
The Construction of Cantor Sets

By Ng Tze Beng

Cantor sets play an important role in real analysis, particularly in furnishing counter

examples and exotic or pathological functions.  Most frequently, we meet Cantor set of zero

measure but the construction is canonical enough to apply to give Cantor set of positive

measure.  These are subsets of the closed interval [0,1] having measure greater or equal to 0

but less than 1.  For the use of Cantor sets see Composition and Riemann Integrability,

Lebesgue Integration and Composition and Change of Variable or Subsitution in Riemann

Integration. 

The first Cantor set we shall construct is the Cantor set of measure zero.   This is the

set left over after repeatedly deleting the middle third open intervals.

The Cantor set C0 

We shall start from the closed unit interval [0,1].  At the first stage, we delete the

middle open interval (1/3, 2/3) from [0, 1].  We shall enumerate the open intervals to be

deleted.  We denote  (1/3, 2/3) by I(1,1).  That is I(1,1) = (1/3,2/3).  The first construction

gives us the remaining 2 closed intervals

[0, 1] − I(1,1) = [0,1] − (1/3,2/3) = [0, 1/3] ∪[2/3, 1].

Then at the second stage we delete the middle third open interval from each of the closed

intervals.  Thus, there are 2 open intervals to be deleted  and they are 

                          I(2,1) = 1/3 I(1, 1) =(1/9, 2/9) and

                          I(2, 2) = I(2, 1) + 2/3 , the translation of I(2,1) by 2/3.

Hence, we are left with 4 = 22 closed intervals, two in [0, 1/3] and two in [2/3, 1].  By

rescaling we see that the middle open third intervals of each of these 4 closed intervals are

given by

I(3,1) = 1/3 I(2,1),  I(3,2) =1/3 I(2,2)  and

I(3, 3) = I(3,1) + 2/3,  I(3, 4) = I(3,2) +2/3.

Repeating this construction, at the k-th stage, there are 2k−1 open intervals, each of length 1/3k,

 to be deleted from [0, 1] and for k ≥ 3, they are given by

I(k, j) = 1/3 I(k−1, j),  j = 1, 2, …, 2k−2 ;

I(k, 2k−2+ j) = I(k, j) + 2/3,  j = 1, 2, …, 2k−2.

Let G be the union of these countable collection of disjoint open intervals, i.e.,

                                     .G =4
k=1

∞

4
j=1

2k−1

I(k, j)

So G is open.  The Cantor set C0 is defined to be the complement of G in [0, 1].  That is C0 =

[0, 1] − G and is therefore a closed subset of [0, 1].   Note that at the k-th stage the total

length of the intervals to be deleted is  2k−1 (1/3k).  Therefore, the measure of G, since the

intervals in G are all disjoint, is given by

�(G) = �
k=1

∞

2k−1 1
3k

=
1
3 �k=1

∞
2
3

k−1

=
1
3 kd∞

lim
1−

2
3

k

1−
2
3

= 1.

Thus the measure of  C0 is equal to µ([0, 1]) − µ(G) = 1−1 = 0.

In order to define the Cantor function, we shall consider another representation of the

Cantor set C0 .  This will also show that C0  has the same cardinality as [0, 1] and so it is
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uncountable.  We shall make use of the ternary representation of numbers in [0, 1].  There is a

unique way of representing real numbers in (0, 1] by non-terminating ternary expansion.

We shall redefine these real numbers as the supremum of a sequence of rational numbers.

Take any 1 ≥ x > 0 in [0,1].  Choose the greatest integer a1 such that  a1/3 < x ≤ a1/3 + 1/3.   

Consider the rational numbers 0/3,  1/3 ,  2/3.  Then take the largest of these which is < x.

