 

Proposition 12.  Suppose g: [a, b] → R is an absolutely continuous and monotonic 

decreasing function. If E = {x  [a, b] : g (x) = 0}, then its image g(E) is of measure 

zero. 

 

Proof.   If g is decreasing, then − g is increasing.  Then Proposition 10 says that  − g(E) 

is of measure zero.  Since measure is invariant under reflection, g(E) is also of zero 

measure. 

 

(Proposition 10* supersedes Proposition 12.) 

 

Proposition 13.  Suppose g:[a, b] → R is an absolutely continuous and monotonic 

decreasing function.  Suppose the range of g is [c, d] and E is a subset of [c, d] of 

measure zero.  Let H = {x  [a, b] : g (x)  0}.  Then the measure of  g−1(E)  H is 

zero. 

 

Proof.  If g maps onto [c, d], then −g maps onto [−d, −c].  Suppose E is a subset of [c, 

d] of zero measure, then −E is a subset of  [−d, −c] of zero measure.  Then by 

Proposition 11, (−g)−1 (−E) H , where H = { x  [a, b] : (−g) (x)  0}, is of measure 

zero.  But H = H and (−g)−1 (−E) = g−1(E) and so the measure of g−1(E)  H is zero. 

 

Proposition 13*.  Suppose g :[a, b] → R is finite on [a, b] and the range of g is [c, d] 

and E is a subset of [c, d] of measure zero.  Let H = {x  [a, b] : g is differentiable 

(finite or infinitely) at x and g (x)  0}.  Then the measure of g−1(E)  H  is zero.  

Thus, ( ) 0g x = almost everywhere on g−1(E).  

 

Proof.   

If  H =,  then we have nothing to prove.   

So we now assume that H  .    

If 
1( )g E H−  =  , then we have nothing to prove. 

Suppose now that 
1( )g E H−    . 

By hypothesis, g is differentiable (finite or infinitely) on 
1( )g E H−  .  Moreover, since  

 ( )1( )g g E H E−    and E is of measure 0, ( )( )1( ) 0m g g E H−  = .  Then  
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by Theorem 11* (Theorem 2 of my article, Change of Variables Theorems), 0g  =  

almost everywhere on 1( )g E H−  .  But as there does not exists an x in 1( )g E H− 

such that ( ) 0g x = , ( )1( ) 0m g E H−  = . 

 

  

Proposition 14.  Suppose g :[a, b] → R is absolutely continuous and monotonic.  

Suppose the range of g is [c, d] and F: [c, d] → R is an absolutely continuous function.  

Let E = {x  [a, b] : (F  g) (x)  0 and g (x) = 0}.  Then the measure of E is zero. 

 

Proof.  Let En = { x  [a, b] : |(F  g) (x)|  n and g (x) = 0 }.  Then 
1

n

n

E E


=

=  .  We 

shall show that the measure of En is zero for each positive integer n.   We may assume 

as usual that En  (a, b). 

Suppose on the contrary that the measure m(En) = k > 0.   

Now we use the condition that the derivative of g is zero at every point of En .  For any 

x in En , since g (x) = 0,  given any K > 0 there exists arbitrary small h > 0 such that  

                                ( ) ( )g x h g x Kh+ −   .    -------------------  (12) 

 

We are going to choose a suitable K to give a contradiction.  The choice of K will 

depend on k, n and the absolute continuity of F. 

Given any   > 0, since m(En) = k , there exists an open set G containing En such that 

the measure of G, m(G) < k +   .   We shall choose our   carefully. 

For each x in En , since (F  g) (x)  0, there exists arbitrary small interval [x, x+h] such 

that   

                
( ( )) ( ( )) 1F g x h F g x

h n

+ −
  or  

1
( ( )) ( ( ))F g x h F g x h

n
+ −  ,   ------------------------------  (13)  

where h > 0. 

We may assume that these intervals are in G and also that (12) and (13) hold 

simultaneously for these arbitrary small intervals [x, x+h].  Therefore, this collection 

forms a Vitali covering for En .  Then by the Vitali Covering Theorem, there exists a 

finite number of pairwise disjoint intervals, Ii , i = 1,2,, N, so that I = I1  I2 

     covers a subset of En  of outer measure >  k − .  But if we write Ii  = [xi, xi 

+ hi] , then (12) implies that  

                 
1 1

( ) ( ) ( ) ( ) ( )
N N

i i i i

i i

g x h g x K h Km I Km G K k 
= =

+ −  =   +   --------  (14) 

and (13) gives 

                 ( ) ( )
1 1

1 1 1
( ) ( ) ( ) ( )

N N

i i i i

i i

F g x h F g x h m I k
n n n


= =

+ −  =  −  . --------- (15) 

 

Take  ' = k/2,  Then ( )
1

2

k
k

n n
 − = . 

By definition of the absolute continuity of  F, there exists  > 0 such that for any finite 

number of disjoint open intervals, (a1, b1), (a2, b2),, (aM , bM) in [c, d],   
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                 ( )
1 1

( ) ( )
2

M M

i i i i

i i

k
b a F b F a

n


= =

−   −    .    -----------------------------  (16)   

Now choose K > 0 so that K(k +  ) = K(3k/2) < .   Then (14) implies that  

1

( ) ( ) ( )
N

i i i

i

g x h g x K k  
=

+ −  +  .  Therefore, since g is monotonic, if g is 

increasing (g(xi), g(xi+hi)), i =1 ,2, ,n  are pairwise disjoint or degenerate (i.e.,  g(xi) 

= g(xi+hi)), and if g is decreasing, (g(xi+hi), g(xi)), i =1 ,2, ,n  are pairwise disjoint or 

degenerate.  Therefore, by (16), we have  

                             ( ) ( )
1

( ) ( )
2

N

i i i

i

k
F g x h F g x

n=

+ −  . 

But this contradicts (15).   Hence, m(En) = 0 for each positive integer n. Consequently,  

as the measure 
11

( ) ( )k k

kk

m E m E m E
 

==

 
=  

 
 ,  m(E) = 0.  This completes the proof. 

 

A stronger result than Proposition 14 holds as follows:  

 

Proposition 14*.  Suppose g :[a, b] → R is a function of bounded variation.  Suppose 

the range of g is [c, d] and F: [c, d] → R is an absolutely continuous function.  Let E = 

{x  [a, b] : (F  g) (x)  0 and g (x) = 0}.  Then the measure of E is zero. 

 

Proof. 

Since g is of bounded variation, g has finite derivatives almost everywhere on [a, b]. 

Let   [ , ]:  is differentiable at  and ( ) 0 .A x a b g x g x=  =   By Proposition 10*, 

( )( ) 0m g A = .  Since F is absolutely continuous, F is an N-function, i.e., F maps sets of 

measure zero to sets of measure zero. Therefore, ( )( )( ) 0m F g A = .  Let    

( )( ) ( )B F g A F g A= = .  Then B is of measure zero.  Let  

( ) [ , ]:  is differentiable at  (finite or infinitely) and 0H x a b F g x F g =    . 

Then by Proposition 13*, the measure of  ( )
1
( )F g B H

−
  is zero. 

Since ( )
1
( )E F g B H

−
  , measure of E is zero, 

 

Remark.  The use of Proposition 10* does not require g to be of bounded variation, 

indeed it only requires g to be a finite function, that is, g has finite values.  We can drop 

the condition in Proposition 14* that g be a function of bounded variation and replace it 

by just g is a function finite on [a, b]. 

 

 

Before we proceed with the proof of Theorem 7, we state the Vitali Covering Theorem. 

 

Definition 15.  For a subset E of   R, a collection C of intervals is said to cover E in the 

sense of Vitali, if given x in E and any  > 0, there is an interval J in C with x J and 0 

< (J) < , where (J) = m(J) is the length of J. 
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Theorem 16.  Vitali Covering Theorem. 

Suppose E  R has finite Lebesgue outer measure and is covered in the sense of Vitali 

by a class C of intervals.  Then there is a countable disjoint subclass J  C such that  

the outer measure  ( ): 0m E I I J−  = .  

  

The following more useful form of the theorem provides a finite covering that covers 

enough of the set E for use. 

