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 Cantor sets are well known in providing counter examples in real analysis.  Following 

my article, The Construction of Cantor Sets, I describe another well-known family of fat 

Cantor sets, i.e., Cantor sets with positive measure. It enjoys the same properties described in 

that article.  I shall describe the construction of this family of Cantor sets, discuss their 

properties and the definition of the associated Cantor Lebesgue function and show that the 

Cantor Lebesgue function of the fat Cantor set is absolutely continuous.  Related Cantor 

Lebesgue function, mapping one Cantor set from one family to another is described; it has 

similar properties as the Cantor Lebesgue function.  We compute its integral, derivative and 

the arc length of its graph. We discuss singular functions including the singular Cantor 

function, strictly monotone singular functions and their characterization.  

 

In our discussion, we start with a specific case and gradually move on to more general case 

by steps, first a specific family, then more general family of Cantor sets with varying ratios.  

 

 The Cantor set C  

 Let 0 <    1.  We shall start from the closed unit interval I = [0,1].  At the first stage, 

we delete the middle open interval with length 
3


 from [0, 1].  We shall enumerate the open 

intervals to be deleted.  We denote this open interval by I(1,1).  Then the complement of this 

middle interval is 2 disjoint closed interval each of length 
1

1
2 3

 
− 

 
.  We denote the open 

deleted interval by (1,1) ( (1,1), (1,1))I a b= .  We denote the closed interval in the complement 

by (1,1)J  and (1,2)J , where the closed interval (1,2)J is to the right (1,1)J  , meaning it is 

ordered in such a way that every point of (1,2)J is bigger than any point in (1,1)J . 

Then at the second stage we delete the middle open interval of length 
23


 from each of the 2 

remaining closed intervals.  Thus, there are 2 open intervals to be deleted and they are 

(2,1) ( (2,1), (2,1))I a b= and (2,2) ( (2,2), (2,2))I a b= .  These two open intervals are ordered 

by the second index.  That is, I(2,2) is to the right of I(2, 1).  Hence, we are left with 4 = 22 

remaining closed intervals, (2,1)J , (2, 2)J , (2,3)J  and 2(2,2 )J each of length 
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( )( )( )2
2
32

1
1 1

2
− − .  Let (1) (1,1)U I= ,  (2) (2,1) (2,2)U I I=  , (1) (1)G U= ,  

(2) (1) (2)G U U=  .  Then  (1) (1,1) (1,2)I G J J− =  ,  

2(2) (2,1) (2,2) (2,3) (2,2 )I G J J J J− =    . 

At stage n delete the middle open interval of length 
3n


 from each of the 

12n−
 remaining 

closed intervals, 1( 1,1), ( 1,2), , ( 1,2 )nJ n J n J n −− − − , each of length ( )( )( )1
2
31

1
1 1

2

n

n


−

−
− − .   

Denote these open intervals by 1( ,1), ( ,2), , ( ,2 )nI n I n I n − .   Then this resulted in the 

remaining 2n
 closed intervals, ( ,1), ( ,2), , ( ,2 )nJ n J n J n , each of length    

( )( )( )2
3

1
1 1

2

n

n n
= − − .   Let 

12

1

( ) ( , )

n

k

U n I n k

−

=

=  and 

12

1 1 1

( ) ( ) ( , )

kn n

k k j

G n U k I k j

−

= = =

= = . 

Observe that ( ) ( ,1) ( ,2) ( ,2 )nI G n J n J n J n− =    . 

Note that G(n) consists of  2 1n −  disjoint open intervals.  The total length of the intervals in 

G(n) is given by  

                   

2 1

2 1

2 3

2 2 2
2 2 2 1

3 3 3 3 3 3 3 3

n

n

n

    
−

−
    

+ + + + = + + +         

  

                                                                 
2

1
3

n


  

= −     

. 

Observe that ( ) ( 1)G n G n +  and ( 1) ( ) ( 1)G n G n U n+ =  + . 

Let 
1 1

( ) ( )
k k

G G k U k
 

= =

= = .  Thus, the measure of G is the total length of all the U(k), that is, 

2
( ) lim 1 .

3

n

n
m G  

→

  
= − =     

  

Define the generalized Cantor set C  by C I G = − . Hence the measure of  C  is given by 

( ) ( ) 1 0m I m G − = −  .  

Note that if we take   = 1, we would obtain the usual ternary Cantor set of measure 0.  For 0 

<  < 1, ( ) 1 0m C = −   and C  is called the fat Cantor set.   

The properties of C1 has previously been described in The Construction of cantor Sets.    
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Theorem 1.   The generalized Cantor set C  (0 <    1) is 

(1)  compact, 

(2)  nowhere dense, i.e., it contains no open intervals, 

(3)  its own boundary points, 

(4)  perfect, i.e., it is its own set of accumulation points, 

(5)  totally disconnected and 

(6)  between any two points in C , there is an open interval not contained in C . 

Proof.   (1)  Since G is a union of open intervals, it is open.  Therefore, as C  is the 

complement of G in I and I is closed in  , C  is closed in  .  As  C  is a subset of I, 

which is bounded, C is bounded.  Hence, C is compact by the Heine-Borel Theorem. 

(2)  Note that ( )
1 1

( ) ( )

c

c

k k

C G k G k

 

= =

 
= = 

 
.  Suppose C  contains an open interval say (c, 

d).  Then ( )
1

( , ) ( )
c

k

c d G k


=

  implies that ( )( , ) ( )
c

c d G k  for each k  1.  Now each 

( )( ) ( ,1) ( , 2) ( , 2 )
c kG k J k J k J k=    is a disjoint union of closed intervals, each of 

length ( )( )( )2
3

1
1 1

2

k

k k
= − − .  As 0k → , there exists an integer N such that k ≥ N implies 

that 
1

0 ( )
2

k d c  − .  Take k = N.  Then ( )( , ) ( )
c

c d G N .  Since (c, d) is connected,  

( , ) ( , )c d J N j  for some 1 2Nj   .  It follows that the length of (c, d), 

1
( )

2
Nd c d c−   − .  This is absurd and so there does not exist an open interval in C .  

This means C  is nowhere dense in I. 

(3)  Since C  is closed, the closure of  C  in  is C .  Let x be in [0, 1].   Then for any 

relatively open set J, containing x, say J = U  [0, 1], where U is an open interval containing 

x, J is non-empty and contains more than one point and J  G   because 

[0,1]J G C − = by part (2).  This is because if J  C , then the interior of J, which is a 

non-empty open interval is contained in C  contradicting part (2).  This means x is in the 

closure of G in I.  Thus, the closure of G in , [0,1]G I= = .  Hence, G is dense in I.  

Therefore, the boundary of C , C C I C C G C I C      =  − =  =  = .  
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(4)  Since C  is closed, the set of cluster points or limit points of C  is contained in C , i.e., 

C C 
  .  It remains to show that every point of C  is a limit point. 

Note that the end points of the closed intervals, ( , )kJ k j , k =1, …, ∞, 1,2, ,2k

kj =  are in 

C , ( )( )( )2
3

1
1 1

2

k

k k
= − −  is the end point of J(k, 1) and 1 k−  is the beginning  point of 

( ,2 )kJ k .  As  0k →  and 1 1k− → , 0 and 1are in C
 . 

SupposeC C 
  .  Then there exists x in C  such that x C

 .  We may assume that 0,1x  .  

Then there exists an open interval (x − , x + ) containing x with  > 0, such that 

( , ) (0,1)x x − +   and (x − , x + )  C  = {x}.  Thus, (x − , x + )([0, 1] − C ) = (x − 

, x)  (x, x + ).   That means, (x − , x), (x, x + )  ([0, 1] − C ) =  
12

1 1 1

( ) ( , )

k

k k j

G U k I k j

− 

= = =

= = a disjoint union of open intervals.  Therefore, as (x − , x) is 

connected, (x − , x)  I(k, j) for some k and 11 2kj −  , a connected component of G.   

Since ( , )x I k j ,  x = sup I(k, j) = b(k, j).   Similarly, 

12

1 1

( , ) ( , )

k

k j

x x G I k j

−

= =

+  = implies 

that (x, x + )  I(n, i) for some n and 11 2ni −  .  As ( , )x I n i , it follows that x = inf I(n, i) 

= a(n, i).   Hence, ( , ) ( , )a n i b k j x= = . This contradicts that ( , ) ( , )a n i b k j .  Hence, every 

point of  C  is in C
 .  It follows that C C 

 = .  This means C  is perfect. 

 (5)  Since, by part (2), C  does not contain any open interval and since the connected subsets 

of  are either the singleton sets or the intervals, the only connected components of C are 

the singletons {x}, x  C .  Therefore, C is totally disconnected. 

(6)  Suppose x < y and x and y are in C .  Then (x, y)([0, 1] − C )   by part (2) and is a 

disjoint union of open intervals and so (x, y) contains at least one open interval not in C .   

The Cantor Lebesgue Function 

In order to define the generalized Cantor Lebesgue function, we shall re-index the open 

intervals, ( , )kI k j , k =1, …, ∞, 11,2, ,2k

kj
−=  to reflect the values that the function will 

take on these intervals.  (1,1) (1/ 2)I I= , (2,1) (1/ 4), (2,2) (1/ 2 2 / 4) (3 / 4)I I I I I= = + = . 
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We show that ( ) :1 2 1
2

n

n

m
G n I m

  
=   −  

  
 by induction.  Recall

( 1) ( ) ( 1)G n G n U n+ =  + .   

Plainly, 
1

(1) (1)
2

G U I
 

= =  
 

, 2

2
(2) :1 2 1

2

m
G I m

  
=   −  

  
. 

Assume that ( ) :1 2 1
2

n

n

m
G n I m

  
=   −  

  
. 

We re-index 

12

1

( ) ( , )

n

k

U n I n k

−

=

= , by 1

1

1 1 2 1
( , ) ,1 2

2 2 2

n

n n n

k k
I n k I I k −

−

− −   
= + =     

   
.   Then the 

length of 
1

1 1
( , )

2 2n n

k
I n k I

−

− 
= + 

 
 is equal to 

3n


.   The index reflects the value that the Cantor 

Lebesgue function will take on these open intervals.   That is the function will take the value 

r in I(r). 

It follows that 1

1
( 1) ( ) ( 1) :1 2 1

2

n

n

m
G n G n U n I m +

+

  
+ =  + =   −  

  
.    

Observe that the ordering
1

1 1 1 1 1 1

1 1 1 1 2 2 1 3 3 1 2 1 2 1 1 2 1
0

2 2 2 2 2 2 2 2 2 2 2 2 2 2

n n n

n n n n n n n n n n n n n n

+

+ + + + + +

− − −
   +   +   +    + =  

is in one to one correspondence with the ordering of the disjoint open intervals in G(n+1).  

Thus, by induction on n, ( ) :1 2 1
2

n

n

m
G n I m

  
=   −  

  
 for all integer n ≥ 1. 

We now define : ( ) [0,1]nf G n →   by ( )nf x r=  if  ( )x I r  for some 
2n

m
r =  and 

1 2 1nm  − . 

Letting n tend to infinity, this defines : [0,1]f G → . Plainly,  f   is constant on each of the 

open interval in G.   Since each nf  is an increasing function on G(n), and the indexing 

preserves the ordering of the open intervals in G(n),  f   is also an increasing function on G.  

Proposition 2.  : [0,1]f G →  is uniformly continuous. 

Before we prove this, we state a result that we need in its proof below. 

Lemma 3.   For any x and y in G,  
1

( ) ( )
2

n n
x y f x f y−   −   . 

Proof. 
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Let x, y  G.  Suppose  
nx y−  .  Then x and y cannot belong to two distinct open 

intervals in G(n).  This is because the distance between any two consecutive open intervals in 

G(n) is n  and , cx y G .   Consequently, either x and y belong to the same open interval, 

I(r), in G(n) or only one of x or y belongs to some open interval, ( )I r , in G(n) or 

( ), ( )
c

x y G n . 

If x and y belong to the same open interval ( )I r  in G(n), then 
1

( ) ( ) 0
2n

f x f y r r− = − =  .   

Suppose x < y, ( )
2n

m
x I G n

 
  

 
 for some 1 2 1nm  −  and 

2n

m
y I

 
  

 
.  Since 

nx y−  ,  

y must belong to the adjacent closed interval ( , 1)J n m +  next to and after 
2n

m
I

 
 
 

.  Thus,      

                       
1 1

( ) ( ) ( )
2 2 2 2n n n n

m m m
f y f x f y

+
− = −  − = .  

Suppose x < y, ( )
2n

m
y I G n

 
  

 
for some 1 2 1nm  −  and 

2n

m
x I

 
  

 
.   As 

nx y−  , x 

must belong to the adjacent closed interval ( , )J n m  before 
2n

m
I

 
 
 

.  Thus,       

                          
1 1

( ) ( ) ( )
2 2 2 2n n n n

m m m
f y f x f x

−
− = −  − = .  

Suppose x < y and x and y belong to the same closed interval ( , )J n m  for some 1 2 1nm  − .  

Then for some k > n, x and y belong to G(k).  Consequently, x and y must belong to some 

open intervals, 
2k

p
I

 
 
 

 and 
2k

q
I

 
 
 

with  
1

,
2 2 2 2n k k n

m p q m−
  .  Hence,    

                          
1 1

( ) ( ) ( ) ( )
2 2 2n n n

m m
f y f x f y f x

−
− = −  − = .   

We are left with the possibility, x < y,  ( ),x J n m  and ( ), 1y J n m + , with 
2n

m
I

 
 
 

 sited 

between the two consecutive closed intervals, ( ) ( ),  and , 1J n m J n m+ .   Note that the length 

of 
2n

m
I

 
 
 

  is equal to 
3k


 , for some k such that 1  k  n.    Then  

3
nk


 .    This is because 

( ),x J n m  and ( ), 1y J n m + (and x, y  G) implies that y x−  is great than the length of 

2n

m
I

 
 
 

, which is 
3k


. Hence, 

3
nk

y x


 −  .   
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 Let 0
3

n k
P


= −  .  Let  ( )( , ), ( , )

2n

m
I c n m d n m

 
= 

 
 and if m ≥ 2,

( )
1

( , 1), ( , 1)
2n

m
I c n m d n m

− 
= − − 

 
.  Note that ( , ) ( , )

3k
d n m c n m


− =  and  

( )  , ( , 1), ( , )J n m d n m c n m= −  if m ≥ 2 and ( )  , 0, ( ,1)J n m c n=  if m = 1. ( ),x J n m  

implies that ( , 1) ( , )d n m x c n m−    if m ≥ 2 and 0 ( ,1)x c n   if m = 1.   We let ( ,0) 0d n = . 

We claim that ( , ) .P c n m x −  This is because if ( , )P c n m x − , then       

( ( , ) )
3 3 3

n nk k k
c n m x

  
− +  − + = .    Since ( , )y d n m because y is in ( ), 1J n m+ ,

( , ) ( , ) ( , ) ( , ) ( , )
3

nk
y x d n m x d n m c n m c n m x c n m x


−  − = − + − = + −   .  This implies  

ny x−   and contradicts that ny x−  .  Thus ( , ) .P c n m x −   

Hence, ( , 1) ( , ) ( , 1) ( ( , ) )x d n m c n m d n m c n m x− − = − − − −            

                                   ( ( , ) )
3

n n k
c n m x P


= − −  − = . 

Therefore, ( , 1)
3k

x d n m


 − + .   Let ( , 1)
3k

C d n m


= − + . 

Next, we claim that ( , )y d n m x C−  − . 

Suppose on the contrary, ( , )y d n m x C−  − . 

Then 

        ( ) ( )( , ) ( ( , ) ( , )) ( , ) ( , ) ( , )
3k

y x y d n m d n m c n m c n m x y d n m c n m x


− = − + − + − = − + + −           

                  ( )( , ) ( , ) ( , 1)
3

nk
x C c n m x c n m d n m


 − + + − = − − = . 

This contradicts  ny x−    and so  ( , )y d n m x C−  − . 

Therefore, ( , 1) ( , )
3k

x d n m y d n m


− − −  − .  Hence, ( , 1) ( , )
3k

x d n m y d n m


− −  − + . 

In the construction of the cantor set C , the procedure that continues in ( ),J n m  and 

( ), 1J n m+  are exactly the same and so f  on ( ),J n m and f  on ( ), 1J n m+ , after levelling 

the values on each of the closed intervals, are the same, i.e., 

     ( ) ( )
1

( , 1) ( , )
2 2n n

m m
f d n m h f d n m h

−
− + − = + −    for   0 nh   . 

Therefore,   

  ( )
1 1

( , 1) ( , 1) ( , 1) ( , )
2 3 2n k n

m m
f d n m x d n m f d n m y d n m

− − 
− + − − −  − + − + − 

 
 

But   
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1

( , 1) ( , ) ( , ) ( , )
3 2 3 2k n k n

m m
f d n m y d n m f d n m y d n m

 −   
− + − + − = + − + −   

   
 

                                                                 ( ) ( )( , ) ( , )
2 2n n

m m
f d n m y d n m f y + − − = − . 

Consequently, ( ) ( )
1

2 2n n

m m
f x f y

−
−  − .    Therefore,  ( ) ( )

1 1

2 2 2n n n

m m
f y f x

−
−  − = . 

This completes the proof. 

Proof of Proposition 2. 

Given any  > 0, as 
1

0
2n

→ , there exists a positive integer N such that 
1

2n
n N    . 

Let N =  .  Then by Lemma 3, for any x, y in G,   

                            
1

( ) ( )
2

N N
x y f x f y −  =  −   . 

This means : [0,1]f G →  is uniformly continuous on G. 

Definition of Cantor Lebesgue Function 

Since G is dense in I, we now extend the function f   to all of I. 

That this can be done is because of the following result. 

If a function g is uniformly continuous on a dense subset of a subset E in , then it can be 

extended to a continuous function on the whole of E.  

However, we shall give an explicit definition of the extension for  f  , which is reminiscent 

of the proof of the above result. 

We have already shown that 
1

( )
k

G U k


=

=  is dense in I. 

Take any x in 
cI G G C− = = .  Since G is dense in I, there exists a sequence ( )nx in G such 

that nx x→  .  Then ( )nx  is a Cauchy sequence in G.   Next, we show that  ( )( )nf x  is also a 

Cauchy sequence.  

Now, given any  > 0, there exists a positive integer N such that 
1

2n
n N    .  Since 

( )nx  is a Cauchy sequence, there exists a positive integer M such that 

, n m Nn m M x x  −  .  Therefore, by Lemma 3, 
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1

, ( ) ( )
2

n m N n m N
n m M x x f x f y   −   −   . 

This means that  ( )( )nf x  is also a Cauchy sequence.  Therefore, ( )( )nf x  is convergent by 

the Cauchy principle of convergence.  Let  ( )nf x y→ .   Define  ( )f x y= .   This is well 

defined.   Suppose there is another sequence ( )ny in G such that ny x→ .  Then 0n nx y− → . 

Thus, there exist a positive integer L such that     

              ( ) ( )1 1

1

2 2
n n N n n N

n L x y f x f y


+ +
  −   −    . -------------- (1) 

Since ( )nf x y→ , there exists integer L1 such that  

                                ( )1
2

nn L f x y


  −  . -----------------------------------  (2) 

Therefore, it follows from (1) and (2) that 

            ( ) ( ) ( ) ( )1max( , )
2 2

n n n nn L L f y y f y f x f x y
 

  −  − + −  + = . 

This means ( )nf y y→ .  Hence, ( )f x  is well defined. 

We define ( )f x for every x in 
cI G G C− = =  in exactly the same way.   We have thus 

defined a function,  :[0,1] [0,1]Cf 
→ , such that ( ) ( )Cf x f x


=  for every x in G.  This is the 

generalized Cantor Lebesgue function. 

Observe that (0) 0Cf 
= and (1) 1Cf 

= .  

Properties of the Cantor Lebesgue Function 

Proposition 4.  The generalized Cantor Lebesgue function, 
Cf 

, is increasing and maps C  

onto I = [0,1].  Consequently, C is uncountable. 

Proof.   

If x < y and x, y  G, then ( ) ( ) ( ) ( )C Cf x f x f y f y
 

=  = as f  is increasing on G.   

If x < y, y G and x G , then ( )y I r G   for some dyadic rational r.   If  

 inf : ( )x k k I r=  , then ( ) ( )Cf x r f y


= = ,  If   inf : ( )x k k I r  , then take an open 
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interval ( , )x x − + , where 
1

(inf( ( )) ) 0
2

I r x = −  . Then  ( , )G x x  − +    since C 

is nowhere dense.  Hence for any sequence ( )nx in G such that 
nx x→ , there exists an 

integer N such that ( , )nn N x G x x     − + . Since all the open intervals I(k) in 

( , )G x x  − +    are to the left of I(r),  ( ) ( )n Cf x r f y


 =  for n ≥ N and so 

( ) lim ( ) ( )C n C
n

f x f x r f y
 →

=  = . 

Similarly, if x < y, x G and y G , then ( )x I r G   for some dyadic rational r.   If  

 sup : ( )y k k I r=  , then ( ) ( )Cf y r f x


= = .  If   sup : ( )y k k I r  , then take an open 

interval ( , )y y − + , where 
1

( sup( ( ))) 0
2

y I r = −  . Then  ( , )G y x y − +    since C 

is nowhere dense.  Hence for any sequence ( )ny in G such that ny x→ , there exists an 

integer N such that ( , )nn N y G y y     − + .  Since all the open intervals I(k) in 

( , )G y y  − +    are to the right of I(r),  ( ) ( )n Cf y r f x


 =  for n ≥ N and so 

( ) lim ( ) ( )C n C
n

f y f y r f x
 →

=  = . 

Suppose now x < y, and ,x y G .  Then by theorem 1 part (6), there exists an open interval 

between x and y not in C .  Therefore, there exists z in G such that x < z < y.  Hence, by what 

we have just shown,  ( ) ( ) ( ) ( ).C C Cf x f z f z f y
  

 =     

We have thus shown that the function, Cf 
, is increasing on I.  

Every real number y > 0 in [0, 1] has a non-terminating binary representation of the form   

1 2

k

k
k

b

=

 ,  where 0 or 1kb = .  Then the partial sum
1 2

n
k

n k
k

b
r y

=

= → .  Now end points of ( )nI r  is 

in C . Let inf ( )n nx I r= .  Then since ( )nr  is strictly increasing, ( )nx  is also strictly 

increasing and since it is bounded above ( )nx  is convergent.  Let nx x→ .  Then x is a limit 

point of C . Therefore, by Theorem 1 part (4), x C .   Let sup ( )n ny I r= .  Then since ( )nr  

is strictly increasing, ( )ny  is also strictly increasing and since it is bounded above ( )ny  is 

convergent.  Let ny h→ .   

