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Cantor sets are well known in providing counter examples in real analysis. Following
my article, The Construction of Cantor Sets, 1 describe another well-known family of fat
Cantor sets, i.e., Cantor sets with positive measure. It enjoys the same properties described in
that article. I shall describe the construction of this family of Cantor sets, discuss their
properties and the definition of the associated Cantor Lebesgue function and show that the
Cantor Lebesgue function of the fat Cantor set is absolutely continuous. Related Cantor
Lebesgue function, mapping one Cantor set from one family to another is described; it has
similar properties as the Cantor Lebesgue function. We compute its integral, derivative and
the arc length of its graph. We discuss singular functions including the singular Cantor
function, strictly monotone singular functions and their characterization.

In our discussion, we start with a specific case and gradually move on to more general case
by steps, first a specific family, then more general family of Cantor sets with varying ratios.

The Cantor set Cy

Let 0 <y <1. We shall start from the closed unit interval / =[0,1]. At the first stage,

we delete the middle open interval with length % from [0, 1]. We shall enumerate the open

intervals to be deleted. We denote this open interval by /(1,1). Then the complement of this

middle interval is 2 disjoint closed interval each of length %( - %j . We denote the open

deleted interval by /(1,1) = (a(1,1),b(1,1)) . We denote the closed interval in the complement
by J(1,1) and J(1,2), where the closed interval J(1,2)is to the right J(1,1) , meaning it is
ordered in such a way that every point of J(1,2) is bigger than any point in J(1,1).

v

Then at the second stage we delete the middle open interval of length 7 from each of the 2

remaining closed intervals. Thus, there are 2 open intervals to be deleted and they are
1(2,1)=(a(2,1),b(2,1)) and 1(2,2) =(a(2,2),b(2,2)). These two open intervals are ordered
by the second index. That is, /(2,2) is to the right of /(2, 1). Hence, we are left with 4 = 22
remaining closed intervals, J(2,1), J(2,2), J(2,3) and J(2,2%)each of length



1
22
G(2)=U()LU(2). Then I-G()=J(1,1)UJ(1,2),
1-G(2)=J(2,1)UJ(2,2)UJ(2,3)UJ(2,2%).

(1 - ;/(1 2y )) CLet U =I(L1), UQ)=12,1)U1(2,2), GI)=U(),

At stage n delete the middle open interval of length 3% from each of the 2"~ remaining

closed intervals, J(n—11),/(n=1,2),-+-,.J(n—1,2""), each of length %(14(1—(%)”4 )

Denote these open intervals by 1(n,1),1(n,2),---,1(n,2""). Then this resulted in the
remaining 2" closed intervals, J(n,1),J(n,2),---,J(n,2"), each of length

3 :2%(1_7(1_@)”)). Let U(n):kgll(n,k) and G(n)=QU(k)=QL_J1[(k,J)-

Observe that 7 —G(n)=Jn,1)uJ(n,2)w---UJ(n,2").

Note that G(n) consists of 2" —1 disjoint open intervals. The total length of the intervals in
G(n) is given by

2 2 2 2 n—1
Z+212+2213+-~-+2”"l=Z 1+—+(—j -~-+(—j
3 3 3 3 3 3 \3 3

2 n
- y(l 3 J |
Observe that G(n) c G(n+1) and G(n+1)=G(n)VU(n+1).

Let G =|JG(k)=( JU(k). Thus, the measure of G is the total length of all the U(k), that i,
k=1 k=1

m(G)legy{l_(gj"J:%

Define the generalized Cantor set C, by C, =/ —G . Hence the measure of C, is given by
m(l)-m(G)=1-y=>0.

Note that if we take ¥ = 1, we would obtain the usual ternary Cantor set of measure 0. For 0
<y<l,m(C,)=1-y>0 and C, is called the fat Cantor set.

The properties of C1 has previously been described in The Construction of cantor Sets.
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Theorem 1. The generalized Cantor set C, (0 <y <1)is

(1) compact,

(2) nowhere dense, i.e., it contains no open intervals,

(3) its own boundary points,

(4) perfect, i.e., it is its own set of accumulation points,

(5) totally disconnected and

(6) between any two points in C,, there is an open interval not contained in Cj, .
Proof. (1) Since G is a union of open intervals, it is open. Therefore, as C, is the

complement of G in/and /is closedin R , C, isclosedin R . As C, is a subset of /,

which is bounded, C,is bounded. Hence, C, is compact by the Heine-Borel Theorem.

(2) Note that C, = (U G(k)} = ﬂ(G(k))c . Suppose C, contains an open interval say (c,
k=1

k=1

d). Then (c,d) ﬂ(G(k))C implies that (¢,d) < (G(k))c for each k> 1. Now each
k=1

(G(k))" =J(k,))UJ(k,2)U---UJ(k,2")is a disjoint union of closed intervals, each of

length ¢, = 2—11((1 - 7/(1 —(%)k )) . As (, = 0, there exists an integer N such that £ > N implies

that 0< ¢, < %(d —c). Take k=N. Then (c,d) =(G(N)) . Since (c, d) is connected,

(c,d) < J(N, ) for some 1< j<2" . It follows that the length of (c, d),

d—c</(,< %(d —c). This is absurd and so there does not exist an open interval in C, .

This means Cy is nowhere dense in /.

(3) Since C, is closed, the closure of C, in R is C,. Letxbein [0, 1]. Then for any

relatively open set J, containing x, say J = U N [0, 1], where U is an open interval containing
x, J is non-empty and contains more than one point and J N G # J because
J & [0,1]-G =C, by part (2). This is because if J = Cy, then the interior of J, which is a

non-empty open interval is contained in C, contradicting part (2). This means x is in the
closure of G in /. Thus, the closure of G in R, G =[0,1]=1. Hence, G is dense in /.
Therefore, the boundary of C,, GCy = amI—Cy = Eyﬁ(_? =C,NI=C,.
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(4) Since C, is closed, the set of cluster points or limit points of C, is contained in C,, Le.,

! . . . . . .
C, < C,. Itremains to show that every point of C, is a limit point.

Note that the end points of the closed intervals, J(k, j,), k=1, ..., o, j, =1, 2,---,2" are in

Cy, ([, = i(1 - 7/(1 —(%)k )) is the end point of J(k, 1) and 1—(, is the beginning point of

2k

J(k,2"). As (, —>0and 1-¢, —1,0and larein C,’.

Suppose Cy' # C,. Then there exists x in C, such that x ¢ Cy' . We may assume that x = 0,1.

Then there exists an open interval (x — J, x + ) containing x with 6> 0, such that
(x—=0,x+0)<(0,1) and (x — 5, x + 0) N Cy = {x}. Thus,(x— 6 x+)N(0,1]-C,)=(x—
0,x) U (x,x+ ). That means, (x -9, x), (x,x+) < ([0,1]-C,)=

© o 2f1
G= UU (k)= UU[ (k, j) a disjoint union of open intervals. Therefore, as (x — J, x) is
k=1

k=1 j=1

connected, (x — 8, x) < I(k, j) for some k and 1< j <2*"' a connected component of G.

o 2k
Since x ¢ I(k, j), x=sup I(k, j) = b(k, j). Similarly, (x,x+3) < G = J| JI(k, j) implies

k=1 j=1
that (x, x + &) < I(n, i) for some n and 1<i<2"". As x ¢ I(n,i), it follows that x = inf I(n, i)
=a(n,i). Hence, a(n,i)=b(k, j)=x. This contradicts that a(n,i) # b(k, j) . Hence, every

point of C, isin Cy'. It follows that Cy' =C,. This means C, is perfect.

(5) Since, by part (2), C, does not contain any open interval and since the connected subsets
of R are either the singleton sets or the intervals, the only connected components of C, are
the singletons {x}, x € C,. Therefore, C,is totally disconnected.

(6) Suppose x <y andx and y are in C,. Then (x, y)N ([0, 1] - C,) # < by part (2) and is a
disjoint union of open intervals and so (x, y) contains at least one open interval not in C, .

The Cantor Lebesgue Function
In order to define the generalized Cantor Lebesgue function, we shall re-index the open

intervals, 1(k, j,), k=1, ...,0, j =12,---,2" to reflect the values that the function will
take on these intervals. I(L1)=1(1/2), I(2,1)=I1(1/4),1(2,2)=I(1/2+2/4)=I(3/4).
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We show that G(n) = U{I (%j 1<m<2" - 1} by induction. Recall

Gn+1)=G(n)wU((n+1).
Plainly, G(1)=U(1) = I( j G?2)= U{( j SmSZz—l}.

Assume that G(n) = U{ ( 1 <m<2"—

We re-index U(n) = Ul(n k),by I(n,k)= ( 2”j= (22 lj 1<k <2"".  Then the

k=1

length of I(n,k)=1(]; ! v

1
X j is equal to 7 The index reflects the value that the Cantor

Lebesgue function will take on these open intervals. That is the function will take the value
rin I(r).

It follows that G(n+1)=G(n)LVU(n+1) = U{ (zm ) 1<m<2m_ 1}_

Observe that the ordering

1 1 1 1 2 2 1 3 3 1 2"-1 2"-1 1 2m
0< _

n+1<_n<_n+ n+l<_n<_n+ n+l<_n<_n+ n+1<.”< n < n + n+l n+l
2 2" 2" 2 2" 2" 2 2" 2" 2 2 2 2 2
is in one to one correspondence with the ordering of the disjoint open intervals in G(n+1).

Thus, by induction on n, G(n) = U{ ( j 1<m<2" - 1} for all integer n > 1.

We now define £, :G(n) —[0,1] by f.(x)=r if xeI(r) for some r = 2ﬂ and

1<m<2"—1.

Letting n tend to infinity, this defines f: G —[0,1]. Plainly, f is constant on each of the

open interval in G. Since each f, is an increasing function on G(n), and the indexing

preserves the ordering of the open intervals in G(n), f 1is also an increasing function on G.

Proposition 2. f:G —[0,1] is uniformly continuous.

Before we prove this, we state a result that we need in its proof below.

Lemma 3. For any x and y in G,

- )<

Proof.
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Letx,y € G. Suppose |x— y| </(,. Then x and y cannot belong to two distinct open

intervals in G(n). This is because the distance between any two consecutive open intervals in

G(n)is (, and x,y ¢ G°. Consequently, either x and y belong to the same open interval,

I(r), in G(n) or only one of x or y belongs to some open interval, /(r), in G(n) or

X,y € (G(n))c .
If x and y belong to the same open interval /() in G(n), then ‘f(x) — f(y)‘ =r—r=0< 2—1" .
Suppose x <y, x e I(%j c G(n) forsome 1<m<2"—-1and y¢ I(;n—nj Since |x—y| <(,,

vy must belong to the adjacent closed interval J(n,m+1) next to and after / (;n—nj . Thus,

m m+l m 1
- f|=f0 - <5 =5

Suppose x <y, ye](;n—n)gG(n)forsome 1<m<2"-1 and xél(;n—n]. As |x—y|£€n,x

must belong to the adjacent closed interval J(n,m) before [ (;%—nj . Thus,

e B R e

Suppose x <y and x and y belong to the same closed interval J(n,m) for some 1<m <2" —1.

Then for some k£ > n, x and y belong to G(k). Consequently, x and y must belong to some

open intervals, I(%j and I(%j with 2 1 < %,% < Hence,
2 2 2" 2028 2"

)= 1] = 1= < -2

We are left with the possibility, x <y, xe J(n,m) and y e J(n,m+ 1) , with I(;?—nj sited
between the two consecutive closed intervals, J(n,m) and J (n,m+1). Note that the length
of I[;ﬂ—n) is equal to 3lk , for some k such that 1 <k <n. Then 3lk <(,. This is because
xXe J(n,m) and ye J(n,m+ 1) (and x, y € G) implies that y —x is great than the length of

I(;ﬂ—n}which is 3lk Hence, 4 <y—-x<I/(,.

3
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Let P=( -2 >0. Let 1[§j=(c(n,m),d(n,m)) and if m > 2,

3

I(m—lj:(C(n,m—l),d(n,m—l)). Note that d(n’m)_c(n’m)zg,l and

n k
J(n,m) = [d(n,m—l),c(n,m)] if m>2and J(n,m) = [O,c(n,l)] ifm=1. x eJ(n,m)
implies that d(n,m—1)<x<c(n,m) iftm>2and 0<x<c(n1) ifm=1. Welet d(n,0)=0.
We claim that P > ¢(n,m)—x. This is because if P < c(n,m)—x, then

(c(n,m)—x)+3lk2€n —3lk+3lk=fn. Since y > d(n,m)because y is inJ (n,m+1),

y—x>d(n,m)—x:d(n,m)—c(n,m)+c(n,m)—x:3lk+c(n,m)—x2fn . This implies
y—x>/(, and contradicts that y—x</( . Thus P>c(n,m)—x.
Hence, x—d(n,m—1)=c(n,m)—d(n,m—1)—(c(n,m)—x)

A

= —(c(n,m)—x)>1(, —P:3—k.

Therefore, x > d(n,m—1)+3lk. Let C = d(n,m—1)+3lk .

Next, we claim that y—d(n,m)<x—-C.
Suppose on the contrary, y—d(n,m)>x—-C.
Then

y—x:y—d(n,m)+(d(n,m)—c(n,m))+(c(n,m)—x):y—d(n,m)+3lk+(c(n,m)—x)

>x_C+3lk+(c(n,m)—x):c(n,m)—d(n,m—l):47,,-

This contradicts y—x</(, andso y-d(n,m)<x-C.

Therefore, x—d(n,m—l)—%ky—d(n,m). Hence, x—d(n,m—l)Zy—d(n,m)Jr%.

In the construction of the cantor set C,, the procedure that continues in.J (n, m) and
J(n,m+1) are exactly the same and so f on J(n,m)and f on J(n,m+1) , after levelling

the values on each of the closed intervals, are the same, i.e.,

m—1

S (dGm=D+h)== =f(d(n,m)+h)—2ﬁn for 0<h<(, .

Therefore,

Pl 1)+ x=dnm=0) "L r{ =0 o y-dmm+ 5 |-

But

m—1
2”!
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-1
f(d(n,m—l)+y—d(n,m)+3lkj—mzn =f(d(n,m)+y—d(n,m)+3lkj—2ﬁn
> f(d(rm)+y=d(n.m) = 5= f () =3
m—1 m m m—-1 1
Consequently, f(x)— > >f(y)—2—n. Therefore, f(y)—f(x)<2—n— YRS

This completes the proof.

Proof of Proposition 2.
Given any £> 0, as % — 0, there exists a positive integer N such that n> N = % <g.
Let 6 =(, . Then by Lemma 3, for any x, y in G,

|x—y|g5=£N:\f(x)—f(y)\<2iN<g.

This means f :G —[0,1] is uniformly continuous on G.
Definition of Cantor Lebesgue Function
Since G is dense in I, we now extend the function f to all of /.

That this can be done is because of the following result.

If a function g is uniformly continuous on a dense subset of a subset E in R, then it can be
extended to a continuous function on the whole of E.

However, we shall give an explicit definition of the extension for f , which is reminiscent

of the proof of the above result.

We have already shown that G = UU (k) 1s dense in 1.

k=1

Take any x in /=G =G"=C,. Since G is dense in /, there exists a sequence (x, ) in G such

that x, = x . Then (x,) is a Cauchy sequence in G. Next, we show that ( 7 (x, )) is also a
Cauchy sequence.

. . o 1 .
Now, given any &> 0, there exists a positive integer N such that n > N = o <¢&. Since

(xn) is a Cauchy sequence, there exists a positive integer M such that

nm>M = |xn —xm| </, . Therefore, by Lemma 3,
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1
<—<e¢.

nm>M =
2N

%, =X, < Ly =] ()= f ()

This means that ( 1 (x, )) is also a Cauchy sequence. Therefore, ( 1(x, )) is convergent by
the Cauchy principle of convergence. Let f (x”) —y. Define f (x) =y. Thisis well
defined. Suppose there is another sequence ( v, )in G such that y —x. Then x, —y —0.
Thus, there exist a positive integer L such that

1 &

n>L=lx,—y, <KN+1:>‘f(xn)—f(yn)<2N+l<E. (1)
Since f(x,)—> v, there exists integer L1 such that
nzg:\f(xn)—y\<§. )
Therefore, it follows from (1) and (2) that
n>max(L,L)=|f (3,) - <|F (n)- 7 () +\f(xn)_y\<§+§:g.

This means f(y,)— y. Hence, f(x) is well defined.

We define f(x)foreveryxin [-G=G°= C, in exactly the same way. We have thus
defined a function, f. :[0,1]—[0,1], such that fcy (x) = f(x) for every x in G. This is the

generalized Cantor Lebesgue function.

Observe that fc, (0)=0and fcy H=1.

Properties of the Cantor Lebesgue Function

Proposition 4. The generalized Cantor Lebesgue function, f. , is increasing and maps C,
onto / =[0,1]. Consequently, C,is uncountable.

Proof.

Ifx<yandx,y € G, then ny X)=f(x)<f(y)= fcy (y)as f isincreasing on G.

Ifx<y,yeGandx &G, then yel(r)c G for some dyadic rational ». If
x=inf{k:kel(r)},then f. (x)=r=f(y), If x<inf{k:kel(r)},then take an open
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interval (x—9J,x+9), where 6 = %(inf(](r))—x) >0.Then GN(x-39,x+9)# I since C,

is nowhere dense. Hence for any sequence (xn ) in G such that x, — x, there exists an
integer N such that n> N = x, e GN(x—0,x+ ). Since all the open intervals /(k) in

GN(x—36,x+0)# D are to the left of I(r), f(x,)<r=f. (y) forn=Nandso
fo () =lim f(x)<7=f.. (7).