That is we choose a1 in {0,1,2} such that   < x ≤   + .   Thus a1 = 0 ⇔ 0/3 < x ≤ 1/3,  
a1

3
a1

3
1
3

a1 = 1 ⇔ 1/3 < x ≤ 2/3 and a1 = 2 ⇔ 2/3 < x ≤ 3/3=1.  Let d1 = 0 + .  Then  d1 < x ≤ d1 + .
a1

3
1
3

 Now choose integer a2  in {0,1,2} such that d1 + < x ≤ d1 + .  Let now  d2 = d1 + 
a2

32

a2

32 + 1
32

 = 0  +   +  .  We have d2 < x ≤ d2 + .  Continuing like this we shall obtain a
a2

32

a1

3
a2

32

1
32

sequence a0 , a1 , a2 , …,  of integers,  0 ≤  ai ≤ 2,  such that if dn = dn−1 +  = 0+   +  
an

3n

a1

3
a2

32

+ …+   then  dn < x ≤ dn + .  The symbol 0 ⋅ a1  a2   a3 …  is called the non-terminating
an

3n
1
3n

ternary expansion of x .  So the set {d1 ,  d2 , d3 ,  d4  … } is bounded above by x.   Then the

least upper bound or supremum of this set is x.  We deduce this as follows. If x ≠ sup{d1 ,  d2 ,

d3 ,  d4 … } = M, then x > M .  Then by the Archimedean property of the set of real numbers,

there exists a counting number m such that  < x − M  and so M +   < x.  Now take a1
m

1
m

non-terminating ternary expansion 0 ⋅ c1  c2   c3 …  for .  Let L be the first integer such that
1
m

cL ≠ 0.  Then .  Therefore, M +  < M +   < x.  Hence since M =  sup{d1 ,  d2 , d3 ,  
1
3L < 1

m
1
3L

1
m

d4 … },  dL +  ≤ M +   < x and this contradicts  x ≤ dL + .  Hence x = sup{d1 ,  d2 , d3 ,
1
3L

1
3L

1
3L

 d4 … }.  

Τhis representation of the real number x in (0, 1] is unique.  Suppose two

non-terminating ternary expressions 0⋅ a1  a2   a3 … and 0⋅ b1  b2   b3 … are such that for some

integer j ≥ 0,  aj ≠ bj and ai = bi for i  ≤  j − 1.  If  0⋅ a1  a2   a3 …  represents x and 0⋅ b1  b2   b3

… represents y we shall show that x ≠ y.  Suppose that aj < bj .  By the hypothesis we have       

            

 0 +   +   + …+  +  < x  ≤ 0  +   +   + …+  +   .      
a1

3
a2

32

a j−1

3 j−1

a j

3 j

a1

3
a2

32

a j−1

3 j−1

a j + 1

3 j

But 0 +   +   + …+  + = 0 +   +   + …+  +          
a1

3
a2

32

a j−1

3 j−1

a j + 1

3 j

b1

3
b2

32

b j−1

3 j−1

a j + 1

3 j

≤ 0 +   +   + …+  +  < y. 
b1

3
b2

32

b j−1

3 j−1

b j

3 j

Therefore,  x < y and so x ≠ y.  Similarly if aj > bj, we can show that x ≠ y.  Thus, this way of

representing any real number in (0, 1] is unique.  Let 0 be represented by the terminating

ternary expansion 0.00.  Notice that for x = , the corresponding non-terminating expansion1
3

is the expression 0.022222……  which is a non-terminating expression with recurring '2'.    
2
3

is represented by 0.122222....... a non-terminating expression with recurring '2'.  1 is

represented by  0.22222........  a non-terminating expression with recurring '2'.   We are going

to change our representation a little.  We are going to use some terminating expansion in our

representation as follows.   If the non-terminating expansion of  x consists of exactly one '1' in

its expansion, say 0⋅ a1  a2   a3  ....    has precisely aj = 1 and that ak = 2 for k > j ,  then we

replace it by the terminating expansion  0⋅ b1  b2   b3 ... bj −1 2 with bk = ak  for k ≤ j−1,  bj = 2
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and bk = 0 for k > j, hence this representation has no '1' in it.  Thus we are going to use the

following convention: if a number x in [0, 1] has two ternary expansion, one with no 1's and

one with at least one '1', then it is the one that has no 1's that is to be used.  We refer to this as

our system of expansion.  We are going to use this representation to describe the set G in [0,