Since 
1 2

k

k
k

b

=

  is a non-terminating sequence, there exists a constant subsequence ( )
jnb  of ( )nb  

such that 1
jnb =  for all j ≥ 1.   Therefore, 

jnx x→   and 
jny h→ .  But the length of ( )

jnI r  is 

equal to 
1

3 jn
 , which tends to 0.  Thus, x = h.  Now take any 

jna in  ( )
jnI r .   By the Squeeze 
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Theorem, 
jna x→ . Therefore, ( ) lim ( ) lim

j jC n n
j j

f x f a r y
 → →

= = = .  As  (0) 0Cf 
= , this shows 

that 
Cf 

 maps the Cantor set onto [0, 1].   Hence, 
Cf 

  maps [0, 1] onto [0, 1] and the Cantor 

set C  is uncountable, since [0,1] is uncountable. 

Proposition 5.  The generalized Lebesgue Cantor function,  
Cf 

, is continuous on I = [0,1].   

Proof.  Since  
Cf 

 is monotonic increasing and the image of  
Cf 

 is an interval,  
Cf 

 is 

continuous.   This is because 
Cf 

 can have only jump discontinuities, but since the image is a 

connected interval, no jump discontinuity is possible and so  
Cf 

 is continuous.  

Proposition 6.  The generalized Lebesgue Cantor function, :[0,1] [0,1]Cf 
→ , for the fat 

Cantor set, C , 0 <  < 1, is Lipschitz on [0,1] with constant 
1

1 −
 and so it is absolutely 

continuous on [0,1]. 

Proof.  For this we are going to use G(n) to construct a polygonal approximation to 
Cf 

.  

Define :nf I → ,  by  ( ) ( )n Cf x f x


=  for x in G(n).  Now 

( ) :1 2 1
2

n

n

m
G n I m

  
=   −  

  
 and so  ( )

2
n n

m
f x =  for 

2n

m
x I

 
  

 
,  for 1 2 1nm  − .  

Define ( )
2

n n

m
f x =  for x = end points of 

2n

m
I

 
 
 

.  Now  ( )
2

1

( ) ( ) ( , )

n

c

k

I G n G n J n k
=

− = = is a 

disjoint union of closed intervals, each of length  ( )( )( )2
3

1
1 1

2

n

n n
= − − .  We define nf  on 

each ( , )J n k , 1 2nk   to be given by the linear function or line joining the points on the 

graph of Cf 
 given by the image of the end points of ( , )J n k .  Hence, the linear function on 

each of the closed interval ( , )J n k has the same gradient given by  

                                              
( )( )

1

2

2
3

1

1 1

n

n
n 

=
− −

 . 

It follows that for any x  y in I,  
( )( )2

3

( ) ( ) 1

1 1

n n

n

f x f y

x y 

−


− − −
 .   This means that for any x 

and y in I, 

                          
( )( )2

3

1
( ) ( )

1 1
n n n

f x f y x y


−  −
− −

. --------------------------  (3) 
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Plainly,  
1

1
( ) ( )

2
n n n

f x f x+−    for all x in I.  This means the sequence of function ( )( )nf x  

converges uniformly to a continuous function, g, on I such that ( ) ( )Cg x f x


=  for all x in G.  

It follows that 
Cg f


= identically on I since G is dense in I.  Therefore, by taking limit as n 

tends to infinity in (3) we get, for any x, y in I,  

                                  
1

( ) ( )
1

C Cf x f y x y
  

−  −
−

.              ---------------- (4) 

This means  
Cf 

 is Lipschitz on I and so is absolutely continuous on I.   

Remark.  Absolute continuity implies continuity.  A consequence of Proposition 6 is that  

Cf 
is continuous.   Since  

Cf 
 is increasing,  (0) 0Cf 

= and (1) 1Cf 
= , by the Intermediate 

Value Theorem, 
Cf 

is onto.  So, for the fat Cantor set, we need not use the fact that 

( ) [0,1]Cf C
  =  to conclude that 

Cf 
is onto. 

Proposition 7.  The arc length of the graph of the generalized Cantor Lebesgue function, 

:[0,1] [0,1]Cf 
→ , for C , is 21 (1 ) + + − . 

Proof.  The arc length of the graph of the polygonal approximation nf   is given by the total 

length of the horizontal line given by the total length of G(n), which is equal to 
2

1
3

n


  

−     

 

plus the total length of the 2n
 lines on the graph of nf   joining the two points on the graph 

given by the end points of each of the closed intervals J(n, k).   Therefore, the arc length of 

the polygonal approximation nf , is given by 

  ( ) ( )
22

2

2 1 2
1 2 1 2 1

3 2 3

n n

n n

n nn
 

      
− + + = − + +               

 

                                                   ( )( )( )
2

2
3

2
1 1 1 1

3

n
n

 
  

= − + − − +     

. 

Therefore, the arc length of the graph of f is given by 

                      ( )( )( )
2

22
3

2
lim 1 1 1 1 1 (1 )

3

n
n

n
   

→

   
− + − − + = + + −        

. 
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Proposition 8.  The generalized Cantor Lebesgue function, 
Cf 

, for the Cantor set C , 0 <   

 1, is differentiable almost everywhere on I.  The function 
Cf 

 is differentiable on G = I − C 

and ( ) 0Cf x


 =  in I − C .   For the Cantor Lebesgue function, 
Cf 

,  for the fat Cantor set C , 

0 <   < 1,  
1

( )
1

Cf x
 
 =

−
 almost everywhere on C .  For the case of the ternary Cantor 

Lebesgue function, 
Cf 

 , i.e., when 1 = , ( ) 0Cf x


 = almost everywhere on [0,1].  

Proof.   As the Cantor Lebesgue function, 
Cf 

, is monotone increasing, 
Cf 

is differentiable 

almost everywhere on I.  Plainly, since 
Cf 

is constant on each of the open interval in G = I − 

C , ( ) 0Cf x


 =  in I − C .  Obviously, if  1 = , ( ) 0Cf x


 = almost everywhere on [0,1], since 

1( ) 0m C = . 

Now for the Cantor Lebesgue function, 
Cf 

,  for the fat Cantor set C , 0 <   < 1, as 
Cf 

 is 

monotone increasing and absolutely continuous, for any measurable subset E in [0, 1], 

                               ( )( ) ( )C C
E

f x dx m f E
 

 = ,          ------------------------ (5) 

where m is the Lebesgue measure on .   (See Theorem 11, Functions of Bounded Variation 

and Johnson's Indicatrix.)   

Note that in general, a function h  defined on I is absolutely continuous implies that h is of 

bounded variation, h is differentiable almost everywhere on I and that h  is Lebesgue 

integrable.  In this case Cf 
 is increasing implies Cf 

is differentiable almost everywhere and 

Cf 

  is Lebesgue integrable.  In general, an increasing and continuous function need not be 

absolutely continuous.  For instance, the Cantor Lebesgue function for the Cantor set C1 of 

measure zero is not absolutely continuous on I. 

Since for any x  y, by (4), 
( ) ( ) 1

1

C Cf x f y

x y

 



−


− −
, if  Cf 

is differentiable at x, then 

1
( )

1
Cf x

 
 

−
.  It follows that for almost all x in I, 

1
( )

1
Cf x

 
 

−
.    Therefore, for any 

measurable subset E of I, since Cf 

  is Lebesgue integrable,  

                                  
1

( ) ( )
1

C
E

f x dx m E
 
 

− .   -------------------------------  (6) 

Since Cf 
is onto,   
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( ( )) ( ) ( ( ) ( ( ) ( )) ( ( )) ( ( ))C C C C C Cm f I m I m f C G m f C f G m f C m f G
       = =  =   + . 

Thus,  

                                        1 ( ( )) ( ( ))C Cm f C m f G
  + .  -------------------------- (7) 

By Theorem 11 of Functions of Bounded Variation and Johnson's Indicatrix, since  
Cf 

is 

monotone increasing and absolutely continuous, i.e., by (5) above,                       

( ) ( ( ))C C
G

f x dx m f G
 

 = .   Since ( ) 0Cf x


 = for all x in G, it follows that         

                                ( ( )) ( ) 0C C
G

m f G f x dx
 

= = . 

Therefore, it follows from (7) that ( ( )) 1Cm f C
    and as ( ( )) 1Cm f C

    because 

( )Cf C I
   , ( ( )) 1Cm f C

  = .  (We may of course deduce this directly since we have shown 

that ( )Cf C I
  = .) 

For any measurable subset, E, of C ,  

               ( )( )( )( ( )) ( ( )) ( ( ))C C C Cm f C m f E C E m f E m f C E
     =  −  + − .     ----------- (8) 

But by (5) and (6), 
1

( ( )) ( ) ( )
1

C C
C E

m f C E f x dx m C E
 


 

−

− =  −
− .  Therefore, it follows 

from (8) that  ( )
1 1

1 ( ( )) ( ) ( ( )) ( ) ( )
1 1

C Cm f E m C E m f E m C m E
  

 
 + − = + −

− −
. 

But ( ) 1m C = −  and so we have,  
( )

1 ( ( )) 1
1

C

m E
m f E

 
 + −

−
.   It follows that 

                                   
1

( ( )) ( )
1

Cm f E m E
 


−

. 

Hence, by (5), 

                               
1

( ) ( ( )) ( )
1

C C
E

f x dx m f E m E
  
 = 

−  

and together with (6), we conclude that for any measurable subset E of C , 

                               
1

( ) ( )
1

C
E

f x dx m E
 
 =

− .  ----------------------------- (9) 

Now let  :  is differentiable at CD x C f x C
 =   .   It follows then from (9) that        



15 

© Ng Tze Beng 2017 

                                 
1

( ) ( )
1

C
D

f x dx m D
 
 =

− . 

Hence,  
1

( ) 0
1

C
D

f x dx


 − = 
− 

 .   Since 
1

( )
1

Cf x
 
 

−
 for all x in D, we then have  

1
( ) 0

1
Cf x


− 

−
.   It follows that 

1
( ) 0

1
Cf x


− =

−
 almost everywhere on D.   Since 

Cf 
is 

differentiable almost everywhere with 
Cf 

differentiable on ( )
c

C  and on D , 
Cf 

is not 

differentiable on C D −  with ( ) 0m C D − = .  It follows that 
1

( )
1

Cf x
 
 =

−
 almost 

everywhere on C .  

This completes the proof of the proposition. 

 

Consequence of Absolute Continuity 

In the case of the Cantor Lebesgue function, 
Cf 

 , for the fat Cantor set, instead of using the 

polygonal approximations of 
Cf 

, we may use the usual arc length formula for the graph of 

Cf 
since 

Cf 
is absolutely continuous. 

By Theorem 9 of Arc Length, Functions of Bounded Variation and Total Variation, the arc 

length of the graph of f is given by, 

             ( ) ( ) ( )
2 2 2

1 ( ) 1 ( ) 1 ( )C C C
I G C

f x dx f x dx f x dx
  



  + = + + +     

                                         

2

21 1
1 1 ( ) 1 (1 ) ( )

1 1G C
dx dx m G m C




 

 
= + + = + + − 

− − 
   

                                         
2 21

1 (1 ) (1 ) 1 (1 )
1

    


= + + −  − = + + −
−

  . 

Moreover, for any increasing and continuous function,  :[0,1]f →  , the arc length of the 

graph of f is given by Theorem 9 in Arc Length, Functions of Bounded Variation and Total 

Variation as 

                             ( )
2

[0,1]
1 ( ) [0,1]hf x dx T+ + , 
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where 
0

( ) ( ) ( )
x

h x f x f x dx= −   is the singular part of f in the Lebesgue decomposition of f 

and [0,1]hT  is the total variation of h on [0,1]. 

Therefore, for the ternary Cantor Lebesgue function, 
1Cf ,  which is not absolutely 

continuous, the arc length of its graph is given by 

                        ( )
1 1

2

[0,1]
1 ( ) [0,1]

CC ff x dx T
 

+ + 
 

 , 

since 
1Cf  is singular. 

Plainly, 
1

[0,1] 1
Cf

T =  and so its arc length is given by     

                             ( )
1

2

[0,1] [0,1]
1 ( ) 1 1 1 2Cf x dx dx

 
+ + = + = 

 
  . 

 

Related Cantor function 

Using the construction of the Cantor set C , we can similarly define a function, g, mapping 

[0, 1] onto [0, 1] such that g maps C , 0 <  < 1, on to 1C , the usual ternary Cantor set of 

measure zero. 

Remember that 
1 1

[0,1] ( ) ( )
k k

G C G k U k

 

= =

= − = = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
U n I

−

−
=

− 
= + 

 
 for n ≥ 1,  

1
2

(1) (1) ( )G U I= = ,  ( 1) ( ) ( 1)G n G n U n+ =  +  so that ( ) :1 2 1
2

n

n

m
G n I m

  
=   −  

  
 .   

Note that the length of the open interval, 
1

1 1

2 2n n

k
I

−

− 
+ 

 
, is equal to 

3n


.    Hence, 

1

( ) :  a dyadic rational, , where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
G I r r r b k n b n

=

 
= = =   =  

 
 . 

Similarly, in the construction of the ternary Cantor set, C1, we have the complement of C1 is 

given by 1

1 1

[0,1] ( ) ( )
k k

H C H k V k
 

= =

= − = = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
V n J

−

−
=

− 
= + 

 
 for n ≥ 1,  

1
2

(1) (1) ( )H V J= = ,  ( 1) ( ) ( 1)H n H n V n+ =  +  so that ( ) :1 2 1
2

n

n

m
H n J m

  
=   −  

  
 .   
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The length of the open interval, 
1

1 1

2 2n n

k
J

−

− 
+ 

 
, is equal to 

1

3n
.     

Hence, 
1

( ) :  a dyadic rational, , where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
H J r r r b k n b n

=

 
= = =   =  

 
 . 

We define the function g on the open intervals I(r) by mapping I(r) onto J(r) linearly. 

If ( ) ( ( ), ( ))I r a r b r=  and ( ) ( ( ), ( ))J r c r d r= , then for x in ( ) ( ( ), ( ))I r a r b r= define 

                
( ) ( ) 1

( ) ( ( )) ( ) ( ( )) ( )
( ) ( )

d r c r
g x x a r c r x a r c r

b r a r 

−
= − + = − +

−
 . 

Note that  
( ) ( )  of ( ) 1

( ) ( )  of ( )

d r c r length J r

b r a r length I r 

−
= =

−
 because for 

1

, where 1
2

n
k

nk
k

b
r b

=

= = , the length of 

J(r) is 
1

3n
 and the length of I(r) is 

3n


. 

This defines g on G and plainly, G is mapped onto H linearly on each open interval in G.   

Set g(0) = 0.   

For x  0 and x in C , let               

               ( ) sup ( ) :  and sup ( ) :  and [0,1]g x g y y x y G g y y x y C=   =   − .   

This is well defined by the completeness property of  , since the set

 ( ) :  and g y y x y G  is bounded above by 1. 

Proposition 9.   The function g defined above is strictly increasing, continuous and maps the 

interval [0,1] bijectively onto [0, 1], mapping the fat Cantor set C , 0 <  < 1, onto the 

ternary Cantor set C1 of measure zero.  

Proof.  The proof is exactly the same as the proof of Lemma 1 in Composition and Riemann 

Integrability. 

Remark.  We may define the Cantor Lebesgue function Cf 
 the same way as g above.  

Proposition 10.  Let g be the function defined above mapping the fat Cantor set , 0 <  < 

1, onto the ternary Cantor set C1 of measure zero.  

(i) 
1

( )g x


 =   for x in [0,1] C− .     

(ii)  ( ) 0g x =  almost everywhere on C . 

(iii)  The function g is absolutely continuous on [0, 1].   

C
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(iv)  The arc length of the graph of g is 21 1 − + +  . 

Proof. 

(i)  Plainly, the gradient of the function g on each of the open intervals of [0,1]G C= −  is  

1


, as g is linear on each of the open interval of G.  Hence, 

1
( )g x


 =  for x in [0,1] C G− = .     

(ii)  Since 
1( ( )) ( ) 0m g C m C = = ,  by Theorem 15 of Functions of Bounded Variation and 

Johnson's Indicatrix, ( ) 0g x =  almost everywhere on C . 

(iii)  Let  [0,1]: ( )P x g x=  = + .  Since g is differentiable on [0,1] C− , P C  .  

Therefore,  ( )( )( ( )) [0,1]: ( ) ( ( )) 0m g P m g x g x m g C
=  = +  = implies that 

( ( )) 0m g P = .   Therefore, by Theorem 12 part (a) of Functions Having Finite Derivatives, 

Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallée 

Poussin's Theorem, since g is strictly increasing and continuous on [0, 1], g is absolutely 

continuous on [0,1]. 

We may prove this slightly differently as follows. 

 Let   [0,1]:  is differentiable at E x g x=  .  Then  G E  so that I E I G C−  − = .  

Therefore, ( ( )) 0m g I E− = .  Since g is continuous, by Lemma 4 of When is a continuous 

function on a closed and bounded interval be of bounded variation, absolutely continuous?  

(The answer and application to generalized change of variable for Lebesgue integral), g is an 

N function.  Therefore, since g is differentiable almost everywhere and g   is Lebesgue 

integrable, by Theorem 5 of the same article cited above, g is absolutely continuous on [0, 1].  

(We may invoke Banach-Zarecki Theorem, Theorem 8 of Functions Having Finite 

Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La 

Vallée Poussin's Theorem, since g is a continuous function of bounded variation and is an N 

function, to conclude that g is absolutely continuous.) 

A theorem of Sak, Theorem 1 of When is a continuous function on a closed and bounded 

interval be of bounded variation, absolutely continuous?  (The answer and application to 

generalized change of variable for Lebesgue integral), implies that g is absolutely 

continuous.  This is because g is a continuous function of bounded variation and g   is 

Lebesgue integrable since g is increasing, g is differentiable on  and 

( )( ) 0m g C = . See also Theorem 16 of  “Absolutely Continuous Function on Arbitrary 

Domain and Function of Bounded Variation” .  Since g is continuous, increasing, 

differentiable on [0,1] C− and ( )({ [0,1]: ( ) }) 0m g x g x = + = as ( )( ) 0m g C = , the 

condition of the theorem is met.  More precisely, the theorem states that:  

[0,1] C G− =
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A continuous function g of bounded variation is absolutely continuous if, and only if, 

( )({ : ( ) }) 0m g x g x =  = .  

We shall use any one of the above result to determine if any one of our Cantor function is 

absolutely continuous. 

(iv)  Since g is absolutely continuous on [0, 1], the arc length of the graph of g is given by 

           ( ) ( ) ( )
2 2 2

1 ( ) 1 ( ) 1 ( )
I G C

g x dx g x dx g x dx


  + = + + +    

                                     

2

1
1 1 0

G C
dx dx



 
= + + + 

 
  ,  

                                              since
1

( )g x


 =  on G and ( ) 0g x =  almost everywhere on C , 

                                    
21

( ) ( )m G m C





+
= +  

                                    21 1 = + + − . 

(Of course, we can always take the limit of the arc lengths of the graph of the polygonal 

approximations of g.) 

Remark. 

The inverse function of g,  1g − , is strictly increasing and continuous.   But 1g −  is not 

absolutely continuous, since 1

1( ( )) ( ) 1 0m g C m C − = = −   and so cannot be an N function 

and that a necessary condition for a function to be absolutely continuous is that it must be an 

N function, i.e., it must map sets of measure 0 to sets of measure zero. 

If h is the Cantor function for the ternary Cantor set, C1, of measure 0, then for the same 

reason as above, h is not absolutely continuous because h maps C1 on to I, which is not of 

measure 0.  But the composite h g  is the generalised Cantor Lebesgue function for C , 

where 0 1  , and is absolutely continuous on [0, 1].   

 

Integral of Cantor function 

Recall the polygonal approximation, :nf I I→ , as defined in the proof of Proposition 6, of 

the generalized Cantor function, :Cf I I


→ , converges uniformly to f.  Therefore, as each nf  

is integrable, ( ) ( )n C
I I

f x dx f x dx


→  . 
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We now describe, the integral of each :nf I I→ . 

Recall that for each integer k ≥ 1,  1

1

1
( ) : 0 2 1

2 2

k

k k

i
U k I i −

−

  
= +   −  

  
.  Since the length 

of each open interval in U(k) is  
3k


,  for  1 k  n, the integral, 

     
1

1 1 1( )

1 0 1 2 1 2 1
( )

3 2 2 2 2 2 2

k

n k k k k k k kU k
f x dx

 −

− − −

  −    
= + + + + + +     

      
   

                          

11 2 1

0

1 1 1 2 1 2(2 1) 1
(2 1)

3 2 2 2 2 3 2

kk

k k k k k k k
i

i
 

−− −

=

  + + −    
=  + + + =  +     

      
  

                          
1

11 2 2
(1 2(2 1) 1)

3 2 2 4 3

kk
k

k k

 −
−  

=   + − + =  
 

. 

As 
1

( ) ( )
n

k

G n U k
=

= is a disjoint union, 
( )

1

2 2
( ) 1

4 3 2 3

k nn

n
G n

k

f x dx
 

=

    
= = −         

 .    In 

particular, as ( ) ( )C nf x f x


=  for x in U(n), 
( )

2
( )

4 3

n

C
U n

f x dx


  
=  

 
  and so    

                                 
( )

1 1

2
( ) ( )

4 3 2

n

C C
G U n

n n

f x dx f x dx
 

  

= =

 
= = = 

 
   . 

Now, 
2

1

1
( ) ,

2

n

n
k

k
I G n J n

=

− 
− =  

 
, a disjoint union of 2n

 closed interval of the same length, 

( )( )( )2
3

1
1 1

2

n

n n
= − − .   Here we have indexed these closed intervals by their minimum 

values on each closed interval, that is,  ,
2n

i
J n

 
 
 

 , 0 2 1ni  − .  Therefore, 
( )

( )n
I G n

f x dx
− , 

is given by 2n
 triangular parts of equal area given by, 

1 1 1
2

2 2 2

n

n nn
  =  plus the rectangular 

parts below these triangles, given by            

              ( )( )( )
2 1

2
3

1

1 2 1 1 1 1 1
2 2 1 1

2 2 2 2 2 2 2

n n
nn n

n n n n nn n
i

i


−

=

−
 =    = − = − − −  . 

It follows that ( )( )( ) ( )( )( )2 2
3 3( )

1 1 1 1
( ) 1 1 1 1

2 2 2 2

n n

n n n
I G n

f x dx  
−

= + − − − = − − .   Hence, 
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( )( )( )2
3

2 1 1
( ) 1 1 1

2 3 2 2

n
n

n
I

f x dx



  

= − + − − =     
 .    It follows that 

1
( )

2
C

I
f x dx


= .  Hence, 

[0,1]

1 1
( ) ( ) ( )

2 2 2
C C C

C G
f x dx f x dx f x dx

  


 −
= − = − =   . 

Note that this is also true for  =1. 

Hence, we have: 

Proposition 11.   The integral of the generalized Cantor function, 
Cf 

, including the usual 

ternary Cantor function, when  =1, is ½.  ( )
2

C
I C

f x dx





−

=  and 
1

( )
2

C
C

f x dx




−
= . 