Similarly, if x<y,x eGandy ¢ G, then x € I(r) = G for some dyadic rational . If
y=sup{k:kel(r)}, then f. (v)=r=f(x). If y>sup{k:kel(r)},then take an open

interval (y—9,y+9), where 5=%(y—sup(](r)))>0. Then GN(y—0,x+y) =D since C,

is nowhere dense. Hence for any sequence (y, )in G such that y, — x, there exists an
integer N such that n> N =y e GN(y—0,y+0). Since all the open intervals /(k) in
GN(y—0,y+0)# are to theright of I(r), f(y,)>r :fcy (x) for n> N and so

fo ) =lim f(5,)= 7= f (x).

Suppose now x <y, and x,y ¢ G. Then by theorem 1 part (6), there exists an open interval

between x and y not in C, . Therefore, there exists z in G such that x <z <y. Hence, by what
we have just shown, fcy )< f(2)= fcy (2)< fcy (»).

We have thus shown that the function, f. , is increasing on /.
4

Every real number y > 0 in [0, 1] has a non-terminating binary representation of the form

o0

. b . .
2—’,‘( , where b, =0 or 1. Then the partial sumr, = 22—’/2 — y . Now end points of I(r,) is

k=1 k=1

in C,. Let x, =inf I(r,). Then since (r,) is strictly increasing, (x, ) is also strictly
increasing and since it is bounded above (xn) is convergent. Let x, — x. Then x is a limit
point of C; . Therefore, by Theorem 1 part (4), xe C,. Let y, =sup/(r,). Then since (rn )
is strictly increasing, (y, ) is also strictly increasing and since it is bounded above (, ) is

convergent. Let y —h.

Since Z—’; is a non-terminating sequence, there exists a constant subsequence (bn_ ) of (bn)
k=1 J

such that b, =1 forallj>1. Therefore, x, - x and y, — h. Butthe length of /(r, ) is

equal to 3% , which tends to 0. Thus, x = 4. Now take any a, in I(r, ). By the Squeeze

10
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Theorem, a, — x. Therefore, f. (x)=lim f(a, )=limr, =y. As f. (0)=0, this shows
J /4 j—)OO J j—)oo J Y

that f. maps the Cantor set onto [0, 1]. Hence, f. maps [0, 1] onto [0, 1] and the Cantor

set C, is uncountable, since [0,1] is uncountable.

Proposition 5. The generalized Lebesgue Cantor function, f. , is continuous on /= [0,1].

Proof. Since ny 1s monotonic increasing and the image of fcy is an interval, fq, 18
continuous. This is because f. can have only jump discontinuities, but since the image is a
e

connected interval, no jump discontinuity is possible and so f,. is continuous.

Proposition 6. The generalized Lebesgue Cantor function, fc [0,1]—0,1], for the fat
1

Cantor set, C,, 0 < <1, is Lipschitz on [0,1] with constant 1—y and so it is absolutely
e

continuous on [0,1].

Proof. For this we are going to use G(n) to construct a polygonal approximation to f,. .

Define f,:/ >R, by fn(x)zfcy (x) forx in G(n). Now

G(n)= U{ ( J 1<m<2"—1} and so fn(x):% for xe](zﬂ”j, for ISm<2"-1.
m . m
Define fn(x)zz—n for x = end points of I(Z—nj Now [I-G(n)= G(n) UJ(n k)isa

disjoint union of closed intervals, each of length ¢, = 2%(1 — 7/(1 —(%)" )) . We define f, on

each J(n,k), 1<k <2" to be given by the linear function or line joining the points on the

graph of f. given by the image of the end points of J(n,k). Hence, the linear function on

each of the closed interval J(n, k) has the same gradient given by

1,01, _ 1

It follows that for any x # y in /, -
)

This means that for any x

and y in /,

x—y. (3)
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Plainly,

f.(x)— 1., (x)| < ZL” for all x in /. This means the sequence of function ( f. (x))

converges uniformly to a continuous function, g, on / such that g(x) = f,. (x) forall x in G.
It follows that g = f.. identically on / since G is dense in /. Therefore, by taking limit as

tends to infinity in (3) we get, for any x, y in /,
1
fo @)= fe WSkl e (4)
This means f,. is Lipschitz on / and so is absolutely continuous on /.

Remark. Absolute continuity implies continuity. A consequence of Proposition 6 is that
fc 1s continuous. Since f,. isincreasing, f. (0)=0and f. (1) =1, by the Intermediate

Value Theorem, f. is onto. So, for the fat Cantor set, we need not use the fact that
e

fcy (C,) =[0,1] to conclude that fcy is onto.

Proposition 7. The arc length of the graph of the generalized Cantor Lebesgue function,
fe :[0,1]>[0,1], for Cy,is y+/1+(1-y)" .
Proof. The arc length of the graph of the polygonal approximation f, is given by the total

length of the horizontal line given by the total length of G(n), which is equal to y[l - (%j J

plus the total length of the 2" lines on the graph of f, joining the two points on the graph

given by the end points of each of the closed intervals J(n, k). Therefore, the arc length of
the polygonal approximation f ,is given by

n

2\ ., 1 2 L\
y{l—(gj J+2 (¢,) tom =7 1—&) +y(2"¢,) +1

. 1_@}1 +\/(1—y(1—(§)"))2+1.

Therefore, the arc length of the graph of f'is given by

1im(y(1_@jn}J(l_y(1—(§)“))2 +1] —yeIr-y).

n—»0

12
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Proposition 8. The generalized Cantor Lebesgue function, f. , for the Cantor set C,, 0 < y

<1, s differentiable almost everywhere on /. The function f,. is differentiable on G=1-C,

and fcy'(x) =0 in/- C,. For the Cantor Lebesgue function, f. , for the fat Cantor set C,,

, 1
0<y<l, fc, (x)= P almost everywhere on C,. For the case of the ternary Cantor

Lebesgue function, fcy ,1.e., when y =1, fcy'(x) = 0 almost everywhere on [0,1].

Proof. As the Cantor Lebesgue function, fcy , 1s monotone increasing, fcy is differentiable
almost everywhere on /. Plainly, since fcy is constant on each of the open interval in G =1 —
C,, fcy'(x) =0in/- C,. Obviously, if y=1, fcy'(x) = 0almost everywhere on [0,1], since
m(C,)=0.

Now for the Cantor Lebesgue function, fcy , for the fat Cantor set C,, 0 <y <1, as fcy is

monotone increasing and absolutely continuous, for any measurable subset £ in [0, 1],

[ fe dx=m( 1. (E)), 5)

where m is the Lebesgue measure on R. (See Theorem 11, Functions of Bounded Variation
and Johnson's Indicatrix.)

Note that in general, a function 4 defined on 7 is absolutely continuous implies that /4 is of
bounded variation, 4 is differentiable almost everywhere on 7 and that /' is Lebesgue
integrable. In this case f. is increasing implies f. is differentiable almost everywhere and

fe " is Lebesgue integrable. In general, an increasing and continuous function need not be

absolutely continuous. For instance, the Cantor Lebesgue function for the Cantor set Ci1 of
measure zero is not absolutely continuous on /.

fcy(x)_fcy(y) 1
<
x—

Since for any x # y, by (4), ,1f f. 1s differentiable at x, then

1=y
fe "(x) < IL . It follows that for almost all x in /, f,. "(x)< IL . Therefore, for any
e —_ ;/ /4 —_ 7/
measurable subset £ of 7, since fcy' is Lebesgue integrable,
' 1
[ fo'(G)dx<——m(E). (6)
E” ~7r 1— ¥

Since f. is onto,

13
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m(f, (D) =m(I)=m(f, (C,UG)=m(f, (C)Uf. (O)<m(f, (C)+m(f. (G)).

Thus,

1<m(f, (C)+m(f, (G)). @

By Theorem 11 of Functions of Bounded Variation and Johnson's Indicatrix, since f. is

monotone increasing and absolutely continuous, i.e., by (5) above,
J.G fe '(x)dx =m( fcy (G)). Since fcy'(x) =0 for all x in G, it follows that
m(fe (G) =] _f,'(x)dx=0.

Therefore, it follows from (7) that m( fcy (C,))21 and as m(f. (C,)) <1 because
Je (C) <1, m(f. (C,))=1. (We may of course deduce this directly since we have shown

that f,. (C,)=1)
For any measurable subset, E, of C;,

m(fe, (€ ) =m( 1o, (EV(C,~E))) < m(fe (EN+m(fe (C,=E)).  -—-eremee (8)
But by (5) and (6), m(f,, (C, - E))= .[07 S (dx < ﬁ m(C, —E) . Therefore, it follows
from (8) that 1 m(/ (E))+ == m(C, ~E)=mCf (B)) 4= (m(C,)=m(E).

E
But m(C,) =1~y and so we have, 1<m(f. (E))+1 —T(—). It follows that

e (E)z ——m(E).
-7

Hence, by (5),
[ 12 @de=m(f, (E)= ﬁ m(E)

and together with (6), we conclude that for any measurable subset E of C,,

J, 1o o = ——m(E). ©
E” ™y 1-— 4

Now let D= {x eC,: fcy is differentiable at x} < C,. It follows then from (9) that

14
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[ £ )dx=——m(D).
DY~y 1_7/

’ . ' 1 .
Hence, ID (i — fcy (x)jdx =0. Since fcy (x) < E for all x in D, we then have

b

" fe "(x)20. It follows that % - /- "(x) =0 almost everywhere on D. Since Sfo is
— 7/ r —_ }/ v /4

differentiable almost everywhere with f. differentiable on (C , )C andon D, f. isnot
' 1
differentiable on C, — D with m(C, —D)=0. It follows that f. (x)= > almost
’ =7

everywhere on C, .

This completes the proof of the proposition.

Consequence of Absolute Continuity

In the case of the Cantor Lebesgue function, f.. , for the fat Cantor set, instead of using the
polygonal approximations of f. , we may use the usual arc length formula for the graph of

Jfc, since f. is absolutely continuous.

By Theorem 9 of Arc Length, Functions of Bounded Variation and Total Variation, the arc
length of the graph of f'is given by,

_[14/1+(fcy'(x))2dx _ J.G4/1+(fcy'(x))2dx+jcy 4 /1+(fcy'(x))2dx
- J.Gldx+jcy 1+£$j2dx = m(G)+ﬁ«/1+(l—}/)2m(Cy)
=7+ﬁ’\/1+(1—7)2‘(1—7)=7+x/1+(1—7)2 .

Moreover, for any increasing and continuous function, f :[0,1]—> R , the arc length of the

graph of f'is given by Theorem 9 in Arc Length, Functions of Bounded Variation and Total

J.[0,1] Vl+ (f,(x))z dx+T,[0,1],

Variation as

15
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where A(x)= f(x)— J: f'(x)dx is the singular part of fin the Lebesgue decomposition of f

and 7,[0,1] is the total variation of 4 on [0,1].

Therefore, for the ternary Cantor Lebesgue function, f,, which is not absolutely

continuous, the arc length of its graph is given by

I[O,l] \/1 + ((fc] )' (x)j dx + qu [O, 1] 5

since f 1s singular.

Plainly, 7, [0,1]=1 and so its arc length is given by

J.[Oﬂ]]\/lj{(fq )’ (x)jzdxﬂ = _[[Ol]ldxﬂ ~2.

Related Cantor function

Using the construction of the Cantor set C,, we can similarly define a function, g, mapping
[0, 1] onto [0, 1] such that g maps C,,0<y <1, onto C, the usual ternary Cantor set of

measure zE€ro.

Remember that G =[0,1]-C, UG(k) UU(k) where U(n) = Ul(l; | ;jfornzl,

G)=U)=1(}), G(n+1)=G(n)LU(n+1) sothat G(n) = U{ (2 j 1<m<2' — 1}.

1) .
J, is equal to v Hence,
2}’! 3)1

Note that the length of the open interval, / ( l;n_ll

G={I(r):r a dyadic rational, r=2%,where b,=0o0rl,1<k<n,b, =1, nzl}.

k=1

Similarly, in the construction of the ternary Cantor set, C1, we have the complement of C is

given by H =[0,11-C, = UH(k) UV(k) where V(n) = Uj(l;n 11 ;ﬂ)fornzl,
k=1

HW)=V(1)=JQ), H(n+1)=H(n)UV(n+1) sothat H(n)= U{( j1<m<2" 1}.

16
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-1

The length of the open interval, J (l;n—_l + 2%) , 1s equal to 3% .

) ) b
Hence, H = {J(r) : 7 a dyadic rational, » = Z—’;{,where b=0orL,1<k<nb =l,n 1} .
it 2
We define the function g on the open intervals /() by mapping /(r) onto J(r) linearly.

If 1(r) =(a(r),b(r)) and J(r)=(c(r),d(r)), then for x in I(r) = (a(r),b(r)) define

8= 4 =D () () = (ra() etr)
Note that d(r)—clr) = length of J(r) = 1 because for r = ib—’/‘{,where b, =1, the length of
b(ry—a(r) lengthofI(r) y o 2

J(r) is 3% and the length of /(r) is 31}1

This defines g on G and plainly, G is mapped onto H linearly on each open interval in G.
Set g(0) = 0.

Forx#0and xin C,, let

g(x)=sup{g(y):y<x andyeG}=sup{g(y):y<x andye[O,l]—Cy}.

This is well defined by the completeness property of R, since the set
{g(y):y <x andy € G} is bounded above by 1.

Proposition 9. The function g defined above is strictly increasing, continuous and maps the
interval [0,1] bijectively onto [0, 1], mapping the fat Cantor set C,, 0 < y< 1, onto the

ternary Cantor set C1 of measure zero.

Proof. The proof is exactly the same as the proof of Lemma 1 in Composition and Riemann
Integrability.

Remark. We may define the Cantor Lebesgue function f. the same way as g above.

Proposition 10. Let g be the function defined above mapping the fat Cantor set C,, 0 < y<

1, onto the ternary Cantor set C1 of measure zero.
o 1 .
() g (x):; for x in [0,1]-C, .
(i) g'(x)=0 almost everywhere on C, .
(ii1) The function g is absolutely continuous on [0, 1].
17
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(iv) The arc length of the graph of gis 1—y ++/1+%" .
Proof.
(i) Plainly, the gradient of the function g on each of the open intervals of G =[0,1]-C, is

1 1
—, as g is linear on each of the open interval of G. Hence, g'(x)=— forxin [0,1]-C, =G.
4

(i) Since m(g(C,))=m(C,)=0, by Theorem 15 of Functions of Bounded Variation and

Johnson's Indicatrix, g'(x) =0 almost everywhere on C, .

(iii) Let P={xe[0,1]: g'(x)=+o0} . Since g is differentiable on [0,1]-C,, P=C, .
Therefore, m(g(P)) = m(g ({x €[0,1]: g'(x) = +oo})) <m(g(C,)) =0implies that

m(g(P))=0. Therefore, by Theorem 12 part (a) of Functions Having Finite Derivatives,

Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallée
Poussin's Theorem, since g is strictly increasing and continuous on [0, 1], g is absolutely
continuous on [0,1].

We may prove this slightly differently as follows.

Let E={x€[0,1]: g is differentiable at x}. Then GC E sothat/-Ec/-G=C,.
Therefore, m(g(/ —E)) =0. Since g is continuous, by Lemma 4 of When is a continuous

function on a closed and bounded interval be of bounded variation, absolutely continuous?
(The answer and application to generalized change of variable for Lebesgue integral), g is an
N function. Therefore, since g is differentiable almost everywhere and g’ is Lebesgue
integrable, by Theorem 5 of the same article cited above, g is absolutely continuous on [0, 1].
(We may invoke Banach-Zarecki Theorem, Theorem 8 of Functions Having Finite
Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La
Vallée Poussin's Theorem, since g is a continuous function of bounded variation and is an N
function, to conclude that g is absolutely continuous.)

A theorem of Sak, Theorem 1 of When is a continuous function on a closed and bounded
interval be of bounded variation, absolutely continuous? (The answer and application to
generalized change of variable for Lebesgue integral), implies that g is absolutely
continuous. This is because g is a continuous function of bounded variation and g’ is

Lebesgue integrable since g is increasing, g is differentiable on [0,1]-C, =G and

m ( g(Cy)) =0. See also Theorem 16 of “Absolutely Continuous Function on Arbitrary
Domain and Function of Bounded Variation” . Since g is continuous, increasing,
differentiable on [0,1]- C, and m(g({x €[0,1]: g'(x) =+o0}))=0as m(g(Cy)) =0, the
condition of the theorem is met. More precisely, the theorem states that:

18
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A continuous function g of bounded variation is absolutely continuous if, and only if,
m(g({x: g'(x)=40}))=0.

We shall use any one of the above result to determine if any one of our Cantor function is
absolutely continuous.

(iv) Since g is absolutely continuous on [0, 1], the arc length of the graph of g is given by

J.I,/l+(g'(x))2dx = _[G,/1+(g'(x))2dx+.|.cy \/1+(g'(x))2dx

2
= 1+(lj de+[ 1+ 0dx,
G y c,
1
since g'(x)=— on G and g'(x) =0 almost everywhere on C,,
/4

N Gs m(C,)
y

=Jl+7* +1-7.

(Of course, we can always take the limit of the arc lengths of the graph of the polygonal
approximations of g.)

Remark.