 

Corollary 17.   Suppose E  R has finite Lebesgue outer measure and is covered in the 

sense of Vitali by a class C of intervals.  Then given any  > 0, there is a finite set J1 , 

J2, , Jn of disjoint intervals of C such that  

                        
1

n

i

i

m E J 
=

 
−  

 
.        

 

For the proof of Theorem 16 see page 225 of “Introduction to Measure and Integration” 

by S.J. Taylor or page 98 of “Real Analysis” by H.L. Royden. 

 

We now summarize the idea of the proof of Theorem 7 in the following Venn diagram. 
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Proof of Theorem 7. 

 

If F: [c, d] → R is given by ( ) ( )
x

c
F x f t dt=   and g :[a, b] → [c, d] is monotonic 

increasing, surjective and absolutely continuous, then the composite F  g :[a, b] → R , 

by Proposition 8, is also absolutely continuous and consequently,  

the Lebesgue integral, 

        ( ) ( ) ( ) ( )
b

a
F g x dx F g b F g a = −   

                                  ( ) ( )
( )

( )
( ) ( ) ( ) ( ) ( )

g b

g a
F g b F g a F d F c f x dx= − = − =  , 

since g(a) = c and g(b) = d.   

Then we may ask the question:  

When is (F g) (x) = F(g(x)) g (x) = f (g(x))g (x) almost everywhere on [a, b]?   

It turns out that this is not an easy question.  To prove the theorem, we need to answer 

this question in the affirmative and the Venn diagram above illustrates the situation as 

we proceed. 

 

Because F g is absolutely continuous and hence of bounded variation on [a, b], F g is 

differentiable almost everywhere on [a, b].  Since g is monotonic increasing, g is also 

differentiable almost everywhere on [a, b].  Thus, it is enough to consider subset K of 

[a, b], where both (F g) (x) and g (x) exist for every x in K, because the complement 

of K in [a, b] is of measure zero.    

If x is in K, either g (x) = 0 or g (x)  0.    

Now suppose x is in K and g (x)  0.  

As (F g) (x) exists, F(g(x)) exists.  This is seen as follows.  For h  0, if g(x + h) − 

g(x)  0, then 

           
( ( )) ( ( )) ( ( )) ( ( )) ( ) ( )

( ) ( )

F g x h F g x F g x h F g x g x h g x

h g x h g x h

+ − + − + −
= 

+ −
 . 

Consider the function 
( ) ( )

( )
g x h g x

G h
h

+ −
=  for h  0.   

Since 
0

lim ( ) ( ) 0
h

G h g x
→

=  , there exists  > 0 such that 0 < |h| <  implies G(h)  0 and 

so k(h) = g(x + h) − g(x)  0.  Thus, for 0 < |h| < , we have  

                         
( ( )) ( ( ))

( ) ( )

( ( )) ( ( ))

( ) ( )

F g x h F g x

h

g x h g x

h

F g x h F g x

g x h g x

+ −

+ −

+ −
=

+ −
 . 

Hence, 
( )

( ( )) ( ( ))

0

( ) ( )0

0

lim ( )( ( )) ( ( ))
lim

( ) ( ) lim ( )

F g x h F g x

h
h

g x h g xh
h

h

F g xF g x h F g x
L

g x h g x g x

+ −

→

+ −→

→

+ −
= = =

+ −
. 

 

That means given  > 0, there exists  > 0 such that 0 < |h| <   k(h)  0 and   

                         
( ( )) ( ( ))

( ) ( )

F g x h F g x
L

g x h g x


+ −
− 

+ −
.   

Since k is continuous on the interval (− , ), k((− , )) is an interval containing 0. 
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On the interval (− ,  ), k is monotonic increasing and since k(h) = 0, if and only if , h 

= 0,  k((− ,  )) contains an open interval containing 0.   Thus, there exists   > 0 such 

that (− ,  )  k((− , )).   Therefore, this implies that for every p in (− ,  ), there 

exists a h in (− , ) such that k(h) = p.  Therefore, 0 < |p| <   implies that  

 

( ( ) ) ( ( )) ( ( ) ( )) ( ( ))

( )

F g x p F g x F g x k h F g x
L L

p k h

+ − + −
− = −  

                                             
( ( )) ( ( ))

( ) ( )

F g x h F g x
L

g x h g x


+ −
= − 

+ −
 . 

This shows that 
0

( ( ) ) ( ( ))
lim
p

F g x p F g x

p→

+ −
 exists and so F is differentiable at g(x).   

This means that if x is in K and g (x)  0, then the chain rule (F g) (x) = F(g(x))g (x) 

holds.   

Now consider the case x in K and g (x) = 0  

If F(g(x)) exists, then we have the chain rule and so (F g) (x) = F (g(x)) g (x) = 0.    

On the other hand, if g(x) = 0 and (F g) (x) = 0, the equality still holds and there is no 

contribution to the Lebesgue integrals on both sides.  

It remains to check the case when g (x) = 0 and (F g) (x)  0.  Of course, this means 

g (x) = 0 and (F g) (x)  0 and F (g(x)) does not exist for its existence would imply 

that (F g) (x) = 0.  By Proposition 14, the set {x  [a, b]: g (x) = 0, (F g) (x)  0 

(therefore F (g(x)) does not exist)} has measure zero.   We shall also show that the set 

{x  [a, b]: g (x)  0, and F (g(x))  f (g(x))} has measure zero.   If F (g(x))  f (g(x)), 

then g(x) belongs to a set of measure zero, since F = f  almost everywhere on [c, d].   

Therefore, the set {x  [a, b]: g (x)  0, and F (g(x))  f (g(x))} g−1(E)  H, where E 

is a set of measure zero and H={x  [a, b]: g (x)  0}.   Thus, by Proposition 11,  the 

measure of g−1(E)  H is zero and so {x  [a, b]: g (x)  0, and F (g(x))  f (g(x))} has 

measure zero.    Thus, we have,  

( ) ( ) ( ),   when ( ) 0,
( )

0,               when ( ) 0   

F g x g x
F g x

g x

    = 
 =

almost everywhere on [a, b],  

 

    
( ( )) ( ),   when ( ) 0,

0,                    when ( ) 0   

F g x g x g x

g x

   
= 

 =
 almost everywhere on [a, b],  

 

   

( ( )) ( ),   when ( ) 0,

( ( )) ( ),  when ( ) 0 and ( ( )) exists,

0,     when ( ) 0 and ( ( )) does not exist  

F g x g x g x

F g x g x g x F g x

g x F g x

   


   = =
  =

 almost everywhere on [a, b], 

 

  
( ( )) ( ),   when ( ) 0,

0,                    when ( ) 0   

f g x g x g x

g x

  
= 

 =
 almost everywhere on [a, b],  

 

  ( ( )) ( )f g x g x=  almost everywhere on [a, b].  

Therefore, ( )( ) ( ) ( ) ( ) ( ( )) ( )
d b b

c a a
f x dx F d F c F g x dx f g x g x dx = − = =    . 
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From the above proof itself, we can easily construct a similar proof for the case when g 

is an absolutely continuous decreasing function.   Hence, we state the following 

theorem for record. 

 

Theorem 18.  If  g: [a, b] → [c, d]  is a monotone decreasing (not necessarily strictly 

decreasing) absolutely continuous function mapping [a, b] onto [c, d] and   f : [c, d] → 

R is a Lebesgue integrable function, then we have the following equality for Lebesgue 

integrals. 
( )

( )
( ( )) ( ) ( ) ( )

b d g b

a c g a
f g x g x dx f x dx f x dx = − =   . 

 

Remark 4.  It is clear that, since any Riemann integrable function is also Lebesgue 

integrable and the two integrals are the same, Theorem 3 is a special case of Theorem 7 

because any g: [a, b] → [c, d] which is monotonic and continuosly differentiable on [a, 

b] has bounded derivative and so is absolutely continuous.  However, we may not 

deduce from Theorem 7 that with the condition of Theorem 3, ( ( )) ( )f g x g x  is 

Riemann integrable.  We may conclude that ( ( )) ( )f g x g x  is Lebesgue integrable but 

need an extra effort to show that it is Riemann integrable by showing that it is indeed 

continuous except on a set of measure zero in [a, b].  We may replace the requirement 

that g be strictly increasing by just increasing, courtesy of Theorem 7. 