We can also prove this by proving that for the Cantor function,  
Cf 

  (with 0 <   1), 

( ) (1 ) 1C Cf x f x
 

+ − =  for all x in I.    Indeed  ( ) (1 ) 1C C
I I

f x dx f x dx
 

+ − =  .  But  

            
1 0

0 1
(1 ) (1 ) ( )C C C

I
f x dx f x dx f u du

  
− = − = −    , with substitution 1u x= −  , 

                                  
1 1

0 0
( ) ( )C Cf u du f x dx

 
= =  . 

It follows that  2 ( ) 1C
I

f x dx


= and so 
1

( )
2

C
I

f x dx


= .  

We may prove this relation on each polygonal approximation nf  and then take the limit to 

infinity on each side of the relation. 

Proposition 12.   The associated Cantor Lebesgue function :Cf I I


→  for the Cantor set C  

, 0 <   1, satisfies  ( ) (1 ) 1C Cf x f x
 

+ − =  for all x in I.    

Proof. 

It is enough to show that the polygonal approximation, :nf I I→ , of f, satisfies the same 

relation ( ) (1 ) 1n nf x f x+ − =  for all x in I and for all integer n ≥ 1. 

We first show that ( ) (1 ) 1n nf x f x+ − = for all x in G(n). 

Note that ( ) :1 2 1
2

n

n

m
G n I m

  
=   −  

  
.    Notice by the construction of G(n), the open 

sets of G(n) are symmetrical about the point y = ½, with 
1

(1/ 2)
2

I .  More precisely, if h(x) 

= 1−x, then ( ( )) (1 )h I r I r= − . 
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Suppose ( )x I r ,  ,1 2 1
2

n

n

k
r k=   − .  We shall show that ( ) 1 (1 )h x x I r= −  − .   

We show that ( ( )) (1 )h I r I r= −  by induction on n. 

When n =1, then (1) (1) (1/ 2)G U I= = , obviously ( (1/ 2)) (1 1/ 2) (1/ 2)h I I I= − = . 

 (2) (1) (2)G G U=   and 
2

1
(2) : 0 1

2 2

i
U I i

  
= +    

  
.  Since (1)I G−  is a disjoint union 

of two closed interval of equal length and is symmetrical placed about y = ½, the open 

intervals,
2

1

2
I

 
 
 

 and 
2

3

2
I

 
 
 

, are symmetrical about y = ½.   

2 2 2 22 2 2 2

1 1
1 1 1 1 1

2 3 3 2
x I x x x I

    
    +  − −  −  −  −  −   

   
. 

Thus, 
2 2

1 1
1

2 2
h I I

    
= −    

    
. 

Suppose ( ( )) (1 )h I r I r= −  for ( ) ( ) :1 2 1
2

k

k

m
I r G k I m

  
 =   −  

  
.   

Now,  
1

1
( 1) :1 2 1 : 0 2 1

2 2 2

k k

k k k

m m
G k I m I m

+

      
+ =   −  +   −      

      
.  Recall that  

1

1
( 1) : 0 2 1

2 2

k

k k

m
U k I m

+

  
+ = +   −  

  
.  We let (0) {0}I = . Note that  

1 1

1 2 1

2 2 2k k k

m m
I I

+ +

+   
+ =   

   
 and so 

1 1

1 2 1

2 2 2k k k

m m
I I

+ +

+   
+ =   

   
 is between 

1

2

2k

m
I

+

 
 
 

 and 

1

2 2

2k

m
I

+

+ 
 
 

.   The map h maps 
1

2

2k

m
I

+

 
 
 

 to 
1

1 1

2 2 2
1

2 2

k

k k

m m
I I

+

+ +

 − 
− =   

   
 and maps 

1

2 2

2k

m
I

+

+ 
 
 

 to 
1

1 1

2 2 2 2 2
1

2 2

k

k k

m m
I I

+

+ +

 + − − 
− =   

   
.   

1 1

1 2 1

2 2 2k k k

m m
I I

+ +

+   
+ =   

   
 is placed in 

the middle interval of the closed interval between 
1

2

2k

m
I

+

 
 
 

 and 
1

2 2

2k

m
I

+

+ 
 
 

 of length 
13k


+

 

and so h must map 
1 1

1 2 1

2 2 2k k k

m m
I I

+ +

+   
+ =   

   
 to the middle interval of the closed interval 

between 
1

1 1

2 2 2 2 2
1

2 2

k

k k

m m
I I

+

+ +

 + − − 
− =   

   
 and 

1

1 1

2 2 2
1

2 2

k

k k

m m
I I

+

+ +

 − 
− =   

   
, which is of 

course 
1

1 1

2 2 1 2 1
1

2 2

k

k k

m m
I I

+

+ +

 − − + 
= −   

  
.  This proves that ( ( )) (1 )h I r I r= −  for
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( ) ( 1)I r U k + .  Hence, ( ( )) (1 )h I r I r= −  for 1

1
( ) ( 1) :1 2 1

2

k

k

m
I r G k I m +

+

  
 + =   −  

  
 

and for any k ≥ 1.   It follows that ( ( )) (1 )h I r I r= −  for any ( )I r  in G.    Hence, if x is in 

( ) ( )I r G n , then 1 (1 )x I r−  − . Consequently,  ( ) (1 ) 1 1n nf x f x r r+ − = + − = .   Plainly this 

applies also to the end points of the open intervals of G(n). It follows that ( ) (1 ) 1n nf x f x+ − =  

for all ( )x G n  . 

Suppose now ( )x G n  .  Then x is in one of the interior of the closed intervals in ( )I G n− .  

Each of these closed intervals are of the same length n .   We can index these closed 

intervals by the max value of nf   on it, i.e.,  ( ) , :1 2
2

n

n

i
I G n J n i

  
− =    

  
. 

Suppose x is in the interior of  ,
2n

k
J n

 
 
 

,  1 2nk  .  For technicality, let I(1) = {1} and I(0) 

= {0}. Then ,
2n

k
J n

 
 
 

 is the closed interval between 
1

2n

k
I

− 
 
 

 and 
2n

k
I

 
 
 

 for 1 2nk  .  

Since   
1 1

1
2 2n n

k k
h I I

 −  −   
= −    

    
 and 1

2 2n n

k k
h I I

    
= −    

    
, ,

2n

k
h J n

  
  
  

 is the closed 

interval between 1
2n

k
I

 
− 

 
 and 

1
1

2n

k
I

− 
− 

 
.     Let ( )1 1

1
,

2
k kn

k
I a b− −

− 
= 

 
 and 

( ),
2

k kn

k
I a b

 
= 

 
.   Then 1 (1 ,1 )

2
k kn

k
I b a

 
− = − − 

 
 and 1 1

1
1 (1 ,1 )

2
k kn

k
I b a− −

− 
− = − − 

 
.   

Note that 1k k na b −− =  ,  1k kb x a−     and   11 1 1k ka x b −−  −  −  

Now  ( )1

1 1
( )

2 2
n kn n

n

k
f x x b −

−
= + −   and   

( )( ) ( )
1 1

(1 ) 1 1 1 1
2 2 2 2

n k kn n n n

n n

k k
f x x a a x− = − + − − − = − + − . 

Therefore,  

 ( ) ( )1

1 1 1
( ) (1 ) 1

2 2 2 2
n n k kn n n n

n n

k k
f x f x x b a x−

−
+ − = + − + − + −  

                            ( )1

1 1 1 1
1 1 1

2 2 2 2
k k nn n n n

n n

a b −= − + − = − + = . 
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Note that in the above proceeding, if k =1, then ( )    0

1
0 0

2n

k
I I b

− 
= = = 

 
 and 

   0

1
1 (1) 1 1

2n

k
I I b

− 
− = = = − 

 
.  If  2nk = , then ( )    1 1

2
kn

k
I I a

 
= = = 

 
and 

( )    1 0 0 1
2

kn

k
I I a

 
− = = = − 

 
.     

This proves that ( ) (1 ) 1n nf x f x+ − =  for all x in I and for all integer n ≥ 1.  Therefore, 

( )( ) (1 ) lim ( ) lim (1 ) lim ( ) (1 ) 1C C n n n n
n n n

f x f x f x f x f x f x
  → → →

+ − = + − = + − =  for all x in I. 

Alternatively, we may proceed as follows. 

We have already shown that for all x in G, ( ) (1 ) 1C Cf x f x
 

+ − = .  For x I G C − = , there 

exists a sequence ( )na  in G such that  na x→ . Since 
Cf 

is continuous, ( ) ( )C n Cf a f x
 

→  

and (1 ) (1 )C n Cf a f x
 

− → − .  Since na G ,  ( ) (1 ) 1C n C nf a f a
 

+ − = .  It follows that, 

              ( )( ) (1 ) lim ( ) lim (1 ) lim ( ) (1 ) 1C C C n C n C n C n
n n n

f x f x f a f a f a f a
     → → →

+ − = + − = + − = . 

Therefore, ( ) (1 ) 1C Cf x f x
 

+ − = for all x I G C − = .  Hence, ( ) (1 ) 1C Cf x f x
 

+ − = for all x 

in I. 

The function, g, as defined just prior to Proposition 9 and referred to in Proposition 9, also 

satisfies the relation ( ) (1 ) 1g x g x+ − = for all x in I. 

By Proposition 9, g is strictly increasing, continuous and maps the interval [0,1] bijectively 

onto [0, 1], mapping the fat Cantor set C ( 0 <  < 1) onto the ternary Cantor set C1 of 

measure zero.  

 Let 
1 1

[0,1] ( ) ( )
k k

G C G k U k

 

= =

= − = = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
U n I

−

−
=

− 
= + 

 
,    

1

( ) ( ) :1 2 1
2

n
n

n
k

m
G n U k I m

=

  
= =   −  

  
 and ( 1) ( ) ( 1)G n G n U n+ =  + . 

Let 1

1 1

[0,1] ( ) ( )
k k

H C H k V k
 

= =

= − = = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
V n J

−

−
=

− 
= + 

 
 for n ≥ 1, are the 

middle third open intervals in the construction of C1, 

1

( ) ( ) :1 2 1
2

n
n

n
k

m
H n V k J m

=

  
= =   −  

  
 and ( 1) ( ) ( 1)H n H n U n+ =  + . 

The function g maps each I(r), linearly, strictly increasingly and bijectively onto J(r). 
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For each integer n ≥ 1, let :ng I I→  be the polygonal approximation of g such that 

( ) ( )ng x g x=  for x in each 
2n

m
I

 
 
 

 in G(n).   As before we can index the closed intervals in 

( )I G n−  all of equal lengths, ( )( )( )2
3

1
1 1

2

n

n n
= − − , by ( ) , :1 2

2

n

n

i
I G n S n i

  
− =    

  
.  

Similarly, we index the closed intervals in ( )I H n−  all of equal lengths, 

( )( )( )2
3

1
1 1

2

n

n n
 = − − , by ( ) , :1 2

2

n

n

i
I H n T n i

  
− =    

  
.  Thus, if  ( ) ( ( ), ( ))x I r a r b r =  

and ( ) ( ( ), ( ))J r c r d r= ,  
( ) ( )

( ) ( ) ( ) ( ( ))
( ) ( )

n

d r c r
g x g x c r x a r

b r a r

−
= = + −

−
.  Now, ,

2n

k
S n

 
 
 

, is the 

closed interval between 
1

2n

k
I

− 
 
 

 and 
2n

k
I

 
 
 

.  ,
2n

k
T n

 
 
 

, is the closed interval between 

1

2n

k
J

− 
 
 

 and 
2n

k
J

 
 
 

.   

We use the convention: I(1) = J(1) = {1} and I(0) = J(0) = {0}.  ng  maps ,
2n

k
S n

 
 
 

 linearly 

and bijectively onto ,
2n

k
T n

 
 
 

 as follows. 

Let  ( )1 1

2 2

1
( ), ( )

2
n n

k k

n

k
I a b− −

− 
= 

 
,  ( )

2 2
( ), ( )

2
n n

k k

n

k
I a b

 
= 

 
,  ( )1 1

2 2

1
( ), ( )

2
n n

k k

n

k
J c d− −

− 
= 

 
,  

( )
2 2

( ), ( )
2

n n

k k

n

k
J c d

 
= 

 
.  Then for ,

2n

k
x S n

 
  

 
, 

      
1

2 21 1 1 1

2 2 2 21

2 2

( ) ( )
( ) ( ) ( ( )) ( ) ( ( ))

( ) ( )

n n

n n n n

n n

k k

nk k k k
n k k

n

c d
g x d x b d x b

a b

−

− − − −

−

−
= + − = + −

−
 

               
( )( )( )
( )( )( )

( )

( )( )( )

2
23
31 1 1 1

2 2 2 2
2 2
3 3

1 1
( ) ( ( )) ( ) ( ( ))

1 1 1 1
n n n n

n
n

k k k k

n n
d x b d x b

 

− − − −

− −
= + − = + −

− − − −
. 

Let  ( ) 1h x x= − .  We shall show that ( ) (1 ) 1n ng x g x+ − =  for all x in G(n).   We shall do this 

by induction.   For n = 1, (1) (1) (1/ 2)G U I= = , obviously ( (1/ 2)) (1 1/ 2) (1/ 2)h I I I= − = .   

Now ( (1/ 2)) ( (1/ 2)) (1/ 2)ng I g I J= = .   Let ( )1 1
2 2

(1/ 2) ( ), ( )I a b=  and ( )1 1
2 2

(1/ 2) ( ), ( )J c d= .  

Then for x in ( )1 1
2 2

(1) (1/ 2) ( ), ( )G I a b= = , 

       
11 1
32 21 1 1 1 1 1

1 2 2 2 2 2 21 1 1
2 2 3

( ) ( ) 1
( ) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ))

( ) ( )

d c
g x c x a c x a c x a

b a  

−
= + − = + − = + −

−
 

and 
1 1
2 21 1 1 1

1 2 2 2 21 1
2 2

( ) ( ) 1
(1 ) ( ) (1 ( )) ( ) (1 ( ))

( ) ( )

d c
g x c x a c x a

b a 

−
− = + − − = + − −

−
.  But 1 1

2 2
1 ( ) ( )a b− = . 
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It follows that

1 1 1 1 1 1 1
1 1 2 2 2 2 2 2 2

1 1 1
( ) (1 ) ( ) ( ( )) ( ) ( ( ) ) 2 ( ) ( ( ) ( ))g x g x c x a c b x c b a

  
+ − = + − + + − = + −  

                         1 1 1 1 1
2 2 2 2 2

2 ( ) ( ) ( ) ( ) ( ) 1c d c c d= + − = + = . 

So, the relation ( ) (1 ) 1n ng x g x+ − = holds for all x in G(1). 

Now ( ) ( )2 2

31

2 2
(2) (1) (2) (1)G G U G I I=  =    and ( )( ) ( )2 2

31

2 2
h I I= .  We shall show that 

( ) (1 ) 1n ng x g x+ − = holds for  2

1
2 2

(2) ( ) : 0 1ix U I i = +   . 

Let  ( )2 2 2

1 1 1

2 2 2
( ( ), ( ))I a b=  and ( )2 2 2

1 1 1

2 2 2
( ( ), ( ))J c d=   Then ( )2 2 2

3 1 1

2 2 2
(1 ( ),1 ( ))I b a= − −  and  

( )2 2 2

3 1 1

2 2 2
(1 ( ),1 ( ))J d c= − − . 

If ( )2

1

2
x I , then 2 2

1 1
2 2 2

1
( ) ( ) ( ( ))g x c x a


= + − and ( )2 2

1 1
2 2 2

1
(1 ) 1 ( ) 1 (1 ( ))g x d x b


− = − + − − − .  

Thus,  

( )2 2 2 2

1 1 1 1
2 2 2 2 2 2

1 1
( ) (1 ) ( ) ( ( )) 1 ( ) 1 (1 ( ))g x g x c x a d x b

 
+ − = + − + − + − − −  

                           2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

1
1 ( ) ( ) ( ( ) ( )) 1 ( ) ( ) ( ) ( ) 1d c b a d c d c


= − + + − = − + + − = . 

Similarly, we show that if ( )2

3

2
x I , then 2 2( ) (1 ) 1g x g x+ − = . 

We assume that ( ) (1 ) 1k kg x g x+ − =  for integer k ≥ 2 and for all x in G(k).  Now

( 1) ( ) ( 1)G k G k U k+ =  + .  We show that 1 1( ) (1 ) 1k kg x g x+ ++ − =  for x in U(k+1). 

Note that if ( )I r  is one of the open interval in U(k+1), then (1 )I r− is also one of the open 

interval in U(k+1) and moreover ( ( )) (1 )h I r I r= − .  Note that g maps any open interval, I(r), 

in G to the corresponding open interval J(r) in H. 

Let  ( ) ( ( ), ( ))I r a r b r=  and ( ) ( ( ), ( ))J r c r d r=   Then ( )1 (1 ( ),1 ( ))I r b r a r− = − −  and  

( )1 (1 ( ),1 ( ))J r d r c r− = − − . 

If  ( )x I r , then 1

1
( ) ( ) ( ) ( ( ))kg x g x c r x a r


+ = = + − and 

                       ( )1

1
(1 ) 1 ( ) 1 (1 ( ))kg x d r x b r


+ − = − + − − − .    

It follows that  

 ( )1 1

1 1
( ) (1 ) ( ) ( ( )) 1 ( ) 1 (1 ( ))k kg x g x c r x a r d r x b r

 
+ ++ − = + − + − + − − −  
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1

1 ( ) ( ) ( ( ) ( )) 1 ( ) ( ) ( ) ( ) 1d r c r b r a r d r c r d r c r


= − + + − = − + + − = . 

This proves that ( ) (1 ) ( ) (1 ) 1n ng x g x g x g x+ − = + − =  for all x in G(n) and for all integer n ≥ 

1.  Therefore, ( ) (1 ) 1g x g x+ − =  for all x in G. 

(Using the same technique as for the case of  
Cf 

, the Cantor Lebesgue function, we can 

show that ( ) (1 ) 1n ng x g x+ − = , for all x in C .   We then prove the relation by taking limit of 

both sides of the relation.  For this we need to use the convergence of ng to g.   Note that 

1

1
( ) ( )

3
n n n

g x g x+−    for all x in I so that ( ( ))ng x  does converge uniformly to g on I.) 

Take any x in I G C− = .  Since G is dense in I, there exists a sequence ( )na  in G such that 

na x→ .  As g is continuous, ( ) ( )ng a g x→  and (1 ) (1 )ng a g x− → − .  Note that 

( ) (1 ) 1n ng a g a+ − =  for all integer n ≥ 1. 

It follows that ( )( ) (1 ) lim ( ) lim (1 ) lim ( ) (1 ) 1n n n n
n n n

g x g x g a g a g a g a
→ → →

+ − = + − = + − = . 

Hence, ( ) (1 ) 1g x g x+ − = for all x in I. 

In summary, we have: 

Proposition 13. The function g, as defined just prior to Proposition 9 that maps the interval 

[0,1] bijectively onto [0, 1] and the fat Cantor set C ( 0 <  < 1) onto the ternary Cantor set 

C1 of measure zero satisfies the relation ( ) (1 ) 1g x g x+ − = for all x in I.  Consequently, 

1

0

1
( ) ( )

2I
g x dx g x dx= =   . 

Remark.   

Let Cf 
 be the Lebesgue Cantor function for C , 0 <  < 1 and 

1Cf  the Lebesgue Cantor 

function for C1.  Then 
1C Cf g f


= .    By Proposition 10, g is absolutely continuous on I.  

Then by Theorem 8 of Change of Variables Theorems,  

    
1 1

1 1 1

0 0 0
( ) ( ) ( ) ( ) ( )C C Cf x dx f g x g x dx f x g x dx


 = =    

                      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )C C C C
C I C C G

f x g x dx f x g x dx f x g x dx f x g x dx
   

  −
   = + = +     

                     
1 1

0 ( ) ( )C C
G G

f x dx f x dx
  

= +  =  , 
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                                  since ( ) 0g x =  almost everywhere on C  and 
1

( )g x


 =  on G. 

Therefore,  
1 1

( )
2

C
G

f x dx


=  and so ( )
2

C
G

f x dx



=  and 

1 1
( )

2 2 2
C

C
f x dx




 −
= − = .   

Thus, we have another proof of Proposition 11 for the case of fat Cantor set: 

If :Cf I I


→  is the Cantor Lebesgue function for the fat Cantor set C ( 0 <  < 1), then 

( )
2

C
I C

f x dx





−

=  and 
1

( )
2

C
C

f x dx




−
= . 

Proposition 14.  Let the function, g, be defined just prior to Proposition 9 that maps the 

interval [0,1] bijectively onto [0, 1] and the fat Cantor set C ( 0 <  < 1) onto the ternary 

Cantor set C1 of measure zero.  Then  ( )
2I C

g x dx



−

=  and 
1

( )
2C

g x dx


−
= . 

Proof. 

Let 
1 1

[0,1] ( ) ( )
k k

G C G k U k

 

= =

= − = = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
U n I

−

−
=

− 
= + 

 
.     

Let 1

1 1

[0,1] ( ) ( )
k k

H C H k V k
 

= =

= − = = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
V n J

−

−
=

− 
= + 

 
 for n ≥ 1, are the 

middle third open intervals in the construction of C1, 

1

( ) ( ) :1 2 1
2

n
n

n
k

m
H n V k J m

=

  
= =   −  

  
 and ( 1) ( ) ( 1)H n H n U n+ =  + . 

We shall examine the open intervals in H more carefully. 

Let  ( )1

1 1
( , ), ( , )

2 2n n

k
J c n k d n k

−

− 
+ = 

 
for 11 2nk −  .  Then  

1
( , ) ( , )

3n
d n k c n k− =  and the 

collection  1( , ) :1 2nc n k k −   is given by 
1

1

1
2 : , 0 or 1

3 3

n
k

kn k
k

r r



−

=

 
+ = = 

 
 . 

Therefore, since g maps the intervals in U(n) linearly on to the open intervals in V(n), the 

integral of g over ( )U n  is given by 

                    

12
1

( )
1

1 1
( ) ( , ) 2

3 2 3 3

n

n

n n nU n
k

g x dx c n k
 

−

−

=

 
=  +   

 
    

                                       
1

2 1 1

1

1 1 1 1
2 2 2 2

3 3 3 2 3 3

n
n n n

n k n n n
k

 −
− − −

=

   
=   +  +    

  
  

                                      
1

1 2 1 23

2 21
1 3

11 1
2 2 2 2

3 3 3 3 3 1 3

n
n

n n n n

n k n n n
k

   − − − −

=

−  
=  + =   +  

−   
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1

1 2

2

1 1 1 2
2 1 2

2 3 3 3 2 3

n
n n

n n n n

 


−
− − 

=  − + =  
 

. 