The inverse function of g, g~', is strictly increasing and continuous. But g~' is not
absolutely continuous, since m(g~'(C,)) = m(C,)=1-y >0 and so cannot be an N function

and that a necessary condition for a function to be absolutely continuous is that it must be an
N function, i.e., it must map sets of measure 0 to sets of measure zero.

If 4 is the Cantor function for the ternary Cantor set, C1, of measure 0, then for the same
reason as above, / is not absolutely continuous because # maps Ci on to /, which is not of
measure 0. But the composite /o g is the generalised Cantor Lebesgue function for C,,

where 0< y <1, and is absolutely continuous on [0, 1].

Integral of Cantor function

Recall the polygonal approximation, f, :/ — I, as defined in the proof of Proposition 6, of

the generalized Cantor function, f. :/ — I, converges uniformly to f. Therefore, as each f,
is integrable, L |, (x)dx — L ny (x)dx .
19
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We now describe, the integral of each f, : 1 — 1.

Recall that for each integer k> 1, U(k)= {I (% + ikj 0<i<2" — 1} . Since the length
2 2

of each open interval in U(k) is lk , for 1<k < n, the integral,

oo (L O (2, (2
J‘““f() ) "{(2"+2’”j+(2"+2’”)+ J{z” 2+ J}
S M) (2 A B
()
3

. n k "
As G(n) = HU(/{) is a disjoint union, J-G(n)f;z (x)dx = % k_l (%j - Z[l _(zj J n

k-1
:l-i-z 1+22 ~1)+1) =

.Mw

particular, as ny (x)=f,(x) forxin U(n), IU( : fg (x)dx :%(gj and so

0

Jode, e =221, fe, () =§Z[ ]

=1

Now, I -G(n)= UJ ( k2 1] a disjoint union of 2" closed interval of the same length,

0, = 2—1”(1 -y (1 - (%)" )) . Here we have indexed these closed intervals by their minimum
values on each closed interval, that is, J (n 2—) 0<i<2"—-1. Therefore, I S, (x)dx,

n

is given by 2" triangular parts of equal area given by, 2" -%L’ 2% = éﬁ , blus the rectangular

parts below these triangles, given by

= 121, 1o A1
£x Y o= by o T2 =2t =l = 1=y (1=(3)')) -5 ¢
nxi:1 2n n 2n 2 2 n 2 n 2( 7/( (3) 2 n
1 A1, 1 :
Itfollows that [ 1. (0)dx==t,+2(1=7(1=(3) )| -5, =5 {1-7(1-(3) J). Hence
20
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[ fn(x)dx:%[l—(gjn]+%(l— 7/(1—(%)"))2%. It follows that [ .. (x)dx:%. Hence,

1 7/ 1—7/
.[Cy fC (x)dx = J-[O’l]fcy (X)dx—J-chy (x)dx = 5—5 = -

Note that this is also true for y=1.
Hence, we have:
Proposition 11. The integral of the generalized Cantor function, f. , including the usual

ternary Cantor function, when y =1, is Y. L_C fcy (x)dx = % and _[C fcy (x)dx = I—Ty .

We can also prove this by proving that for the Cantor function, f. (with0<y<1),
fo )+ fo (1=x)=1 forallxin . Indeed | f. (x)dx+] f. (1-x)dx=1. But

[ fo@=xdx=[ 1. A-x)dx=—[", odu , with substitution u=1-x ,

1 1
= |, fe, Gy = | fe, (oyx.

It follows that 2J.1 fo (x)dx =1and so L fe (X)dx = %
We may prove this relation on each polygonal approximation f, and then take the limit to
infinity on each side of the relation.
Proposition 12. The associated Cantor Lebesgue function f. :7— [ for the Cantor set C,
, 0<y<1,satisfies f. (x)+f. (1-x)=1 forallxin /.
Proof.

It is enough to show that the polygonal approximation, f, :/ — I, of f, satisfies the same

relation f (x)+ f,(1—x)=1 for all x in / and for all integer n > 1.

We first show that f, (x)+ f,(1—x)=1for all x in G(n).

Note that G(n) = U{I (%j 1<m<2" - 1}. Notice by the construction of G(n), the open
sets of G(n) are symmetrical about the point y = 2, with % e I(1/2). More precisely, if i(x)
= l—x, then h({(r))=1(1-r).
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Suppose xe I(r), r =2k—n,1 <k <2"—-1. We shall show that #(x)=1-xeI(1-7).
We show that 4(/(r)) =1(1—r) by induction on n.

When n =1, then G(1)=U(1)=1(1/2), obviously A(I(1/2))=1(1-1/2)=1(1/2).

G2)=G1HuwUR2) and U(2) = {I (é + %j :0<i< 1} . Since I —G(1) 1s a disjoint union
of two closed interval of equal length and is symmetrical placed about y = !4, the open

) 1 .
intervals, / (—2) and / (%) , are symmetrical about y = V5.
2 2

xe[(zljcﬁ <x</! +3l<:>1 4 _3%<1_x<1_52<:>1—xel(1—ij.

22
Thus, h(l [%D I(l—izj
2 2
Suppose A(I(r))=I1(1-r) for I(r)e G(k) = U{ ( j 1<m<2* —1}

Now, G(k+1)= U{( j1<m<2" l}u{l(zﬁk+2:+]j:0ﬁmﬁ2k—l}. Recall that

U(k+1):{1(2ﬁk+2klﬂj:0£m£2k—1}. We let 7(0) = {0} . Note that

1 §+2]}+1j:1(2$:1j and so I(zﬁk+2]}+1]:1(z;’1:1j is between I(zzkmlj and

1 Mj The map 4 maps 1(22 ]t I(l %j=[(2k+l—_2mj and maps

1 %j to 1(1—2};:2):](2]{“ ;k2+:71—2] I(zﬁkJr%j:I(%) is placed in

the middle interval of the closed interval between / ( kal ] and / (W] of length k -
2 2% 3%

and so 4 must map / (% + ! j =1/ ( 2m + 1) to the middle interval of the closed interval

2k+1 2k+1
k+1 _ k+l
between ][1—2’”,:2):1 2 k2:n 2 and ](1— ka]]:] 2 . 12m , which is of
2 2% 2% 2%
k+1 _
course / [%j =1 (1 —%j This proves that A(/(r))=1(1-r) for
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I(r)yeU(k+1). Hence, h(I(r))=1(1—r) for I(r)eG(k+1)=U{](2IZIj:lﬁmgzkﬂ_1}

and for any k> 1. It follows that 4(/(r))=1(1—r) forany /(r) in G. Hence, if x is in
I(r)c G(n), then 1-x e I(1-r). Consequently, f (x)+f (1-x)=r+1—r=1. Plainly this
applies also to the end points of the open intervals of G(n). It follows that f, (x)+ f, (1-x) =1
for all x e % .

Suppose now x ¢ G(n) . Then x is in one of the interior of the closed intervals in 7 —G(n).

Each of these closed intervals are of the same length £, . We can index these closed

intervals by the max value of f, onit, i.e., /—-G(n)= {J(n,zl—nj 1<i< 2”} .

Suppose x is in the interior of J (n,zk—nj , 1<k<2". For technicality, let /(1) = {1} and /(0)

= {0}. Then J(n’2£”j is the closed interval between I(Ej and I(zinj for I<k<2".

n

Since A I(k_lj :I(I—Ej and A ILEJ :I[l—i} h J(n,ij 1s the closed
2}1 2]‘! 2n 2n 2n

interval between I(l—zk—nj and I(l—%). Let I(%) =(a,_,,b, ) and

I(Zk—nj=(ak,bk). Then 1[1—2%):(1—@,1—@) and 1(1—%):(1—bk_1,1—ak_1).

Note that a, —b, ,=(,, b_,<x<a, and l-ag <l-x<1-b_,

Now fn(x):%Jr(x—b“)% and

2"(,
fn(l—x)=1—§+(1—x—(l—ak))2n1£n =1—§+(ak—x)2nlﬁn
Therefore,
fn(x)+fn(1—x):k2_nl+(x—bkl)ﬁ+l—2k—n+(ak—x)2nlfn

:1—%+(ak—bk1)i:1—2%+€n 2"lfn =1.
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Note that in the above proceeding, if k =1, then / (kz 1] =1(0)={0} ={b,} and

1( = 1] 1) ={1} ={1=b,}. If k=2", then z(fj ~1(1)={1} = {a, }and
k
1(1—2—nj=1(0)={0} ={l-a,}.
This proves that f (x)+ f,(1-x) =1 for all x in / and for all integer n > 1. Therefore,
ny () + fe (1=x)=lim £, (x)+lim f, (1-x) = lim(fn(x)+fn(l—x)) =1 forallxin L.

Alternatively, we may proceed as follows.

We have already shown that for all x in G, ny (x)+ ny (I-x)=1. For xeI-G=C,, there
exists a sequence (a, ) in G such that a, —x. Since f is continuous, f. (a,) = fc (x)
and fc, (I-a)— fc, (I-x). Since a, € G, fcy (a,) +fC7 (I-a,)=1. It follows that,

fo )+ fo (A=x)=lim /. (a,) +1im /. (1=a,) =1im(/;, (a,)+ f, (1=a,)) =1.
Therefore, fcy (x)+ fcy (I-x)=1forall xe/-G=C,. Hence, fcy (x)+ fcy (1-x)=1for all x
in /.

The function, g, as defined just prior to Proposition 9 and referred to in Proposition 9, also
satisfies the relation g(x)+g(l—x)=1forall x in .

By Proposition 9, g is strictly increasing, continuous and maps the interval [0,1] bijectively
onto [0, 1], mapping the fat Cantor set C,( 0 <y <1) onto the ternary Cantor set C1 of

measure zero.

Let G=[0,1]-C, UG(k) UU(k) where U(n) = Ul(];n 11 21)

G(n) = UU(k) U{( jl<m<2" 1} and G(n+1)=G(n)LuU(n+1).

Let H =[0,1]-C, = UH(k) UV(k) where V(n) = UJ(/; ! zlljfornzl,arethe

k=1 k=1

middle third open intervals in the construction of Ci,

H(n)= UV(k) U{ ( j 1<m<2" —1} and H(n+1)=Hn)wU(n+1).
The function g maps each (), linearly, strictly increasingly and bijectively onto J(r).
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For each integer n > 1, let g, : I — I be the polygonal approximation of g such that

g,(x)=g(x) forx in each / (;1—”} in G(n). As before we can index the closed intervals in

I—G(n) all of equal lengths, £ =2Ln(1—7(1—(§)n)), by I—G(n):{S(n,éj:léiST}.

Similarly, we index the closed intervals in 7 — H (n) all of equal lengths,

A = 2i(1 —(1 3y )) by [—H(n)= {T(nzij <i< 2"}. Thus, if x e I(r) = (a(r),b(r))

d(r)—c(r)
b(r)—a(r)

closed interval between / (%) and / (Zinj T (n,zinj, 1s the closed interval between
J k-1 and J i .
2" 2"

We use the convention: /(1) =J(1) = {1} and /(0) =J(0) = {0}. g, maps S(n,zﬁnj linearly

and J(r)=(c(r),d(r)), g,(x)=g(x)=c(r)+ (x—a(r)). Now, S(n, 2k—nJ , 1s the

and bijectively onto T (n,zk—nj as follows.

Let I(kz lj (a(5h),b(5Y), 1(§j=(a(2’—;),b(2%)), (kznlj (c5,d(5h),

J(;) (c( ),d (5 )) Then for xeS(n,zﬁnj,

k-1 (Zk) (k ]) k-1 _ k—1 X’n k—1
g,(x)=d(5)+ W( —b(z—n))—d(z—n>+z(x—b(2—n))
=d(kt ( (1 ) )) (x—b(5h) =d(&h) + (g)nzn (x—b(5D).
-] (1-r(1-)))

Let A(x)=1-x. We shall show that g (x)+g, (1-x)=1 for all x in G(n). We shall do this
by induction. Forn=1, G(1)=U(1)=1(1/2), obviously h(I(1/2))=1(1-1/2)=1(1/2).
Now g(I(1/2))=g,(I(1/2))=J(1/2). Let I1(1/2)=(a(}),b(?)) and J(1/2)=(c(2).d(})).
Then for x in G(1) =1(1/2) =(a(2),b(3)),

d(3)—c(3) | N , L1 ]
b —a(l) (x-a(z))=cz)+ 71 (x—a3))=c(z3)+ ;(x —a(3))
d(3)—c(3)
b(3)—a(3)

g(x)=c(z3)+

and g, (1-x)=c(3)+ (I-x-a3)=c()+ 1 (I-x—a($)). But 1-a(2)=5b(3).
Y
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It follows that
g, (0)+g1-x)=e(b)+ % (r—a(b)+e(d)+ %(b@) ) =2e(h)+ %(b(%) ~a(b))
= 2e(h) 4 d(V)—e(d) = e(B) +d(L) =1,

So, the relation g, (x)+ g,(1—x)=1holds for all x in G(1).

Now G(2)=G()LU(@)=G()uI(L)ul(2) and h(z(%)) =1(2). We shall show that

g, (x)+g,(1—x) =1holds for xeU(2) = {1(g+2%) 0<i< 1}.

Let 1()=(a(L),b(X) and J(L)=(c(3).d(£) Then I(X)=(1-b(),1-a(%)) and

J(Z)=1-dE@)1-c(X).

If xe 1(2%), then g,(x) :c(z%)Jrl(x—a(z%)) and g,(1-x) = l—d(z%)Jrl(l—x—(l—b(z%))).
¥ ¥

Thus,

gz<x)+gz<1—x):c(;z)+i(x—a(z%»ﬂ—d(z%)ﬁti(l—x—(l—b(gz)))

=) (G~ = 1) e+ ) =1,

Similarly, we show that if x e 1(21) ,then g, (x)+g,(1-x) =1.

We assume that g, (x)+g,(1—-x) =1 for integer k> 2 and for all x in G(k). Now
G(k+1)=G(k)wU(k+1). We show that g, (x)+g,,,(1-x)=1 for x in U(k+1).

Note that if /() is one of the open interval in U(k+1), then /(1—r)is also one of the open
interval in U(k+1) and moreover h(I(r))=1(1—r). Note that g maps any open interval, /(r),

in G to the corresponding open interval J(r) in H.

Let I(r) = (a(r),b(r)) and J(r) =(c(r),d(r)) Then I(l —r) =(1-b(r),1-a(r)) and
J(l—r) =1-d(r),1—c(r)).

If xe I(r) ,then g, (x)=g(x)=c(r)+ l(x —a(r))and
4

gin(1=x) :l—d(r)+l(1—x—(1—b(r))).
v
It follows that
g (¥)+ g, (1-x) =C(")+l(x—a(r))+1—d(7”)+l(1—x—(1—b(r)))
v v
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:l—d(r)+c(r)+l(b(r)—a(r)) =1-d(r)+c(r)+d(r)—c(r)=1.
4

This proves that g (x)+g,(1—x)=g(x)+ g(1—x) =1 for all x in G(n) and for all integer n >
1. Therefore, g(x)+g(1—x)=1 forall x in G.

(Using the same technique as for the case of f,. , the Cantor Lebesgue function, we can

show that g (x)+g,(1-x)=1, forallx in C,. We then prove the relation by taking limit of

both sides of the relation. For this we need to use the convergence of g, to g. Note that

g, (x)—g,.,(x)| < 3% for all x in 7 so that (g, (x)) does converge uniformly to g on I.)

Take any x in / —G =C, . Since G is dense in /, there exists a sequence (a,) in G such that
a, = x. As gis continuous, g(a,) —> g(x) and g(1-a,) > g(1-x). Note that
g(a,)+g(l—a,)=1 forall integer n > 1.

It follows that g(x)+g(1—x)= },EE gla,)+ }}_}Ig g(l—a,)= }li_r)g(g(an) +g(1- an)) =1.

Hence, g(x)+g(1—x)=1forall x in /.
In summary, we have:

Proposition 13. The function g, as defined just prior to Proposition 9 that maps the interval
[0,1] bijectively onto [0, 1] and the fat Cantor set C, (0 <y < 1) onto the ternary Cantor set

C1 of measure zero satisfies the relation g(x)+ g(1—x)=1for all x in /. Consequently,

J.Olg(x)dx =L g(x)dx = % .

Remark.

Let f. be the Lebesgue Cantor function for C,,0 < y<1and f. the Lebesgue Cantor
function for Ci. Then f.og= fcy . By Proposition 10, g is absolutely continuous on /.

Then by Theorem 8 of Change of Variables Theorems,
1 1 , 1 ,
[ fo@dxc=] £, g)g'dc= f. (x)g'(x)dx

=] S W@+ [ o (g Wdx= | [ (g Wdx+[_fi, (¥)g'(x)dx

=0+[ fe (x)-ldx=lj o (x)dx,
G™ 7 4 4 G™ 7
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1
since g'(x) =0 almost everywhere on C, and g'(x)=— on G.
4

1 1 _
Therefore, ;J‘G fcy (x)dx = ) and so IG fc, (x)dx = g and J.Cy fcy (x)dx = % —g = 177/

Thus, we have another proof of Proposition 11 for the case of fat Cantor set:

If f. :I—1 is the Cantor Lebesgue function for the fat Cantor set C,( 0 <y < 1), then

Jp o fo s =L and [ f. e =2

Proposition 14. Let the function, g, be defined just prior to Proposition 9 that maps the

interval [0,1] bijectively onto [0, 1] and the fat Cantor set C,( 0 <y <1) onto the ternary
Cantor set C1 of measure zero. Then j (x)dx = 2 and I (x)dx = L4
. 1-C, & 2 G & 2 '

Proof.