For simplicity and for the reader who may not be familiar with measure theory, we 

choose to present the two proofs.  It is of course possible to modify the proof of 

Theorem 3 by not requiring the strict monotonicity on g.  Likewise, Theorem 4 is a 

special case of Theorem 18. 

 

Remark 5.   It is also possible to replace the function  f   by another function equal to f 

almost everywhere.  We assume the hypothesis of Theorem 7, that is, g: [a, b] → [c, d]  

is a monotone increasing (not necessarily strictly increasing) absolutely continuous 

function mapping  [a, b] onto [c, d] and   f : [c, d] → R is a Lebesgue integrable 

function.  By Proposition 12, the measure m(g(E)) is zero, where E = {x [a, b] : g (x) 

= 0}.  Now we can define f E : [c, d] → R by f E(y) =  f (y), if y is not in g(E) and  f E(y) 

= 0, if y is in g(E).  Then f E = f almost everywhere on [c, d] and we have  

( ) ( ( )) ( ) ( ( )) ( )
d b b

E E
c a a

f x dx f g x g x dx f g x g x dx = =   . 

 

The conclusion of Theorem 7 need not be true if we drop the monotonicity condition on 

g as illustrated in the following example. 

 

Example 3.   Let g:[0, 1] → R be defined by 

2 2sin ,  0
( ) 2

0,       0

x x
g x x

x

  
  

=  
 =

   and let        

f :[0, 1] → R be defined by

1
,  0

( ) 2

0,    0

x
f x x

x




= 
 =

 .  Then  f  is not bounded on [0, 1].    

The function f is Lebesgue integrable and the integral is given by the improper 

Riemann integral F :[0, 1] → R defined by 
0

( ) ( )
x

F x f t dt x= = .   Then the 
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composite function F  g  is not absolutely continuous even though both F and g are.  

This is because 
sin ,  0

( ) 2

0,       0

x x
F g x x

x

  
  

=  
 =

 and is obviously not of bounded 

variation on [0, 1] and so cannot be absolutely continuous on [0, 1].    

Note that F is differentiable at x for x > 0 and 
1

( ) ( )
2

F x f x
x

 = = for x > 0 but not 

differentiable at x = 0. 

Also note that g is differentiable on [0, ∞) and  

               

22 sin sin cos ,   0
( ) 2 2 2

0,     0 

x x
g x x x x

x

  


      
−        =      

 =

 . 

Since F is differentiable on (0, 1] and g is differentiable on [0, 1], (F  g) (x) = f 

(g(x))g (x) almost everywhere on [0, 1].  Note that     

( )2

1 1
,   0 and  , integer 1

22 sin
( ( ))

1
0,     0 or  , integer 1

2

x

x x k
kx

f g x

x x k
k




  


= 


= = 



  so that 

 

( )

( )

( )2 2

2

sin cos 1
sin , 0 and  , integer 1

2 2 2sin
( ( )) ( )

1
0, 0  or  , integer 1  

2

x x

x

x x k
x x k

f g x g x

x x k
k

 



   
−       

  
 = 


= = 

 . 

  

For 
1

 , integer 1
2

x k
k

=  ,   

         

1
2 11 1

22 2

0 0

( )sin
2( )( ) ( )

lim lim

k

kk k

h h

h
hF g h F g

h h



→ →

 
+  

++ −  
=  . 

          

Observe that   
1

2
2( ) 1

k

k

h kh

 
=

+ +
 and for sufficiently small h > 0, 

1
2

( 1)
2( ) 1

k

k
k k

h kh

 
 − = 

+ +
 and for h < 0 and sufficiently small |h| , i.,e, when 

0 1 1kh +  , 
1

2

( 1)
2( ) 1

k

k
k k

h kh

 
 +  = 

+ +
. 

 

Thus, for k even, 

      

1 1
2 21 1

2 2

0 0

( )sin ( )sin
2( ) 2( )

lim lim

k k

k k

h h

h h
h h

h h

 

+ +→ →

   
+ +   

+ +   = −  
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1
2 21 1 1

2 2 2

0

1
sin ( )cos

2( ) 2( ) 2 ( )
lim

1

k

k k k

h

h
h h h

k

  


+→

   
− +    

+ + +   = − = , 

and 

 

1 1
2 21 1

2 2

0 0

( )sin ( )sin
2( ) 2( )

lim lim

k k

k k

h h

h h
h h

h h

 

− −→ →

   
+ +   

+ +   =  

 

 

1
2 21 1 1

2 2 2

0

1
sin ( )cos

2( ) 2( ) 2 ( )
lim

1

k

k k k

h

h
h h h

k

  


−→

   
− +    

+ + +   = = − , 

 

Thus, as the left and right limits are not the same, F g   is not differentiable at x for x 

= 
1

4i
 , i ≥ 1. 

 

For  k odd, 

              

1 1
2 21 1

2 2

0 0

( )sin ( )sin
2( ) 2( )

lim lim

k k

k k

h h

h h
h h

h h

 

+ +→ →

   
+ +   

+ +   =  

  

              

1
2 21 1 1

2 2 2

0

1
sin ( )cos

2( ) 2( ) 2 ( )
lim

1

k

k k k

h

h
h h h

k

  


+→

   
− +    

+ + +   = = −  

and  

               

1 1
2 21 1

2 2

0 0

( )sin ( )sin
2( ) 2( )

lim lim

k k

k k

h h

h h
h h

h h

 

− −→ →

   
+ +   

+ +   = −  

  

            

1
2 21 1 1

2 2 2

0

1
sin ( )cos

2( ) 2( ) 2 ( )
lim

1

k

k k k

h

h
h h h

k

  


+→

   
− +    

+ + +   = − = . 

 

It follows that F g   is not differentiable at x for x = 
1

4 2i +
 , i ≥ 0.   Hence, F g   is 

not differentiable at x for x = 
1

2k
 , k ≥ 1.  Thus, F g  is differentiable on [0, 1] except 

for a denumerable subset in [0, 1] and (F  g) (x) = f (g(x))g (x) for x  
1

2k
 , k ≥ 1 or x 

 0. 
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Note that F g  is continuous on [0, 1]. Therefore, since F g  is not absolutely 

continuous on [0, 1], by Corollary 2 of my article, “When is a continuous functions on 

a closed and bounded interval be of bounded variation, absolutely continuous?  The 

answer and application to generalized change of variable for Lebesgue integral”, 

( )F g   cannot be Lebesgue integrable on [0,1].   We may verify this fact directly as 

follows. 

 
( )2

cos
( ( )) ( ) sin

2 2

x
f g x g x

x x


  

   −  
 

  for 
1

0 and  , integer 1
2

x x k
k

   . 

 

 Now 
( )2

cos

2

x

x




  is not Lebesgue integrable on [0, 1].  Observe that 

           
( ) ( )1

2

2

1 2
cos cos

tx

t

y
dx dx

x y







=   and so      

           
( ) ( ) ( )

2

1 12 2

0 0

cos cos cos
lim lim

tx x

t tt

y
dx dx dy

x x y

 

+ →→
= =   . 

Note that  

  

            
( )

( )
2 2

2 2

( 1) ( 1)cos 2 2
cos

( 1) ( 1)

k k

k k

y
dy y dy

y k k

 

  

+ +

 =
+ +   

and so  
( )2

2

( 1)

1

cos 2

( 1)

NN

k

y
dy

y k



 

+

=


+

 .   

Therefore, since 
1

2

( 1)k k



=

= 
+

 , 
( )1 2

0

cos
x

dx
x



=  .   Since 
1

0
sin 1

2
dx

x

 
 

 
 , it 

follows that 
1

0
( ( )) ( )f g x g x dx =  . This means ( )F g   is not Lebesgue integrable 

on [0, 1]. 

However, ( )F g   is improperly Riemann integrable.  This is because  

 

( )

( )

( )2 2

2

sin cos 1
( ) , 0 and  , integer 1

2 2sin

x x

x

G x x x k
x k

 




=        is improperly Riemann 

integrable on [0, 1].   We deduce this as follows.  It is easy to observe that  

 

G(x) changes sign in the intervals,  

            
1 1 1 1 1 1 1 1

, , , , , , ,
4 1 4 4 2 4 1 4 3 4 2 4 4 4 3k k k k k k k k

       
       

+ + + + + + +       
 . 