Therefore, 
1

1( )
1 1

1 2
( ) ( )

2 3 3 2

n

nG U n
n n

g x dx g x dx
 − 

−
= =

= =  =   .  Consequently, 
1

( )
2C

g x dx


−
= . 

 

We now look at similar construction of Cantor Lebesgue type function.  Let 1 20 , 1    and 

1 2  .   Let 
1

C  and 
2

C be the Cantor sets corresponding to 1 2 and   . Let 
1,2 :g I I→  be 

defined in exactly the same manner as g in Proposition 9, by first defining the functions on 

the disjoint open intervals in 
1

I C− linearly and bijectively onto the corresponding open 

intervals in
2

I C− .  As 
1

C is dense in I, the function is then extended to the whole of I. 

Proposition 15.  The function, 
1,2 :g I I→  , as defined above is strictly increasing and 

continuous and maps the Cantor set 
1

C  bijectively onto 
2

C , where 1 20 , 1    and 1 2  .    

Proof.    

Let 
1

1

[0,1] ( )
k

G C U k



=

= − = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
U n I

−

−
=

− 
= + 

 
, and 

1

1 1
( )

2 2n n

k
I r I

−

− 
= + 

 
,  

11 2nk −  , are the open intervals, each of length 1

3n


,  to be deleted in stage n in the 

construction of 
1

C  .    Let 
2

1

[0,1] ( )
k

H C V k



=

= − = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
V n J

−

−
=

− 
= + 

 
, and 

1

1 1
( )

2 2n n

k
J r I

−

− 
= + 

 
,  11 2nk −  , are the open intervals, each of length 2

3n


,  to be deleted in 

stage n in the construction of 
2

C .    Let  
1

( ) ( )
n

k

G n U k
=

==   and 
1

( ) ( )
n

k

H n V k
=

= .  Then 

1

( )
k

G G k


=

=  and 
1

( )
k

H H k


=

= .   ( ) ( ,1) ( ,2) ( ,2 )nI G n F n F n F n− =     is a disjoint 

union of 2n
 closed interval of length  ( )( )( )2

1 3

1
1 1

2

n

n n
= − −  and 

( ) ( ,1) ( ,2) ( ,2 )nI H n K n K n K n− =     is a disjoint union of 2n
 closed interval of 

length  ( )( )( )2
2 3

1
1 1

2

n

n n
 = − − . 

Note that 

1

( ) :  a dyadic rational, , where 0 or 1 for 1 , 1, 1
2

n
k

k nk
k

b
G I r r r b k n b n

=

 
= = =   =  

 


 
and  
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1

( ) :  a dyadic rational, , where 0 or 1 for 1 , 1, 1
2

n
k

k nk
k

b
H J r r r b k n b n

=

 
= = =   =  

 
 . 

 

The function 
1,2g is defined on the open interval I(r) by mapping I(r) onto J(r) linearly. 

If ( ) ( ( ), ( ))I r a r b r=  and ( ) ( ( ), ( ))J r c r d r= , then for x in ( ) ( ( ), ( ))I r a r b r= define 

                2

1

( ) ( )
( ) ( ( )) ( ) ( ( )) ( )

( ) ( )

d r c r
g x x a r c r x a r c r

b r a r





−
= − + = − +

−
 . 

Note that  2

1

( ) ( )  of ( )

( ) ( )  of ( )

d r c r length J r

b r a r length I r





−
= =

−
 since if  

1

, where 1
2

n
k

nk
k

b
r b

=

= = , then the length 

of J(r) is 2

3n


 and the length of I(r) is 1

3n


. 

The end points of I(r) are mapped to the corresponding end points of J(r). 

Define 
1,2 (0) 0g =  and 

1,2 (1) 1g = .   

For x  0 and x in 
1

C , define               

               
11,2 1,2 1,2( ) sup ( ) :  and sup ( ) :  and [0,1]g x g y y x y G g y y x y C=   =   − .   

Now we examine the indexing of U(n) and V(n).   We note that  

         
1

1

1
1

1 1 1
:1 2 : 0 or 1

2 2 2 2

n
jn

jn n j n
j

k
k




−
−

−
=

 − 
+   = + =   

   
 . 

If we let 
1

1
1

1 1 1
( ( ), ( ))

2 2 2 2

n
j

n n j n
j

k
J J c r d r

−

−
=

 − 
+ = + =  

   
 , where 

1

1

1

2 2

n
j

j n
j

r
−

=

= + , then 

1
2

1

( )
3

n

j j nj
j

c r


  
−

=

  
= + +  

  
  .    

Firstly, we show that 
1,2g  is strictly increasing on 

1
G I C= − .  

By definition, 
1,2g  is increasing on each I(r) and maps I(r) bijectively onto J(r).  At the n-th 

stage of the construction of the Cantor set we obtained 

1

( ) ( ) :1 2 1
2

n
n

n
k

m
G n U k I m

=

  
= =   −  

  
, which consists of 2 n − 1 disjoint open intervals, 

that have been deleted from [0, 1].  The ordering of these intervals is in the order of the 

deletion starting from the left to the right according to the indexing.  The natural ordering 
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follows a very simple rule, ( ) ( )I k I l , if and only if, there exists some x in ( )I k such that x < 

y for some y in ( )I l , if and only if, for any x in ( )I k  , x < y for all y in ( )I l .  Therefore, the 

disjoint open sets in G are ordered by its index set.  Similarly, the disjoint open sets in 

2
H I C= −  are ordered by its index set.  Suppose x and y in 

1
I C G− =  are such that x < y.   

If x and y are in some I(r), then since f is by definition increasing on ( )I r ,  f (x) < f (y).   

Suppose now x is in ( )I r and y is in ( )I l .  Then x < y implies that ( ) ( )I r I l  and r l  .  

Hence ( ) ( )J r J l .  It follows that f (x) < f (y), since f (x)  ( )J r  and f (y)  ( )J l .  We have 

thus shown that f is increasing on 
1

I C G− = .  Plainly, 
1,2g  maps G bijectively on to H. 

Next, we show that 
1,2g  maps 

1
C  into 

2
C . 

For x = 0, 
1,2 (0) 0g = . 

We now assume x  0 and 
1

x C .  Recall then that 

 
       

   
11,2 1,2 1,2( ) sup ( ) :  and sup ( ) :  and [0,1]g x g y y x y G g y y x y C=   =   − . 

Suppose that 
21,2 ( )g x C .  Then for some dyadic rational number l, 

1,2 ( ) ( )g x J l and since 

( )1,2( ) ( )J l g I l= , there exists x0 in ( )I l  such that 
1,2 0 1,2( ) ( )g x g x= .  Then since ( )I l  is open 

there exists y0 in ( )I l with y0 < x0 such that 
1,2 0 1,2 0 1,2( ) ( ) ( )g y g x g x = .   By the definition of 

supremum, there exists y' in 
1

[0,1] C− with y' < x and 
1,2 0 1,2 1,2 1,2 0( ) ( ) ( ) ( )g y g y g x g x  = .  

Since f is increasing on 
1

I C− ,  y0 < y' < x.  Then since y0  ( )I l  and so for all y in ( )I l ,  y < 

x for otherwise, if there exists z in ( )I l  with z  > x , then x would belong to (y0 , z) 

1
( ) [0,1]I l C − , contradicting 

1
x C .  Now, since ( )I l  is open, there exists x' in ( )I l such 

that x' > x0.  Thus,  1,2 1,2 0 1,2( ) ( ) ( )g x g x g x  = .  Also since x' < x, 

 
11,2 1,2 1,2( ) sup ( ) :  and [0,1] ( )g x g y y x y C g x

    − = , contradicting 
1,2 1,2( ) ( )g x g x  .   

This shows that 
21,2 ( )g x C .  Hence, 

1,2g  maps 
1

C  into 
2

C .   

The function 
1,2g  is strictly increasing on [0, 1]. 

We have already shown that 
1,2g  is strictly increasing on 

1
G I C= − .  

Thus, if x and y are in G and x < y, then 
1,2 1,2( ) ( )g x g y .    

Suppose now x 
1

C ,
1

y C  and x < y.    Then for any 

1

( ) :  a dyadic rational, , where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
z G I r r r b k n b n

=

 
 = = =   =  

 
 ,        

z < x implies that z < y.  Therefore, since y and z are in G, 
1,2 1,2( ) ( )g z g y .  Hence,  
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 1,2 1,2 1,2( ) sup ( ) :  and ( )g x g z z x z G g y=    .  Since
21,2 ( ) [0,1]g x C H = − , 

1,2 1,2( ) ( )g x g y  and so 
1,2 1,2( ) ( )g x g y . 

Suppose now x  
1

C ,
1

y C  and x > y.  

Then  1,2 1,2 1,2( ) sup ( ) :  and ( )g y g z z x z G g x   = . 

Again, since
1,2 1,2( ) ( )g x g y we must have 

1,2 1,2( ) ( )g x g y . 

 

Suppose x and y are in 
1

C and x < y.   This time we shall use the property of the Cantor set 

here.  Because 
1

C is nowhere dense, the intersection ( )
1

( , ) [0,1]x y C −   .  Therefore, 

there exists 
1

[0,1]z C −  such that x < z < y.  By what we have just proved  

1,2 1,2 1,2( ) ( ) ( )g x g z g y  .  Therefore, we can conclude that 
1,2 1,2( ) ( )g x g y .  Hence, we have 

shown that
1,2g is strictly increasing on [0, 1]. 

The function 
1,2g  is onto and maps 

1
C  onto 

2
C . 

Since 
1,2g  maps the complement of 

1
C in [0, 1] onto the complement of 

2
C  in [0, 1], it is 

sufficient to show that 
1,2g  maps 

1
C onto 

2
C .  By examining the definition of 

1,2g  we can 

consider a similar function 
2,1g mapping 

2
C  into 

1
C  which is the inverse of 

1,2g .   We are 

going to use this inverse function to construct a pre-image of y in 
2

C  under 
1,2g  .    For y = 0 

in 
2

C  , by definition of 
1,2g ,  

1,2 (0) 0g =  and 0 is also in 
1

C  .  For a fixed y  0 in 
2

C  , 

define the following  

                   ( )  ( ) 1 1

1,2 1,2 1,2sup ( ) :  and z sup ( ) :  and z ( )x g z z y H g z z y g G
− −

=   =   . 

Note that this is well defined because H is in the image of 
1,2g , the set 

( ) 1

1,2 ( ) :  and zg z z y H
−

   is non-empty and bounded above by 1 so that the supremum 

exists by the completeness property of .     

The same argument for showing that for any l  0 in 
1

C  ,
1,2 ( )g l  is in 

2
C  , applies here to 

conclude that 
1

x C . Now we claim that 
1,2 ( )g x y= . 

Note that   

 ( ) 1

1,2 1,2( ) :  and z ( )g z z y g G
−

   1,2 1,2 1,2: ( )  and ( ) ( )x g x y g x g G  =  
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 1,2: ( )  and x g x y x G  =   . 

Therefore,  1,2sup : ( )  and x x g x y x G  =   .   

Next, we claim that for any z  in G,  

                                  
1,2 ( )z x g z y     .   -------------------------  (*) 

This is deduced as follows. 

Let z  in G.  Then  

 1,2sup : ( )  and z x x g x y x G    =    

 0 1,2 there exists  in  : ( )  and z x g x y x G     such that 0z z x     

 0 1,2 there exists  in  : ( )  and z x g x y x G     such that 
1,2 1,2 0 1,2( ) ( ) ( )g z g z g x     

1,2 ( )g z y  .     

Conversely, if z is in G and 
1,2 ( )g z y  , then by definition of x, z'  x and so since z' is in G, 

z'  x.   This proves our claim. 

Therefore, 

   1,2 1,2 1,2( ) :  and ( ) : ( )  and g z z x z G g z g z y z G       =    

 1,2:  and ( )y y y y g G H  =   =  

Thus,  

    1,2 1,2( ) sup ( ) :  and sup :  and g x g z z x z G y y y y H y     =   =   = . 

This is seen as follows.  Obviously, 
1,2 ( )g x y . 

Note that both 
1,2 ( )g x and y are in 

2
C .  If 

1,2 ( )g x y , then since 
2

C is nowhere dense, there 

exists y0 in 
2 1,2 ( )I C H g G− = =  such that 

1,2 0( )g x y y  .   Therefore, there exists 0x G  

with 
1,2 0 0( )g x y=  and 

1,2 1,2 0 0( ) ( )g x g x y y =  .  Since 
1,2g is strictly increasing on I, 0x x .  

But by (*),  
1,2 0( )g x y  implies that x0 < x contradicting x < x0.  Therefore, 

1,2 ( )g x y= .  This 

shows that 
1,2g  maps 

1
C  onto 

2
C  and as a consequence, 

1,2g  is onto.  Therefore, 
1,2g is a 

strictly increasing function mapping I onto I.   By Theorem 3 of Inverse Function and 

Continuity,
1,2g  is continuous on [0, 1]. 
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Remark.  The function g in Proposition 9, 10 and 13 is just 
1,2g , where 10 1   and 2 1 = . 

Proposition 16.  The function 
1,2g  is differentiable almost everywhere on I.  

1,2g  is 

differentiable on 
1

I C−  and ( ) 2
1,2

1

( )g x




 =  for x in  
1

I C G− = .   

(1)  If  1 1 =  and 20 1  , then 
1,2g  is not absolutely continuous on I.  

(2)  If  2 1 =  and 10 1  , then 
1,2g  is absolutely continuous on I and ( )1,2 ( ) 0g x = almost 

everywhere on
1

C .  

(3)  If 10 1   and 2 1   with 20 1  , then 
1,2g  is Lipschitz on I and so is absolutely 

continuous on I.  

(4) If 10 1   and 2 1   with 20 1  , then ( ) 2
1,2

1

1
( )

1
g x





− =
−

 almost everywhere on 

1
C . 

(5) The arc length of the graph of 
1,2g  is ( ) ( ) ( ) ( )

2 2 2 2

1 2 1 21 1   + + − + −  . 

Proof. 

Since 
1,2g  is strictly increasing, it is differentiable almost everywhere on I.  Since the 

gradients of the linear parts of 
1,2g  on each of the open intervals in G are the same and are 

equal to 2

1




, ( ) 2

1,2

1

( )g x




 =  for all x in  
1

I C G− = .   

(1)   If  1 1 =  and 20 1  , then 
1

( ) 0m C = but ( )
1 21,2 2( ( )) 0m g C m C  = =  .  Therefore, 

1,2g  is not a N function and so cannot be absolutely continuous on I.  

(2) If  2 1 = , then 
1 21,2 1( ( )) ( ) ( ) 1 1 0.m g C m C m C = = = − =   Moreover, 

1,2g is differentiable 

on 
1

I C− .  Therefore, by Theorem 12 part (a) of Functions Having Finite Derivatives, 

Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallée 

Poussin's Theorem”, 
1,2g is absolutely continuous on I.  By Theorem 15 of Functions of 

Bounded Variation and Johnson's Indicatrix, 1,2 ( ) 0g x = almost everywhere on 
1

C . 

(3)   For this we are going to use G(n) to construct a polygonal approximation to 
1,2g  .  

Define :nf I → ,  by  
1,2( ) ( )nf x g x=  for x in G(n).  Now 

( ) :1 2 1
2

n

n

m
G n I m

  
=   −  

  
 and so 1,2( ) ( )nf x g x=  for 

2n

m
x I

 
  

 
, for 1 2 1nm  − .  
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Define ( )nf x  to be the corresponding end points of  
2n

m
J

 
 
 

for x = end points of 
2n

m
I

 
 
 

.  

Now ( )
2

1

( ) ( ) ( , )

n

c

k

I G n G n F n k
=

− = = is a disjoint union of closed intervals, each of length  

( )( )( )2
1 3

1
1 1

2

n

n n
= − − .  We define nf  on each ( , )F n k , 1 2nk   to be given by the linear 

function or line joining the points on the graph of  
1,2g    given by the image of the end points 

of ( , )F n k .  Hence, the linear function on each of the closed interval ( , )F n k has the same 

gradient given by  

                                              
( )( )
( )( )

2
2 3

2
1 3

1 1

1 1

n

n

n
n





− −
=

− −
 . 

More precisely, the polygonal approximation, ( )nf x , is given by the points on the graph of 

1,2g ,  ( ) ( )1,2 1,2( ), ( ( )) , ( ), ( ( )) : :1 2 1
2

n

n

m
a r g a r b r g b r r m

  
   −  

  
, where 

1

( ) ( ) :1 2 1
2

n
n

n
k

m
G n U k I m

=

  
= =   −  

  
 and ( )( ) ( ), ( )I r a r b r= . 

Note that the gradient of the function nf  on the open intervals in G(n) is the same as the 

gradient of 
1,2g  on the intervals in G(n) and are equal to 2

1




 . 

It follows that for any x  y in I,  
( )( )
( )( )

2
2 3

2

2
1 1 3

1 1( ) ( )
max ,

1 1

n

n n

n

f x f y

x y



 

 − −−  
 − − − 
 

 .    

If  2 10 1    , then
( )( )
( )( )

2
2 3

2

2
1 1 3

1 1

1 1

n

n



 

− −


− −
 for all integer n ≥ 1 so that     

                           
( )( )
( )( )

2
2 3

2
1 3

1 1( ) ( )

1 1

n

n n

n

f x f y

x y





− −−


− − −
, for all integer n ≥ 1. 

If  2 11     >0, then
( )( )
( )( )

2
2 3

2

2
1 1 3

1 1

1 1

n

n



 

− −


− −
 for all integer n ≥ 1 so that     

                           2

1

( ) ( )n nf x f y

x y





−


−
, for all integer n ≥ 1. 
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This means that for any x, y in I, if 2 10 1    , 

                         
( )( )
( )( )

2
2 3

2
1 3

1 1
( ) ( )

1 1

n

n n n
f x f y x y





− −
−  −

− −
,  -----------------------------  (10) 

and if  2 11     >0, then 

                              2

1

( ) ( )n nf x f y x y



−  − .  ----------------------------------------- (11) 

Plainly,  ( )( )( )2
1 2 3

1
( ) ( ) 1 1

2

n

n n n n
f x f x  +−  = − −  for all x in I.  This means the sequence of 

function ( )( )nf x  converges uniformly to a continuous function f on I such that 

1,2 ( ) ( )g x f x=  for all x in G.  It follows that 
1,2f g=  identically on I since G is dense in I.  

Therefore, by taking limit as n tends to infinity in (10) we get, for any x, y in I,  

if 2 10 1    ,  then  2
1,2 1,2

1

1
( ) ( )

1
g x g y x y





−
−  −

−
,    ------------  (12) 

and if 2 11 0    , then  2
1,2 1,2

1

( ) ( )g x g y x y



−  − .   ---------------  (13) 

This means that if 10 1   and 2 1   with 20 1  , then 
1,2g  is Lipschitz on I and so 

1,2g  is absolutely continuous on I. 

(4) By Theorem 11 of Functions of Bounded Variation and Johnson's Indicatrix, since 
1,2g  is 

monotone increasing and absolutely continuous,  

           ( ) ( )
1 2

1 1

2
1,2 1,2 2

1

1
( ) ( ( )) 1

1C C
g x dx m g C m C dx

 
 






− = = = − =
−  .    

Therefore, 

                               ( )
1

2
1,2

1

1
( ) 0

1C
g x dx







 − − = 
− 

 .    --------------------  (14) 

If 2 10 1     and if 
1,2g  is differentiable at x in 

1
C , then it follows by inequality (12) that 

( ) 2
1,2

1

1
( )

1
g x





− 
−

.   Since 
1,2g  is differentiable almost everywhere and differentiable in 

1
I C− , 

1,2g  is differentiable almost everywhere in 
1

C .  Suppose 
1,2g  is differentiable in a 

subset D of 
1

C such that the measure 
1

( ) 0m C D − = .   Then it follows from (14) that  
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( ) 2
1,2

1

1
( ) 0

1D
g x dx





 − − = 
− 

 and we conclude that ( ) 2
1,2

1

1
( )

1
g x





− =
−

 almost everywhere on 

D and hence on 
1

C . 

If 2 11 0    , we consider 
2,1g , which is the inverse of 

1,2g .  Then by the above 

proceeding, 
2,1g  is differentiable almost everywhere on 

2
C and ( ) 1

2,1

2

1
( ) 0

1
g x





− = 
−

almost 

everywhere on 
2

C .  Suppose 
2,1g  is differentiable on E in 

2
C and 

2
( ) 0m C E − = .  Then 

( )
1

1,2 2,1g g
−

=  is differentiable on 
12,1( )g E C and ( )

1 22,1 2,1( ) ( ) 0m C g E mg C E − = − = .  

Moreover, for y in 
12,1( )g E C ,  

             ( )( )
( ) ( )( )

1

2

1
2

1,2 2,1 11
11

2,1 2,1

11 1
( ) ( )

1( )

g y g y

g g y








−

−−
−

 − = = = =
−

. 

Hence, ( ) 2
1,2

1

1
( )

1
g x





− =
−

 almost everywhere on 
1

C . 

If  2 1 =  and 11 0  , then ( )( ) ( )
1 21,2 1( ) 0m g C m C m C = = = .  By Theorem 15 of 

Functions of Bounded Variation and Johnson's Indicatrix, ( )1,2 ( ) 0g x =  almost everywhere 

on 
1

C .  In this case, 
1,2g  is the function g in Proposition 10.   This completes the proof of this 

part. 

(5)  The arc length of the graph of the polygonal approximation nf  to 
1,2g  is given by the 

sum of the lengths of the linear parts over the closure of the open intervals in U(k) for k =1 to 

n plus the total length of the 2n
 linear segments over the closed intervals in ( )I G n−  of equal 

length.   The sum of the lengths of the 
12n−
linear parts of the graph of nf  or 

1,2g over U(n) is 

given by  ( ) ( )
2 2

2 21 1 2
1 2

1 2
2

3 3 2 3

n

n

n n

 
 −      

+ = +    
    

 .    The total length of the 2n
 linear 

segments over the closed intervals in ( )I G n−  is given by 

                  ( ) ( ) ( )( )( ) ( )( )( )
2 2

2 2 2 2
1 23 3

1 1
2 2 1 1 1 1

2 2

n nn n

n n n n
  

   
+ = − − + − −   

   
  

                                               ( )( )( ) ( )( )( )
2 2

2 2
1 23 3

1 1 1 1
n n

 = − − + − − . 

Therefore, the arc length of the graph of the polygonal approximation nf  to 
1,2g  is given by 
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              ( ) ( ) ( )( )( ) ( )( )( )
2 2

2 2 2 2
1 2 1 23 3

1

1 2
1 1 1 1

2 3

kn
n n

k

   
=

 
+ + − − + − − 

 
  

                 ( ) ( ) ( )( )( ) ( )( )( )
2 2

2 2 2 2
1 2 1 23 3

2
1 1 1 1 1

3

n
n n

   
  

= + − + − − + − −     

. 

Letting n tend to infinity, we obtain the arc length of the graph of
1,2g  as 

                   ( ) ( ) ( ) ( )
2 2 2 2

1 2 1 21 1   + + − + − . 