0 0 2n—l .
Let G =[0,11-C, =| JG(k)=|JU(k), where U(n)= Ul[];n_} +2LJ .
k=1 k=1 k=1

(x) © 2n71 _
Let H=[0,1]1-C, = UH(k) = UV(k) , Where V(n) = UJ[I;II +—
k=1 k=1 k=1

for n > 1, are the

middle third open intervals in the construction of Ci,

H(n)= UV(k) U{[ j1<m<2"—1} and H(n+1)=Hm)uU(n+1).

We shall examine the open intervals in H more carefully.

kll
2”12

Let J( J (c(n k),d(n, k)) for 1<k <2""'. Then d(nk)—c(n k)= i and the

1
collection {c(n k):1<k<2" 1} is given by {2r+— r= Z g =0or 1}.

k=

Therefore, since g maps the intervals in U(n) linearly on to the open intervals in V(n), the
integral of g over U(n) is given by

y & 1y 1
dx =—x ) +2" | = x =X —
Ju 8= x Detn ) (2 3 3")
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12n 1 7/ (l_ij 2n72 7/ 1 2" B 7/
2 3" 3" 3 2 3"

132 -
=L = __Z Consequently, IC g(x)dx=—=*

Thereft d
erefore, .[ g(x)dx = ZJU( )g( x)dx ) 343,

We now look at similar construction of Cantor Lebesgue type function. Let 0<y,,7, <1 and
n#7,. Let C, and C, be the Cantor sets corresponding to , and y,. Let g,,:/ — 1 be

defined in exactly the same manner as g in Proposition 9, by first defining the functions on
the disjoint open intervals in 7 —C, linearly and bijectively onto the corresponding open

intervals in/ — C L As C, is dense in /, the function is then extended to the whole of /.

Proposition 15. The function, g,,:/ — I , as defined above is strictly increasing and

continuous and maps the Cantor set C, bijectively onto C, , where 0<y,,y, <l and y, #y,.

Proof.

Let G=[0,1]-C, UU<k) where U(n) = Ul(’; -+ 21} and 1= I(l; = zlj

1<k <2"", are the open intervals, each of length ;/—"1 , to be deleted in stage n in the

constructionof C, . Let H =[0,1]-C, UV(k) where V' (n) = UJ (];n 11 21” ) , and
k=1

k — l 1
J 1
(l") ( 2 n—1 2n

j, 1<k <2"", are the open intervals, each of length %, to be deleted in
stage n in the construction of C, . Let G(n)== UU (k) and H(n)= U V (k). Then
k=1 k=1

G=0G(k) and H=0H(k). I1-G(n)=Fn,1)VF(n2)v---UF(n,2") is a disjoint

k=1 k=1
union of 2" closed interval of length ¢, = 2%(1—7/1 (1 -(2) )) and
I-Hn)=Kn1)VK(n?2)u---UK(n?2") is a disjoint union of 2" closed interval of
1 L
length 4 = > (1 7, (1 ( ) ))
Note that
G= U{](r) : 7 a dyadic rational, r = Z%,where b =0orlforl<k<nb =1,n= 1}

k=1

and
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H=U{J(r):r a dyadic rational, r = s—k,where b, =0orlforl<k<n,b =1n Zl}.
k=1

The function g, , is defined on the open interval /(r) by mapping /(r) onto J(r) linearly.
If 1(r)=(a(r),b(r)) and J(r)=(c(r),d(r)), then for x in I(r) = (a(r),b(r)) define

d(r)—c(r
g0 == () +e(r) = L2 (x-a(r)+e(r) -
b(r)—a(r) "
Note that d(r)=c(r) length of J(r) - since if 7= b—",where b, =1, then the length
b(r)—a(r) length of I(r) 7y, o 2

of J(r) is == 3 2 and the length of I(r) is ~+

The end points of /(r) are mapped to the corresponding end points of J(r).

Define g,,(0)=0 and g,,(1)=1.
For x # 0 and x in C,, define
g,(x)=sup{g,,(»):y<xandyeG}=sup{g,,(»):y<xandye[0,1]-C, |.

Now we examine the indexing of U(n) and V(n). We note that

—_ 1
{];_IlJrzin:lskSZ“} {Z —¢g —Oorl}

J

_ l ¢
If we let J(é} j (Zz—f —j (c(r),d(r)), where r = Z%+2—n,then
=1

c(r) 2'51“((}7 +%j8j +/1nj .

Firstly, we show that g, , is strictly increasing on G=1-C, .

By definition, g, is increasing on each /(r) and maps /() bijectively onto J(r). At the n-th

stage of the construction of the Cantor set we obtained
G(n)= UU (k)= U{ ( j 1<m<2" —1} which consists of 2” — 1 disjoint open intervals,

that have been deleted from [0, 1]. The ordering of these intervals is in the order of the
deletion starting from the left to the right according to the indexing. The natural ordering
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follows a very simple rule, /(k) < I(!), if and only if, there exists some x in /(k)such that x <
y for some y in /(!), if and only if, for any x in /(k) , x <y for all y in I(/). Therefore, the
disjoint open sets in G are ordered by its index set. Similarly, the disjoint open sets in

H =1-C, are ordered by its index set. Supposexandyin /—-C, =G are such thatx <y.

If x and y are in some (), then since f'is by definition increasing on /(r), f(x) <f(»).
Suppose now x is in /(r)and y isin /(/). Then x <y implies that I(r)<I(/) and r</ .
Hence J(r) <J(l). It follows that f (x) < f(y), since f(x) € J(r) and f(y) € J(I). We have
thus shown that fis increasing on /—C, =G . Plainly, g,, maps G bijectively on to A.

Next, we show that g,, maps C, into C, .
Forx=0, g,,(0)=0.

We now assume x # 0 and x € C, . Recall then that

g,(x)= sup{gl,z(y) :y<xandye G} = sup{gl,z(y) ry<xandyel[0,1]-C, } .
Suppose that g, ,(x) ¢ C, . Then for some dyadic rational number /, g, ,(x) € J(/) and since
J)=g., (I(l)) , there exists xoin /(/) such that g,,(x,)=g,,(x). Then since /(/) is open
there exists yo in /() with yo < xo such that g,,(y,) < g,,(x,) = g,,(x). By the definition of
supremum, there exists y"in [0,1]-C, withy’<xand g,,(,) <g,,(V") £ g, (%) =g,,(x,)-
Since fis increasing on /—C, , yo<y'<x. Thensince yo € /(/) and so forall yin I(/), y <

x for otherwise, if there exists z in /(/) withz >x, then x would belong to ()0, z) =
1(1) =[0,1]-C, , contradicting x € C, . Now, since /(/) is open, there exists x"in /(/) such

that x"> xo. Thus, g,(x")>g,,(x,)=g,,(x). Also since x"<x,

g, (") <suplg,(»):y<xandye[0,1]-C, | = g, (x), contradicting g, ,(x')> g,,(x).
This shows that g, ,(x)e C, . Hence, g,, maps C, into C, .

The function g, is strictly increasing on [0, 1].

We have already shown that g, , is strictly increasing on G=1-C, .

Thus, if x and y are in G and x <y, then g ,(x) < g,(»).

Suppose now x e C, ,y ¢ C, and x <y. Then for any

zeG= U{I(r) :r a dyadic rational, r = ang—’;,where b,=0orL,1<k<nb,=1l,n= 1},

k=1

z <x implies that z <y. Therefore, since y and z are in G, g,,(z) <g,,(y). Hence,
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g,(x)= sup{gl,2 (z):z<xandz e G} <g,(»). Sinceg,(x)eC, =[0,1]-H,

g,(¥)# g ,(y) andso g, ,(x)<g,(»).

Supposenow x € C, ,y¢C, andx > y.
Theng, ,(y) <sup {gL2 (z):z<xandze G} =g,(x).

Again, since g1, (%) # g,,(y) we must have g,,(x)>g,(»).

Suppose x and y are in C, and x <y. This time we shall use the property of the Cantor set

here. Because C, is nowhere dense, the intersection (x, ) m([O, 1]-C, ) # . Therefore,
there exists z €[0,1]-C, such thatx <z <y. By what we have just proved
g,(x) < g,(2)<g,(»). Therefore, we can conclude that g ,(x) < g, ,(»). Hence, we have

shown that g, is strictly increasing on [0, 1].
The function g, , is onto and maps C, onto C, .

Since g,, maps the complement of C, in [0, 1] onto the complement of C, in [0, 1], it is
sufficient to show that g,, maps C, onto C, . By examining the definition of g,, we can
consider a similar function g, mapping C, into C, which is the inverse of g, ,. We are
going to use this inverse function to construct a pre-image of y in C, under g, . Fory=0
in C, , by definitionof g,,, £,,(0)=0and0Oisalsoin C, . Forafixedy#0in C, ,
define the following

X= sup{(gl,2 )71 (z):z<yandze H} = sup{(gl’z)f1 (z):z<yandze gl,z(G)} .

Note that this is well defined because H is in the image of g, ,, the set
{( g )71 (z):z<yandze H } is non-empty and bounded above by 1 so that the supremum
exists by the completeness property of R .

The same argument for showing that forany /#0in C, , g,,(/) isin C, , applies here to

conclude that x € C, . Now we claim that g, ,(x)=y.

Note that

(g2) @)z <y andze g, (G)] = {1 g,,(x) <y and g,,(x) € £,,(G)}
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= {x’ g L(x)<yandx'e G} )
Therefore, x =sup {x’ g ,(x)<yandx'e G} .

Next, we claim that for any z' in G,

Z'<xegLE)<y. (*)
This is deduced as follows.
Let z' in G. Then

Z'<x=sup {x' g, (X)<yandx'e G}
< there exists z, in {x' g ,(X)<yandx'e G} such that z' <z, <x
= there exists z,, in {x’ 1g,(x)<yandx'e G} such that g,,(z") < g,,(z,) < g,,(x)

= 8.,(2) <y.
Conversely, if z'isin G and g,,(z") <y, then by definition of x, z' < x and so since z'is in G,
z'<x. This proves our claim.

Therefore,

{gl,z (z):z'<xandz' € G} = {gl’z (z'):g,(z)<yandz' e G}

={y':y'<y andy’&gl,z(G) =H}

Thus,
gl,z(x):sup{gl,z(z’):z'<x andz’eG} =sup{)':y'<yandy' eH}=y.

This is seen as follows. Obviously, g,,(x)<y.

Note that both g,,(x)andyarein C,_. If g,,(x) <y, thensince C, is nowhere dense, there
exists yoin /—C, =H = g,,(G) such that g, ,(x) <y, <y. Therefore, there exists x, € G

with g, ,(x,) =y, and g,,(x) < g,,(x,) =y, <y. Since g, s strictly increasing on /, x <x,.

But by (*), g,,(x,) <y implies that xo < x contradicting x <xo. Therefore, g ,(x)=y. This
shows that g,, maps C, onto C, and as a consequence, g,, is onto. Therefore, g,,1s a

strictly increasing function mapping / onto /. By Theorem 3 of Inverse Function and
Continuity, g, , is continuous on [0, 1].
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Remark. The function g in Proposition 9, 10 and 13 is just g, ,, where 0 <y, <1 and y, =1.

Proposition 16. The function g, is differentiable almost everywhere on 1. g, is

differentiable on /—C, and ( g, )l (x)= 22 forxin I- C, =G.

1

() If y,=1and 0<y, <1, then g, is not absolutely continuous on /.

(2) If y,=1and 0<y, <1, then g, is absolutely continuous on / and ( 812 )’ (x) =0 almost
everywhere onC, .
(3) If 0<y, <1l and y, #y, with 0<y, <1, then g, is Lipschitz on / and so is absolutely

continuous on /.

4 If O0<y, <1l and y, #y, with 0<y, <1, then ( 812 )’ (x) =—= almost everywhere on

1-7,
1=y

C

n'

(5) The arc length of the graph of g, is \/(;/1 )2 +(7, )2 +\/(1—7/] )2 +(1-7, )2 .

Proof.

Since g, is strictly increasing, it is differentiable almost everywhere on /. Since the

gradients of the linear parts of g, , on each of the open intervals in G are the same and are

equal to %, (gl’z)' (x):% forallxin /-C, =G .

1 1

(1) If 7, =1and 0<y, <1, then m(C,)=0but m(g,,(C,)=m(C, )=y, 0. Therefore,

g, 1snot a N function and so cannot be absolutely continuous on /.

(2)If 6, =1, then m(g,,(C,))=m(C, )=m(C))=1-1=0. Moreover, g,,1is differentiable
on /-C, . Therefore, by Theorem 12 part (a) of Functions Having Finite Derivatives,

Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallée
Poussin's Theorem”, g, , s absolutely continuous on /. By Theorem 15 of Functions of

Bounded Variation and Johnson's Indicatrix, gl’zl (x) =0almost everywhere on C, .

(3) For this we are going to use G(n) to construct a polygonal approximation to g, , .

Define f,:1 —>R, by f,(x)=g,(x) forxin G(n). Now

G(n)=U{I[2ﬁnj:1£mS2” —1} and so f,(x)=g,(x) for xe](zﬂnj, for 1I<m<2"-1.
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Define f, (x) to be the corresponding end points of J ( X jfor x = end points of / ( > j .

Now I —-G(n)= (G(n) UF (n, k) 1s a disjoint union of closed intervals, each of length

k=1

0, = 21n (1 7 (1 (2)’ )) We define f, oneach F(n,k), 1<k<2" tobe given by the linear

function or line joining the points on the graph of g, given by the image of the end points

of F(n,k). Hence, the linear function on each of the closed interval F'(n, k) has the same

gradient given by
3, (-0
. .

More precisely, the polygonal approximation, f, (x), is given by the points on the graph of

gu,%dﬂgmwvm(ﬂﬂ&JMﬂD {—1<m<W—@}wmm

G(n) = UU(k) U{ ( j1<m<2"—1} and 1(r) =(a(r),b(r)).

Note that the gradient of the function f, on the open intervals in G(n) is the same as the

gradient of g, on the intervals in G(n) and are equal to 7
7
1y 1-(%)”)
It follows that for any x # y in /, £L®=1,0) < max —2,2(—3,1
x=y io1-n(1-2))

If O0<y,<y <1,then~=

2 <1_72(1_(§ )
)

)
" 1—%(1—(%)

L0 £ (6]
=y i-p

7/2 1- 72(1_(%)71)
"ol 7/1(1—(5)”)

ANy
X=y 4

If 1>y, >y, >0, then~— for all integer n > 1 so that

8]

, for all integer n > 1.
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This means that forany x, yin 7, if 0 <y, <y, <1,

2 (1-0))

W

1- 2
[, £, s ———|x-], --- (10)
1_71(1_(%) )
and if 1>y, >y, >0, then
ﬁ(x)—fn(y)léflx—yl- (1)

Plainly, |/, (x)—f,.,(x)|<4, = 217(1 -7, (1 —(2) )) for all x in /. This means the sequence of

function ( /. (x)) converges uniformly to a continuous function f on / such that
g,(x)= f(x) forall xin G. It follows that f" = g, identically on / since G is dense in /.
Therefore, by taking limit as » tends to infinity in (10) we get, for any x, y in /,

. 1—
if 0<y, <z <1, then |g,,(x)-g,(»)|< 1_? P p—— (12)
1
and if 1> 7, > 7, >0, then |g,,(x)—g,,(»)| S%x— Y. s (13)
1

This means that if 0<y, <1 and y, # y, with 0<y, <I, then g, is Lipschitz on / and so

g, is absolutely continuous on /.

(4) By Theorem 11 of Functions of Bounded Variation and Johnson's Indicatrix, since g, is

monotone increasing and absolutely continuous,

J. (1) (s =m(g; (€, ) =m(C, ) =1-7, = ], Lox.

7 ¢ 1— ]/1

Therefore,

J.cn[(gl,z)' (X)_i:;deXZO. (14)

If 0<y, <y <l andif g, is differentiable atx in C, , then it follows by inequality (12) that
( g )' (x)< 1_—}/2 Since g, is differentiable almost everywhere and differentiable in
7

1

I1-C,, g, is differentiable almost everywhere in C, . Suppose g,, is differentiable in a

subset D of C, such that the measure m(C, —D)=0. Then it follows from (14) that
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ID [( g1 ), (x)— 1:1// : jdx =0 and we conclude that ( g, )’ (x)= 11:—7;2 almost everywhere on
1 1

D and hence on Cy. .

If 1>y, >y, >0, we consider g,,, which is the inverse of g,,. Then by the above

proceeding, g,, is differentiable almost everywhere on C, and ( 25, )' (x) = —*L % 0 almost
’ V2

1-y
1—
everywhere on C, . Suppose g, , is differentiable on £'in C, and m(C, —E)=0. Then
g, = (ng )_1 is differentiable on g, ,(E) = C, and m(Cyl —gz’l(E)) =mg,,(C, —E)=0.
Moreover, foryin g, (E)cC, ,

1 11—y,

& 0)=((2)") 0= () ((22) ) T ey

-y,
-y

1

Hence, ( gm) (x)= almost everywhere on C, .

If ,=1and 1>, >0, then m(gu(ch ))zm(Cyz):m(Cl)zo. By Theorem 15 of

Functions of Bounded Variation and Johnson's Indicatrix, ( gl,z) (x) =0 almost everywhere
on C, . In this case, g, is the function g in Proposition 10. This completes the proof of this

part.