 

Now  
( )

( )

( ) ( )1 1 1

1 1 1
1 1 1

2 2 2

2

sin cos cos
( )

2 2sin

k k k

k k k

x x x

x

G x dx dx dx
x x

  



 

+ + +

=  =    

                             
( )

( )
1 1

2

2

cos 1
cos

2 2

k k

k k

y
dy y dy

y k k




 + +

=  =  . 
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Note also that 
( )1

2
cos 1

2 1

k

k

y
dy

y k

 +


+ . This means  

               

            
1

1
1

1 1
( )

1

k

k

G x dx
k k+

 
+  . 

 

Hence 
1

1
1

( ) 0
k

k

G x dx
+

→  as k →  .  Moreover, the sequence 
1

1
1

( )
n

n

G x dx
+

  is a 

decreasing sequence.   Therefore, by the Alternating Series Test, 
1

0
( )G x dx  is 

convergent.  Consequently,      

          
1

( ( )) ( ) sin ( ), 0 and  , integer 1
2 2

f g x g x G x x x k
x k

 
 = −    

 
 

is improperly Riemann integrable on [0, 1].  

 

Now, for any 0< t < 1,  F g  is continuous on [t, 1] and differentiable on [0, 1] except 

on a denumerable subset.  Moreover, on [t, 1],    

   ( )
1

( ) ( ( )) ( ) sin ( ),  and  , integer 1
2 2

F g x f g x g x G x x t x k
x k

  = = −    
 

. 

Now G(x) is Lebesgue integrable on [t, 1], because there exists an integer N such that 

1
0

2
t

N
   and  

1

1 1
2 1

2 1 2 11

1 1

1
( ) ( )

k

N k

N N

k k

G x dx G x dx
k+

− −

= =

=      .   Therefore, ( )F g   is 

Lebesgue integrable on [t, 1] as  sin
2x

 
 
 

 is Lebesgue integrable on [ t, 1].  Therefore, 

by Corollary 2 of “When is a continuous functions on a closed and bounded interval be 

of bounded variation, absolutely continuous?  The answer and application to 

generalized change of variable for Lebesgue integral”, F g  is absolutely continuous 

on [ t, 1].  Therefore,        

         ( ) ( ) ( )
1

2 2

2 2
( ) ( (1)) ( ( )) 1 sin 1 sin

t tt
F g x dx F g F g t t t  = − = − = −  

                                    
(1)

( )
( )

g

g t
f x dx=  .          ------------------------  (1) 

Note that we may deduce that ( )F g   is Lebesgue integrable on [t, 1] by simply 

noting that ( )F g   is Riemann integrable on [t, 1] since it is continuous except on a 

denumerable set in [t, 1] and that it is bounded on [t, 1]. 

 

Therefore, the integral on both sides of (1) are Riemann integrals. 

Hence the improper Riemann integral,            

      ( ) ( )
1 1 1

0 ( )0 0
( ) lim ( ) lim ( )

t g tt t
F g x dx F g x dx f x dx

+ +→ →

 = =    

                               
1 1

00
lim ( ) ( )

yy
f x dx f x dx

+→
= =  . 
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But ( )
1 1

( ) ( ( )) ( )
t t

F g x dx f g x g x dx =   and so we have the improper Riemann 

integral, 

                          
1 1 (1)

0 0 (0)
( ( )) ( ) ( ) ( )

g

g
f g x g x dx f x dx f x dx = =   . 

The change of variable formula for Lebesgue integral in this case fails simply because 

( )F g   is not Lebesgue integrable on [0, 1].  However, ( )F g   is improperly 

Riemann integrable on [0, 1] and the formula holds with the integrals on both sides 

taken to be the improper Riemann integral.  

  

 

Thus, in view of the fact that f is unbounded in the above example, we consider 

function f , which is bounded and Lebesgue integrable on the interval [a, b].   We can 

now obtain the change of variable formula even if g is not monotonic but still 

absolutely continuous.  This will involve some subtle technical results in measure 

theory, functions of bounded variation or absolute continuity.  We shall state a weaker 

version of the theorem, which is mostly what we need.  

 

Theorem 19.  Suppose g: [a, b] → R is an absolutely continuous function and   f : [c, 

d] → R is a continuous function such that the range of g is contained in [c, d].   Then 

we have the following equality for Lebesgue integrals. 

                                 
( )

( )
( ( )) ( ) ( )

b g b

a g a
f g x g x dx f x dx =  .   

 

We shall need the following technical result.   

 

Proposition 20.    Suppose  f : [c, d] → R is a bounded and Lebesgue integrable 

function.  Define F : [c, d] → R by ( ) ( )
x

c
F x f t dt=  .   Then F satisfies a Lipschitz 

condition, that is, there is a constant K such that |F(y) − F(x)|  K| y − x| for all x and y 

in [c, d].   Equivalently, if F is absolutely continuous and F  is bounded, then F 

satisfies a Lipschitz condition. 

 

Proof.   If  F is absolutely continuous on [c, d], then ( ) ( ) ( )
x

c
F x F t dt F c= +  for all x 

in [c, d].  Since  F  is bounded almost everywhere in [c, d], there exists a K such that 

|F (x)  K almost everywhere on [c, d].   Then for any y > x in [c, d]  

( )
y k

x x
F t dt K K y x  = −  . Thus, for any y > x,  

           ( ) ( ) ( ) ( ) ( )
y x y

c c x
F y F x F t dt F t dt F t dt K y x  − = − =  −   .   

Therefore, F satisfies a Lipschitz condition with constant K. 

 

 A crucial step in proving Theorem 19 is to show that the composite function 
F g  is absolutely continuous when g is absolutely continuous and F is also absolutely 

continuous with bounded derivative almost everywhere.  Indeed, this is a consequence 

of the following proposition. 
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Proposition 21.  Suppose g: [a, b] → R is an absolutely continuous function and   F : 

[c, d] → R is an absolutely continuous function satisfying a Lipschitz condition with 

constant K, such that the range of g is contained in [c, d].   Then F g is absolutely 

continuous.  

 

Proof.   Since g is absolutely continuous, given any  > 0, there exists  > 0 such that 

for any collection of disjoint open intervals (a1, b1), (a2, b2),, (an bn) in [a, b], 

                        ( )
1 1

( ) ( )
n n

i i i i

i i

b a g b g a
K




= =

−   −   .  

Then for each i =1, , n,  since F satisfies a Lipschitz condition with constant K, 

                        |F(g(bi)) − F(g(ai))|  K|g(bi) − g(ai)|. 

Therefore, taking summation,  

   
1 1 1

( ( )) ( ( )) ( ) ( ) ( ) ( )
n n n

i i i i i i

i i i

F g b F g a K g b g a K g b g a K
K




= = =

−  − = −   =   . 

Hence, ( )
1 1

( ) ( )
n n

i i i i

i i

b a F g b F g a 
= =

−   −   .  Therefore, F g is absolutely 

continuous. 

 

Proof of Theorem 19.  Since  f : [c, d] → R is continuous, it is bounded and Lebesgue 

integrable.  Therefore, the function F : [c, d] → R defined by ( ) ( )
x

c
F x f t dt=   is 

absolutely continuous and satisfies a Lipschitz condition. It follows by Proposition 21, 

that F g is absolutely continuous.   Hence, we have  

   ( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

b g b g a g b

a c c g a
F g x dx F g b F g a f x dx f x dx f x dx = − = − =    . 

By the Fundamental Theorem of calculus, since  f  is continuous on [c, d], F is 

differentiable everywhere on [c, d].  Note that g is differentiable almost everywhere on 

[a, b], since g is absolutely continuous.  Therefore, F g is differentiable almost 

everywhere on [a, b] because if g is differentiable at x and since F is differentiable at 

g(x), F g is differentiable at x.  In particular, (F g)(x) = F (g(x)) g (x) = f (g(x)) g (x) 

almost everywhere on [a, b].  Therefore,   

                     ( )
( )

( )
( ( )) ( ) ( ) ( )

b b g b

a a g a
f g x g x dx F g x dx f x dx = =   .   