We add that for the case when 
1,2g  is absolutely continuous, i.e., when 10 1   and 2 1   

with 20 1  , we may use the arc length formula as usual to obtain the arc length as 

follows.   

           ( ) ( ) ( )
1 1

2 2 2

1,2 1,2 1,21 ( ) 1 ( ) 1 ( )
I I C C

g x dx g x dx g x dx
 −

       + = + + +     
     

    

                                              
1 1

2 2

2 2

1 1

1
1 1

1I C C
dx dx

 

 

 −

   −
= + + +   

−   
  , 

                                                              since ( ) 2
1,2

1

( )g x




 =  on G  

                                                                and ( ) 2
1,2

1

1
( )

1
g x





− =
−

 almost everywhere on C , 

                                           
( ) ( ) ( ) ( )

1

2 2 2 2

1 2 1 2

1 1

1 1
( ) ( )

1
m G m C

   

 

+ − + −
= +

−
 

                                           ( ) ( ) ( ) ( )
2 2 2 2

1 2 1 21 1   = + + − + − . 

Remark.  We may actually use the formula given by Theorem 9 in Arc Length, Functions of 

Bounded Variation and Total Variation, to determine the arc length of 
1,2g .   

We state the result as follows: 

Proposition 17.   Suppose :[ , ]f a b →  is an increasing and continuous function.  The arc 

length of the graph of f is given by  

                                 ( )
2

[ , ]
1 ( ) [ , ]h

a b
f x dx T a b+ + , 
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where ( ) ( ) ( )
x

a
h x f x f x dx= −   is an increasing continuous function and is the singular part 

of f in the Lebesgue decomposition of f and [ , ]hT a b is the total variation of h on [a, b].  

Moreover, [ , ] ( ) ( )hT a b h b h a= − . 

Proof.  This is a specialization of Theorem 9 in Arc Length, Functions of Bounded Variation 

and Total Variation to a continuous increasing function.  By Theorem 15 of Arc Length, 

Functions of Bounded Variation and Total Variation, ( ) ( ) ( )
x

a
h x f x f x dx= −   is a 

continuous increasing function and so its total variation [ , ]hT a b  is equal to ( ) ( )h b h a− . 

Remark.   If  1 1 =  , then ( )
1

0m C =  and 
1,2 :[0,1] [0,1]g →  is not absolutely continuous. 

Since it is continuous and increasing on [0, 1], the arc length of its graph is given by 

                             ( )
2

1,2
[0,1]

1 ( ) (1)g x dx h
 + + 
 

 , 

where ( )1,2 1,2
0

( ) ( ) ( )
x

h x g x g x dx= −  . 

Now,  

     ( ) ( ) ( )
1 1

2 2 2

1,2 1,2 1,2
[0,1] [0,1]

1 ( ) 1 ( ) 1 ( )
C C

g x dx g x dx g x dx
−

       + = + + +     
     

    

                                           ( ) ( ) ( )
1

2
2 22

2 1 2
[0,1]

1 0 1 [0,1] 1
1C

dx m C


 
−

 
= + + = + − = + 

 
 , 

and 

             ( ) ( ) ( )
1 1

1

1,2 1,2 1,2 1,2
0

(1) (1) ( ) 1 ( ) ( )
I C C

h g g x dx g x dx g x dx
−

  = − = − −    

                    
1

2 2 1 21 0 1 ( ) 1
I C

dx m I C  
−

= − − = − − = − . 

Hence, the arc length of the graph of  
1,2g  is ( )

2

2 21 1 − + + . 

Proposition 18.  Let the function, 
1,2 :g I I→  , be defined as above mapping Cantor set 

1
C  

linearly and bijectively onto 
2

C , where 1 20 , 1    and 1 2  .   Then  
1

1
1,2 ( )

2I C
g x dx




−

=  

and 
1

1
1,2

1
( )

2C
g x dx



−
= . 

Proof. 
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Let 
1

1

[0,1] ( )
k

G C U k



=

= − = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
U n I

−

−
=

− 
= + 

 
, and 

1

1 1
( )

2 2n n

k
I r I

−

− 
= + 

 
,  

11 2nk −  , are the open intervals, each of length 1

3n


,  to be deleted in stage n in the 

construction of 
1

C  .    Let 
2

1

[0,1] ( )
k

H C V k



=

= − = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
V n J

−

−
=

− 
= + 

 
, and 

1

1 1
( )

2 2n n

k
J r I

−

− 
= + 

 
,  11 2nk −  , are the open intervals, each of length 2

3n


,  to be deleted in 

stage n in the construction of 
2

C .    Let  
1

( ) ( )
n

k

G n U k
=

==   and 
1

( ) ( )
n

k

H n V k
=

= .  Then 

1

( )
k

G G k


=

=  and 
1

( )
k

H H k


=

= .   ( ) ( ,1) ( ,2) ( ,2 )nI G n F n F n F n− =     is a disjoint 

union of 2n
 closed interval of length  ( )( )( )2

1 3

1
1 1

2

n

n n
= − −  and 

( ) ( ,1) ( ,2) ( ,2 )nI H n K n K n K n− =     is a disjoint union of 2n
 closed interval of 

length  ( )( )( )2
2 3

1
1 1

2

n

n n
 = − − . 

Now we examine the indexing of U(n) and V(n).   We note that  

         
1

1

1
1

1 1 1
:1 2 : 0 or 1

2 2 2 2

n
jn

jn n j n
j

k
k




−
−

−
=

 − 
+   = + =   

   
 . 

If we let 
1

1
1

1 1 1
( ( ), ( ))

2 2 2 2

n
j

n n j n
j

k
J J c r d r

−

−
=

 − 
+ = + =  

   
 , where 

1

1

1

2 2

n
j

j n
j

r
−

=

= + , then 

1
2

1

( )
3

n

j j nj
j

c r


  
−

=

  
= + +  

  
  .    

Therefore, 

 
1

1

11 1 2
1,2

( )
1 1

:1 2
2 2

1
( ) ( ) 2

3 2 3 3
n

n n

n

n n nU n
k

r k

g x dx c r
  

−

−

−

− 
 +   

 

 
=  +   

 
  

    
1

1

1
21 2 1 2

11

2 2

2
3 3 3 3n

j

j n
j

n
n

j j nn j n n
j

r


   
  

−

=

−
−

=
= +

   
=  + + +    

   


   

  
1 1

2 2 1 21 2 1 2

1 1

2 2 2 2
3 3 3 3

n n
n n n n

j nn j n n
j j

   
 

− −
− − − −

= =

 
=  + + +  

 
  .   -------------------------  (*2) 
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But  2
1 2

3
j jj


 −= −  for  1 j n   .   For j = 1, 

1 0j − =  is set to be 1. 

Therefore,  

   
1 1

2 2 1 22 2

1 1

2 2 2 2
3 3

n n
n n n n

j nj n
j j

 
 

− −
− − − −

= =

+ + +  
 

( ) ( )
1 1

2 2 1 2

1 1

1 1

2 2 2 2 2 2
n n

n n n n

j j j n n n

j j

     
− −

− − − −

− −

= =

= + − + +  − 
 

1 1 2
2 1 2 2 2 2 2

0 1 0

1 1 1

2 2 2 2 2 2 2
n n n

n n n n n n n

j j j n

j j j

     
− − −

− − − − − − −

−

= = =

= − + + + = =   . 

It follows then from (*2) that 

                        
1

21 1
1,2

( )

2
( ) 2

3 2 3

n
n

n nU n
g x dx

  −
−=  = . 

Hence,  

              
1

1,2 1,2 1,2
( )

1

( ) ( ) ( )
G I C U n

n

g x dx g x dx g x dx




−
=

= =    

                                
1

1 1

1

2

2 3 2

n

n
n

 −

=

= = . 

Therefore, as
1,2

1
( )

2I
g x dx = , 

1 1

1
1,2 1,2

11
( ) ( )

2 2C I C
g x dx g x dx

 


−

−
= − =  . 

Remark. 

Proposition 14 is a special case of Proposition 17. 

1.  The function,
1,2g , defined above satisfies 

1,2 1,2( ) (1 ) 1g x g x+ − =  for all x in I.  This has 

exactly the same proof as shown above for g in Proposition 13.  Consequently,  

1,2

1
( )

2I
g x dx = .   

2.  When 1 1 = ,  
1

1,2( ) 0
C

g x dx


=  trivially as 
1 1( ) ( ) 0.m C m C = =    When 2 1 = , 

1

1
1,2

1
( )

2C
g x dx



−
=  follows from Proposition 14.   

3. When 1 20 , 1    and 1 2  , we may deduce that 
1

1
1,2 ( )

2I C
g x dx




−

= as follows, 
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Factorize 
1,2g  as  h g  , where g is the Cantor Lebesgue type function defined before, 

mapping 
1

C  on to 1C  and h is the Cantor Lebesgue type function, mapping 1C  on to 
2

C . 

By Proposition 10, g is absolutely continuous. Therefore, by Theorem 8 of Change of 

Variables Theorems,  

    
1,2

1
( ) ( ) ( ) ( ) ( )

2 I I I
h x dx h g x g x dx g x g x dx = = =    

                         
1 1

1,2 1,2( ) ( ) ( ) ( )
C I C

g x g x dx g x g x dx
 −

 = +   

                         
1 1

1,2 1,2

1 1

1 1
0 ( ) ( )

I C I C
g x dx g x dx

  − −
= +  =  , 

                                  since ( ) 0g x =  almost everywhere on 
1

C  and 
1

1
( )g x


 =  on 

1
I C− . 

Therefore,  
1

1,2

1

1 1
( )

2I C
g x dx

 −
=  and so 

1

1
1,2 ( )

2I C
g x dx




−

=  and 

1

1 1
1,2

11
( )

2 2 2C
g x dx



 −
= − = . 

4.  Note that 
1,2g h g=  as in part 3 above is absolutely continuous even though h is not 

absolutely continuous. 

Two Families of Cantor Sets 

For 0 1  , let D be the cantor sets constructed in a similar fashion as C and described in 

my article, The Construction of cantor Sets, as shown below. 

In the first stage, we delete the middle open interval with length 
2


 from [0, 1].   Following 

the construction for C , we denote this open interval by I(1,1).  Then the complement of this 

middle interval is 2 disjoint closed interval each of length 
1

1
2 2

 
− 

 
.  We denote the open 

deleted interval by (1,1) ( (1,1), (1,1))I a b= .  As for the case of C , we denote the closed 

interval in the complement by (1,1)J  and (1,2)J , where the closed interval (1,2)J is to the 

right (1,1)J  , meaning it is ordered in such a way that every point of (1,2)J is bigger than any 

point in (1,1)J . 

Then at the second stage we delete the middle open interval of length 
32


 from each of the 2 

remaining closed intervals.  Thus, there are 2 open intervals to be deleted and they are 

(2,1) ( (2,1), (2,1))I a b= and (2,2) ( (2,2), (2,2))I a b= .   As for the case of C , these two open 



43 

© Ng Tze Beng 2017 

intervals are ordered by the second index.  Hence, we are left with 4 = 22 remaining closed 

intervals, (2,1)J , (2, 2)J , (2,3)J  and 2(2,2 )J each of length ( )( )( )2
1
22

1
1 1

2
− − .  Let 

(1) (1,1)U I= ,  (2) (2,1) (2,2)U I I=  , (1) (1)G U= ,  (2) (1) (2)G U U=  .  Then  

(1) (1,1) (1,2)I G J J− =  ,  2(2) (2,1) (2,2) (2,3) (2,2 )I G J J J J− =    . 

At stage n delete the middle open interval of length 
2 12 n


−

 from each of the 
12n−
 remaining 

closed intervals, 1( 1,1), ( 1,2), , ( 1,2 )nJ n J n J n −− − − , each of length ( )( )( )1
1
21

1
1 1

2

n

n


−

−
− − .   

Denote these open intervals by 1( ,1), ( ,2), , ( ,2 )nI n I n I n − .   Then this resulted in the 

remaining 2n
 closed intervals, ( ,1), ( ,2), , ( ,2 )nJ n J n J n , each of length    

( )( )( )1
2

1
1 1

2

n

n n
= − − .   Let 

12

1

( ) ( , )

n

k

U n I n k

−

=

=  and 

12

1 1 1

( ) ( ) ( , )

kn n

k k j

G n U k I k j

−

= = =

= = . 

Observe that ( ) ( ,1) ( ,2) ( ,2 )nI G n J n J n J n− =    . 

Note that G(n) consists of  2 1n −  disjoint open intervals.  The total length of the intervals in 

G(n) is given by  

                   

2 1

2 1

3 5 2 1

1 1 1
2 2 2 1

2 2 2 2 2 2 2 2

n

n

n

    
−

−

−

    
+ + + + = + + +         

  

                                                                      
1

1
2n


 

= − 
 

. 

Note that ( ) ( 1)G n G n +  and ( 1) ( ) ( 1)G n G n U n+ =  + . 

Let  
1 1

( ) ( )
k k

G G k U k
 

= =

= = .  Thus, the measure of G is the total length of all the U(k), that is, 

1
( ) lim 1

2nn
m G  

→

 
= − = 

 
.  

The Cantor set D  is defined by D I G = − . Hence the measure of  D  is given by 

( ) ( ) 1 0m I m G − = −  .  

We re-index  ( , )nI n k , 11 2n

nk −   , 1 n    as for the deleted open intervals for C . 

We define the Cantor Lebesgue function 
Dg


  associated with D  in exactly the same 

manner as for C ,  For x G  , ( )x I r  , ( )Dg x r


= . 

All the properties that we have proved for C  apply to D and its associated Cantor Lebesgue 

function, 
Dg


. 
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In summary, we have the following theorems. 

Theorem 19.   The Cantor set D  (0 <   1) is 

(1)  compact, 

(2)  nowhere dense, i.e., it contains no open intervals, 

(3)  its own boundary points, 

(4)  perfect, i.e., it is its own set of accumulation points, 

(5)  totally disconnected and 

(6)  between any two points in D , there is an open interval not contained in D  . 

Theorem 20.  The Cantor Lebesgue function, 
Dg


, associated with the Cantor set D  (0 <  

 1) is increasing and continuous and maps D onto I = [0,1].   

(1) If 0 1  , then the associated Cantor Lebesgue function 
Dg


is Lipschitz with constant 

1

1 −
and so is absolutely continuous on [0, 1]; if 1 = , then 

Dg


is singular and not 

absolutely continuous. 

(2) 
Dg


 satisfies the relation ( ) (1 ) 1D Dg x g x

 
+ − = , for all x in [0,1]. 

(3) The arc length of the graph of the Cantor Lebesgue function, :[0,1] [0,1]Dg


→ , for D , is 

21 (1 ) + + − . 

(4)  
Dg


is differentiable almost everywhere on [0,1]; ( ) ( ) 0Dg x




=  for [0,1]x D − ; if

0 1  , ( )
1

( )
1

Dg x
 


=

−
 almost everywhere on D . 

(5) 
1

0

1
( )

2
Dg x dx


= , ( )

2
D

I D
g x dx





−

=  and 
1

( )
2

D
D

g x dx




−
= . 

 

The proof for Theorem 19 and 20 is exactly the same for the Cantor set C  and its associated 

Cantor Lebesgue function.  The proof for part (2) of Theorem 20 is similar to that of 

Proposition 13.  

Let  
1 2

,D Dg
 

be the canonical Cantor like function defined similarly as 
1,2g  mapping the cantor 

set 
1

D  onto  
2

D . 

We have analogous results for 
1 2

,D Dg
 

 as for 
1,2g . 
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Theorem 21.   For 1 20 , 1    and 1 2  , the associated Cantor like function 

1 2
, :D Dg I I

 
→  is strictly increasing and continuous and maps the Cantor set 

1
D bijectively 

onto 
2

D .  
1 2

,D Dg
 

is differentiable almost everywhere on I. 

(1) 
1 2

2
,

1

( )D Dg x
 




 =  for x in  

1
I D− .   

(2)  If  1 1 =  and 20 1  , then 
1 2

,D Dg
 

 is not absolutely continuous on I.    

(3)  If 2 1 =  and 10 1  , then 
1 2

,D Dg
 

 is absolutely continuous on I and
1 2

, ( ) 0D Dg x
 

 =  

almost everywhere on 
1

D . 

(4) If 10 1   and 2 1   with 20 1  , then 
1 2

,D Dg
 

 is Lipschitz on I and so is 

absolutely, continuous on  I and 
1 2

2
,

1

1
( )

1
D Dg x

 





− =
−

 almost everywhere on 
1

D . 

(5)  The arc length of the graph of 
1 2

,D Dg
 

 is ( ) ( ) ( ) ( )
2 2 2 2

1 2 1 21 1   + + − + −  . 

(6)  
1 2

1

1
, ( )

2
D D

I D
g x dx

 



−

=  and 
1 2

1

1
,

1
( )

2
D D

D
g x dx

 


−
= . 

(7)   
1 2 1 2

, ,( ) (1 ) 1D D D Dg x g x
   

+ − =  for all x in I. 

Proof.  We omit the proof as it is exactly similar to the case for 
1,2g  . 

Now we consider the case of map from one cantor set of a family to another cantor set in 

another family. 

Let  
1 2

,C Dg
 

be the canonical Cantor like function defined similarly as 
1,2g  mapping the cantor 

set 
1

C  onto the Cantor set 
2

D . 

Proposition 22.  The function, 
1 2

, :C Dg I I
 

→  , as defined above is strictly increasing and 

continuous and maps the Cantor set 
1

C  bijectively onto 
2

D , where 1 20 , 1   .  The 

function 
1 2

,C Dg
 

satisfies 
1 2 1 2

, ,( ) (1 ) 1C D C Dg x g x
   

+ − =  for all x in I. 

Proof.  The proof is exactly the same as for Proposition 15.   

 

Note that  
2 1

,D Cg
 

is the inverse to 
1 2
, :C Dg I I

 
→ . 
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Theorem 23. 
1 2
, :C Dg I I

 
→  is differentiable almost everywhere on I. 

1 2
,C Dg

 
is differentiable 

on 
1

[0,1] C− .  For x in  
1

I C− , if ( )x I r  and 

1

, where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
r b k n b n

=

= =   =  , then 
1 2

2 2
, 2 1

1 1

3 3
( ) 2

2 4

nn

C D n
g x

 

 

 −

  = =  
 

. 

 

(1)  If  1 1 =  and 20 1  , then 
1 2

,C Dg
 

 is not absolutely continuous on I.  

(2)  If  2 1 =  and 10 1   then 
1 2

,C Dg
 

is absolutely continuous on [0, 1] and 
1 2

, ( ) 0C Dg x
 

 =

almost everywhere on 
1

C . 

(3)  If 10 1   and 20 1  , then 
1 2

,C Dg
 

is Lipschitz on I and so is absolutely continuous 

on I and 
1 2

2
,

1

1
( )

1
C Dg x

 





− =
−

 almost everywhere on 
1

C . 

(4) The arc length of the graph of 
1 2

,C Dg
 

 is   

                        ( ) ( ) ( ) ( ) ( ) ( )
22 2 2 2 32

1 2 1 23 4

1

1
1 1 4

2

k k

k

   


=

− + − + +  . 

(5)  
1 2

1

1
, ( )

2
C D

I C
g x dx

 



−

=  and 
1 2

1

1
,

1
( )

2
C D

C
g x dx

 


−
= . 

Proof.  Since 
1 2

,C Dg
 

 is strictly increasing, it is differentiable almost everywhere on [0,1]. 

Let
1

G I C= −     

         
1

( ) :  a dyadic ratonal, , where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
I r r r b k n b n

=

 
= = =   =  

 
 ,  

where ( )I r  are the open intervals in G to be deleted to construct 
1

C .  

Let 
2

H I D= −  

           
1

( ) :  a dyadic rational, , where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
J r r r b k n b n

=

 
= = =   =  

 
 , 

where ( )J r  are the open intervals in H to be deleted to construct 
2

D .  

Note that if  
1

, where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
r b k n b n

=

= =   =  , then the length of I(r) is 1

3n


  

and that of J(r) is 2

2 12 n


−

. 
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Plainly, if ( )x I r  and 
1

, where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
r b k n b n

=

= =   =  , then  

2

2 1

11 2

2 2 2
, 2 1

1 13

length of ( ) 3 3
( ) 2

length of ( ) 2 4

n

n

nn

C D n

J r
g x

I r 





 

 

−

−

  = = = =  
 

. 

(1)  If  1 1 =  and 20 1  , then 
1 21 2 1 2

, , 1 2( ( )) ( ( )) ( ) 1 0C D C Dm g C m g C m D
     = = = −  .  As 

1( ) 0m C = , 
1 2

,C Dg
 

cannot be a N function.  Consequently, 
1 2

,C Dg
 

is not absolutely continuous 

on I. 

(2)  If  2 1 = , then 
1 21 2

, 1( ( )) ( ) ( ) 1 1 0.C Dm g C m D m D
   = = = − =   Moreover, 

1 2
,C Dg

 
is 

differentiable on 
1

I C−  and 
1 2

2
,

1 1

2
( ) 2C Dg x

 



 
  =  for all x in 

1
I C− .  Therefore, by 

Theorem 12 part (a) of Functions Having Finite Derivatives, Bounded Variation, Absolute 

Continuity, the Banach Zarecki Theorem and de La Vallée Poussin's Theorem, 
1 2

,C Dg
 

is 

absolutely continuous on I.  By Theorem 15 of Functions of Bounded Variation and 

Johnson's Indicatrix, 
1 2

, ( ) 0C Dg x
 

 = almost everywhere on 
1

C .  

(3)  Suppose 10 1   and 20 1  .  Let ng be the polygonal approximation of  
1 2

,C Dg
 

determined by the points on the graph given by the end points of the open intervals in 

2 1

1 1

( ) ( )
2

nn

n
j k

k
G n U j I

−

= =

 
= =  

 
 .  As the gradient of the graph of ng  over each open interval in 

U(j) is 2

1

3
2

4

j




 
 
 

  and over each closed interval in ( )I G n−  is  
( )( )

2

2
1 3

1
1 1

2

1 1

n

n





 
− − 

 

− −
 ,  for x y  , 

( ) ( )
0 n ng x g y

x y

−


−
             

( )( ) ( )( )

2 2 2

2 2 2 2

2 2
1 1 1 11 13 3

1 1
1 1 1 1

3 3 3 32 2
max 2 ,2 , ,2 , max ,

4 4 4 21 1 1 1

n n n

n n

 
   

    

      
− − − −                   =        

      − − − −   
      

. 

Therefore, taking limit as n tends to infinity we have, for x y ,       

                                1 2 1 2
, , 2 2

1 1

( ) ( ) 13
0 max ,

2 1

C D C Dg x g y

x y

     

 

−  −
   

− − 

. ------------------- (15) 

It follows that 
1 2 1 2

2 2
, ,

1 1

13
( ) ( ) max ,

2 1
C D C Dg x g y x y

   

 

 

 −
−  − 

− 

 for all x, y in I.  Hence, 
1 2

,C Dg
 

is 

Lipschitz and so is absolutely continuous on I. 
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The case when 2 1 = has already been dealt with in part (2). 