(5) The arc length of the graph of the polygonal approximation f, to g, is given by the

sum of the lengths of the linear parts over the closure of the open intervals in U(k) for £ =1 to

n plus the total length of the 2" linear segments over the closed intervals in / —G(n) of equal

length. The sum of the lengths of the 2" linear parts of the graph of f, or g ,over Un)is

3" 3" 2\3

segments over the closed intervals in 7 —G(n) is given by

2 2 n
given by 2" (ﬁj +[ﬁ] =l(zj (n )2 +(7, )2 . The total length of the 2" linear

Therefore, the arc length of the graph of the polygonal approximation f, to g, is given by
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WO E( 2 - -6 ) (- -6

k=1

e (13 ol - -]

Letting 7 tend to infinity, we obtain the arc length of the graph of g, , as

VO +(n) +1=7) +(1-7) -

We add that for the case when g, is absolutely continuous, i.e., when 0<y, <1 and y, # y,

with 0 <y, <1, we may use the arc length formula as usual to obtain the arc length as

follows.

It \/ ((& ) <x)j =Jre. \/1 + [(gl,z ) (x)jzdx +f, \/1 v ((gu ] (X))zdx
AN

since g1 2 (x) == onG

and ( gis )' (x) = 1_ 72 almost everywhere on C,,
~

m(C71 )

:M \/(1_7/1)2+(1_7/z)2
m(G)+ "

N 4

:\/(71)2 +(72)2 +\/(1—7/1)2 +(1—;/2)2 _

Remark. We may actually use the formula given by Theorem 9 in Arc Length, Functions of
Bounded Variation and Total Variation, to determine the arc length of g, ,.

We state the result as follows:

Proposition 17. Suppose f :[a,b] — R is an increasing and continuous function. The arc

length of the graph of f'is given by

.[[a,b] 1+(f'(x))2dx+Th[a,b],
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where A(x)= f(x)— j : f'(x)dx is an increasing continuous function and is the singular part

of f'in the Lebesgue decomposition of f'and 7,[a,b]1s the total variation of / on [a, b].

Moreover, 7T,[a,b]=h(b)—h(a).

Proof. This is a specialization of Theorem 9 in Arc Length, Functions of Bounded Variation
and Total Variation to a continuous increasing function. By Theorem 15 of Arc Length,

Functions of Bounded Variation and Total Variation, h(x) = f(x) —J-x f'(x)dx is a

continuous increasing function and so its total variation 7,[a,b] 1s equal to 4(b)—h(a) .
Remark. If y, =1, then m(CyI ) =0 and g, :[0,1]—[0,1] is not absolutely continuous.

Since it is continuous and increasing on [0, 1], the arc length of its graph is given by

.[[0,1]\/ ((glz) (X)j dx+h(l),

where h(x)=g,,(0) - [ (g.,) @)dx.

Now,

J.m\/ ((glz) (X)) -[,11—c1 \/l+((g,)2)’ (x)jzdxﬂ'q \/1+((g152)' (x))zdx
e /1+(%jzdx+0:1/1+(7/2)2m([0,1]—C1):1/1+(7/2)2 ,

and

h1) =g, () @dr=1-] _(2..) atx=] (&) (e

=1—J‘]7C1;/2dx—0=1—72m(1—C1)=1—7/2

Hence, the arc length of the graph of g, is -y, + w/l +( 7, )2 .

Proposition 18. Let the function, g,,:/ — 7 , be defined as above mapping Cantor set C,

linearly and bijectively onto C, , where 0<y,,7, <1 and y, #,. Then L_C g, (xX)dx = %

1—
and IC g,(x)dx = 771 :

Proof.
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k-1 1 k-1 1
Let G =[0,1]-C, U(k), where U 1 d/ 1 — |,
e [0,1]— H (k), where U(n) = pl (2n1 2}1} and /(r)= (2 2”)

1<k <2"", are the open intervals, each of length ;/—}7 , to be deleted in stage n in the

) 1
construction of C, . Let H =[0,1]-C, UV(k) where V(n) = UJ ( e 2n j, and
k=1
k— 1 1 nt . I :
J(ry=1 ST 2n , 1<k <2"", are the open intervals, each of length 3 to be deleted in

stage n in the construction of C, . Let G(n)== UU (k) and H(n)= U V(k). Then

k=1 k=1

G= OG(k) and H = OH(k) . I-G(n)=F(n,1)UF(n,2) - UF(n,2") is a disjoint

k=1 k=1

union of 2" closed interval of length ¢, = 2—1,1(1 -7 (1 - (%)" )) and
I-Hn)=Kn1)VK(n?2)u---UK(n?2") is a disjoint union of 2" closed interval of

length A = 2%(1 -7, (1 -(2) ))

Now we examine the indexing of U(n) and V(n). We note that

. n—lg_
k711+i;13kg2”“ = —"+i:&=00r1 .
2n 2,, — 2] 2n J

Jj=1

k-1 1 LTI &g 1
If we let J(F+2—n]:J[Z—", ylz(c(r),d(r)),where r:22—§+2—n, then

Jj=1

Therefore,

}/1 n—1 1 7/1 72
=71 2 4o =
J.U(n) gl,Z (X)dx 3n X ' C(V) ( X 3n X 3n )

n—1 n—1
S ) YIS ) YR Loy RN (R (e (*2)
311 j=1 ’ Jj=1 3] 3n 3n
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But %=/1j_1—2/1j for 1<j<n. Forj=1, 4, =4, issettobe l.

Therefore,

n—1 n—1

22 S 422N L2y o2 1
J=1 =k 3

=2"" ni/% + 2"_2'12_1:(/% —24, ) +2712, 42 (4,,-24,)
=

n n
J=

n—1 n—1 n—=2
=274 =2 A A2 T A 42T A 42, =2 A =2
Jj=1 Jj=1 J=l1

It follows then from (*2) that

_n2"

N
xX)dx =—x2 .
gl,z( ) 3 7 3

U(n)

Hence,

[Lgdx=[  g.(dx=} [ g, (x)dx
7 n=1

_ﬁooznfl_ﬁ
2;3” 2

1 1-
Therefore, as J.[ 8, (X)dx=—, J.cyl 8, (X)dx = P _J-[—Cy] 810 (¥)dx = 27/1 '

!
2
Remark.

Proposition 14 is a special case of Proposition 17.

1. The function, g, ,, defined above satisfies g,,(x)+g,,(1-x)=1 forall x in /. This has

exactly the same proof as shown above for g in Proposition 13. Consequently,

1
_[1 812 (x)dx = 5 .

2. When y, =1, IC &1,(x)dx =0 trivially as m(C, )=m(C,)=0. When y, =1,

IC g,(x)dx = I_Ty‘ follows from Proposition 14.

3. When 0<y,,7, <1 and y, # 7,, we may deduce that J'Iic g, (x)dx = % as follows,
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Factorize g, as hog , where g is the Cantor Lebesgue type function defined before,

mapping C, onto C, and £ is the Cantor Lebesgue type function, mapping C, onto C, .

By Proposition 10, g is absolutely continuous. Therefore, by Theorem 8 of Change of
Variables Theorems,

=0 = o1 0 = [ 2, 0 (o

= IC” g, (X)g'(x)dx + .[ Lo, g,(x)g'(x)dx
1 1
=0+ L_C g,(x) —dx=— L_C g, (x)dx,
n 4 ST

. 1
since g'(x) =0 almost everywhere on C, and g'(x)=— on /-C, .
Vi

1 _ 1 _ 71
Therefore, 71 J‘FC” g,(X)dx = 5 and so II’C‘/] g,(x)dx = 5 and

1 on_ 1=
Jo, a3 -5 =

4. Note that g,, =hog asin part 3 above is absolutely continuous even though 7 is not

absolutely continuous.
Two Families of Cantor Sets

For 0 <6 <1, let D;,be the cantor sets constructed in a similar fashion as C; and described in

my article, The Construction of cantor Sets, as shown below.

In the first stage, we delete the middle open interval with length g from [0, 1]. Following

the construction for C;, we denote this open interval by /(1,1). Then the complement of this
middle interval is 2 disjoint closed interval each of length %(1 — gj We denote the open

deleted interval by /(1,1) = (a(1,1),b(1,1)) . As for the case of C;, we denote the closed
interval in the complement by J(1,1) and J(1,2), where the closed interval J(1,2) s to the
right J(1,1) , meaning it is ordered in such a way that every point of J(1,2) is bigger than any
point in J(1,1).

Then at the second stage we delete the middle open interval of length % from each of the 2
remaining closed intervals. Thus, there are 2 open intervals to be deleted and they are

1(2,1) =(a(2,1),b(2,1)) and 1(2,2) =(a(2,2),b(2,2)). As for the case of C,, these two open
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intervals are ordered by the second index. Hence, we are left with 4 = 2? remaining closed
intervals, J(2,1), J(2,2), J(2,3) and J(2,2%)each of length 21—2 (1 — 5(1 - (%)2 )) . Let

U =111, UQR)=12,1)UI(2,2), G)=U(), G2)=U1)wU(2). Then
I-G)=J(L,)UJ(L,2), I-G2)=J(2,1)UJ(2,2)UJ(2,3)UJ(2,2).

At stage n delete the middle open interval of length % from each of the 2"~ remaining

closed intervals, J(1-1,1),J(1-1,2), -+, J(n~1.2""), each of length —-(1-5(1-(4)"")).

Denote these open intervals by /(n,1),1(n,2),---,1(n,2""). Then this resulted in the
remaining 2" closed intervals, J(n,1),J(n,2),---,J(n,2"), each of length

1 n 2K

¢ ——(1—5(1—(%)”)). Let U(n):@l](n,k) and G(n):Q]U(k):UUI(k,j).

" 2" k=1 j=1
Observe that I —G(n)=J(n,))uJ(n,2)U---UJ(n,2").

Note that G(n) consists of 2" —1 disjoint open intervals. The total length of the intervals in
G(n) is given by

2 n—1
é+2£3+22£5+---+2”"%=é TEELI L I
2 2 2 2 2 2 \2 2

- 5(1 _Lj |
2}’[
Note that G(n) c G(n+1) and G(n+1)=Gn)wU(n+1).

Let G= UG(k) = UU (k). Thus, the measure of G is the total length of all the U(k), that is,
k=1 k=1

. 1
m(G)=11m5(1—2—nj—5.

n—»0

The Cantor set D, is defined by D; =7 —G . Hence the measure of D; is given by
m(l)—-m(G)=1-062>0.

We re-index 1(n,k,), 1<k, <2"", 1<n<oo as for the deleted open intervals for C; .

We define the Cantor Lebesgue function g, associated with D; in exactly the same

manner as for C;, For xeG , xel(r), g, (x)=r.
All the properties that we have proved for C; apply to D, and its associated Cantor Lebesgue
function, g, .
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In summary, we have the following theorems.

Theorem 19. The Cantor set Ds (0 <6 <1)is
(1) compact,
(2) nowhere dense, i.e., it contains no open intervals,
(3) its own boundary points,
(4) perfect, i.e., it is its own set of accumulation points,
(5) totally disconnected and

(6) between any two points in Ds, there is an open interval not contained in Ds .

Theorem 20. The Cantor Lebesgue function, g, , associated with the Cantor set Ds (0 <6

<'1) is increasing and continuous and maps Dsonto / = [0,1].

(1) If 0< 6 <1, then the associated Cantor Lebesgue function g, is Lipschitz with constant

and so is absolutely continuous on [0, 1]; if 6 =1, then g/, is singular and not

absolutely continuous.

(2) g, satisfies the relation g, (x)+g, (1-x)=1, for all x in [0,1].

(3) The arc length of the graph of the Cantor Lebesgue function, g,, :[0,1]—[0,1], for Ds, is

S+1+(1-5) .

(4) g, is differentiable almost everywhere on [0,1]; ( g, ) (x)=0 for x€[0,1]-D;; if

!

0<o<l, ( 8p, ) (x)= % almost everywhere on D5 .

1

: g 1-6
©) .[o gp, (x)dx = > J‘[_DJ 2, (x)dx = 5 and J.D(; gp, (x)dx = —

The proof for Theorem 19 and 20 is exactly the same for the Cantor set C, and its associated

Cantor Lebesgue function. The proof for part (2) of Theorem 20 is similar to that of
Proposition 13.

Let g Dy Dy, be the canonical Cantor like function defined similarly as g,, mapping the cantor

set D, onto Dj .

We have analogous results for g, , asfor g,.
5155, B
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Theorem 21. For 0<¢,,5, <1 and ¢, # J,, the associated Cantor like function

&p, 0, :1 — I is strictly increasing and continuous and maps the Cantor set D; bijectively

onto Dy . &, p, is differentiable almost everywhere on /.

(1) gD(;l,Do_z'(x) :% forxin 7-D; .

1

(2) If 6,=1and 0<4, <1, then g, D, is not absolutely continuous on /.

(3) If 6, =1and 0< 4, <1, then g, , is absolutely continuous on/and g,, ,, "(x)=0
almost everywhere on D; .

(4 If 0<4 <1 and 6, # 6, with 0< 6, <1, then g, , is Lipschitz on/and so is

_52

. , 1
absolutely, continuous on /and g, , (x)= almost everywhere on D; .
515, |

1

(5) The arc length of the graph of g, ,, is \/(51)2 +(3, )2 +\/(1—51)2 +(1-6,)" .

2 1-5,
(6) J-’—Do‘l 8p, D, (x)dx = 31 and JD§] &p, b, (x)dx = T‘ )

(7) &y, p, (¥)+gp p (1=x)=1forallxinI.
Proof. We omit the proof as it is exactly similar to the case for g, .

Now we consider the case of map from one cantor set of a family to another cantor set in
another family.

Let gc, s, be the canonical Cantor like function defined similarly as g, , mapping the cantor

set C, onto the Cantor set D; .

Proposition 22. The function, g. , :/—1 ,as defined above is strictly increasing and
L)
continuous and maps the Cantor set C; bijectively onto D, , where 0<6,,6, <1. The

function 8c, n, satisfies g , (X)+gc p (I-x)=1 forallxin/.

Proof. The proof is exactly the same as for Proposition 15.

Note that &, ¢, is the inverse to 8, n, A —>1.
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Theorem 23. g. ,, :I—1 is differentiable almost everywhere on . g Dy, is differentiable

on [0,1]-C, . Forxin /-C;,,if xeI(r) and

" b, , 3" 5 3\'s
r=) ——,where b, =0orl,1<k<nb =1,n>1,then g. , (x)=—— —2:2(—j =,
Z‘zk g Ca-Dsy 22§, 4) ¢,

(I) If 6,=1and 0<5, <, then g, isnotabsolutely continuous on /.

(2) If 6,=1and 0<¢ <1 then g. , 1isabsolutely continuous on [0, 1]and g. , "(x)=0
almost everywhere on C; .

(3) If 0<4 <1 and 0< 6, <1, then g. ,, is Lipschitz on / and so is absolutely continuous

' 1-
on/and g. , (x)= "

> almost everywhere on C, .
1

(4) The arc length of the graph of gc, ., is

V=) + (=0 3 33 o) 400 ()"
1-6,
19,

1)
(5) J‘I*Co‘ gc‘;"Dﬁz (x)dx B El and IC5 gCo‘l ,Ds, (x)dx =

Proof. Since g. , 1isstrictly increasing, it is differentiable almost everywhere on [0,1].
LetG=1-C;

:U{](r):r a dyadic ratonal, :lej—i,where b=0orLL1<k<nb,=Ln 21},

k=1

where (r) are the open intervals in G to be deleted to construct C; .
Let H=1-D,

=U{J(r):r a dyadic rational, =Z%,where b=0o0rl,1<k<n,b, =1,n 21},

k=1

where J(r) are the open intervals in A to be deleted to construct D, .

Note that if r= lej—’;,where b,=0orl,1<k<n,b,=1,n2=1, then the length of /(r) is %

k=1

and that of J(r) is %
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Plainly, if x € I(r) and r=2%,where b, =0o0rl,1<k<n,b, =1,n2=1, then
k=1
5

lengthof J(r) 7 3" &, 2(;)” S,

lengthof I(r) & 275 \4) 5

!
8¢, .p;, (x) =

(1) If 6,=1and 0<0, <1, then m(gC&’DO_ (Cs)) = m(gC&l’D& (C)=m(D;)=1-6,>0. As
m(C)=0, g, , cannotbea N function. Consequently, gc, o, is not absolutely continuous

on/.
(2) If 0, =1, then m(gclil D, (Cs))=m(D;)=m(D,)=1-1=0. Moreover, 8¢, o, 18

differentiable on /—C; and g. "(x) < 2% = é forall xin /—C, . Therefore, by

1 1
Theorem 12 part (a) of Functions Having Finite Derivatives, Bounded Variation, Absolute

Continuity, the Banach Zarecki Theorem and de La Vallée Poussin's Theorem, g, p, is

absolutely continuous on /. By Theorem 15 of Functions of Bounded Variation and

Johnson's Indicatrix, g, '(x) =0almost everywhere on C; .
(3) Suppose 0<6, <1 and 0< 0, <1. Let g, be the polygonal approximation of gc, s,

determined by the points on the graph given by the end points of the open intervals in

n 2"-1
G(n)= UU ()= U 1 (2—knJ . As the gradient of the graph of g, over each open interval in
j=1 k=1

3V s 1_52(1_21"j
U()) iSZ(Zj —% and over each closed interval in 7 —G(n) is ————=%

5 1-6,(1-()')
0<&™M-8,()
&bl

for x=y,

1 1
2 " 1—52(1—,1j 1—52(1—nj
< max 2(%)i’2(§) 52,...’2(3j 6, U 2")|_ 36, U 27)

I O] I R ()

o, 4
Therefore, taking limit as » tends to infinity we have, for x # y,

OSgcdl,no.z(x)_gcdl,D(;z(y)Smax gi,ﬁ ) (15)
xX—y 20, 1-9

30, 1-0.
It foll that — 2% 2
oOllows tha g(:JI,D(E2 (x) g(:(;1 .Ds, ()’)‘ < max{z 51 5 1_51

Lipschitz and so is absolutely continuous on /.