1].

 x ∈ I(1,1) = (1/3, 2/3) ⇔ the non terminating expansion of x has a1 = 1 and a2 and

subsequent aj  are not all equal to 2 ⇔ the system of expansion used for x has a1 = 1. (Thi is

because the terminating expansion excluded here has no '1', namely 2/3 which has terminating

expansion 0.2 and recurring expansion 0.12 , where the underscore denotes repeating

infinitely many times the number underscored. ) 

Now dividing by 3 has the effect of shifting the expansion by one place to the right

and introducing a zero, i.e., it has the effect of moving the ternary point to the left.  Thus, 

x ∈ I(2,1) = 1/3 I(1,1) = (1/9, 2/9) 

⇔ the system of expansion used for x has a1 = 0 and a2  = 1.

Therefore, x ∈ I(2,2) = I(2,1) + 2/3

⇔ the system of expansion used for x has a1 = 2 and a2  = 1.

Hence  x ∈ I(2,1)∪ I(2,2) ⇔ the system of expansion used for x has  the first  '1' occurring in

the second ternary place.

Then since I(3,1) = 1/3 I(2,1) and I(3,2) =1/3 I(2,2),  x ∈ I(3,1)∪ I(3,2) ⇔ the system of

expansion used for x has a1 = 0 and has the first '1' occurring in the third ternary place.  Since

I(3, 3) = I(3,1) + 2/3 and I(3, 4) = I(3,2) +2/3, x ∈ I(3, 3)∪ I(3, 4) ⇔ the system of expansion

used for x has a1 = 2 and has the first '1' occurring in the third ternary place.  Therefore,  x ∈

I(3,1)∪ I(3,2)∪I(3, 3)∪ I(3, 4) ⇔ the system of expansion used for x has the first '1'

occurring in the third ternary place.  Thus by induction we see that   ⇔ thex c 4
j=1

2k−1

I(k, j)

system of expansion used for x has the first '1' occurring in the k-th ternary place.  Therefore,  

⇔ the system of expansion used for x has at least one '1'.  Hence x ∈ C0 =x c G =4
k=1

∞

4
j=1

2k−1

I(k, j)

[0, 1] − G ⇔ the system of expansion used for x has no 1's.   We have thus proved the

following:

Lemma 1.  C0 consists of those numbers in [0, 1] whose representation in the above

system of ternary expansion has no 1's.   Therefore, we can write for any x in C0

,  where bk = 0 or 1.x = �
k=1

∞ 2bk

3k

Lemma 2.  C0  is uncountable.

Proof.   Define g : C0 →[0, 1] by   ,  where  .   Then sinceg(x) = �
k=1

∞ bk

2k
x = �

k=1

∞ 2bk

3k

every real number y in [0, 1] has a non-terminating binary representation of the form  
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 or y = 0, we can take x in C0 to be  or  0 if y = 0 and so g(x) = y.  Hence,�
k=1

∞ bk

2k �
k=1

∞ 2bk

3k

g is surjective.  Since [0, 1] is uncountable, C0  is uncountable.

Next we would like to extend the function to all of [0, 1].   Let I(i, j) be denoted by the

open interval (a(i, j), b(i, j)).  Then {a(i, j),  b(i, j)} ⊆ C0 .  We shall show that g(a(i,

j)) = g(b(i, j)).  It is easily seen that in our system of ternary representation

  and a(i, j) = �
k=1

i−1 2bk

3k
+

0
3 i

+ �
k=i+1

∞
2
3k

  , for some bk  = 0 or 1, k =1,2,…i−1.b(i, j) = �
k=1

i−1 2bk

3k
+

2
3 i

Hence .  We define for x ing(a(i, j)) = �
k=1

i−1 bk

2
+

0
2 i

+ �
k=i+1

∞
1
2k

= �
k=1

i−1 bk

2
+

1
2 i

= g(b(i, j))

I(i, j), g(x) = g(b(i, j)) = g(a(i, j)) .  We shall next show that g is a non decreasing

function, that is, g is a monotonic increasing function (not necessarily strictly

increasing).