Now we assume 
10 1   and 20 1  .   Note that 2 2 1

1

1 1 2

13
2 3

2 1

  


  

−
  + 

−
. 

Thus, if 1
1

2

2 3





+  , it follows from (15) that for x y , 

                           1 2 1 2
, ,

2

1

( ) ( ) 1

1

C D C Dg x g y

x y

    



− −


− −
. 

Therefore, if 1
1

2

2 3





+  , 
1 2 1 2

2
, ,

1

1
( ) ( )

1
C D C Dg x g y x y

   





−
−  −

−
 for any x and y in I.  

Hence, if 1
1

2

2 3





+  , 
1 2

,C Dg
 

is Lipschitz with constant 2

1

1

1





−

−
. 

Therefore, if  1
1

2

2 3





+  , since 
1 2

,C Dg
 

is strictly increasing and absolutely continuous, by 

Theorem 11, Functions of Bounded Variation and Johnson's Indicatrix, 

               ( ) ( )
1 21 2 1 2

1 1

2
, , 2

1

1
( ) ( ) 1

1
C D C D

C C
g x dx m g C m D dx

   
 

 






− = = = − =
−  . 

It follows that if  1
1

2

2 3





+  , 
1 2

1

2
,

1

1
( ) 0

1
C D

C
g x dx

 






 − − = 
− 

 .  As 

1 2 1 2
, ,

2

1

( ) ( ) 1

1

C D C Dg x g y

x y

    



− −


− −
,  for x in 

1
C and 

1 2
,C Dg

 
is differentiable at x, then  

1 2

2
,

1

1
( )

1
C Dg x

 





− 
−

.   Since 
1 2

,C Dg
 

is differentiable almost everywhere on [0,1], 

1 2

2
,

1

1
( )

1
C Dg x

 





− 
−

 almost everywhere on 
1

C .  Therefore, 
1 2

2
,

1

1
( )

1
C Dg x

 





− =
−

 almost 

everywhere on 
1

C .  

If 1
1

2

2 3





+  , we shall factor 
1 2

,C Dg
 

 as  
3 2 1 3

, ,C D C Cg g
   

, where  3
3

2

2 3





+  .  

As the function 
2

( ) 2
x

h x x


= +  is continuous on [0, 1], h(0)= 0 and 
2

2
(1) 1 3h


= +  , if 

1
1

2

2 3





+  , by the Intermediate Value Theorem, there exists, 1 3 1    such that 

3
3 3

2

( ) 2 3h


 


= + = .  Choose such a 3  for the factorization.  Then 
3 2

,C Dg
 

is absolutely 

continuous on I and  
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3 2

2
,

3

1
( )

1
C Dg x

 





− =
−

 almost everywhere on 
3

C .  

As 1 30 1    ,  by Proposition 16,  
1 3

,C Cg
 

is Lipschitz and 

                        
1 3

3
,

1

1
( )

1
C Cg x

 





− =
−

 almost everywhere on 
1

C . 

Since 
1 3

,C Cg
 

, 
3 2

,C Dg
 

and 
3 2 1 3 1 2

, , ,C D C C C Dg g g
     

= all have finite derivatives almost 

everywhere and 
3 2

,C Dg
 

is absolutely continuous and so is an N function, by Theorem 3 of 

Change of Variables Theorems, the Chain Rule for the derivative of 
3 2 1 3 1 2

, , ,C D C C C Dg g g
     

=

holds almost everywhere on I.  Therefore, 

               ( ) ( )
1 2 3 2 1 3 3 2 1 3 1 3

, , , , , ,( ) ( ) ( ) ( )C D C D C C C D C C C Cg x g g x g g x g x
           

  = =  

almost everywhere on I.  Hence, 

                   
1 2

32 2
,

3 1 1

11 1
( )

1 1 1
C Dg x

 

 

  

−− − =  =
− − −

 almost everywhere on 
1

C . 

(4) We compute the arc length of the graph of 
1 2

,C Dg
 

 by taking the limit of the arc length of 

the graph of the polygonal approximation ng  of  
1 2

,C Dg
 

. 

The arc length of ng  is the sum of the length of the 2n
 line segments, each of equal length, 

 ( ) ( ) ( )( )( ) ( )( )( )
2 2

2 2 2 1
1 23 2

1 1
1 1 1 1

2 2

n n

n n n n
  

   
+ = − − + − −   

   
, over ( )I G n−  plus the 

sum of the 
12k−
 line segments, each of equal length, 

( ) ( )
2 2 2

2 21 2
1 22 1

1 3
4

3 2 3 4

k

k k k

 
 

−

     
+ = +     

    
 , over the open intervals in U(k), for k =1, 2, 

…., n.  

Therefore, the arc length of the graph of ng  is 

( )( )( ) ( )( )( ) ( ) ( )
2 2 21

2 22 1
1 2 1 23 2

1

1 1 2 3
2 1 1 1 1 4

2 2 3 4

kkn
n nn

n n k
k

   
−

=

     
− − + − − + +     

     
  

( )( )( ) ( )( )( ) ( ) ( ) ( )
22 2

2 22 1 2
1 2 1 23 2 3

1

1 3
1 1 1 1 4

2 4

kn
n kn

k

   
=

 
= − − + − − + +  

 
 . 

Therefore, taking limit as n tends to infinity, the arc length of the graph of 
1 2

,C Dg
 

is  
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                   ( ) ( ) ( ) ( ) ( )
2

2 2 2 22
1 2 1 23

1

1 3
1 1 4

2 4

k
k

k

   


=

 
= − + − + +  

 
 . 

(5)  The proof is similar to Proposition 18. 

Let 
1

1

[0,1] ( )
k

G C U k



=

= − = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
U n I

−

−
=

− 
= + 

 
, and 

1

1 1
( )

2 2n n

k
I r I

−

− 
= + 

 
,  

11 2nk −  , are the open intervals, each of length 1

3n


,  to be deleted in stage n in the 

construction of 
1

C  .    Let 
2

1

[0,1] ( )
k

H D V k



=

= − = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
V n J

−

−
=

− 
= + 

 
, and 

1

1 1
( )

2 2n n

k
J r I

−

− 
= + 

 
,  11 2nk −  , are the open intervals, each of length 2

2 12 n


−

,  to be deleted 

in stage n in the construction of 
2

D .    Let  
1

( ) ( )
n

k

G n U k
=

==   and 
1

( ) ( )
n

k

H n V k
=

= .  Then 

1

( )
k

G G k


=

=  and 
1

( )
k

H H k


=

= .   ( ) ( ,1) ( ,2) ( ,2 )nI G n F n F n F n− =     is a disjoint 

union of 2n
 closed interval of length  ( )( )( )2

1 3

1
1 1

2

n

n n
= − −  and 

( ) ( ,1) ( ,2) ( ,2 )nI H n K n K n K n− =     is a disjoint union of 2n
 closed interval of 

length  ( )( )( )1
2 2

1
1 1

2

n

n n
 = − − . 

Now we examine the indexing of U(n) and V(n).   We note that  

         
1

1

1
1

1 1 1
:1 2 : 0 or 1

2 2 2 2

n
jn

jn n j n
j

k
k




−
−

−
=

 − 
+   = + =   

   
 . 

If we let 
1

1
1

1 1 1
( ( ), ( ))

2 2 2 2

n
j

n n j n
j

k
J J c r d r

−

−
=

 − 
+ = + =  

   
 , where 

1

1

1

2 2

n
j

j n
j

r
−

=

= + , then 

1
2

2 1
1

( )
2

n

j j nj
j

c r


  
−

−
=

  
= + +  

  
  .    

Therefore, 

 
1 2

1

1

11 1 2
, 2 1( )

1 1
:1 2

2 2

1
( ) ( ) 2

3 2 3 2
n

n n

n

C D n n nU n
k

r k

g x dx c r
 

  

−

−

−

−
− 

 +   
 

 
=  +   
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1

1

1
21 2 1 2

2 1 2 1
11

2 2

2
3 2 3 2n

j

j n
j

n
n

j j nn j n n
j

r


   
  

−

=

−
−

− −
=

= +

   
=  + + +    

   


   

    
1 1

2 2 1 21 2 1 2

2 1 2 1
1 1

2 2 2 2
3 2 3 2

n n
n n n n

j nn j n n
j j

   
 

− −
− − − −

− −
= =

 
=  + + +  

 
  .   -------------------------  (*3) 

But  2
12 1

2
2

j jj


 −−

= −  for  1 j n  .  For j = 1,
1 0j − =  is set to be 1. 

Therefore,  

   
1 1

2 2 1 22 2

2 1 2 1
1 1

2 2 2 2
2 2

n n
n n n n

j nj n
j j

 
 

− −
− − − −

− −
= =

+ + +  
    

 
( ) ( )

1 1
2 2 1 2

1 1

1 1

2 2 2 2 2 2
n n

n n n n

j j j n n n

j j

     
− −

− − − −

− −

= =

= + − + +  − 
     

  

1 1 2
2 1 2 2 2 2 2

0 1 0

1 1 1

2 2 2 2 2 2 2
n n n

n n n n n n n

j j j n

j j j

     
− − −

− − − − − − −

−

= = =

= − + + + = =   . 

 

It follows then from (*3) that 

                        
1 2

1
21 1

,
( )

2
( ) 2

3 2 3

n
n

C D n nU n
g x dx

 

  −
−=  = . 

Hence,  

              
1 2 1 2 1 2

1

, , ,
( )

1

( ) ( ) ( )C D C D C D
G I C U n

n

g x dx g x dx g x dx
     





−
=

= =    

               
1

1 1

1

2

2 3 2

n

n
n

 −

=

= = . 

Therefore, as
1 2

,

1
( )

2
C D

I
g x dx

 
= , 

1 2 1 2
1 1

1
, ,

11
( ) ( )

2 2
C D C D

C I C
g x dx g x dx

   
 


−

−
= − =  . 

Remark. 

In the proof of part (3) that ( ) ( )
1 2 3 2 1 3 3 2 1 3 1 3

, , , , , ,( ) ( ) ( ) ( )C D C D C C C D C C C Cg x g g x g g x g x
           

  = =  

almost everywhere on 
1

C , instead of using Theorem 3 of Change of Variables Theorems, we 

can proceed as follows.  Firstly, note that  
1 2 3 2 1 3

, , ,C D C D C Cg g g
     

= , 
1 3

,C Cg
 

and 
3 2

,C Dg
 

are all 

absolutely continuous and strictly increasing.  By Proposition 16,  
1 3

,C Cg
 

is differentiable 
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almost everywhere on 
1

C  and  
1 3

3
,

1

1
( )

1
C Cg x

 





− =
−

 almost everywhere on 
1

C .  Suppose 

1 3

3
,

1

1
( )

1
C Cg x

 





− =
−

 for x in E, 
1

E C and  
1

( ) 0m C E − = ,  
3 2

,C Dg
 

is differentiable almost 

everywhere in 
3

C and 
3 2

2
,

3

1
( )

1
C Dg x

 





− =
−

 for all x in 
3

D C and 
3

( ) 0m C D − = .  

( )
3 1 1 3

1

, ,C C C Cg g
   

−

=  is an N function, since it is absolutely continuous.  Therefore,

( )
31 3

1

, ( ) 0C Cm g C D
  

− 
− = 

 
.   Let  ( )

3 11 3

1

, ( )C CA g C D C
   

−

= −  .  Hence, 

( )( )
1

0m A C E − = . Therefore, 
1 3

,C Cg
 

is differentiable on 

( )( ) ( )
1 1 1

C A C E C A E  −  − = −  .    Moreover, since 
1 3

,C Cg
 

 is injective,

( )( )( ) ( )( ) ( ) ( )
1 1 1 11 3 1 3 1 3 1 3

, , , ,C C C C C C C Cg C A C E g C A E g C A g E
          −  − = −  = −  . 

This means that 

( )( )( ) ( )( ) ( ) ( )
1 1 31 3 1 3 1 3 1 3

, , , ,C C C C C C C Cg C A C E C g A g E D g E
         −  − = −  =  . 

Hence, ( )( )
1 1

x C A C E  −  − implies that 
1 3

,C Cg
 

is differentiable at x and 
3 2

,C Dg
 

is 

differentiable at  
1 3

, ( )C Cg x
 

and consequently, 

       ( ) ( )
1 2 3 2 1 3 3 2 1 3 1 3

, , , , , ,( ) ( ) ( ) ( )C D C D C C C D C C C Cg x g g x g g x g x
           

  = =  

                                                             32 2

3 1 1

11 1

1 1 1

 

  

−− −
=  =

− − −
. 

Next, we examine the inverse function of 
1 2

,C Dg
 

. 

Theorem 24. 
2 1

, , :D Cg I I
 

→  is differentiable almost everywhere on I. 
2 1

,D Cg
 

is differentiable 

on 
2

[0,1] D− .  For x in  
2

I D− , if ( )x J r  and    

1

, where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
r b k n b n

=

= =   =  , then 
2 1

2 1

1 1
,

2 2

2 1 4
( )

3 2 3

nn

D C n
g x

 

 

 

−
  = =  
 

. 

The function 
2 1

,D Cg
 

is not Lipschitz on I. 

(1)  If  2 1 =  and 10 1  , then 
2 1

,D Cg
 

 is not absolutely continuous on I.  

(2)  If  1 1 =  and 20 1   then 
2 1

,D Cg
 

is absolutely continuous on [0, 1] and 
2 1

, ( ) 0D Cg x
 

 =

almost everywhere on 
2

D . 
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(3)  If 20 1   and 
10 1  , then 

2 1
,D Cg

 
is absolutely continuous on I and 

2 1

1
,

2

1
( )

1
D Cg x

 





− =
−

 almost everywhere on 
2

D . 

(4) The arc length of the graph of 
2 1

,D Cg
 

 is   

                        ( ) ( ) ( ) ( ) ( ) ( )
22 2 2 2 32

1 2 1 23 4

1

1
1 1 4

2

k k

k

   


=

− + − + + . 

(5)  
2 1

2

2
, ( )

2
D C

I D
g x dx

 



−

=  and 
2 1

2

2
,

1
( )

2
D C

D
g x dx

 


−
= . 

(6) 
2 1 2 1

, ,( ) (1 ) 1D C D Cg x g x
   

+ − =  for all x in I. 

Proof. 

Since  ( )
2 1 1 2

1

, ,D C C Dg g
   

−

=  and 
1 2

,C Dg
 

 is strictly increasing and continuous, 
2 1

,D Cg
 

is strictly 

increasing and continuous on I.   Therefore, 
2 1

,D Cg
 

is differentiable almost everywhere on 

[0,1] and 
2 1

,D Cg
 

  is Lebesgue integrable. 

Recall 

2
H I D= −  

    
1

( ) :  a dyadic rational, , where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
J r r r b k n b n

=

 
= = =   =  

 
 . 

Plainly, for ( )x J r  and 
1

, where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
r b k n b n

=

= =   =  , then  

1

22 1
2 1

2 1

3 1 1
,

2 22

length of ( ) 2 1 4
( )

length of ( ) 3 2 3

n

n

nn

D C n

I r
g x

J r 





 

 −

−
  = = = =  
 

. 

Note that   
2 1

, ( ) :D Cg x x I H
 

  −  is unbounded as 1

2

1 4

2 3

n




 
→  

 
.   Therefore, 

2 1
,D Cg

 
is not 

Lipschitz on I, because if it were to be Lipschitz, then its derivatives would be bounded.  

(1)  If  2 1 =  and 10 1  , then 
2 2 12 1 2 1

, , 1( ( )) ( ( )) ( ) 1 0D C D Cm g D m g D m C
      = = = −  .  As 

1( ) 0m D = , 
2 1

,D Cg
 

cannot be a N function.  Consequently, 
2 1

,D Cg
 

is not absolutely continuous 

on I. 

(2)  If  1 1 = , then 
2 12 1

, 1( ( )) ( ) ( ) 1 1 0.D Cm g D m C m C
   = = = − =   Moreover, 

2 1
,D Cg

 
is 

differentiable on 
2

I D− .  Therefore, by Theorem 12 part (a) of Functions Having Finite 

Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La 
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Vallée Poussin's Theorem, 
2 1

,D Cg
 

is absolutely continuous on I.  By Theorem 15 of Functions 

of Bounded Variation and Johnson's Indicatrix, 
2 1

, ( ) 0D Cg x
 

 = almost everywhere on 
2

D .  

(3) Now, as ( )
2 1 1 2

1

, ,D C C Dg g
   

−

=  and 
1 2

,C Dg
 

is strictly increasing and continuous, by Theorem 

12 part (b) (Zarecki Theorem) of Functions Having Finite Derivatives, Bounded Variation, 

Absolute Continuity, the Banach Zarecki Theorem and de La Vallée Poussin's Theorem,  

2 1
,D Cg

 
is absolutely continuous if and only if  ( )

1 2
,[0,1]: ( ) 0 0C Dm x g x

 

 = = . 

Note that 
1 2

, ( ) 0C Dg x
 

   for all x in 
1

I C− and as 20 1   and 10 1  , by Theorem 22 

part (3), 
1 2

2
,

1

1
( )

1
C Dg x

 





− =
−

almost everywhere on 
1

C .  That means there is a subset 
1

E C  

such that 
1 2

2
,

1

1
( ) 0

1
C Dg x

 





− = 
−

 for all x in E, and 
1

( ) 0m C E − = .  Hence,  

  11 2
,[0,1] : ( ) 0C Dx g x C E

  
 =  − . It follows that  ( )

1 2
,[0,1]: ( ) 0 0C Dm x g x

 

 = = .   

Therefore, 
2 1

,D Cg
 

is absolutely continuous on I. 

In particular, 
2 1

,D Cg
 

 is differentiable on 
1 2

, ( )C Dg E
 

 and for y in 
1 2

, ( )C Dg E
 

, 

                    

( )
22 1

1
1 2 2 11 2 1 2

1
, 1 1

21, ,, ,

11 1 1
( )

1( ( ))( ( ))
D C

C D D CC D C D

g y
g g yg g y

 

      







− −

−

− = = = =
−

. 

Now since 
1 2

,C Dg
 

is strictly increasing and so is injective,   

                  
2 1 11 2 1 2 1 2 1 2

, , , ,( ) ( ) ( ) ( )C D C D C D C DD g E g C g E g C E
         − = − = − . 

As 
1 2

,C Dg
 

is absolutely continuous and so is a N function,   

                 ( ) ( )
2 11 2 1 2

, ,( ) ( ) 0C D C Dm D g E m g C E
    − = − = . 

It follows that 
2 1

1
,

2

1
( )

1
D Cg x

 





− =
−

 almost everywhere on 
2

D . 

(4)  The arc length of the graph of 
2 1

,D Cg
 

 is the same as the arc length of the graph of its 

inverse, 
1 2

,C Dg
 

 and by Theorem 22 part (4) is equal to 

                 ( ) ( ) ( ) ( ) ( ) ( )
22 2 2 2 32

1 2 1 23 4

1

1
1 1 4

2

k k

k

   


=

− + − + + . 
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(5) The proof is similar to that of part (5) of Theorem 22. 

Let 
1

1

[0,1] ( )
k

G C U k



=

= − = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
U n I

−

−
=

− 
= + 

 
, and 

1

1 1
( )

2 2n n

k
I r I

−

− 
= + 

 
,  

11 2nk −  , are the open intervals, each of length 1

3n


,  to be deleted in stage n in the 

construction of 
1

C  .    Let 
2

1

[0,1] ( )
k

H D V k



=

= − = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
V n J

−

−
=

− 
= + 

 
, and 

1

1 1
( )

2 2n n

k
J r I

−

− 
= + 

 
,  11 2nk −  , are the open intervals, each of length 2

2 12 n


−

,  to be deleted 

in stage n in the construction of 
2

D .    Let  
1

( ) ( )
n

k

G n U k
=

==   and 
1

( ) ( )
n

k

H n V k
=

= .  Then 

1

( )
k

G G k


=

=  and 
1

( )
k

H H k


=

= .   ( ) ( ,1) ( ,2) ( ,2 )nI G n F n F n F n− =     is a disjoint 

union of 2n
 closed interval of length  ( )( )( )2

1 3

1
1 1

2

n

n n
= − −  and 

( ) ( ,1) ( ,2) ( ,2 )nI H n K n K n K n− =     is a disjoint union of 2n
 closed interval of 

length  ( )( )( )1
2 2

1
1 1

2

n

n n
 = − − . 

Now we examine the indexing of the open intervals in U(n) and V(n).   We note that  

         
1

1

1
1

1 1 1
:1 2 : 0 or 1

2 2 2 2

n
jn

jn n j n
j

k
k




−
−

−
=

 − 
+   = + =   

   
 . 

If we let 
1

1
1

1 1 1
( ( ), ( ))

2 2 2 2

n
j

n n j n
j

k
I I a r b r

−

−
=

 − 
+ = + =  

   
 , where 

1

1

1

2 2

n
j

j n
j

r
−

=

= + , then 

1
1

1

( )
3

n

j j nj
j

a r



−

=

  
= + +  

  
  .    

Therefore, 

 
2 1

1

1

12 2 1
, 2 1 2 1( )

1 1
:1 2

2 2

1
( ) ( ) 2

2 2 2 3
n

n n

n

D C n n nV n
k

r k

g x dx a r
 

  

−

−

−

− −
− 

 +   
 

 
=  +   

 
  

    
1

1

1
22 1 2 1

2 1 2 1
11

2 2

2
2 3 2 3n

j

j n
j

n
n

j j nn j n n
j

r


   


−

=

−
−

− −
=

= +

   
=  + + +    
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1 1

2 2 1 22 1 2 1

2 1 2 1
1 1

2 2 2 2
2 3 2 3

n n
n n n n

j nn j n n
j j

   − −
− − − −

− −
= =

 
=  + + +  

 
  .   -------------------------  (*4) 

But  1
1 2

3
j jj


−= −  for  1 j n  .  For j = 1,

1 0j− =  is set to be 1. 

Therefore,  

   
1 1

2 2 1 21 1

1 1

2 2 2 2
3 3

n n
n n n n

j nj n
j j

 − −
− − − −

= =

+ + +    

           
( ) ( )

1 1
2 2 1 2

1 1

1 1

2 2 2 2 2 2
n n

n n n n

j j j n n n

j j

− −
− − − −

− −

= =

= + − + +  −   

         

1 1 2
2 1 2 2 2 2 2

0 1 0

1 1 1

2 2 2 2 2 2 2
n n n

n n n n n n n

j j j n

j j j

− − −
− − − − − − −

−

= = =

= − + + + = =   . 

It follows then from (*4) that 

                        
2 1

22 2
, 2 1( )

1
( ) 2

2 2 2

n

D C n nV n
g x dx

 

 −

−
=  = . 