This completes the proof. 

 

Suppose  f : [c, d] → R is not necessarily continuous everywhere but just bounded and 

Lebesgue integrable.  Then the question remains if (F g) (x) = f (g(x)) g (x) almost 

everywhere. 

 

We shall need the analogue of Proposition 10, Proposition 11 and Proposition 14. 

 

Firstly, we recall the definition of the total variation function of a function of bounded 

variation.  A function g is said to be of bounded variation on [a, b] if the total variation  

  1 0 1

1

[ , ] sup ( ) ( ) :  is a partition for[ , ]
n

g i i n

i

V a b g x g x a x x x b a b−

=

 
= − =    = 
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exists or equivalently, there exists a constant K > 0 such that for any partition 

0 1 na x x x b=    = ,   1

1

( ) ( )
n

i i

i

g x g x K−

=

−  .  If g: [a, b] → R is an absolutely 

continuous function, then the total variation function :[ , ]gV a b →  is defined by  

( ) 0gV x = and  ( ) [ , ]g gV x V a x= , the total variation of the function g on [a, x] for x in    

(a, b].  This is well defined because, for any partition a = x0 < x1 <  < xn = x,   

                                   1

1

( ) ( ) [ , ]
n

i i g

i

g x g x V a b−

=

−  , 

 so that 1 0 1

1

sup ( ) ( ) :  is a partition for[ , ]
n

i i n

i

g x g x a x x x x a x−

=

 
− =    = 

 
  

exists. 

 

The following results concerning the properties of function of bounded variation and of 

absolutely continuous functions can be found on page 267 to page 269 in “Principles of 

Real Analysis” by C.D. Aliprantis and Owen Burkinshaw or in my article “Monotone 

Function, Function of Bounded Variation, Fundamental Theorem of Calculus”. 

 

 

Theorem 22.   

1.  g: [a, b] → R is a function of bounded variation, if and only if, g is the difference of 

two increasing functions. 

2.  Any function g: [a, b] → R of bounded variation is differentiable almost everywhere 

on [a, b]. 

3.   If  g: [a, b] → R is of bounded variation, then the variation function Vg : [a, b] → R  

and the function Vg − g are both increasing functions. 

4.   If  g: [a, b] → R is of bounded variation, then for any x and y in [a, b] with 

a  x  y  b we have |g(y) − g(x)| Vg (y) −Vg (x) .  In particular,  |g(x) − g(a)|  Vg (x).  

  

The next result concerns absolutely continuous functions. 

 

Theorem 23.  Suppose g: [a, b] → R is absolutely continuous on [a, b].  Then the 

following statements hold. 

1.  g is of bounded variation. 

2.  The variation function Vg : [a, b] → R is also absolutely continuous and so g is the 

difference of two increasing absolutely continuous functions. 

 

We shall need the following technical result about increasing function. 

 

Proposition 24.  Suppose g: [a, b] → R is an increasing function. 

Then g is differentiable almost everywhere and the derivative g  is Lebesgue integrable 

(therefore measurable) and ( ) ( ) ( )
x

a
g t dt g x g a  − for any x in [a, b]. 

 

The proof of Proposition 24 can be found on page 100 of Royden’s “Real Analysis”. 

 

We shall need the following consequence of absolute continuity. 
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Proposition 25.  Suppose g: [a, b] → R is absolutely continuous on [a, b].  Then for 

any x in [a, b],  ( ) ( )
x

g
a

V x g t dt=  . 

 

Proof.   By Theorem 22 part 4, for any y  x in [a, b], (Vg(y)−Vg(x))/(y−x)  (g(y) − 

g(x))/(y−x).  Consequently, Vg (x)  g (x) almost everywhere on [a, b].  We also have , 

for any y  x in [a, b], (Vg(y)−Vg(x))/(y−x)  −(g(y) − g(x))/(y−x) and so we have Vg (x) 

 − g (x) almost everywhere on [a, b].  Therefore,  Vg (x)  |g (x)| almost everywhere 

on [a, b].   

Then ( ) ( ) ( ) ( ) ( )
x x

g g g g
a a

g t dt V x dx V x V a V x   − =  . 

The last inequality follows from Proposition 24 since the function Vg is an increasing 

function. 

On the other hand, for any x in (a, b] and for any partition of [a, x], a = x0 < x1 <  < xn 

= x, since g is absolutely continuous (and therefore the fundamental theorem for 

Lebesgue integral holds), 

             
1 1

1

1 1 1

( ) ( ) ( ) ( ) ( )
i i

i i

n n nx x x

i i
x x a

i i i

g x g x g t dt g t dt g t dt
− −

−

= = =

  − =  =     . 

Therefore, 

1 0 1

1

sup ( ) ( ) :  is a partition for[ , ] ( )
n x

i i n
a

i

g x g x a x x x x a x g t dt−

=

 
− =    =  

 
  .  

 It follows that ( ) ( )
x

g
a

V x g t dt  .  Therefore, ( ) ( )
x

g
a

V x g t dt=  . 

 

Corollary 26.  Suppose g: [a, b] → R is absolutely continuous on [a, b].  Then 

( ) ( )gV x g x =  almost everywhere on [a, b]. 

 

Proof,   Since ( ) ( )
x

g
a

V x g t dt=  , ( ) ( )gV x g x =  almost everywhere on [a, b].   This is 

because g is absolutely continuous and so ( )g x is Lebesgue integrable. It follows that 

the differentiation of the indefinite integral ( )
x

a
g t dt  yields ( )g x  almost 

everywhere.   See for example Theorem 10 on page 107 in Royden’s “Real Analysis” 

or see the reference to Theorem 2 of my article “Integration by Parts”. 

 

Remark 6.  The conclusion of Corollary 26 is actually true just for function of bounded 

variation defined on [a, b].  But the proof is much more delicate, it requires a careful 

handling of how the finite difference g(xi) - g(xi−1) changes sign.   One proof of this is 

to choose a dissection 0 1 ka x x x b=    = of  [a, b] so that the summation

1

1

( ) ( )
k

i i

i

g x g x −

=

−  differs from  the total variation by say 1/2n.  The choice is such that 

the series
1

1

2n
n



=

  converges.  Define a function gn  so as to give the same absolute value 

gn(xi) − gn(xi−1) = |g(xi) − g(xi−1)| for each i.   The main difficulty is to show that gn (x) 

→ Vg (x) almost everywhere on [a, b]. Note that gn (x) =  g (x) almost everywhere 

on [a, b].   By showing that the difference Vg(x) − gn(x) is increasing for each n and by 



© Ng Tze Beng 2003  27 

using the series function ( )
1

( ) ( )g n

n

V x g x


=

− , which is convergent, so that if it is 

possible to show that this series function can be differentiated almost everywhere term 

by term, we can then conclude that Vg (x)−gn (x) → 0 almost everywhere and the 

result then follows.  We can indeed use Fubini’s theorem on differentiation of a series 

function to do this. 

(For a proof, of this more general result see Arc Length, Functions of Bounded 

Variation and Total Variation, Lemma 3 and its proof,)  

 

 

We shall need the following results to use when proving the nullity of a set or of its 

image under a function. 

 

Proposition 27.  Suppose  f  :[a, b] → R is a monotone increasing absolutely 

continuous function and E is a measurable subset of [a, b].  Then  

                                    
 

Proof.   We begin by proving the theorem for the special case when E is an open subset 

of [a, b].   Since E is open, E = a countable (finite or denumerable) union of disjoint 

open intervals, say {U1, U2,  }.  Thus,  

( )( ( )) ( ) ( )n n n

nn n

m f E m f U m f U m f U
    

= = =    
    

 ,   

                         since {f (U1), f (U2),  } is a collection of non-overlapping intervals, 

                ( )( ) ( )n n

n

f b f a= − ,  where U n =(an , bn) , 

                 ( )
n

n

b

a
n

f t dt=  ,  because  f  is absolutely continuous,  

                 ( )
E

f t dt=  . 