}|x—y| for all x, y in I. Hence, 8¢, b, is
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The case when o, =1has already been dealt with in part (2).

Now we assume 0< 6, <1 and 0< ¢, <1. Note that 2—2_1_52 <:>51+2£23.

1 -4 2

Thus, if &, + 2% >3, it follows from (15) that for x # y,

2

8¢, .0, (x)_gc(,»l,[)d2 ) < 1-9,
xX-y C1-9,
Therefore, if & +22> 3 -9, f dyinl
erefore, if &, 5 23 gcd_,)‘sz(X)—gc(,],%(y)‘S1 5 |x—»| forany x and y in /.
2 !

. - o 1-
Hence, if 6, + 2% >3, g¢, p, 1s Lipschitz with constant " %
] _

Y

Therefore, if o, + 231 23, since g , 18 strictly increasing and absolutely continuous, by
2

Theorem 11, Functions of Bounded Variation and Johnson's Indicatrix,

Jo. o, x=m(ge, b, (C))=m(Dy ) =1-8,=[ i - ? .
| ° 1

It follows that if &, + 2953 , j
1) Cs

2 1

1-06, /
— x) |ldx=0. As
(1_ 5 8¢, .n,, ( )j

8c, .0, (¥) =8¢, n, (V) _1-4

xX—y 1-9,
1-6,
1-

, forxin C; and gc, s, is differentiable at x, then

gc,. D,,;(x) < Since &c, o, is differentiable almost everywhere on [0,1],

SRR

— -5
) 2 almost

' 1
almost everywhere on C, . Therefore, g. , (x)=

’
8¢, .0, (x) < 1
| |

everywhere on C; .

0.
If 61+2ﬂ<3,we shall factor g.. , as gc p, °&c, c, » Where O, +2—=223.
, 3078 ] 5

As the function A(x) = x+25i is continuous on [0, 1], 2(0)=0 and A(1) = 1+£ >3, if
2 2

o, + 2% <3, by the Intermediate Value Theorem, there exists, o, <o, <1 such that
2

h(,) =0, + 2% =3. Choose such a J, for the factorization. Then g. , 1is absolutely

2

continuous on / and
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1—

' 0.
8c¢y,.0,, (x) = 1 :

almost everywhere on C; .

3

As 0< 4, <6, <1, by Proposition 16, g. . is Lipschitz and
1-0,
1-6

1

!
8c, ., (x)= almost everywhere on C; .

Since 8c,.ch 0 8y, and e, .n,, °8cy.c,, = 8c,.n, all have finite derivatives almost
everywhere and g. , is absolutely continuous and so is an N function, by Theorem 3 of
Change of Variables Theorems, the Chain Rule for the derivative of 8c, ., °8cy.c,, = 8¢, .m0,

holds almost everywhere on /. Therefore,

' ' ’ ’
gc51 Ds, ()C) - (gcf% Ds, ° gcffl = ) (X) - gc53 Dsy (gC()-l Coy (x))gcﬁl Coy (.X')

almost everywhere on /. Hence,

. 1-8, 1-8, 1-4,
XxX)= . =
gc"‘"D"‘Z( ) 1-0, 1-0, 1-9,

(4) We compute the arc length of the graph of g D, by taking the limit of the arc length of

almost everywhere on C; .

the graph of the polygonal approximation g, of g. , .

The arc length of g, is the sum of the length of the 2" line segments, each of equal length,

(£,Y +(4,) = \/(%(1—51 (1-(§)")))2 +(%(1—5Z (1—(§)”)))2 ,over I—G(n) plus the

sum of the 2" line segments, each of equal length,

5 2 5 2 1 3 2k
\/(3—;} +(22—kzlj = 37\/(51 )2 +4(Z) (6, )2 , over the open intervals in U(k), for k=1, 2,

ey N

Therefore, the arc length of the graph of g, is

Therefore, taking limit as n tends to infinity, the arc length of the graph of &c, s, is
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(5) The proof is similar to Proposition 18.

k-1 1 k-1 1
Let G=[0,1]-C, UU(k) where U(n) = Hl(z"‘ 2]and I(r)= 1(2 2_j

1<k <2"", are the open intervals, each of length % , to be deleted in stage n in the

. 1 1
constructionof C, . Let H =[0,1]-D; UV(k) where V(n) = UJ (l;n Y ) ,and
k=1

kll

~ to be deleted
2” 2”

22 ~2n-1°

J(r)y=1 ( j, 1<k <2"", are the open intervals, each of length
in stage n in the construction of D; . Let G(n)== UU (k) and H(n)= U V (k). Then
k=1 k=1
G=|JG(k) and H=|JH(k). I-G(n)=F(n1)UF([n,2)U---UF(n,2") is a disjoint
= k=1

union of 2" closed interval of length ¢, = i(1—51 (1—(%)” )) and
2}1
I-H(n)=Kn,1)UK(n?2)u---UK(n,2") is a disjoint union of 2" closed interval of

length 4, = 2—1,1(1 -6, (1 —(L) )) :

Now we examine the indexing of U(n) and V(n). We note that

k-1 1 e ]
+—1<k<2" =Y L4+ — g =0o0rl}.
{2111 2n } {Z 2_/ 2n J }

J=1

le

_ n—1 E. )
If we let J(l;n_11+2inj:.]( —’+ij (c(r),d(r)), where r = Z:—’+L then

=2 2 ~o2l 2
n—1
o) = z((

Js +4 J .
Therefore,

5 n—1 1 5 5
J.U<n>gcﬁl 1, (¥ :3_;>< 2 c(r)+2 (EX?X 223_'1j
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51 n-1 52 j 5 S S
=—Lx , L lg + A |[+2" Ltx—2
3" _";_‘_1(;(( J 22]—1 J n 3n 22n—l

7;; 2
é‘l -2 < 27! . 1 2 5 5
=X 2 A2 +2" 2, |+2" 2 *3
3)1 ( /21 7 = 2 3 22n 1 ( )
ut S = A T e dor s gsn. Forg= 1,4, =4 1ssetto be 1.
Therefore,
n-1 n—1 5 5
n-2 n-2 n—1 n-2
2 Z/l_,+2 222—]?_1+2 A, 4207

Jj=1
i 22/1 +2" 2'72(11_1 —24,)+2"7 2, 42" (4,,-24,)

Jj=1

=2" 221 —2" ‘Zz +2"2 2 42" 22/1 +2"2, =22, =2"

It follows then from (*3) that

—_ é] n—2 5 2n !
Jyoy 8o, (= Tox 2 = 220
Hence,
Ichﬁl,D(,z (x)dx:L gc} D, (x)dx Z oo 8650, (x)dx

0~ 2 2 o,
=l =y

1_1

1 1
Therefore, as J.[ 8¢, .n, (x)dx = 5 J.cﬁl 8¢, .n, (x)dx = 57 ), 8¢, b, (x)dx =

Remark.

In the prOOf Of part (3) that gc&‘] :Ds, , (x) - (gcéz :Ds, ° gco'l ’Co} ) (X) - gco'} ’Db‘z’ (gcé'l ’C53 (X)) gcb'l ’Cb} ’ (X)

almost everywhere on C; , instead of using Theorem 3 of Change of Variables Theorems, we

can proceed as follows. Firstly, note that 8¢, .0, =8c,.0, °8c, .0y 8, o and &c, ., are all

absolutely continuous and strictly increasing. By Proposition 16, g. . is differentiable
51053
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53

almost everywhere on C, and g. . '(x)= almost everywhere on C; . Suppose
| 5Ly |

1

1-4,

&, ,cda’(x) = 1

forxinE, EcC;and m(C5; —E)=0, g. , Iisdifferentiable almost

1

. ' 1- .
everywhere in C; and g, ,, "(x)= n ? forallxin D < C; and m(C, —D)=0.
— 5, : :

%c,., =(8c., ) isan N function, since it is absolutely continuous. Therefore,
m(( g, )f1 (C, —D)) =0. Let A=(g ., )_l (C, ~D)= C, . Hence,
m(A4(C; ~E))=0. Therefore, g, ., is differentiable on

C, —(49(C; ~E))=(C; —4)nE. Moreover, since g, . is injective,

%oy, (Co ~(49(Cs = E))) =26, 0, ((Cs = 4)VE) = e, c, (Cs ~4) ey, (E)-

This means that

g051 .Cs, (C(sl _(AU(CISI _E))) :(C53 _gCJI,ng (A))ﬁgcﬂjc% (E) zDﬂgcﬁl Cs, (E)

Hence, x € C; —(A u(C5l -F )) implies that g. . 1is differentiable azx and g. , is

differentiable at g O (x) and consequently,

’ ' ’ ’
gc51 Dy, ()C) - (gcf% Ds, ° gcffl Coy ) (X) - gc53 Ds, (gC()-] Coy (x))gcﬁl Coy ()C)

5_
S

[
)

_1_
1—

RN

1-06.
1—

.1_
1- S

=

Next, we examine the inverse function of g.. ,, .
17702

Theorem 24. g, . :I—1 is differentiable almost everywhere on /. &0, ¢ is differentiable

on [0,1]-D; . Forxin I-D; ,if xeJ(r) and

" b, , 2 s 1(4Y'
r=> —— where b, =0orl,1<k<nb =1,n>1,then g, . (x)= —‘=—(—j —+.
; 2¢ ‘ Do 35, 2\3) 5,

The function g, G is not Lipschitz on /.
5y

(1) If 6,=1and 0<4, <1, then g, . isnotabsolutely continuous on /.
(2) If 6,=1and 0<6, <1 then g, . isabsolutely continuous on [0, 1] and g, . "(x)=0

almost everywhere on D; .
2
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(3) If 0<6, <1 and 0< 4, <1, then g, . isabsolutely continuous on / and

1-9,

1

1-6.

2

!
&, ¢, (x)= almost everywhere on D; .

(4) The arc length of the graph of &, c; is

1-6,

0.
(5) J‘I*D- ng‘z’Cﬁl (X)dx - ?2 and ID5 gD52»C51 (x)dx =

(6) gp, ¢, (X)+g, o (I-x)=1 forall xin /.
Proof.

-1

Since g, c, = ( 8c, o, ) and &c, .0, 1 strictly increasing and continuous, g D, C, 18 strictly

increasing and continuous on /. Therefore, g, . is differentiable almost everywhere on
2°70]

[0,1]and g, ' is Lebesgue integrable.

Recall
H=I1-D,

:U{J(r):r a dyadic rational, r :Z%,where b,=0orl,1<k<nb, =1n 21}.

k=1

Plainly, for x e J(r) and r = b—’;,where b,=0o0rl,1<k<n,b,=1,n2>1, then
i1 2

, - lengthof I(r) % 2's 1(4Y' s

SN TN S WIEVY

lengthof J(r) 2 3" &, 2(3) 6,

Note that { 8p, ¢, "(x):xel-H } is unbounded as %(gj 9% —00. Therefore, &0, c; is not

2
Lipschitz on 7, because if it were to be Lipschitz, then its derivatives would be bounded.

(1) If 6,=1and 0<9, <1, then m(ngz,Cd] (Dy)) = m(gDJZ,C(sl (Ds)=m(C5)=1-6,>0. As
m(D) =0, gp, , cannot be a N function. Consequently, &, ¢, is not absolutely continuous
on /.

(2) If 6, =1, then m(gu§2,c§1 (Dy,)) =m(Cs)=m(C}) =1-1=0. Moreover, ¢, is

differentiable on /— D, . Therefore, by Theorem 12 part (a) of Functions Having Finite

Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La
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Vallée Poussin's Theorem, g, . 1s absolutely continuous on /. By Theorem 15 of Functions

of Bounded Variation and Johnson's Indicatrix, g, . '(x) = 0 almost everywhere on D; .

-1
(3)Now,as g, . = ( 8¢, ) and g. , Is strictly increasing and continuous, by Theorem
2701 177702 1> 02

12 part (b) (Zarecki Theorem) of Functions Having Finite Derivatives, Bounded Variation,
Absolute Continuity, the Banach Zarecki Theorem and de La Vallée Poussin's Theorem,

8p, c, 1s absolutely continuous if and only if m({x €[0,1]: g¢, », "(x) = O}) =0.

Note that g. ,, "(x)>0 forallxin /-C, andas 0< 5, <1 and 0< &, <1, by Theorem 22

' 1-6
part (3), &c; .0, (x)= 1 2

almost everywhere on C, . That means there is a subset £ < C;

1
1-5,

such that g. "(x) = >0 forall x in £, and m(C; —E)=0. Hence,

1
{x €[0,1]: g, "(x) = O} c C5 — E . It follows that m({x €[0,1]: g¢. », "(x) = 0}) =0.
Therefore, g, . is absolutely continuous on /.

In particular, g, . is differentiable on g. , (E) and foryin g. , (E),

1 1 1 1=,

RN

ngz,cdl'(y) = ; - - , -
gCé-I ,Ds, ((gca.l ,D§2) (y)) gCo‘, »Ds, (ngzsC«)‘l (y)) 1=,

Now since g ,_Is strictly increasing and so is injective,
o>

D,

2

~ 8¢, .05 (E)= 8¢, .0s, (C(sl ) ~8¢; .0, (E)= 8¢, .0;, (Ca‘l —-E).
As gc, », is absolutely continuous and so is a N function,

m(Dy ~ge, o, (B))=m(ge, 1, (C; ~E))=0.

It follows that g, ()= :_

51

almost everywhere on D, .

2

(4) The arc length of the graph of g;, . is the same as the arc length of the graph of its

inverse, g. , and by Theorem 22 part (4) is equal to

\/(1_51)2 +(1_52)2 +%i(%)k \/(51)2 "‘4(52)2 (%)zk -
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(5) The proof is similar to that of part (5) of Theorem 22.

Let G=[0,1]-C, UU(k) where U(n) = pll(’; 11 ;j and I(r) = 1(’; 1 %)

1<k <2"", are the open intervals, each of length % , to be deleted in stage n in the

construction of C, . Let H =[0,1]-D; UV(k) where V(n) = UJ (l;n 11 21,,), and
k=1

kll

J(r)y=1 ( ~ to be deleted
2" 2”

221’

), 1<k <2", are the open intervals, each of length ——
in stage n in the construction of D; . Let G(n) == UU (k) and H(n)= U V (k). Then
k=1 k=l
G=JG(k) and H=|JH(k). I-G(n)=F(n1)UF(n,2)U---UF(n,2") is a disjoint
k=1 k=1

union of 2" closed interval of length ¢, = 2—1,1(1 -4, (1 -(2) )) and
I-H(n)= K(n DUK(n,2)u---UK(n,2") is a disjoint union of 2" closed interval of

length 4 = > (l 5( ( )n))

Now we examine the indexing of the open intervals in U(n) and V(n). We note that

— n—1 g
k _11+i:1£/’c32"’l = Z:—’+i g =0orl

Jj=1

k_ 1 n-l o 1 n-l o
Ifwelet I| —+— |=1| ) —+— |=(a(r),b(r)), where r = —L 4+ — then
2" 2" ‘a2 2 =2/
n—1 5
a(r)=2([fj+3—}jgj+fnJ :
j=1

Therefore,

0.
J.V(n)g%’cdl (x)dx = 22"2*1
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2n1£ nlé‘l_i_znl 21125 Xé‘l
3/ '

22n l = j = 22n -1 3n

o, . . )
But ?:fﬂ —2@,. for 1<j<n. Forj= I,K_H =/(, is set to be 1.
Therefore,

2"‘2”2_313, +2”‘2§i+2”‘% -
=1 i3 3
- 2"_2§fj +2n_2nz_l(ﬂj—1 _261‘)4_2’1_16" +2" (£
i1

J=1

~20,)

n-1
n-l n-l n-2

— 2n—ZZ€j _2n—IZ€j +2n—2£0 +2n—22£j +2n—2£)n71 — 2n—2 (}0 — 2n—2 )
= = =1

It follows then from (*4) that

0. w0, 1
J.V(n)ngz“C!sl (x)dx = 22571 X2 =

22"

Hence,

IH gDé‘z’C«% (x)dx - J.I th"z = (X)dx =,,Z:1: V(n)gD"‘z’Ca‘l (x)dx

—D52
5_5: !
250
1 1 1-6
Therefore, as j 8,0, (VX =—, ID 80,0, =2=[ gy o ()dr= 2,

(6) The proof is similar to Proposition 13.

Now it is ripe to introduce the general family of Cantor sets.

Let @=3. For0<y<a-2,let C; be the Cantor set defined as follows.

(*4)

In the first stage, we delete the middle open interval with length 7 from [0, 1]. Following
a

the construction for C;,we denote this open interval by /(1,1). Then the complement of this

/4
a

middle interval is 2 disjoint closed interval each of length %( ——j. We denote the open

deleted interval by /(1,1) = (a(1,1),b(1,1)) . As for the case of C,,we denote the closed
interval in the complement by J(1,1) and J(1,2), where the closed interval J(1,2) s to the
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right J(1,1) , meaning it is ordered in such a way that every point of J(1,2) is bigger than any
point in J(1,1).