Hence,  

              
2 1 2 1 2 1

2

, , ,
( )

1

( ) ( ) ( )D C D C D C
H I D V n

n

g x dx g x dx g x dx
     





−
=

= =    

                                      2 2

1

1

2 2 2n
n

 

=

= = . 

Therefore, as
2 1

,

1
( )

2
D C

I
g x dx

 
= , 

2 1 2 1
2 2

2
, ,

11
( ) ( )

2 2
D C D C

D I D
g x dx g x dx

   
 


−

−
= − =  . 

(6)  The proof is similar to Proposition 13. 

 

Now it is ripe to introduce the general family of Cantor sets. 

Let   ≥ 3.  For 0 <    −2, let C

  be the Cantor set defined as follows.  

In the first stage, we delete the middle open interval with length 



 from [0, 1].   Following 

the construction for C ,we denote this open interval by I(1,1).  Then the complement of this 

middle interval is 2 disjoint closed interval each of length 
1

1
2





 
− 

 
.  We denote the open 

deleted interval by (1,1) ( (1,1), (1,1))I a b= .  As for the case of C , we denote the closed 

interval in the complement by (1,1)J  and (1,2)J , where the closed interval (1,2)J is to the 
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right (1,1)J  , meaning it is ordered in such a way that every point of (1,2)J is bigger than any 

point in (1,1)J . 

Then at the second stage we delete the middle open interval of length 
2




 from each of the 2 

remaining closed intervals.  Thus, there are 2 open intervals to be deleted and they are  

(2,1) ( (2,1), (2,1))I a b= and (2,2) ( (2,2), (2,2))I a b= .   As for the case of C , these two open 

intervals are ordered by the second index.  Hence, we are left with 4 = 22 remaining closed 

intervals, (2,1)J , (2, 2)J , (2,3)J  and 2(2,2 )J each of length ( )( )( )2
2

22

1
1 1

2



 −
− − .  Let 

(1) (1,1)U I= ,  (2) (2,1) (2,2)U I I=  , (1) (1)G U= ,  (2) (1) (2)G U U=  .  Then  

(1) (1,1) (1,2)I G J J− =  ,  2(2) (2,1) (2,2) (2,3) (2,2 )I G J J J J− =    . 

At stage n delete the middle open interval of length 
n




 from each of the 

12n−
 remaining 

closed intervals, 1( 1,1), ( 1,2), , ( 1,2 )nJ n J n J n −− − − , each of length 

( )( )( )1
2

21

1
1 1

2

n

n



 

−

−−
− − .   Denote these open intervals by 1( ,1), ( ,2), , ( ,2 )nI n I n I n − .   Then 

this gives the remaining 2n
 closed intervals, ( ,1), ( ,2), , ( ,2 )nJ n J n J n , each of length    

( )( )( )2
2

1
1 1

2

n

n n



 −
= − − .   Let 

12

1

( ) ( , )

n

k

U n I n k

−

=

=  and 

12

1 1 1

( ) ( ) ( , )

kn n

k k j

G n U k I k j

−

= = =

= = . 

Observe that ( ) ( ,1) ( ,2) ( ,2 )nI G n J n J n J n− =    . 

Note that G(n) consists of  2 1n −  disjoint open intervals.  The total length of the intervals in 

G(n) is given by  

                   

2 1

2 1

2 3

2 2 2
2 2 2 1

n

n

n

    

       

−

−
    

+ + + + = + + +         

  

                                                                     
( )2

2

1 2
1

1 2

n n





 

  

   −  
 = = −    − −    

. 

Note that ( ) ( 1)G n G n +  and ( 1) ( ) ( 1)G n G n U n+ =  + . 

Let  
1 1

( ) ( )
k k

G G k U k
 

= =

= = .  Thus, the measure of G is the total length of all the U(k), that is, 

2
( ) lim 1 .

2 2

n

n
m G

 

  →

  
= = − =   − −  

  

The Cantor set C

  is defined by C I G

 = − . 
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Hence, the measure of  C

  is given by 
2

( ) ( ) ( ) 1 0
2 2

m C m I m G



  

 

− −
= − = − = 

− −
.  

Note that ( )2 0m C

 − = .    

We re-index  ( , )nI n k , 11 2n

nk −  , 1 n    as for the deleted open intervals for C . 

We define the Cantor function 
C

f 


associated with C

  in exactly the same manner as for C .  

For x G , ( )x I r  , ( )
C

f x r


= . 

Note that 3C  is just C in Theorem 1. 

 

All the properties that we have proved for C  apply to C

 and its associated Cantor Lebesgue 

function, 
C

f 


. 

In summary, we have the following theorems. 

Theorem 25.   The Cantor set C

  (0 <     −2,  ≥ 3) is 

(1)  compact, 

(2)  nowhere dense, i.e., it contains no open intervals, 

(3)  its own boundary points, 

(4)  perfect, i.e., it is its own set of accumulation points, 

(5)  totally disconnected and 

(6)  between any two points in C

 , there is an open interval not contained in C

 . 

Theorem 26.   The Cantor Lebesgue function, 
C

f 


, associated with the Cantor set C

  (0 <   

  −2,  ≥ 3) is increasing and continuous and maps C

  onto I = [0,1].   

(1) If 0 2   − , then the associated Cantor Lebesgue function 
C

f 


is Lipschitz with 

constant 
2

2



 

−

− −
and so is absolutely continuous on [0, 1]; if 2 = − , then 

C
f 



is singular 

and therefore not absolutely continuous. 

(2) 
C

f 


 satisfies the relation ( ) (1 ) 1
C C

f x f x 
 

+ − =  for all x in I. 
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(3) The arc length of the graph of the Cantor Lebesgue function, :[0,1] [0,1]
C

f 


→ , for C

 , 

is 
2

2 2
1 (1 )

 

 − −
+ + − . 

(4)  
C

f 


is differentiable almost everywhere on [0,1]; ( ) ( ) 0
C

f x



=  for [0,1]x C

 − ; if

0 2   − , ( ) 2
( )

2C
f x





 

 −
=

− −
 almost everywhere on C

 . 

(5) 
1

0

1
( )

2C
f x dx



= , ( )
2( 2)CI C

f x dx




−
=

−  and 
2

( )
2( 2)CC

f x dx


 



− −
=

− . 

 

The proofs for Theorem 25 and 26 are exactly the same for the Cantor set C  and its 

associated Cantor Lebesgue function. 

Let  
21

,C C
g  



be the canonical Cantor like function defined similarly as 
1,2g  mapping the cantor 

set 
1

C

  onto  
2

C

 , where 10 2   −  , 20 2   − ,  and 3  . 

Proposition 27.  The function, 
21

,
:

C C
g I I 



→  , as defined above is strictly increasing and 

continuous and maps the Cantor set 
1

C

  bijectively onto 
2

C

 , where 10 2   −  and 

20 2   − .  For all x in I, 
2 21 1

, ,
( ) (1 ) 1

C C C C
g x g x   

  

+ − = . 

Proof.  The proof is exactly the same as Proposition 15 and for the proof of the last 

statement, it is similar to that of Proposition 13.   

Let
1

G I C

= −     

         
1

( ) :  a dyadic ratonal, , where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
I r r r b k n b n

=

 
= = =   =  

 
 ,  

where ( )I r  are the open intervals in G to be deleted to construct 
1

C

 .  

Let 
2

H I C

= −  

           
1

( ) :  a dyadic rational, , where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
J r r r b k n b n

=

 
= = =   =  

 
 , 

where ( )J r  are the open intervals in H to be deleted to construct 
2

C

 .  

Note that if  
1

, where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
r b k n b n

=

= =   =  , then the length of I(r) is 1

n




  

and that of J(r) is 2

n




. 
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Theorem 28. 
21

,
:

C C
g I I 



→  is differentiable almost everywhere on I. 
21

,C C
g  



is differentiable 

on 
1

[0,1] C

− .  For x in  
1

I C

− , if ( )x I r  and    

1

, where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
r b k n b n

=

= =   =  , then 
21

2 2

,
1 1

( )

nn

nC C
g x 



  

   

  = =  
 

. 

If    , then 
21

,C C
g  



 is not Lipschitz on I.  

(1)  If  1 2 = −  and 20 2   − , then 
21

,C C
g  



 is not absolutely continuous on I.  

(2)  If  2 2 = −  and 10 2   −  , then 
21

,C C
g  



is absolutely continuous on [0, 1] and 

21
,

( ) 0
C C

g x 


 = almost everywhere on 
1

C

 . 

(3)  If 10 2   − , 20 2   −  and    , then 
21

,C C
g  



 is Lipschitz on I and so is 

absolutely continuous on I and 
2

1
21

2

,

2

1
( )

1C C
g x 











−

−

−
 =

−
 almost everywhere on 

1
C

 . 

(4)  If 10 2   − , 20 2   −  and   ,  then  
21

,C C
g  



 is absolutely continuous on I 

but not Lipschitz on I and
2

1
21

2

,

2

1
( )

1C C
g x 











−

−

−
 =

−
 almost everywhere on 

1
C

 . 

(5) The arc length of the graph of 
21

,C C
g  



 is   

               ( ) ( ) ( ) ( ) ( ) ( )1 2
2 2 22 22

1 22 2

1

1
1 1

2

kk

k

  
   

 


− −

=

− + − + + , if   , or,    

            ( ) ( ) ( ) ( ) ( ) ( )1 2
2 2 22 22

2 12 2

1

1
1 1

2

k k

k

  

   
 



− −

=

− + − + + , if   .        

 (6)  
211

1

,

1
( )

2 2C CI C
g x dx 





−
=

−  and 
211

1

,

1
( ) 1

2 2C CC
g x dx 







 
= − 

− 
 . 

Proof.  Since 
21

,C C
g  



 is strictly increasing, it is differentiable almost everywhere on [0,1]. 

Plainly, if x is in 
1

I C

− , then ( )x I r  for some  

                          
1

, where 0 or 1, 1 , 1, 1
2

n
k

k nk
k

b
r b k n b n

=

= =   =     

and                

2

1
21

2 2

,
1 1

length of ( )
( )

length of ( )

n

n

nn

nC C

J r
g x

I r
 











  

   

  = = = =  
 

. 
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If   , then 2

1

n



 

 
→  

 
 as n →.  Therefore,  ( ) 1

1 2
,

( ) : [0,1]
C C

g x x C 
 





  
 − 

  

 is 

unbounded.  It follows that  is not Lipschitz on I.  

(1)  If  1 2 = −  and 20 2   − , then 

1 2
2 21 1

2
2, ,

2
( ( )) ( ( )) ( ) 0

2C C C C
m g C m g C m C   

  

  

  

 


−

− −
= = = 

−
.  As 

2( ) 0m C

 − = , 
21

,C C
g  



cannot 

be a N function.  Consequently, 
21

,C C
g  



is not absolutely continuous on I. 

(2)  If  2 2 = − , then 
1 2

21

2,
( ( )) ( ) ( ) 0.

C C
m g C m C m C 



  

   −= = =   Moreover, 
21

,C C
g  



is 

differentiable on 
1

I C

− .  Therefore, by Theorem 12 part (a) of Functions Having Finite 

Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La 

Vallée Poussin's Theorem, 
21

,C C
g  



is absolutely continuous on I.  By Theorem 15 of Functions 

of Bounded Variation and Johnson's Indicatrix, 
21

,
( ) 0

C C
g x 



 = almost everywhere on 
1

C

 .  

(3)  Suppose 10 2   − , 20 2   −  and   .  Let ng be the polygonal 

approximation of  
21

,C C
g  



determined by the points on the graph given by the end points of the 

open intervals in 
2 1

1 1

( ) ( )
2

nn

n
j k

k
G n U j I

−

= =

 
= =  

 
 .  As the gradient of the graph of ng  over each 

open interval in U(j) is 2

1

j



 

 
 
 

  and over each closed interval in ( )I G n−  is   

                               
( )( )( )
( )( )( )

( )( )
( )( )

2 2

1
1

2 2
2 2

22
22

1
1 1 1 1

2
1 1 11 1
2

n n

n

nn

n

 
   


  

− −

−−

− − − −
=

− −− −

 ,  

for x y  , 

( ) ( )
0 n ng x g y

x y

−


−
        

  
( )( )
( )( )

( )( )
( )( )

2 2

1 1

2 22
2 2

2 2 2 2

2 2
1 1 1 12 2

1 1 1 1
max , , , , max ,

1 1 1 1

n n
n

n n

 

   

 

   

     

      

− −

− −

   − − − −
        

         
      − − − −   

   

 . 

Therefore, taking limit as n tends to infinity we have, for x y ,        

21
,C C

g  
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2

2 21 1

1

, , 22

1 2

( ) ( ) 1
0 max ,

1

C C C C
g x g y

x y

   
  













−

−

−  − 
   

− −  

. ------------------- (16) 

It follows that 
2

1
2 21 1

22

, ,
1 2

1
( ) ( ) max ,

1C C C C
g x g y x y   

  













−

−

 − 
−  − 

−  

 for all x, y in I. 

Hence, 
21

,C C
g  



is Lipschitz and so is absolutely continuous on I. 

The case when 2 2 = − has already been dealt with in part (2). 

Now we assume 10 2   −  and 20 2   − .  Suppose 
2

1

22

1 2

1

1













−

−

−


−
. 

It follows from (16) that for x y , 

                           
2

2 21 1

1

, , 2

2

( ) ( ) 1

1

C C C C
g x g y

x y

   
  









−

−

− −


− −
. 

Therefore, if 
2

1

22

1 2

1

1













−

−

−


−
, 

2

1
2 21 1

2

, ,

2

1
( ) ( )

1C C C C
g x g y x y   

  









−

−

−
−  −

−
 for any x and y in I.  

Hence, if 
2

1

22

1 2

1

1













−

−

−


−
, 

21
,C C

g  


is Lipschitz with constant 
2

1

2 2

12

1 22

2 21









 

  

−

−

− − −−
=

− − −−
. 

Therefore, if  
2

1

22

1 2

1

1













−

−

−


−
, since 

21
,C C

g  


is strictly increasing and absolutely continuous, by 

Theorem 11, Functions of Bounded Variation and Johnson's Indicatrix, 

               ( ) ( )
1 2

2 21 11 1

2 2

, ,
1

2 22
( ) ( )

2 2 2C C C CC C
g x dx m g C m C dx    

   

 

 

   

   

− − − −− = = = =
− − − −  . 

It follows that if  
2

1

22

1 2

1

1













−

−

−


−
, 

211

2

,
1

22
( ) 0

2 2 C CC
g x dx 



 

  

 − −− − = 
− − − 

 and as 

2 21 1
, ,

2

1

( ) ( )
1

1

C C C C
g x g y

x y

   
   



−
−


− −

,   
2

1
21

2

,

2

1
( )

1C C
g x 











−

−

−
 =

−
 almost everywhere on 

1
C

 .    

Suppose 
2

1

22

1 2

1

1













−

−

−


−
. 

Now, 
( )

2

1

22
1 1

1 2 22

1 1 1 1 1
1 1

2 2 2 ( 2)1









  
 

      

−

−

 −   −
  + −   +     − − − −−    

. 
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As the function 
( )2

1
( )

2 ( 2)
h x x

 

  

 −
= +  − − 

 is continuous on [0,  − 2], h(0)= 0 and 

2

2 2
( 2) 1

2 2 2
h

     


   

− − − −
− = +  + =

− − −
, if 

2

1

22

1 2

1

1













−

−

−


−
, by the Intermediate Value 

Theorem, there exists,  1 3 2    −  such that 
( )

3 3

2

1
( ) 1

2 ( 2)
h

 
 

  

 −
= + =  − − 

.    

If 
2

1

22

1 2

1

1













−

−

−


−
, we shall factor 

21
,C C

g  


 as  
323 1

, ,C C C C
g g   

 

, where  
2

3

22

3 2

1

1













−

−

−


−
.  

Then 
23

,C C
g  



is absolutely continuous on I and   

                      
2

3
23

2

,

2

1
( )

1C C
g x 











−

−

−
 =

−
 almost everywhere on 

3
C

 .  

As 1 30 2     − ,  by  an argument similar to the proof of Proposition 16 part (3),  

31
,C C

g  


is Lipschitz and by using 
3 1

,C C
g  

 

the inverse of 
31

,C C
g  



, we get 

                        
3

1
31

2

,

2

1
( )

1C C
g x 











−

−

− =
−

 almost everywhere on 
1

C

 . 

Since 
31

,C C
g  



, 
23

,C C
g  



and 
32 23 1 1

, , ,C C C C C C
g g g     

   

= all have finite derivatives almost 

everywhere and 
23

,C C
g  



is absolutely continuous and so is an N function, by Theorem 3 of 

Change of Variables Theorems, the Chain Rule for the derivative of 
32 23 1 1

, , ,C C C C C C
g g g     

   

=

holds almost everywhere on I.  Therefore, 

               ( )
3 3 32 2 21 3 1 3 1 1

, , , , , ,
( ) ( ) ( ) ( )

C C C C C C C C C C C C
g x g g x g g x g x           

         

   = = 
 

 

almost everywhere on I. 

Hence, 
2 23

3 1 1
21

2 22

,

2 22

1 11
( )

1 11C C
g x 



 
 
  

 

− −−

− −−

− −− =  =
− −−

 almost everywhere on 
1

C

 . 

(4)  Suppose 10 2   − , 20 2   −  and   ,   

Now, as ( )
2 21 1

1

, ,C C C C
g g   

  

−

=  and 
2 1

,C C
g  

 

is strictly increasing and continuous, by Theorem 12 

part (b) (Zarecki Theorem) of Functions Having Finite Derivatives, Bounded Variation, 
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Absolute Continuity, the Banach Zarecki Theorem and de La Vallée Poussin's Theorem,  

21
,C C

g  


is absolutely continuous if and only if  
2 1

,
[0,1] : ( ) 0 0

C C
m x g x 

 

  = = 
 

. 

Note that by part (3),
2 1

,
( ) 0

C C
g x 

 

   for all x in 
2

I C

− and as 20 2   −  and 

10 2   − , by part (3), 
1

2
2 1

2

,

2

1
( )

1C C
g x 

 









−

−

− =
−

almost everywhere on 
2

C

 .  That means there 

is a subset 
2

E C

  such that 
1

2
2 1

2

,

2

1
( ) 0

1C C
g x 

 









−

−

− = 
−

 for all x in E, and 
2

( ) 0m C E

 − = .  

Hence,   2
2 1

,
[0,1]: ( ) 0

C C
x g x C E 

 




 =  − . It follows that  

2 1
,

[0,1] : ( ) 0 0
C C

m x g x 
 

  = = 
 

.   Therefore, 
21

,C C
g  



is absolutely continuous on I. 

In particular, 
21

,C C
g  



 is differentiable on 
2 1

,
( )

C C
g E 

 

 and for y in 
2 1

,
( )

C C
g E 

 

, 

                
2

1 1
21

2 2 2 21 1 1 1 2

2

, 1
2 2

, , , ,

2

11 1 1
( )

1 1(( ) ( )) ( ( ))

1

C C

C C C C C C C C

g y
g g y g g y

 


       
      





 

 




−

−
− −

−

−
 = = = =

− − 

−

. 

Now since 
2 1

,C C
g  

 

is strictly increasing and so is injective,   

                  
1 2 2

2 2 2 21 1 1 1
, , , ,

( ) ( ) ( ) ( )
C C C C C C C C

C g E g C g E g C E       
      

  

  − = − = − . 

As 
2 1

,C C
g  

 

is absolutely continuous and so is a N function,   

                 ( ) ( )1 2
2 21 1

, ,
( ) ( ) 0

C C C C
m C g E m g C E   

  

 

 − = − = . 

It follows that 
2

1
21

2

,

2

1
( )

1C C
g x 











−

−

−
 =

−
 almost everywhere on 

1
C

 . 

(5) We compute the arc length of the graph of 
21

,C C
g  



 by taking the limit of the arc length of 

the graph of the polygonal approximation ng  of  
21

,C C
g  



. 

The arc length of ng  is the sum of the length of the 2n
 line segments, each of equal length, 
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 ( ) ( ) ( )( )( ) ( )( )( )1 2

2 2
2 2 2 2

2 2

1 1
1 1 1 1

2 2

nn

n n n n

 

   


− −

   
+ = − − + − −   

   
, over ( )I G n−  plus 

the sum of the 
12k−
 line segments, each of equal length, 

22

1 2

k k

 

 

  
+   

   
 , over the open 

intervals in U(k), for k =1, 2, …., n.  

Therefore, the arc length of the graph of ng  is 

( )( )( ) ( )( )( )1 2

222 2

1 1 22 2
2 2

1

1 1
2 1 1 1 1 2

2 2

n
nnn k

n n k k
k

 

   

 

 

−

− −

=

     
− − + − − + +       

       
  

( )( )( ) ( )( )( ) ( ) ( ) ( ) ( )1 2

22 22 22 2 2
1 22 2

1

1
1 1 1 1

2

n
n kn k

k

  
     

 
− −

=

= − − + − − + + , 

                                                                                                                       if   , 

or 

 ( )( )( ) ( )( )( ) ( ) ( ) ( ) ( )1 2

22 22 22 2 2
2 12 2

1

1
1 1 1 1

2

n
n k kn

k

  

     
 

− −

=

= − − + − − + + , 

                                                                                                                      if   . 

Therefore, taking limit as n tends to infinity, the arc length of the graph of 
21

,C C
g  



is  

                   ( ) ( ) ( ) ( ) ( ) ( )1 2
2 2 22 22

1 22 2

1

1
1 1

2

kk

k

  
   

 


− −

=

− + − + + , if   , or, 

                 ( ) ( ) ( ) ( ) ( ) ( )1 2
2 2 22 22

2 12 2

1

1
1 1

2

k k

k

  

   
 



− −

=

− + − + + , if   .     

(6)  The proof is similar to Proposition 18 

Let 
1

1

[0,1] ( )
k

G C U k



=

= − = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
U n I

−

−
=

− 
= + 

 
, and 

1

1 1
( )

2 2n n

k
I r I

−

− 
= + 

 
,  

11 2nk −  , are the open intervals, each of length 1

3n


,  to be deleted in stage n in the 

construction of 
1

C  .  Let 
2

1

[0,1] ( )
k

H D V k



=

= − = , where 

12

1
1

1 1
( )

2 2

n

n n
k

k
V n J

−

−
=

− 
= + 

 
, and 

1

1 1
( )

2 2n n

k
J r I

−

− 
= + 

 
,  11 2nk −  , are the open intervals, each of length 2

2 12 n


−

, to be deleted 

in stage n in the construction of 
2

D .  Let  
1

( ) ( )
n

k

G n U k
=

==   and 
1

( ) ( )
n

k

H n V k
=

= .  Then 
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1

( )
k

G G k


=

=  and 
1

( )
k

H H k


=

= .  ( ) ( ,1) ( ,2) ( ,2 )nI G n F n F n F n− =     is a disjoint 

union of 2n
 closed interval of length  ( )( )( )1 2

2

1
1 1

2

n

n n



 −
= − −  and 

( ) ( ,1) ( ,2) ( ,2 )nI H n K n K n K n− =     is a disjoint union of 2n
 closed interval of 

length  ( )( )( )2 2
2

1
1 1

2

n

n n



 


−
= − − . 