Note that since E is measurable and  f  is absolutely continuous,  f (E) is measurable so 

that ( ( )) ( ( ))m f E m f E = .  Also for any open U,  f (U) is measurable and so 

( ( )) ( ( ))m f U m f U = . 

For the general case, suppose E is a measurable subset in [a, b].   Then for each positive 

integer n, there exists an open set Gn such that E  G n and m (G n ) < m (E) + 1/n  and 

an open set  H n  such that  f (E)  H n and m(Hn) < m (f (E)) + 1/n .  Thus, 

lim ( ) ( )n
n

m G m E
→

=  and lim ( ) ( ( ))n
n

m H m f E
→

= . 

For each positive integer n,  f  −1 (Hn ) is open by continuity of  f.   Therefore,  

Cn = f  −1 (Hn )G n is also open and contains E.   Then note that 

                    ( ) lim ( ) lim ( ) ( )n n
n n

m E m C m G m E
→ →

  =      

and so lim ( ) ( )n
n

m C m E
→

= . 

Similarly, since  f (E)  f (Cn ) = f ( f  −1 (Hn )G n)  Hn ,  

                  ( ( )) lim ( ( )) lim ( ) ( ( ))n n
n n

m f E m f C m H m f E
→ →

  = . 

It follows that lim ( ( )) ( ( ))n
n

m f C m f E
→

= .  

Therefore, 


E

f (x)dx = m( f (E)).
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         ( ( )) lim ( ( )) lim ( )
n

n
Cn n

m f E m f C f t dt
→ →

= =  , since Cn is also open, 

                        

1

( )
n

n

C
f x dx

=

=  , by Lebesgue Dominated Convergence Theorem, 

                        

1

( ) ( ) ( )
n

n

E C E E
f x dx f x dx f x dx

=

−
  = + =   , 

because 
1

0n

n

m C E


=

 
− = 

 
 as

1

n

n

E C


=

 and 
1

( )n

n

m C m E


=

 
= 

 
 for

1

( ) lim ( ) ( )n n
n

n

m E m C m C m E


→
=

 
 =  

 
. 

This completes the proof. 

 

An easy consequence of the above proposition is the following: 

 

Proposition 28.  Suppose g: [a, b] → R is absolutely continuous on [a, b].  Then for 

any measurable subset E of [a, b], ( ( )) ( )
E

m g E g t dt  .   Hence, the measure of g({x 

a b: g (x) = 0}) is zero. 

 

Proof.   We may assume that E  (a, b).  Take any open set G covering Vg(E) such that 

m(G) < m(Vg(E)) + .  Then since Vg is continuous, O = Vg
−1(G) is an open set covering 

E.  We may assume that O  (a, b).  O is at most a countable union of pairwise disjoint 

open intervals in [a, b], k

k

O I= .  For each Ik , m(g(Ik))  m(Vg(Ik)) since for any x, y 

in Ik, |g(x)−g(y)|  Vg(bk)−Vg(ak) = m(Vg(Ik)) , where Ik = (ak , bk).   Thus, since E  O ,        

( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( ) ( ( ))k g k g g

k k

m g E m g O m g I m V I m V O m G m V E    =   +   . 

                  

Since  is arbitrary, it follows that ( ( )) ( ( ))gm g E m V E .  Therefore, since Vg is 

increasing and absolutely continuous, we have by Proposition 27, 

                ( ( )) ( ( )) ( ) ( )g g
E E

m g E m V E V t dt g t dt  = =  . 

The last equality is because ( ) ( )gV x g x =  almost everywhere on [a, b] by Corollary 

26. 

The last assertion is now obvious. 

 

 

Remark 7.   The last assertion of Proposition 28 slightly generalises Proposition 10.  

The assertion is actually true without the assumption of absolute continuity.  See 

Proposition 10*. 

 

Our next result is the following proposition, guaranteeing that for an absolutely 

continuous function g, if it maps a set onto a set of measure zero, then its total variation 

function maps the same set onto a set of measure zero too. 

 



© Ng Tze Beng 2003  29 

Proposition 29.  Suppose g: [a, b] → R is an absolutely continuous function.  Then for 

any subset E such that the measure of its image under g , m(g(E)), is zero, we have that 

( ( )) 0gm V E = . 

 

Before we embark on the proof, consider a sequence of function gn  defined by a 

sequence of partitions of [a, b] whose norm tends to zero and for which gn  on each of  

the subinterval of the partition is equal to  g(x) + constant.   Then each gn(E) has 

measure zero because on each of these subintervals reflection and translation preserve 

measure.  Note that we would also want gn to converge to the total variation function Vg 

almost everywhere.   Put in geometrical terms, we would want to stretch g by a 

sequence of moves to Vg while preserving the total variation and each move carries the 

set E onto a set of measure zero.   The proof below uses the same idea. 

 

Proof of Proposition 29. 

 

If measure of E is zero, we have nothing to prove, since both g and Vg are absolutely 

continuous.  For each positive integer n, cover the set E by an open set On such that  

m(On)  m(E) + 1/n.   We may assume that On  On+1  On+2     Then since On is 

open, it is the disjoint union of at most countable number of open intervals,  

1 2 ( ), , ,n n n

s nI I I .  (s(n) here may be infinite).  Let ( ),n n n

k k kI a b= .  Then  

( )
( )

1

( )
s n

n

n k

k

m O m I
=

=   and m(On) tends to m(E) as n tends to infinity.  Hence,  

1

( )n

n

m O m E


=

 
= 

 
.  Absolute continuity makes the proof easier.   

Since Vg (x) = |g (x)| almost everywhere on [a, b], we may assume that for every x in E 

, Vg (x) = |g (x)|.   

 

This is because g is absolutely continuous and so gV  is also absolutely continuous by 

Theorem 23 and so both maps set of zero measure to set of measure zero by 

Proposition 9.  So we can replace E by E − H, where H = {x [a, b]: Vg (x)  |g (x)|}.   

Note that m(H) = 0 by Corollary 26.  Thus, by Proposition 9, ( ( )) 0gm V H =  because Vg 

is absolutely continuous.  If we can show that ( ( )) 0gm V E H− = , then since 

( ( )) 0gm V H = , ( ( )) ( ( )) ( ( ))g g gm V E m V E H m V H − + implies that ( ( )) 0gm V E = .   

 

For each x in E, given any  > 0, there exists arbitrary small h > 0 such that  

                   ( ) ( ) ( ) ( )g gV x h V x g x h g x h+ −  + − + .    ------------------  (17) 

Thus, for each x in E there are arbitrary small intervals [x, x+h] in On , hence in some  
n

kI  such that (17) holds.  We shall define a series of family of intervals {J n} such that 

each family has the measure of its intersection with E the same as the measure of E as 

follows.  For each integer n, by the Vitali Covering Theorem, there exists in On , 

countable pairwise disjoint intervals, [ , ),   1,n n n n

i i i iJ x x h i= + = ,  such that (17) holds 

and 
1

0n

i

i

m E J


=

 
− = 

 
 with 

1

n

i n

i

J O


=

 .    

Thus, for each i, 



© Ng Tze Beng 2003  30 

( ( )) ( ) ( ) ( ) ( ) ( ( ))n n n n n n n n n n

g i g i i g i i i i i i im V J V x h V x g x h g x h m g J h = + −  + − +  + .  

Therefore,  

       
1 1 1 1

( ( )) ( ( )) ( ( )) ( )n n n n

g i i i i

i i i i

m V J m g J h m g J b a 
   

= = = =

 +  + −    .   --------- (18) 

Now ( ) ( )nm E J m E = , where 
1

n n

i

i

J J


=

= .  In this way we define the family {J n}. 

Define the following characteristic functions, 

                                             
1,   if  ( ),

( )
0,   otherwise

n

n i

i

y g J
L y

 
= 


 . 

Then   ( ) ( ( ))n n

i iL y dy m g J


−
= .   

And so from (18) we get, 

1 1

( ( )) ( ( )) ( ( )) ( ) ( )n n n

g g g i i

i i

m V E m V E J m V J L y dy b a
  

−
= =

=    + −  .--------  (19) 

 

Now define 
1

( ) ( )n n

i

i

L y L y


=

=  .  Note that for each n, Ln(y)  N(y) for all y, where N(y) is 

the Banach Indicatrix function associated with the function g.  That is N(y) is the 

number of solutions of the equation g(x) = y in [a, b] if it is finite, infinity otherwise.  