Then at the second stage we delete the middle open interval of length lz from each of the 2
a
remaining closed intervals. Thus, there are 2 open intervals to be deleted and they are

1(2,1) = (a(2,1),b(2,1)) and 1(2,2) =(a(2,2),b(2,2)). As for the case of C,, these two open
intervals are ordered by the second index. Hence, we are left with 4 = 2? remaining closed
intervals, J(2,1), J(2,2), J(2,3) and J(2,2%)each of length% (1 - (1 —~ (%)2 )) . Let
uh=I1(L1), UQR)=I12,)Hui2,2), GH=U1), GR)=U1)wU(2). Then
I-G)=JL,DHUJ(1,2), I-G2)=J(2,1)uJ(2,2)UuJ(2,3)uJ(2,2%).

At stage n delete the middle open interval of length lﬂ from each of the 2" remaining
a

closed intervals, J(n—1,1),J(n—1,2),---,J(n—1,2""), each of length

! (1 - L(l - (2)’171 )) . Denote these open intervals by 1(n,1),1(n,2),---,1(n,2""). Then

2n71 a-2 a

this gives the remaining 2" closed intervals, J(n,1),J(n,2),---,J(n,2"), each of length
2t n n 281

(- %(1—ﬁ(1—(5)")) - Let Uy =|JI(nk) and Gny =\ Jut) =\ Uk ).
k=1 k=1 k=1 j=1

Observe that 7 —G(n)=Jn,1)uJ(n,2)w---UJ(n,2").

Note that G(n) consists of 2" —1 disjoint open intervals. The total length of the intervals in
G(n) is given by

2 n—1
14_2%4_22134_...4_2”_1%21(14_24_(2) +(£] ]
[94 (04 (94 (04 (04 (04

Aot

Note that G(n) < G(n+1) and G(n+1)=G(n)wU(n+1).

Let G= UG(k) = UU (k). Thus, the measure of G is the total length of all the U(k), that is,
k=1 k=1

m(G) = lim = —/— 1-(% -7
noo g —2 a a-—2

The Cantor set C; is defined by C;' =1-G .
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Hence, the measure of C7' is given by m(C;') =m(l)-m(G) =1~ y__e-277 >0.

a—2 o—2

Note that m (Cs_z) =0.
We re-index I(n,k,), 1<k, <2""', 1<n<oo as for the deleted open intervals for C,.

We define the Cantor function f,, associated with C7' in exactly the same manner as for C,.

For xeG, xel(r) , f?(x):r.

Note that C; is just C,in Theorem 1.

All the properties that we have proved for C, apply to C; and its associated Cantor Lebesgue

function, f .
4

In summary, we have the following theorems.

Theorem 25. The Cantor set C7 (0<y <a-2,a=3)is

(1) compact,

(2) nowhere dense, i.e., it contains no open intervals,
(3) its own boundary points,

(4) perfect, i.e., it is its own set of accumulation points,

(5) totally disconnected and

(6) between any two points in C}', there is an open interval not contained in C;'.

Theorem 26. The Cantor Lebesgue function, f,. , associated with the Cantor set C* (0 <y

< a-2, a=3) is increasing and continuous and maps C; onto /= [0,1].

(1) If 0<y <a—2, then the associated Cantor Lebesgue function f, is Lipschitz with

a . . ) .
constant Tand so is absolutely continuous on [0, 1]; if y =« -2, then f_, is singular
a-2-y ’

and therefore not absolutely continuous.

(2) f. satisfies the relation f_, (x)+f_ (1-x)=1 forall xin L.
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(3) The arc length of the graph of the Cantor Lebesgue function, f,, :[0,1]—>[0,1], for C7,

is L+ \1+(1-25).

(4) f..1s differentiable almost everywhere on [0,1]; ( S ) (x)=0 for xe[0,1]-C7; if

O<y<a-2, (fa) (x)=0{—_2 almost everywhere on C' .
(&% 05—2 /e

! 1 4 a-2-y
) |, S ()=, L—c;’ f ()dx = a3 and fc; f;,(x)dxz—z(a_z) .

The proofs for Theorem 25 and 26 are exactly the same for the Cantor set C, and its

associated Cantor Lebesgue function.

Let g be the canonical Cantor like function defined similarly as g,, mapping the cantor

a ~p
€5,

set Cy onto Cj,where 0<8, <a-2,0<6,<f-2 , and f>3.

Proposition 27. The function, 8w oo A1 ;a8 defined above is strictly increasing and

continuous and maps the Cantor set C(‘;]‘ bijectively onto C fz , where 0< 0, <a—2 and

0<o6,<p-2. Forallxinl, g, , (X)+g. ., (1-x)=1.
a0 a5

Proof. The proof is exactly the same as Proposition 15 and for the proof of the last
statement, it is similar to that of Proposition 13.

Lethl—Cgl’

:U{I(r):r a dyadic ratonal, :Z[;—’;,where b =0orl,1<k<nb, =1,n 21},

k=1

where I(r) are the open intervals in G to be deleted to construct Cy .

Let H=I—C§2
:U{J(r):r a dyadic rational, :lej—i,where b=0o0rl,1<k<nb,=1,n= l},
k=1

where J(r) are the open intervals in H to be deleted to construct C é .

Note that if » = lej—’;,where b,=0orl,1<k <n,b, =1,n21, then the length of /(r) is iln
a

k=1

and that of J(r) 1s % .
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Theorem 28. g, ., :/ — [ is differentiable almost everywhere on /. g .. , is differentiable

6%

on [0,1]-CY. Forxin [-Cy,if xe(r) and

r=zb—i,wherebk=Oor1,1£k<n,bn=1,n21,thengcacﬁ'(x):anéz e i
=2 v s \p) o

If a>p,then g ., isnot Lipschitz on /.
(1) If 6=a-2and 0<J, <f—2,then g . . isnotabsolutely continuous on /.

(2) If 6,=p—-2 and 0<4 <a-2 ,then g ., is absolutely continuous on [0, 1] and
)

8 e o '(x) =0 almost everywhere on C(‘;I‘ .

() f0<4<a-2,0<6,<pB-2and a<p ,then g ., isLipschitz on/and sois
%
absolutely continuous on / and 8ex "(x)= - ﬁﬁ’lz almost everywhere on Cy .

a-2

(4) If0<4<a-2,0<6,<fB-2and a>f, then g ., isabsolutely continuous on /
850
52

. . 1 ) o
but not Lipschitz on 7 and 8ex et (x)= 1 ’ 5 almost everywhere on Cj .

a-2

(5) The arc length of the graph of g . , is
8§70

=2 ) 3 oy (3 o) it as o

-2 1) 3 6 oy + () @) it e p.

_6 1 _1 2
(6) L-c;gcf;,cfz(x)dx_ja_z and C;gcg,cé,z(x)dx—z(l—a_zj.

Proof. Since g, ., isstrictly increasing, it is differentiable almost everywhere on [0,1].

58

Plainly, if x is in ]—Cg , then x € I(r) for some

iy
r:Zz—';,wherebk=00r1,1sk<n,bn:1,nz1

k=1

5, n
/ length of J() 45 a" o a) o
and 8ce ct (x)= S ") =L = : (Ej 52 .
578 )

lengthof 1(r) 5 B' &,
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1

If & > 3, then (%) %—)oo as n —>oo. Therefore, {(gcg,cgf) (x):xe[O,l]—C;} is

unbounded. It follows that g ., ot is not Lipschitz on /.

(1) If 6,=a—-2 and 0<06, < -2, then

f-2-9 2>0. As m(CZ,)=0, 8ca op CANNOL

— 5 )2

MEer cp (Co) =8 oy (Con)) = m(C§)="——>

be a N function. Consequently, g .. ., is not absolutely continuous on /.
5770

(2) If 8,=p4-2,then m(g,. , (C;))zm(cfz) =m(C}_,)=0. Moreover, 8eu o 1

)
differentiable on / —Cy . Therefore, by Theorem 12 part (a) of Functions Having Finite

Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La

Vallée Poussin's Theorem, 8 X is absolutely continuous on /. By Theorem 15 of Functions

L]

o , . . ' _ @
of Bounded Variation and Johnson's Indicatrix, g et (x) = Oalmost everywhere on Cy .

(3) Suppose 0<o, <a—-2,0<06,<f—-2 and a < . Let g, be the polygonal
approximation of g e e determmed by the points on the graph given by the end points of the

open intervals in G(n) = UU (J) = U 1 [Zk j . As the gradient of the graph of g, over each

Jj=1

J
open interval in U(j) is [gJ % and over each closed interval in I —G(n) is

-

> (-]
Haten) e

for x#y,

0<&™M-8,()
<=

EON AP ([ P )
<max (EJQ’[EJ i,...’(gJ i, e (ﬂ) < max % 52 (ﬁ)
1 a a—]2

B)&\p) s \p 5 (1-(2))

Therefore, taking limit as » tends to infinity we have, for x # y,
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8w 0 (D=8 s () _ 0

0< 8 %% " ¢ max % Tpal, (16)
b bl

xX-y o, 1-

5°1- 2

a—

5 1=55 .
It follows that gc;j < (x)_gc;j o (y)‘ < max {_2,#}|x_y| forallx, yin .

Hence, g ¢ 1s Lipschitz and so is absolutely continuous on /.

The case when o, = #—2 has already been dealt with in part (2).

Now we assume 0<6, <a—-2 and 0< 3, < f—-2. Suppose is 2

1 a-2

It follows from (16) that for x = y,

8w oo (x)_gc/f ct GO
8§76 8% < B2 .
<—5
xX=Yy =)
5,
: 52 1- /5’
Therefore, if g o (8 (x)— 8er et )| = .
| 5

a

02

|x by for any x and y in /.

a-2

0. 0.
— 53 . o 1-4% -2 p-2-
Hence, if — % 2<_F 52 > 8ca o is Lipschitz with constant —~ 52 ¢ p % .
o 1--2 a0 1-2% p-2a-2-9,

1 a-2 a=2

9.
o O. —5 o . . .
Therefore, if —2< i , since 8c ct is strictly increasing and absolutely continuous, by
9 &
1 a—2

Theorem 11, Functions of Bounded Variation and Johnson's Indicatrix,

p-2-6,  a=2p-2-5,
B-2 G B-2a-2-0,

cs gcg] ,sz,(x)dxzm(gc; <4 (Cgf)) (Cﬂ)

5
It follows that if % ﬁ; , Lb (;_iz_z_i —gcgvcg'(x)de=Oand as

52

1 a-2

8o o () =8eu s (V) — 5
€ o Gl 120 g , "(x) = 2 almost everywhere on CY .
xX=y 51 C s l_alZ l
— 52
Suppose —2 > —£2
1 - a—12
5
Now, —~>—F~2 é[i+ ! —;j< = i
1 = 6, a-2 p-2 0, (a—2)(ﬂ—2)
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As the function A(x)=x L 4P =% | s continuous on [0, ¢ — 2], h(0)= 0 and
5, (a=2)(f-2)
)
ha—-2)= a-2 ﬂ .2 2 + f-a =1,if % £2 by the Intermediate Value
5, B2 B2 p2 o 1-25
) l p—a
Theorem, there exists, &, <J, <a —2 such that 4(d;) = —_— |=
5, (a-2)(-2)
1—-2 1— %
If % > l_ﬂ(;]z , we shall factor gcg]’cg,2 as gc;},cg ogcgl,czi , where is _2 .
1 a-2 i 3 a-2

Then g, ., is absolutely continuous on / and

8770

52

oo s "(x) = 2 almost everywhere on G, -

572 1 - asz

As 0< 9, <0, <a—2, by an argument similar to the proof of Proposition 16 part (3),

g . . 1s Lipschitz and by using g , , the inverseof g, . , we get
Cal ’C53 C53 ’Ca'l Ca'l ’Cf>‘3
! - 63
ce e (x)= " <% almost everywhere on Cj .
503 —
a-2

Since gC; o gccf o and gc,f o o gC? @ = gc,{ o all have finite derivatives almost

everywhere and g, , is absolutely continuous and so is an N function, by Theorem 3 of

a3 Cs,

Change of Variables Theorems, the Chain Rule for the derivative of 8pe v °8pa o =8po oo
holds almost everywhere on /. Therefore,

'
! ’ !
gcgl ’Cfgz (x) = (gC§3 ’Ca/"z ° gcgl ,C(;”} j (x) = g.cg3 ’sz (gcgl ,C{% (x))gcgl ’C{(;} (x)

almost everywhere on /.

_ 5 1— 5 1 _ 5
Hence, g, ,'(x)=—22.—<«2—__ 52 almost everywhere on Cj .
’ CZ_] ,sz 1-% 1— 2 1=-% 4
-2 a2 a2

(4) Suppose 0<o,<a-2,0<0,<f-2 and a > B,

-1
Now, as gcg1 o = ( 8es o ) and g ol is strictly increasing and continuous, by Theorem 12

part (b) (Zarecki Theorem) of Functions Having Finite Derivatives, Bounded Variation,
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Absolute Continuity, the Banach Zarecki Theorem and de La Vallée Poussin's Theorem,

g« s 18 absolutely continuous if and only if m({x €[0,1]: gy .« "(x) = 0}) =0.

Note that by part (3), g, Cl?'(x) >0 for all x in I—sz andas 0< 9, < -2 and

4

22 almost everywhere on Cj . That means there
—_2 2

£-2
%

is a subset EgC£ such that gcs,,z’cg'(x)= 1:§ >0 forall x in E, and m(Cf2 —-E)=0.

B2

0<8<a=2,bypart(3), g, ."(¥) =7

Hence, {x €[0,1]: 8 "(x)= 0} C sz — FE . It follows that m({x €[0,1]: 8.y . "(x) = O}) =0

2770

. Therefore, g .. ., is absolutely continuous on .
8§ %

In particular, g . ., is differentiableon g, . (E) andforyin g, . (E),
I 578 578
, 1 1 1 155
gC;,C"f (y): ’ ] = ! :1_ 4 - _i
e 8cr o (8cp ) ) 8ep o (8ea p (V) T2 a2

o
-2

Now since g, . Is strictly increasing and so is injective,
L)

C;T _gcfz’ct; (E) :gcfz’cts (Cé)_gcfz’cl; (E) :gcaﬂz’cl; (C£ _E)'

As g, .. 1s absolutely continuous and so is a N function,

2’78

m(cgj ~8ep o (E)) = m(gcg o (o4 —E)) =0.

23
It follows that g , ,"(x) = 1 22 almost everywhere on Cj .
5°°8 — a—12

(5) We compute the arc length of the graph of g by taking the limit of the arc length of

a B
CJ[ ’Cé‘z

the graph of the polygonal approximation g, of g .. ., .

The arc length of g, is the sum of the length of the 2" line segments, each of equal length,
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(6,)+(4,) =\/(2in(1—%(1—(§)”))j2 +(2in(1—%(1—(%)"))j ,over I—G(n) plus

2 2
the sum of the 2*' line segments, each of equal length, \/(ij +(%j , over the open
a

intervals in U(k), for k=1,2, .....n

Therefore, the arc length of the graph of g, is

ifa>pf.

Therefore, taking limit as n tends to infinity, the arc length of the graph of g et is

22 +53@) Yoy +(5) @) irazp.on

A 36 o @ () it s

(6) The proof is similar to Proposition 18

Let G=[0,1]-C, UU(k) where U(n) = kLJII(];n 11 21) and I(r)= I(I;n_ll ;,,j,

1<k <2"", are the open intervals, each of length % , to be deleted in stage n in the

construction of C, . Let H =[0,1]-D; UV(k) where V(n) = UJ (l;n 11 21n j, and
k=1

k— 1 1
J 1
(r) ( 2n 1 2n

), 1<k<2"",

in stage n in the construction of D; . Let G(n) == UU (k) and H(n)= U V(k). Then

k=1 k=1
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G=JG(k) and H=\JH(k). I-G(n)=F(n,1)UF(n,2)U---UF(,2") is a disjoint
= k=1

union of 2" closed interval of length ¢, = 217( - %(1 - (%)" )) and

I-Hn)=Kn1)UK((n?2)u---UK(n2") is a disjoint union of 2" closed interval of
s(-GY )

Now we examine the indexing of U(n) and V(n). We note that

_ e
k11+L:1£k£2”‘1}— —+L g =0orl
2" 2" =2/ 2"
n—1

) &y 1
j (22— —j (e(r).d(r)) where r= 3, =2+, then

2
c(r) = Z[( jg +/1j

Therefore,

length 4, =— (
eng >

If we let J(k_l
2n—1

0, < 6, o O
:_ 211 2 /1 +2n 2 211 1/1 21172 _1>< 2 . *5
0{ ( Z 222] 1 ] an ﬂn ( )

Jj=1

1) .
But —% =4, -2, for 1<j<n. Forj=1,4,, =4, issettobe l.

Therefore,
n—1 n—1 6‘ 6‘
2y A, +2" Z ﬁzj +2" 3 427 ﬁ—z
Jj=1 =1

=" 22,1 +2" 22(/1,,1 22,)+2" 4, +2"7 (4,24,

Jj=1

n—=2
= 2"-22% —2"! sz 22N A 42 =2 =2
J=1 Jj=1 J=l
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It follows then from (*5) that
— é‘l n-2 _ 6‘1 2”71
Juiw8ep e =X 2 =5

Hence,

. X dx:_[ . x)dx = . x)dx
ngCa‘l’sz( ) [*Cgl gcgl’cfz( ) ; U(n)gcb‘],cfz( )

0§20 821 4]
25 " 4al-2 2a-2
1
Therefore, as'[l gcg'lw ot (x)dx:z,

_1 1o 11 5,
ey O =3 -G=1- 28]

This completes the proof of the theorem.