Lemma 3.   Represent the real numbers in [0, 1] by non-terminating ternary

expansions except for 0.   In this representation suppose   and .x = �
k=1

∞ ak

3k
y = �

k=1

∞ bk

3k

Then 

1.  x = y ⇔ ai = bi for all i ≥1.

2.  x < y ⇔ a1 < b1  or there exists integer k ≥ 2 such that  ai = bi for all 1 ≤ i ≤ k −1

and  ak < bk.

Proof.   Part 1 follows from the  uniqueness of the representation of the numbers

either by the non terminating ternary expansion or by the system of representation

used above.

Suppose a1 < b1.  Then   .   Similarly, if there existsx [
a1

3
+

1
3

=
a1 + 1

3
[

b1

3
< y

integer k ≥ 2 such that  ai = bi for all 1 ≤ i ≤ k −1 and  ak < bk, then

  .x [ �
i=1

k−1 a i

3 i
+

ak

3k
+

1
3k

= �
i=1

k−1 b i

3 i
+

ak + 1
3k

[ �
i=1

k−1 b i

3 i
+

bk

3k
< y

Now if x < y, then y − x > 0.   Then by the Archimedean property of the real number

system, there exists an integer k ≥ 1 such that .     Then 
1
3k < y − x

.x [�
i=1

k a i

3 i
+

1
3k

<�
i=1

k a i

3 i
+ y − x < y [�

i=1

k b i

3 i
+

1
3k

Therefore,  .    Then a1 ≤ b1 .  For if  a1 > b1, then �
i=1

k a i

3 i
<�

i=1

k b i

3 i

a1

3
>

b1 + 1
3

>�
i=1

k b i

3 i

and so   contradicting  .   Hence either a1 < b1 or a1 = b1.  If�
i=1

k a i

3 i
>�

i=1

k b i

3 i �
i=1

k a i

3 i
<�

i=1

k b i

3 i
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a1 = b1,  then   Therefore, we conclude again that a2 ≤ b2.  If a2 < b2, then�
i=2

k a i

3 i
<�

i=2

k b i

3 i
.

we get the conclusion of the Lemma.   Because 

,   ai = bi  cannot hold for all 1 ≤ i ≤ k.   Thus for some j  with 1 ≤ j ≤ k�
i=1

k a i

3 i
<�

i=1

k b i

3 i

ai = bi  for 1 ≤ i < j  and aj < bj .  This completes the proof.

Next we shall see how our system of representation also gives the same conclusion.

Observe that the convention used  in our system of representation deviates from a

non-terminating expansion only if the number is zero or has two possible ternary expansions

with one of them involving no 1's.   Thus if y has a terminating expansion either y = 0 or the

terminating expansions has no 1's and ends in the number '2'.    Thus if  x < y , and  y has a

terminating ternary expansion,  

 , where bi'  is equal to 0 or 2 and bl' = 2.y =�
i=1

l−1 b i

3 i
+

2
3 l

=�
i=1

l bi
∏

3i

Then we can write    Thus if ,  x < y implies thaty =�
i=1

l−1 b i

3 i
+

1
3 l

+ �
i=l+1

∞
2
3i

=�
i=1

∞ c i

3 i
. x =�

i=1

∞ a i

3 i

there exists integer k ≥ 1 such that  ai = ci for all 1 ≤ i ≤ k −1 and  ak < ck or a1 < c1, if k = 1 .   

If k ≤ l −1, then we have ai =  ci = bi' for all 1 ≤ i ≤ k −1 and  ak < bk'.   If  k = l ,  then we have  

ai = bi' for all 1 ≤ i ≤ l −1  and al < cl = 1< 2 = bl'.  If  k > l ,  then we have  ai = bi' for all 1 ≤ i

≤ l −1 and al =  cl = 1 < 2 = bl'.  Hence, in all cases, we obtain that x < y implies that there

exists integer l ≥ k > 1 such that  ai = bi' for all 1 ≤ i ≤ k −1 and  ak < bk' or a1 < b1' .  