N(y) is integrable and the integral, ( ) ( )gN y dy V b


−
= = the total variation of the 

function g on [a, b].  (For a reference see page 225 of the classic text, I.P Natanson’s 

“Theory of  Functions of a Real Variable”.)  Since N(y) is integrable, the set on which 

Ln(y) =  is of measure zero.  Therefore, by the Lebesgue Monotone Convergence 

Theorem, 
1

( ) ( )n n

i

i

L y dy L y dy
 

− −
=

=   .   Thus, from (19), we obtain, for each integer n 

> 0,   

                        ( ( )) ( ) ( )n

gm V E L y dy b a


−
 + − .          ------------------------  (20) 

Then by the Lebesgue Dominated Convergence Theorem, as Ln(y) is dominated by 

N(y), if Ln converges almost everywhere to a function L, then  

( ) lim ( )n

n
L y dy L y dy

 

− −→
=  .  Now we want to show that the integral ( )L y dy



− is 

zero.  Note that, since the Banach indicatrix function N(y) is summable, the set  D ={y : 

N(y) =  } is of measure zero.  We now proceed to analyse the function L(y).   We shall 

show that L(y) =  almost everywhere, i.e., lim ( ) 0n

n
L y

→
= for almost all y in the closed 

interval g([a, b]) =[c, d], where c = min{g(x): x  [a, b]} and d = max{g(x): x  [a, b]}.  

Let 
1

i

n i n

B J
 

= =

=  .  We shall show next that if L(y) is finite, then y is in g(B).  Firstly, 

we claim that m(g(B)) = 0.  Note that 
1

n

n

B C O


=

 = and E  C.  m(g(C))  

m(g(E))+m(g(C−E)) .  Since m(C−E) = 0, we have that m(g(C−E)) = 0 as g is 

absolutely continuous.  As m(g(E)) = 0, we have that m(g(C))  0 and so m(g(C)) = 0.  

It follows that m(g(B)) = 0.  Let K be the set in for which lim ( ) 0n

n
L y

→
 .  Consider K 
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− D.   We shall show that K − D  g(B).  Since each function, Ln(y), is a non-negative 

integral function for each y in K − D, there exists a sequence {nr} such that ( ) 1rn
L y      

because lim ( ) 0n

n
L y

→
 .  Thus, this means there exists at least one point 

rnx in   

1

r

r

n

n i

i

J J


=

= such that ( )
rng x y= .   Since N(y) <  this means there can only be a finite 

number of solutions to ( )
rng x y= .   Therefore, the sequence 

1rn
r

x


=
 contains a 

convergent constant subsequence.  That is to say, some of the solution to g(x) = y must 

occur infinitely often in the sequence  
1rn

r
x



=
.  Let such a solution be x0 .   Then x0 

belongs to an infinite number of J i and so in B, in particular g(x0) = y and hence y  

g(B).  Therefore, K − D  g(B) and so L(y) = 0 almost everywhere and ( ) 0L y dy


−
= .  

Thus, by (20) we get 

 ( ( )) lim ( ) ( ) ( ) ( ) ( )n

g
n

m V E L y dy b a L y dy b a b a  
 

− −→
 + − = + − = −  . 

Since  is arbitrary, we conclude that ( ( )) 0gm V E = .  This completes the proof. 

 

Remark. 

The conclusion of Proposition 29 is true for any function of bounded variation g. 

 

 

Proposition 29*.  Suppose g: [a, b] → R is a function of bounded variation.  Then for 

any subset E such that the measure of its image under g, m(g(E)), is zero, we have that 

( ( )) 0gm V E = . More precisely, m(g(E)) = 0 if and only if ( ( )) 0gm V E = . 

 

(For the proof see my article, Functions of Bounded Variation and Johnson’s 

Indicatrix, Theorem 1.)  

 

 

The next proposition is a slight generalisation of Proposition 11. 

 

Proposition 30.  Suppose g :[a, b] → R is an absolutely continuous function.  Suppose 

the range of g is [c, d] and E is a subset of [c, d] of measure zero.  Let H = { x  [a, b] : 

g (x)  0}.  Then the measure of  g−1(E)  H is zero.   Thus, g (x) = 0 almost 

everywhere on g−1(E). 

 

Proof.   Since g is absolutely continuous, by Corollary 26, ( ) ( )gV x g x = almost 

everywhere on [a, b].  Let H = { x  [a, b] : Vg (x)  0}.  Then H  is the same as the 

set { x  [a, b] : |g (x)|  0} = H except perhaps on a subset of measure zero.   That is 

H −C = H − C where C = { x  [a, b] : Vg (x)  |g (x)|}.  Thus, we may assume that H  
= H .  This assumption will not affect the conclusion of the proposition.   Therefore, 

g−1(E)  H = g−1(E)  H .  Then g( g−1(E)  H )  E .  Since E is of measure zero,     

g( g−1(E)  H ) too is of measure zero.  Then by Proposition 29, m(Vg( g−1(E)  H )) = 

0.  Since Vg is monotonic increasing, by Proposition 11, Vg
−1(Vg( g−1(E)  H ) ) H  is 

of measure zero. But g−1(E)  H  Vg
−1(Vg( g−1(E)  H ) ) and so g−1(E)  H  H  
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Vg
−1(Vg( g−1(E)  H ) ) H .  Therefore, g−1(E)  H  = g−1(E)  H is of measure zero.  

This completes the proof of Proposition 30. 

 

Remark.  

 

Proposition 30 is superseded by Proposition 13* without any condition on g. 

 

We shall now state and prove the following generalisation of Theorem 19. 

 

Theorem 31.  Suppose g: [a, b] → R is an absolutely continuous function and let  f : [c, 

d] → R be a bounded integrable function such that the range of g is contained in [c, d].   

Then we have the following equality for Lebesgue integrals. 

                       
( )

( )
( ( )) ( ) ( )

b g b

a g a
f g x g x dx f x dx =  .    

Proof.     Since  f : [c, d] → R is Lebesgue integrable, we can define the function F : [c, 

d] → R by ( ) ( )
x

c
F x f t dt=  .  By Proposition 20,  F  is absolutely continuous and 

satisfies a Lipschitz condition.  It then follows by Proposition 21, that F g is absolutely 

continuous. Hence, we have  

             ( ) ( ) ( ) ( )
b

a
F g x dx F g b F g a = −  

                                       
( ) ( ) ( )

( )
( ) ( ) ( )

g b g a g b

c c g a
f t dt f t dt f t dt= − =   . 

 

It now remains to show that (F g) (x) = F (g(x)) g (x) = f (g(x)) g (x) almost 

everywhere on [a, b]. Since both F g and g are absolutely continuous, they are 

differentiable almost everywhere on [a, b].  Therefore, it is enough to consider subset K 

of [a, b] on which both (F g) (x) and g (x) exist finitely.  If x is K, then either g (x) = 

0 or g (x)  0.   

Suppose now that x is in K and g (x)  0. As F is differentiable almost everywhere on 

[c, d], there exists a subset E in [c, d] of measure zero such that F is differentiable 

everywhere in [c, d] – E.  Let    

         [ , ]:  is differentiable at  finitely and ( ) 0H x a b g x g x=   . 

Then by Proposition 13*, measure of g−1(E)  H is zero.  That is to say, ( ) 0g x =

almost everywhere on g−1(E) K.   Let L = g−1(E).  Then for any x in 

K L K K L− = −  , (F g) (x), g (x) and ( ( ))F g x exist and so the Chain Rule holds 

on K L− .   Since F is absolutely continuous, ( )C F E= is a set of measure zero and so 

by Proposition 13*, the measure of   

    ( ) ( ) 1
( ) [ , ]:  is differentiable finitely at  and ( ) 0F g C x a b F g x F g x

−      

is zero.  Let ( ) [ , ]:  is differentiable finitely at  and ( ) 0G x a b F g x F g x=   .  