Now we present a characterization of a continuous monotone function with maximum arc
length for its graph.

Theorem 29. Suppose f :[0,1]—[0,1] is a continuous increasing function with f(0) =0 and
f(1)=1. Then the graph of f'has maximum arc length (=2), if and only if, f'is singular.

Proof.

Note that if fis singular, then it cannot be absolutely continuous. This is because if f'is
absolutely continuous on [0, 1] and f'(x) =0 almost everywhere, then by Theorem 9 of

Functions Having Finite Derivatives, Bounded Variation, Absolute Continuity, the Banach
Zarecki Theorem and de La Vallée Poussin's Theorem, f is a constant function contradicting

f(O)=0andf(1)=1.

Thus, if f'is singular, then as f'is monotone increasing and continuous, the arc length of the
graph of fis given by,

I[O,H 1+(f'(x)) dx +T,[0,1],

where A(x)= f(x)— J: f'(x)dx is an increasing continuous function and is the singular part

of fin the Lebesgue decomposition of f'and 7,[0,1]is the total variation of /2 on [0,1]. (See

Theorem 9 of Arc Length, Functions of Bounded Variation and Total Variation.) Moreover,
7,10,1]=h(1) = h(0) = f(1)-(0) =1.
Hence the arc length of the graph of fis given by J.[ . 1]1dx+l =2 . Note that the maximum arc

length of a graph of monotone function from [0, 1] to [0, 1] is 2.

Conversely, suppose the arc length of the graph of f'is 2.
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If f'is not absolutely continuous on [0, 1], then the arc length of its graph is given by

j[o)l]«/n( £'(x)) dx+T,[0,1] = j[ 0”,/1+( L)) dx+ f(1)— jm F(x)dx .
Thus, 2 = j[o,l],/n( S1(x)) dx+1- j[ o /@)
Consequently, j[ou(1+ £(x))dx = j[ 01]1/1+( 110)) dx .

As 1+ f'(x) > 4/1 +(f '(x))2 almost everywhere on [0, 1], it follows that

1+ f'(x)= 1+( f '(x))2 almost everywhere on [0, 1]. By squaring both sides, we deduce
immediately that f”(x) = 0almost everywhere on [0, 1].

Therefore, f is singular.

If 1 is absolutely continuous on [0, 1], then the arc length of its graph is given by

j[o,l]ﬁh +(f'(x)) dx.
Therefore,

2= I[o,l]‘h +(f'(x)) dx < I[O’l](l +f(x))dx =1+ J‘[O’l]f'(x)dx =1+m(f([0,1]) =1+1=2,
since I[O ; f'(x)dx =m(f([0,1])) by Theorem 11, Functions of Bounded Variation and

Johnson's Indicatrix, because fis a monotone increasing and absolutely continuous function.

It follows that j[0111/1+( S1(x0)) dx = j[m](1+ f1(x)dx . As 1+ £/(x) 2 \J1+(f"(x))" almost

everywhere on [0, 1], it follows that 1+ f”(x) =/1+ ( f ’(x))2 almost everywhere on [0, 1].

By squaring both sides, we conclude immediately that f”(x) = 0almost everywhere on [0, 1].

As f'1s absolutely continuous, f'is a constant function, contradicting that /(0) =0 and /(1) = 1.

Hence, if the arc length of the graph of f'is 2, f cannot be absolutely continuous and must be
singular.

This completes the proof.
Remark.

An example of an increasing continuous function f :[0,1]— R with /(0) =1 and /(1) =1 and

having maximum arc length for its graph is the ternary Cantor function, f .

68

© Ng Tze Beng 2017



We can easily translate Theorem 29 to the more general case as stated below. The proof is
exactly the same.

Theorem 30. Suppose f :[a,b]—[c,d] is a continuous increasing function with f'(a) = ¢

and f'(b) =d. Then the graph of /' has maximum arc length equal to b —a + d — ¢, if and only
if, fis singular.

Remark.

1. Let f'=hof. og,where f. isthe Cantor function for the ternary Cantor set,

1
b—a

g(x)= (x—a) and h(y)=(d —c)y+c. Note that fis monotone increasing and

continuous on [a, b]. The function f is singular and so fq'(x) =0 almost everywhere on
[0, 1]. Let E:{xe[o,l]: fq’(x)zo}. Then m(E) =1 and m([0,1]— E)=0. Note that

g7 (x)=(b—a)x+a is obviously a N function and so m(g"l ([0,1]— E)) =0. Since g'isa
continuous strictly increasing function and g ' ([0,1]) =[a,b], g ' ([0,1]- E) =[a,b]—g ' (E).
o 2k—l

Indeed, we may take £ =[0,1]-C,. Then E=G= UU[ (k, j), where G, as described in

k=1 j=1

the initial introduction section on the Cantor set C,, is the disjoint union of open intervals to
be deleted in the construction of the ternary Cantor set C,. Since g is a continuous linear
function, m(g " (E))=(b—a)m(E)=(b—a)-1=b-a. It follows that m([a,b]- g '(£))=0
. Let F=g '(E). Then by the Chain Rule, for xe F,

=K1, og(x))fq'(g<x>)g'<x)=<d—c)-$-fq'(g(x>)=o.

Thus, as m([a,b] -F ) =0, f'(x)=0 almost everywhere on [a,b] and so is singular. This
gives a function /', whose arc length is the possible maximum arc length.

2. Similar result follows from Theorem 30 for continuous monotone function. If fis
continuous and monotone decreasing, then — f'is continuous and monotone increasing.

Applying Theorem 30 gives the result for continuous monotone decreasing function. We
may state this result as follows.

Theorem 31. Suppose f :[a,b]—[c,d] is a continuous monotone function. Then the

graph of fhas maximum arc length equal to b—a + d — ¢, if and only if, f'is singular.
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Recall that the ternary Cantor function f, :[0,1]—[0,1] is singular and that
m( Je (G )) =[0,1] , with m(C,) =0. Does this property of having a set of measure zero such

that the measure of its image is equal to the length of [0, 1] implies that the continuous
monotone function f. 1issingular? The answer is “yes”. We formulate this result in a

slightly more general setting in the next theorem.

Theorem 32. Suppose f :[a,b]—[c,d] is a continuous monotone function that maps [a, b]
onto [c, d]. If there exists a subset E < [a,b] such that m(E)=0 and m(f(E)) =d —c, then

fis singular.

Proof. We shall prove the theorem for the case when f'is increasing and onto (and therefore,
continuous). (As f'is increasing on [a, b], f can have only jump discontinuities. But as the
range of /'is an interval, no such jump discontinuity exists and so f'is continuous on [a, b].)

Since fis increasing, fis differentiable almost everywhere on [a, b] and so there exists a
subset D c[a,b] such that fis differentiable on [a,b]— D and m(D) = 0. We may assume

without loss of generality that D < E. (If need be we may replace £ by Ew D.) Thus, fis
differentiable on [a,b]—E, m(E£) =0 and m(f(E)) =d —c. Hence, m([c,d]—f(E)) =0.

Let H=f" ([c,d]—f(E)).

Let M = {x : f is differentiable at x finitely or infinitely and f/”(x) # 0} . Then
m(f(HNM))=0.

By Theorem 2 of Change of Variables Theorems, f'(x)= 0almost everywhere on H "M .

If xeHNM ,then f'(x)#0. Therefore, m(H nNM)=0. It follows that f’(x)=0almost
everywhere on H. Note that H may be empty.

If H =[a,b]—- E, for instance, when fis strictly increasing, then f”'(x)=0 almost
everywhere on [a, b], i.e., fis singular.

Suppose f([a,b]—E)r\f(E) =. Then f([a,b]—E) =[c,d]— f(E) and
H=f" ([c,d]—f(E)) =f (f([a,b]—E)) =[a,b]—E . Hence, f'(x) =0 almost

everywhere on [a, b], i.e., fis singular.

Suppose [ ([a,b]-E)Nf(E)=@D. Let F=f"(f(la,b]-E)nf(E)).
Now

[e,d1=(f(E)N f([a,b]-E))U( f(E)- f(E)N [ ([a,b]-E))U( f ([a,b]-E) - f(E) " f ([a,b] - E))
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is a disjoint union. Note that ' (f(E)—f(E) r\f([a,b] —E)) c E and
f([a,b]-E)- f(E)n £ ([a,b]-E)[c,d]- f(E) . Therefore,
m(f(f(E)-f(E)n £ (la,b]-E)))=0 and

(S ([a.b]-E)- f(E) f (la,b]-E)) < [~ ([e.d]—- f(E))=H . We have already

shown that f'(x) =0 almost everywhere on H. Therefore, f'(x) =0 almost everywhere on

f(f ([@.]-E)~f(E) f ([a,b]- E))..

Let ye f([a,b]—E)ﬂf(E) . Since fis continuous, f'(y) is closed. Now f~'(y) is nota
singleton set as there exists e € £ and x €[a,b]—E such that f(x)= f(e)=y. Moreover,
f7'(») is an interval. This is because if a and S arein f~'(y)with a < S, then since f
is increasing and f(a)= f(f)=y, f(x)=y forallxin [, #] , the interval [, f]is in
f7'(y). It follows that f~'(y)is a closed interval and is obviously bounded. Therefore,
f'(x) =0 for all x in the interior of f~'(y). If fis differentiable at the end point yof ' (y),
then f'(y)=0. Iffis not differentiable at the end point yof f~'(y), then y € E. Thus
f'(x)=0 forxin f'(y)—E. Since this is true for each y in f([a,b]—E)mf(E),
f'(x)=0forxin F—E=f"' (f([a,b]—E)mf(E))—E . Since E is of measure zero,
£'(x) =0 almost everywhere on F = f~' (f([a,b]—E)mf(E)) . It follows that f'(x)=0

almost everywhere on [a,b].
This proves that fis singular on [a, b].

We have seen that the ternary Cantor function is an example of a monotone increasing
singular functions. Does there exist a strictly increasing singular function? R. Salem, in On
some singular monotonic functions which are strictly increasing, Transaction American
Mathematical Society, 53 (1943), 427-439, gave an example together with the Minkowski’s
function, ?(x). In 1952, F. Riesz and Sz.-Nagy in their book, Functional Analysis, page 48-
49, gave an example of such a strictly increasing singular function. In 1978, L. Takacs, in An
increasing continuous singular function, American Mathematical Monthly 85 (1) (1978) 35-
37, gave a family of increasing continuous singular functions. In Riesz-Nagy Singular
functions revisited, J. Math. Anal. Appl. 329 (2007) 592—602, Jaume Paradis , Pelegri
Viader and Lluis Bibiloni, gave a generalization of Riesz-Nagy singular functions and
Takacs singular functions and showed that these two families are related. Thus, strictly
increasing singular functions are abundant.

Theorem 33. Suppose f :[a,b]—[c,d] is a continuous strictly monotone function that
maps [a, b] onto [c, d]. Then fis singular, if and only if, the inverse function of £, g = £~ is
singular.
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Proof.

Since f'is continuous and strictly monotone, its inverse g = ' is also continuous and strictly

monotone.

By Theorem 31, f'is singular, if and only if, the graph of /' has maximum arc length equal to
b —a+d— ¢, if and only if, the graph of its inverse, g, has maximum arc length equal to b — a
+d — ¢, if and only if, g is singular.

Remark.

1. The ternary Cantor function, Je is continuous, monotone and singular and if Je, is

differentiable at x, then fq'(x) =0. We have noted in Proposition 8 that fcl'(x) =0 forxin

[0,1]-C,. As m(C,)=0, f. is differentiable outside a set of measure zero and its derivative
is zero outside C, . More is true f.. is not differentiable at any point of C,. We deduce this

o0

as follows. If x e C,, then since C, =G* = (U G(k)j = ﬂ(G(k))C , xe(G(k)) for integer k
Pt

k=1

> 1. Now (G(k)) =J(k,1)UJ(k,2)U---UJ(k,2") is a disjoint union of closed intervals,

each of length 3% So, if xe(G(k))", xeJ(k,n) for some 1<n<2". Let

J(k,n)=[a(k,n),b(k,n)]. Then

fo (b, m)— f (ath,m) _ (éj If x = a(k,n)or
b(k,n)—a(k,n) ¥ \2

x =b(k,n), then

J (b(k,n)) = 1, (x)) :(3j" op o)~ Jc (atk,m) :(3Jk It
>

b(k,n)—x 2 x—a(k,n)
a(k,n) < x <b(k,n), then

{fq (b(k,n)) = f, (x) [, (x)— f¢ (alk, n))} S, (blk,m)— 1 (ak,n)) (3}"
max > = , by

b(k,n)—x ’ x—a(k,n) b(k,n)—a(k,n) 2

for a=0,c=>0,b>0andd >0. Since

) ) ) a c a+c
applying the inequalit —,—r2
pplying q Ymax{b d} bid

k
3 e . . : .
(Ej —>w as k—oo, Jfc, has an infinite derived number at x and so f. is not differentiable

at x. It follows that f. is not differentiable at every point in C,. In summary, f. has the

property: if fq'(x) exists and is finite, then fq'(x) =0. Riesz-Nagy singular function as

shown in their book, Functional Analysis, has this property. Salem’s family of singular
functions also exhibits this property, see Theorem 2 of Singular Functions with Applications
to Fractal Dimensions and Generalized Takagi Functions, J. Acta Appl Math (2012) 119,
129-148, by E. de Amo, M. Diaz Carrillo and J. Fernandez-Sanchez. Minkowski’s Question
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mark function has this property, see Theorem 3.1, in The Derivative of Minkowski’s ?(x)
Function, Journal of Mathematical Analysis and Applications 253, 107-125 (2001) by J.
Paradis and P. Viader. Takacs singular function also possesses this property. All the
singular functions mentioned so far have the property that whenever the function is
differentiable, the derivative has to be zero.

We have two curious questions:

(i) Does there exist a continuous increasing singular function, /', with f'(x) > 0 at some

points or subset of measure zero?

(i1) Does there exist a continuous increasing singular function, /', such that the set

{x: f is not differentiable at x} is not no-where dense?

Both questions have affirmative answer.

For question (i), Juan Fern’Andez S’ Anchez, Pelegr'l Viader, Jaume Parad’ls and Manuel
D’laz Carrillo, in 4 Singular Function With A Non-Zero Finite Derivative On A Dense Set,
Nonlinear Analysis: Theory, Methods & Applications, 95, (2014), 703-713, gave an example,
a function H :[0,1] —[0,1], which is singular, strictly increasing, with non-zero derivative on
a dense subset of [0, 1]. For question (ii), Salem’s singular function, given in On some
singular monotonic functions which are strictly increasing, Transaction American
Mathematical Society, 53 (1943), 427-439, is strictly increasing, continuous and singular,
whose set of non-differentiability is dense in [0, 1]. Salem’s construction is geometric and
yields a function whose set of non-differentiability contains

{2% €(0,1): k,n positive integer} , which is obviously dense in [0, 1]. A proof of the

function being singular is by showing that if x is in the set of normal numbers to the base 2,
which has measure 1 and if the function is differentiable at x, then the derivative has to be
zero. For the details, please refer to Salem’s paper. The proof that the derivative can only
take on zero derivative, whenever the function is differentiable is much harder.

We close the article with the following interesting observation about continuous bijective
function.

Theorem 34. Suppose f :[a,b]—[c,d] is a continuous bijective function that maps [a, b]

onto [c, d]. Then the following is equivalent,

(1) fis singular.

(2) f' is singular.

(3) Arc length of the graph of f'is b—a+d —c.
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(4) There exists a set £ in [a, b] such that m(E) = b—a and m( f (E)) =0.
(5) There exists a set £ in [a, b] such that m(E) = 0 and m(f(E)) =d-c.

Proof. A continuous bijective function mapping [a, b] onto [c, d] is strictly monotone.
By Theorem 33, (1) << (2). By Theorem 31, (1) < (3).
(1) =@.

If fis singular, then f'(x)=0 almost everywhere on [a, b]. Therefore, the set
E= {x : f is differentiable at x and f”(x) = 0} has measure equal to b—a. By Theorem 3 of

Functions Having Finite Derivatives, Bounded Variation, Absolute Continuity, the Banach
Zarecki Theorem and de La Vallée Poussin's Theorem, m(f(E)) =0.

(4) =(1). Since fis monotone, f'is differentiable almost everywhere on [a, b]. Therefore,
there exists a set F'in [a, b] such that f'is differentiable on [a,b]— F and m(F) = 0. Since m(E)

= b—a, m(E-F) = b—a. Moreover, m(f(E—F))=0, since m(f(E))=0. Note that fis
differentiable on £—F. Therefore, by Theorem 2 of Change of Variables Theorems,

f'(x) =0 almost everywhere on E—F. As m(E—F)=b—a, f'(x)=0 almost everywhere on
[a, b].

(5) =(1). This is just Theorem 32.

(1) =(5). Suppose fis singular. Then by (2), /' is singular. Then by (4), There exists a set
Fin [c, d] such that m(F) = d—c and m(f~'(F))=0. Let E=f"'(F). Then m(E)=0 and
m(f(E)=m(F)=d-c.
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