Now we examine the indexing of U(n) and V(n).   We note that  

         
1

1

1
1

1 1 1
:1 2 : 0 or 1

2 2 2 2

n
jn

jn n j n
j

k
k




−
−

−
=

 − 
+   = + =   

   
 . 

If we let 
1

1
1

1 1 1
( ( ), ( ))

2 2 2 2

n
j

n n j n
j

k
J J c r d r

−

−
=

 − 
+ = + =  

   
 , where 

1

1

1

2 2

n
j

j n
j

r
−

=

= + , then 

1
2

2 1
1

( )
2

n

j j nj
j

c r


  
−

−
=

  
= + +  

  
  .    

Therefore, 

 
21

1

1

11 1 2

,( )
1 1

:1 2
2 2

1
( ) ( ) 2

2
n

n n

n

n n nC CU n
k

r k

g x dx c r 


  

  
−

−

−

− 
 +   

 

 
=  +   

 
  

    
1

1

1
21 2 1 2

2 1
11

2 2

2
2n

j

j n
j

n
n

j j nn j n n
j

r


   
  

  −

=

−
−

−
=

= +

   
=  + + +    

   


   

  
1 1

2 2 1 21 2 1 2

2 1
1 1

2 2 2 2
2

n n
n n n n

j nn j n n
j j

   
 

  

− −
− − − −

−
= =

 
=  + + +  

 
  .   -------------------------  (*5) 

But  2
1 2j jj


 


−= −  for  1 j n  .  For j = 1,

1 0j − =  is set to be 1. 

Therefore,  

   
1 1

2 2 1 22 2

1 1

2 2 2 2
n n

n n n n

j nj n
j j

 
 

 

− −
− − − −

= =

+ + +    

( ) ( )
1 1

2 2 1 2

1 1

1 1

2 2 2 2 2 2
n n

n n n n

j j j n n n

j j

     
− −

− − − −

− −

= =

= + − + +  −   

1 1 2
2 1 2 2 2 2 2

0 1 0

1 1 1

2 2 2 2 2 2 2
n n n

n n n n n n n

j j j n

j j j

     
− − −

− − − − − − −

−

= = =

= − + + + = =   . 
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It follows then from (*5) that 

                        
21

1
21 1

,( )

2
( ) 2

2

n
n

n nC CU n
g x dx 



 

 

−
−=  = . 

Hence,  

              
2 2 21 1 11

, , ,( )
1

( ) ( ) ( )
C C C C C CG I C U n

n

g x dx g x dx g x dx     
    



−
=

= =    

               
1

1 1 1

2
1

2 2 1 1

2 4 1 2 2

n

n
n 

  

  

−

=

= = =
− −

 . 

Therefore, as
21

,

1
( )

2C CI
g x dx 



= , 

2 21 11 1

1 1

, ,

1 1 1 1
( ) ( ) 1

2 2 2 2 2 2C C C CC I C
g x dx g x dx    

   

 

 −

 
= − = − = − 

− − 
  . 

This completes the proof of the theorem. 

Now we present a characterization of a continuous monotone function with maximum arc 

length for its graph. 

Theorem 29.  Suppose  :[0,1] [0,1]f →  is a continuous increasing function with f (0) =0 and 

f (1) = 1.   Then the graph of f has maximum arc length (=2), if and only if, f is singular. 

Proof. 

Note that if f is singular, then it cannot be absolutely continuous.  This is because if f is 

absolutely continuous on [0, 1] and ( ) 0f x =  almost everywhere, then by Theorem 9 of  

Functions Having Finite Derivatives, Bounded Variation, Absolute Continuity, the Banach 

Zarecki Theorem and de La Vallée Poussin's Theorem,  f  is a constant function contradicting 

f (0) =0 and f (1) = 1.    

Thus, if f is singular, then as f is monotone increasing and continuous, the arc length of the 

graph of f is given by, 

                                      ( )
2

[0,1]
1 ( ) [0,1]hf x dx T+ + , 

where 
0

( ) ( ) ( )
x

h x f x f x dx= −   is an increasing continuous function and is the singular part 

of  f in the Lebesgue decomposition of f and [0,1]hT is the total variation of h on [0,1].  (See 

Theorem 9 of Arc Length, Functions of Bounded Variation and Total Variation.) Moreover, 

[0,1] (1) (0) (1) (0) 1hT h h f= − = − = . 

Hence the arc length of the graph of f is given by 
[0,1]

1 1 2dx + = .  Note that the maximum arc 

length of a graph of monotone function from [0, 1] to [0, 1] is 2. 

Conversely, suppose the arc length of the graph of f is 2. 



68 

© Ng Tze Beng 2017 

If f is not absolutely continuous on [0, 1], then the arc length of its graph is given by 

                     ( ) ( )
2 2

[0,1] [0,1] [0,1]
1 ( ) [0,1] 1 ( ) (1) ( )hf x dx T f x dx f f x dx  + + = + + −   . 

Thus, ( )
2

[0,1] [0,1]
2 1 ( ) 1 ( )f x dx f x dx = + + −  . 

Consequently, ( ) ( )
2

[0,1] [0,1]
1 ( ) 1 ( )f x dx f x dx + = +  . 

As ( )
2

1 ( ) 1 ( )f x f x +  +  almost everywhere on [0, 1], it follows that 

( )
2

1 ( ) 1 ( )f x f x + = + almost everywhere on [0, 1].  By squaring both sides, we deduce 

immediately that ( ) 0f x = almost everywhere on [0, 1]. 

Therefore,  f  is singular.   

If  f  is absolutely continuous on [0, 1], then the arc length of its graph is given by 

                                      ( )
2

[0,1]
1 ( )f x dx+ . 

Therefore,         

         ( ) ( )
2

[0,1] [0,1] [0,1]
2 1 ( ) 1 ( ) 1 ( ) 1 ( ([0,1]) 1 1 2f x dx f x dx f x dx m f  = +  + = + = + = + =   , 

since  ( )
[0,1]

( ) ([0,1])f x dx m f =  by Theorem 11, Functions of Bounded Variation and 

Johnson's Indicatrix, because f is a monotone increasing and absolutely continuous function. 

It follows that ( ) ( )
2

[0,1] [0,1]
1 ( ) 1 ( )f x dx f x dx + = +  .  As ( )

2
1 ( ) 1 ( )f x f x +  +  almost 

everywhere on [0, 1], it follows that ( )
2

1 ( ) 1 ( )f x f x + = + almost everywhere on [0, 1]. 

By squaring both sides, we conclude immediately that ( ) 0f x = almost everywhere on [0, 1]. 

As f is absolutely continuous, f is a constant function, contradicting that f (0) =0 and f (1) = 1.    

Hence, if the arc length of the graph of f is 2, f cannot be absolutely continuous and must be 

singular. 

This completes the proof. 

Remark. 

An example of an increasing continuous function :[0,1]f → with f (0) =1 and f (1) =1 and 

having maximum arc length for its graph is the ternary Cantor function, 
1Cf .      
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We can easily translate Theorem 29 to the more general case as stated below.  The proof is 

exactly the same. 

Theorem 30.  Suppose :[ , ] [ , ]f a b c d→  is a continuous increasing function with f (a) = c 

and f (b) = d.   Then the graph of f has maximum arc length equal to b − a + d – c, if and only 

if, f is singular. 

Remark.   

1.  Let  
1Cf h f g= , where 

1Cf  is the Cantor function for the ternary Cantor set, 

1
( ) ( )g x x a

b a
= −

−
 and ( ) ( )h y d c y c= − + .   Note that f is monotone increasing and 

continuous on [a, b].  The function 
1Cf  is singular and so

1
( ) 0Cf x =  almost everywhere on 

[0, 1].  Let   1
[0,1] : ( ) 0CE x f x=  = .  Then ( ) 1m E =  and  ([0,1] ) 0m E− = .  Note that 

1( ) ( )g x b a x a− = − +  is obviously a N function and so ( )1([0,1] ) 0m g E− − = .  Since 1g −  is a 

continuous strictly increasing function and 1([0,1]) [ , ]g a b− = , 1 1([0,1] ) [ , ] ( )g E a b g E− −− = − . 

Indeed, we may take 1[0,1]E C= − .   Then 

12

1 1

( , )

k

k j

E G I k j

−

= =

= = , where G, as described in 

the initial introduction section on the Cantor set C , is the disjoint union of open intervals to 

be deleted in the construction of the ternary Cantor set 1C .  Since 1g −  is a continuous linear 

function, ( ) ( )1( ) ( ) ( ) 1m g E b a m E b a b a− = − = −  = − .  It follows that ( )1[ , ] ( ) 0m a b g E−− =

.  Let  1( )F g E−= .   Then by the Chain Rule, for x F , 

                         ( ) ( ) ( )
1 1 1

1
( ) ( ) ( ) ( ) ( ) ( ) 0C C Cf x h f g x f g x g x d c f g x

b a
   = = −   =

−
. 

Thus, as ( )[ , ] 0m a b F− = , ( ) 0f x =  almost everywhere on [ , ]a b  and so is singular.  This 

gives a function f , whose arc length is the possible maximum arc length. 

2.  Similar result follows from Theorem 30 for continuous monotone function.  If f is 

continuous and monotone decreasing, then – f is continuous and monotone increasing.  

Applying Theorem 30 gives the result for continuous monotone decreasing function.  We 

may state this result as follows.   

Theorem 31.  Suppose :[ , ] [ , ]f a b c d→  is a continuous monotone function.   Then the 

graph of f has maximum arc length equal to b− a + d – c, if and only if, f is singular. 
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Recall that the ternary Cantor function 
1
:[0,1] [0,1]Cf →  is singular and that 

( )
1 1( ) [0,1]Cm f C =  , with 1( ) 0.m C =   Does this property of having a set of measure zero such 

that the measure of its image is equal to the length of [0, 1] implies that the continuous 

monotone function  
1Cf   is singular?   The answer is “yes”.  We formulate this result in a 

slightly more general setting in the next theorem. 

Theorem 32.  Suppose :[ , ] [ , ]f a b c d→  is a continuous monotone function that maps [a, b] 

onto [c, d].   If there exists a subset [ , ]E a b  such that ( ) 0m E =  and ( )( )m f E d c= − , then 

f is singular. 

Proof.  We shall prove the theorem for the case when f is increasing and onto (and therefore, 

continuous). (As f is increasing on [a, b], f can have only jump discontinuities.  But as the 

range of f is an interval, no such jump discontinuity exists and so f is continuous on [a, b].)   

Since f is increasing, f is differentiable almost everywhere on [a, b] and so there exists a 

subset [ , ]D a b  such that f is differentiable on [ , ]a b D− and m(D) = 0.  We may assume 

without loss of generality that D E .  (If need be we may replace E by E D .)  Thus, f is 

differentiable on [ , ]a b E− , ( ) 0m E =  and ( )( )m f E d c= − .  Hence, ( )[ , ] ( ) 0m c d f E− = . 

Let  ( )1 [ , ] ( )H f c d f E−= − .   

Let  :  is differentiable at  finitely or infinitely and ( ) 0M x f x f x=  .  Then  

( )( ) 0m f H M = .   

By Theorem 2 of Change of Variables Theorems, ( ) 0f x = almost everywhere on H M . 

If  x H M  , then ( ) 0f x  .  Therefore, ( ) 0m H M = .  It follows that ( ) 0f x = almost 

everywhere on H.  Note that H may be empty. 

If [ , ]H a b E= − , for instance, when f is strictly increasing, then ( ) 0f x =  almost 

everywhere on [a, b], i.e., f is singular.   

Suppose ( )[ , ] ( )f a b E f E−  =  .  Then ( )[ , ] [ , ] ( )f a b E c d f E− = −  and 

( ) ( )( )1 1[ , ] ( ) [ , ] [ , ]H f c d f E f f a b E a b E− −= − = − = − .  Hence, ( ) 0f x =  almost 

everywhere on [a, b], i.e., f is singular.   

Suppose ( )[ , ] ( )f a b E f E−    .  Let   ( )( )1 [ , ] ( )F f f a b E f E−= −  . 

Now 

( )( ) ( )( ) ( ) ( )( )[ , ] ( ) [ , ] ( ) ( ) [ , ] [ , ] ( ) [ , ]c d f E f a b E f E f E f a b E f a b E f E f a b E=  −  −  −  − −  −  
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is a disjoint union.  Note that ( )( )1 ( ) ( ) [ , ]f f E f E f a b E E− −  −   and 

( ) ( )[ , ] ( ) [ , ] [ , ] ( )f a b E f E f a b E c d f E− −  −  − .  Therefore, 

( )( )( )1 ( ) ( ) [ , ] 0m f f E f E f a b E− −  − =  and 

( ) ( )( ) ( )1 1[ , ] ( ) [ , ] [ , ] ( )f f a b E f E f a b E f c d f E H− −− −  −  − = .  We have already 

shown that ( ) 0f x =  almost everywhere on H.  Therefore, ( ) 0f x =  almost everywhere on 

( ) ( )( )1 [ , ] ( ) [ , ]f f a b E f E f a b E− − −  − .   

Let ( )[ , ] ( )y f a b E f E −  .   Since f is continuous, 1( )f y−  is closed.  Now 1( )f y−  is not a 

singleton set as there exists e E  and [ , ]x a b E −  such that ( ) ( )f x f e y= = .  Moreover,  

1( )f y−  is an interval.  This is because if    and   are in 1( )f y− with    ,  then since f  

is increasing and ( ) ( )f f y = = , ( )f x y=  for all x in [ , ]   , the interval [ , ]  is in 

1( )f y− .  It follows that 1( )f y− is a closed interval and is obviously bounded.  Therefore,  

( ) 0f x =  for all x in the interior of 1( )f y− .  If f is differentiable at the end point  of 1( )f y− , 

then ( ) 0f  = .   If f is not differentiable at the end point  of 1( )f y− , then   E.  Thus 

( ) 0f x =  for x in 1( ) .f y E− −   Since this is true for each y in ( )[ , ] ( )f a b E f E−  , 

( ) 0f x =  for x in ( )( )1 [ , ] ( )F E f f a b E f E E−− = −  − .    Since E is of measure zero, 

( ) 0f x =  almost everywhere on ( )( )1 [ , ] ( )F f f a b E f E−= −  .  It follows that ( ) 0f x =  

almost everywhere on [ , ]a b .   

This proves that f is singular on [a, b]. 

We have seen that the ternary Cantor function is an example of a monotone increasing 

singular functions.  Does there exist a strictly increasing singular function?  R. Salem, in On 

some singular monotonic functions which are strictly increasing, Transaction American 

Mathematical Society, 53 (1943), 427-439, gave an example together with the Minkowski’s 

function, ?(x).  In 1952, F. Riesz and Sz.-Nagy in their book, Functional Analysis, page 48-

49, gave an example of such a strictly increasing singular function.  In 1978, L. Takács, in An 

increasing continuous singular function, American Mathematical Monthly 85 (1) (1978) 35-

37, gave a family of increasing continuous singular functions.  In Riesz-Nagy Singular 

functions revisited, J. Math. Anal. Appl. 329 (2007) 592–602, Jaume Paradís , Pelegrí 

Viader and Lluís Bibiloni, gave a generalization of Riesz-Nagy singular functions and 

Takács singular functions and showed that these two families are related.  Thus, strictly 

increasing singular functions are abundant. 

Theorem 33.  Suppose :[ , ] [ , ]f a b c d→  is a continuous strictly monotone function that 

maps [a, b] onto [c, d].   Then f is singular, if and only if, the inverse function of f, 1g f −=  is 

singular.   
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Proof. 

Since f is continuous and strictly monotone, its inverse 1g f −= is also continuous and strictly 

monotone. 

By Theorem 31, f is singular, if and only if, the graph of f has maximum arc length equal to    

b − a + d − c, if and only if, the graph of its inverse, g, has maximum arc length equal to b − a 

+ d − c, if and only if, g is singular. 

Remark. 

1. The ternary Cantor function, 
1Cf , is continuous, monotone and singular and if 

1Cf  is 

differentiable at x, then 
1

( ) 0Cf x = .  We have noted in Proposition 8 that 
1

( ) 0Cf x =  for x in  

1[0,1] C− .  As 1( ) 0m C = , 
1Cf  is differentiable outside a set of measure zero and its derivative 

is zero outside 1C  .  More is true 
1Cf  is not differentiable at any point of 1C .  We deduce this 

as follows.  If 1x C , then since ( )1

1 1

( ) ( )

c

cc

k k

C G G k G k
 

= =

 
= = = 

 
, ( )( )

c
x G k for integer k 

≥ 1.  Now ( )( ) ( ,1) ( , 2) ( , 2 )
c kG k J k J k J k=     is a disjoint union of closed intervals, 

each of length 
1

3k
.  So, if  ( )( )

c
x G k , ( , )x J k n  for some 1 2kn  .  Let  

( , ) [ ( , ), ( , )]J k n a k n b k n= .   Then 1 1

1

2

1

3

( ( , )) ( ( , )) 3

( , ) ( , ) 2

k

k

k

C Cf b k n f a k n

b k n a k n

−  
= =  

−  
.   If ( , )x a k n= or 

( , )x b k n= , then 1 1
( ( , )) ( )) 3

( , ) 2

k

C Cf b k n f x

b k n x

−  
=  

−  
 or 1 1

( ) ( ( , )) 3

( , ) 2

k

C Cf x f a k n

x a k n

−  
=  

−  
.  If

( , ) ( , )a k n x b k n  , then  

1 1 1 1 1 1
( ( , )) ( ) ( ) ( ( , )) ( ( , )) ( ( , )) 3

max ,
( , ) ( , ) ( , ) ( , ) 2

k

C C C C C Cf b k n f x f x f a k n f b k n f a k n

b k n x x a k n b k n a k n

− − −   
 =   

− − −   
,  by 

applying the inequality max ,
a c a c

b d b d

+ 
 

+ 
  for 0, 0, 0 and 0a c b d    .  Since 

3

2

k

 
→  

 
 as  k →  , 

1Cf  has an infinite derived number at x and so 
1Cf is not differentiable 

at x.  It follows that  
1Cf  is not differentiable at every point in 1C .  In summary, 

1Cf  has the 

property: if 
1

( )Cf x  exists and is finite, then 
1

( ) 0Cf x = .  Riesz-Nagy singular function as 

shown in their book, Functional Analysis, has this property.  Salem’s family of singular 

functions also exhibits this property, see Theorem 2 of Singular Functions with Applications 

to Fractal Dimensions and Generalized Takagi Functions, J. Acta Appl Math (2012) 119, 

129-148, by E. de Amo, M. Díaz Carrillo and J. Fernández-Sánchez.  Minkowski’s Question 
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mark function has this property, see Theorem 3.1, in The Derivative of Minkowski’s ?(x) 

Function, Journal of Mathematical Analysis and Applications 253, 107-125 (2001) by J. 

Paradıs and P. Viader.  Takács singular function also possesses this property.   All the 

singular functions mentioned so far have the property that whenever the function is 

differentiable, the derivative has to be zero.   

 

We have two curious questions: 

(i) Does there exist a continuous increasing singular function, f , with ( ) 0f x   at some 

points or subset of measure zero? 

(ii) Does there exist a continuous increasing singular function, f , such that the set 

 :  is not differentiable at x f x is not no-where dense? 

Both questions have affirmative answer. 

For question (i), Juan Fern´Andez S´Anchez, Pelegr´I Viader, Jaume Parad´Is and Manuel 

D´Iaz Carrillo, in A Singular Function With A Non-Zero Finite Derivative On A Dense Set, 

Nonlinear Analysis: Theory, Methods & Applications, 95, (2014), 703-713, gave an example, 

a function :[0,1] [0,1]H → , which is singular, strictly increasing, with non-zero derivative on 

a dense subset of [0, 1].  For question (ii), Salem’s singular function, given in On some 

singular monotonic functions which are strictly increasing, Transaction American 

Mathematical Society, 53 (1943), 427-439, is strictly increasing, continuous and singular, 

whose set of non-differentiability is dense in [0, 1]. Salem’s construction is geometric and 

yields a function whose set of non-differentiability contains

( )0,1 : ,  positive integer
2n

k
k n

 
 

 
, which is obviously dense in [0, 1].  A proof of the 

function being singular is by showing that if x is in the set of normal numbers to the base 2, 

which has measure 1 and if the function is differentiable at x, then the derivative has to be 

zero.  For the details, please refer to Salem’s paper. The proof that the derivative can only 

take on zero derivative, whenever the function is differentiable is much harder. 

 

We close the article with the following interesting observation about continuous bijective 

function.  

Theorem 34.  Suppose :[ , ] [ , ]f a b c d→  is a continuous bijective function that maps [a, b] 

onto [c, d].   Then the following is equivalent, 

(1)   f is singular.  

(2)  1f −  is singular. 

(3)   Arc length of the graph of  f  is b a d c− + − .  
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(4)  There exists a set E in [a, b] such that m(E) = b−a and ( )( ) 0m f E = . 

(5)  There exists a set E in [a, b] such that m(E) = 0 and ( )( )m f E d c= − . 

Proof. A continuous bijective function mapping [a, b] onto [c, d] is strictly monotone. 

By Theorem 33, (1)  (2).  By Theorem 31, (1)   (3). 

(1) (4). 

If f is singular, then ( ) 0f x =  almost everywhere on [a, b].  Therefore, the set 

 :  is differentiable at  and ( ) 0E x f x f x= = has measure equal to b−a.  By Theorem 3 of 

Functions Having Finite Derivatives, Bounded Variation, Absolute Continuity, the Banach 

Zarecki Theorem and de La Vallée Poussin's Theorem, ( )( ) 0m f E = . 

(4) (1).  Since f is monotone, f is differentiable almost everywhere on [a, b]. Therefore, 

there exists a set F in [a, b] such that f is differentiable on [ , ]a b F− and m(F) = 0. Since m(E) 

= b−a, m(E−F) = b−a.  Moreover, ( ( )) 0m f E F− = , since ( ( )) 0m f E = .  Note that f is 

differentiable on E−F.  Therefore, by Theorem 2 of Change of Variables Theorems, 

( ) 0f x =  almost everywhere on E−F.   As m(E−F) = b−a, ( ) 0f x =  almost everywhere on 

[a, b].   

(5) (1).  This is just Theorem 32. 

(1) (5).  Suppose f is singular.  Then by (2), 1f −  is singular.  Then by (4), There exists a set 

F in [c, d] such that m(F) = d−c and ( )1( ) 0m f F− = .  Let 1( )E f F−= .   Then ( ) 0m E =  and

( ( )) ( )m f E m F d c= = − .  