Note that ( )
1 1 1( ) ( ( ( )))D F g C g F F E L

− − −= =   and so ( )F g   and g   are zero 

almost everywhere on 
1( )g E K L K−  =  .  Thus ( )F g   and g   are zero on 

L K L H L G −  −  .  Note that both L H  and L G  are of measure zero and so  
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( )L H G   is of measure zero.  We now let  ( )K K L H G = −   .  Then on  

( ( ))K L K L H G −  −   the Chain Rule holds and on L K L H L G −  −  , 

( )F g   and g   are zero.   Let D L K L H L G =  −  −  .  

Hence, ( ) ( ) ( ( )) ( )F g x F g x g x  =   for x in K K D  = − .  Observe that 

( ) : ( ) 0, ( ) 0 but ( ( )) does not existD x F g x g x F g x  = = =  . 

Next note that F (y) = f (y) almost everywhere on [c, d].  So there exists a set E  of 

measure zero in in [c, d] such that ( ) ( )F y f y = for all y in [ , ]c d E− . Thus the set {x 

 [a, b]: g’(x)  0, and F (g(x))  f (g(x))} 1( )g E H−   , where H={x  [a, b]: g (x) 

 0}.  Thus, by Proposition 13*, {x  [a, b]: g (x)  0 and F (g(x))  f (g(x))} has 

measure zero.  Consequently, : ( ( )) ( ( )) and ( ) 0x K F g x f g x g x     has measure 

zero.   

Thus, on  : ( ( )) ( ( )) and ( ) 0K x K F g x f g x g x   −    , either ( ( )) ( ( ))F g x f g x =  

or ( ) 0g x = .  

Consequently, either ( ( )) ( ( ))F g x f g x =  or ( ) ( ) ( ) 0g x F g x = = .  

 

Schematically, 

( ) ( ),  when ( ) 0,
( ) ( )

0,    when  ( ) 0

F g x g x
F g x

g x

  
 = 

 =
  almost everywhere on [a, b] 

 

 

( ( )) ( ),  when ( ) 0,

( ( )) ( ),  when ( ) 0 and ( ( )) exists,

0,    when  ( ) 0 and ( ( )) does not exist

F g x g x g x

F g x g x g x F g x

g x F g x

   


   = =
  =

 almost everywhere on [a, b] 

( ( )) ( ),  when ( ) 0,

0,    when  ( ) 0

f g x g x g x

g x

  
= 

 =
 almost everywhere on [a, b] 

 
( ( )) ( )f g x g x=  almost everywhere on [a, b]. 

 

Therefore, ( )
( )

( )
( ( )) ( ) ( ) ( )

b b g b

a a g a
f g x g x dx F g x dx f x dx = =   .  

     

This completes the proof of Theorem 31. 

 

We shall close the article with a proof of the Banach Indicatrix Theorem for continuous 

function of bounded variation. 

 

Theorem 32  (Banach Indicatrix Theorem).  Suppose g: [a, b] → R is a continuous 

function of bounded variation.  Then ( ) ( )gN y dy V b


−
= , where N(y) is the Banach 

Indicatrix function defined by N(y) is the number of solutions of the equation g(x) = y 

in [a, b] if it is finite, infinity otherwise.  Here N is a function into the extended real 

number. 
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Proof.    We shall make use of the fact that the function g is of bounded variation.  That 

is to say the supremum of the sum 1

1

( ) ( )
n

i i

i

g x g x −

=

−  over all possible partitions, 

0 1: nP a x x x b=    =  exists.  That is,     

    
1 0 1

1

sup ( ) ( ) :  is a partition for[ , ]
n

i i n

i

g x g x a x x x b a b−

=

 
− =    = 

 
  

exists.  Hence, we can use the oscillation with respect to a partition instead.  We shall 

seek a sequence of partitions such that the oscillations with respect to the partitions 

converges to the total variation of g on [a, b].  If the total variation is zero, then g is a 

constant function and we have nothing to prove for ( ) 0N y dy


−
= .  We now assume 

that the total variation ( ) 0gV b  .   Thus, there exists an integer K such that 1/K < Vg(b).  

Therefore, by the definition of the supremum, given any positive integer r > K, there 

exists a partition
0 1:

r

r r r

r nN a x x x b=    =  such that   

                    
1

1

1
( ) ( ) ( ) ( ) 0

rn
r r

g i i g

i

V b g x g x V b
r

−

=

 −  −  . 

Since g is continuous we shall consider using the measure of the image of each of the 

closed interval [xr
i−1 , x

r
i] = r

i.   By inserting more points if need be we may assume 

that the norm of the partition ||Nr|| = max{ xr
i − xr

i−1 , i =1,.nr} < 1/r.  Thus,  

lim 0r
r

N
→

= .  By the Extreme Value Theorem and the Intermediate Value Theorem, 

                           g(r
i) = [g(ar

i) , g(br
i)],  

where ar
i,  b

r
i   [xr

i−1 , x
r
i] = r

i .  

Hence, for each i,   

                           m(g(r
i)) =g(br

i) − g(ar
i)   |g(xr

i) − g(xr
i−1|.   

Therefore, we have        

       ( ) 1

1 1

1
( ) ( ) ( ) ( ) ( ) 0

r rn n
r r r

g i i i g

i i

V b m g g x g x V b
r

−

= =

   −  −   . 

 

Now the oscillation of g with respect to the partition Nr is defined to be 

( )
1

( )
rn

r

r i

i

Os m g
=

=  .  We then have for each r > K, 

                            ( )
1

1
( ) ( )

rn
r

r i g

i

Os m g V b
r=

=   − . 

 We choose the partitions Nr such that Nr+1 contains all points in Nr .  Define now   

 

                         11,   if  ([ , )),
( )

0,   otherwise

r r

r i i

i

y g x x
L y −

 
= 


 . 

 

Then we have ( ) ( )r r

i iL y dy m E


−
= , where Er

i  =g(r
i)= [g(ar

i) , g(br
i)].  It is easy to see 

by continuity that Er
i and g([xr

i−1, x
r
i)) are intervals, hence measurable and that m(Er

i) = 

m(g([xr
i−1, x

r
i))).  Define 

1

( ) ( )
rn

r r

i

i

L y L y
=

=  .  Then Lr(y) is a measurable function.  Thus, 
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             ( )
1 1

1
( ) ( ) ( )

r rn n
r r r

r i i g

i i

Os m E L y dy L y dy V b
r

 

− −
= =

= = =  −    . 

Because every subinterval of the partition Nr+1 is part of a subinterval of Nr ,  0  Lr(y) 

 Lr+1 (y) .   Let ( ) lim ( )r

r
L y L y

→
= .  Then by the Lebesgue Monotone Convergence 

Theorem, ( ) ( ) lim ( ) lim ( )r

g r g
r r

V b L y dy L y dy Os V b
 

− −→ →
 = =   .  Therefore, 

( ) ( )gV b L y dy


−
=  . We shall now show that L(y) = N(y) almost everywhere.  Suppose 

that N(y) = 0, then this implies that y is not in g([xr
i−1 , x

r
i)) for all r > K and all i.  

Therefore, ( ) ( ) ( ) 0r r

iL y L y L y= = = .  Thus, N(y) = L(y) if N(y) = 0.  Now if N(y) = t < 

 then since lim 0r
r

N
→

= , each solution of the equation y = g(x) will lie in a different 

subinterval [xr
i−1 , x

r
i) for all large r, provided y is not equal to g(b).  This can be seen 

by taking all r such that 1/r < min{|p - q|: p and q are distinct solutions to y = g(x)}.  

Thus, for all large r,  ( ) 1r

iL y =  for exactly t values of i and ( ) 0r

iL y = for all the other 

values of i.  Hence  Lr(y) = t for all large r.  Therefore, L(y) = t.   Now we come to the 

case when N(y) =   This means that there exists distinct t solutions of  g(x) = y no 

matter how large t is.  Therefore, for all large r, following the argument above Lr (y)  t.  

This implies that L(y) =  = N(y).  Now for y = g(b).  If N(y) =  then as above we 

see that L(y) = .   If N(y) = t <  then L(y) = t−1.  We have thus shown that N(y) = 

L(y) almost everywhere on .  Therefore,  ( ) ( ) ( )gN y dy L y dy V b
 

− −
= =  . This 

completes the proof of Theorem 32. 
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