Now if x has the terminating ternary expansion    ,  we canx = �
i=1

p−1
a i

3 i
+

2
3p =�

i=1

p a i
∏

3 i

write it as     Hence by what we have just proved,  therex = �
i=1

p−1
a i

3 i
+

1
3p + �

i=p+1

∞
2
3 i

=�
i=1

∞ d i

3 i
.

exists integer l ≥ k > 1 such that  di = bi' for all 1 ≤ i ≤ k −1 and  dk < bk' or d1 < b1' .    If  p =1,

then d1 = 1 and if  d1 < b1' ,  b1' =2 and l must be greater than 1, otherwise x = y.  Thus if  p =1,

then a1' = 2 =b1'  and there exists an integer l ≥ k > 1 such that ai = bi' for all 1 ≤ i ≤ k −1 and  

ak '< bk' .  We  now assume that p > 1.  If  k < p,  then ai'= di = bi' for all 1 ≤ i ≤ k −1 and ak'=

dk < bk'.   If  If  k = p,  then ai'= di = bi' for all 1 ≤ i ≤ k −1 and  dk = dp = 1 < bp'.  Hence bp' = 2

and so  ap'=2 = bp'.  Then it follows that l > p and that there exists q such that p < q ≤ l  and ai'

= bi' for all 1 ≤ i ≤ q −1 and  aq < bq'.  Now we shall see that k ≤ p.   if  k > p,  then we have

ai'= di = bi' for all 1 ≤ i ≤ k −1 and  dk < bk'.  Therefore,   ai'= di = bi'  for 1 ≤ i ≤ p −1,  1 =  dp

= bp' , hence contradicting that bp' is even.  Hence we have shown that the same conclusion for

Lemma 3 is true also for our system of representation of real numbers in [0, 1] by ternary

expansion.  The converse of the statement is obvious.

We summarise what we have proved in the following lemma.

5
 Νg Tze Beng  2001



Lemma 4.   Represent the real numbers in [0, 1] by the system of  ternary expansion

as described above.   In this representation suppose   and .  Then x = �
k=1

∞ ak
∏

3k
y = �

k=1

∞ bk
∏

3k

1.  x = y ⇔ ai' = bi' for all i ≥1.

2.  x < y ⇔ a1' < b1'  or there exists integer k ≥ 2 such that  ai' = bi' for all 1 ≤ i ≤ k −1

and  ak' < bk'.

Now we are ready to investigate the monotonicity of the function g:[0, 1] →[0, 1].

We have shown that g is a surjective map.

Proposition 5.  The map, g:[0, 1] →[0, 1], defined previously, is a bounded surjective

monotonic increasing map. That is to say  x < y  ⇒ g(x) ≤ g(y).

Proof.    We have already seen that g is surjective.  It is obviously bounded.  Now

suppose x and y are in C0 and that x < y.  Then x and y have the representation,

 and , where the ai's and bi's are either 0 or 1.  By Lemma 4 eitherx =�
i=1

∞ 2a i

3 i
y =�

i=1

∞ 2b i

3 i

a1 = 0 and b1 =1 or there exists integer k ≥ 2 such that  ai = bi for all 1 ≤ i ≤ k −1 and  

ak = 0 < bk = 1.   Note that  and .  Hence if a1 = 0 and b1 =1,g(x) =�
i=1

∞ a i

2 i
g(y) =�

i=1

∞ b i

2 i

then  .   If  there exists integer k ≥ 2 such that  ai =g(x) =
0
2

+�
i=2

∞ a i

2 i
[

1
2

+�
i=2

∞ b i

2 i
= g(y)

bi for all 1 ≤ i ≤ k −1 and  ak = 0 < bk = 1, then

.g(x) = �
i=1

k−1 a i

2 i
+

0
2k

+ �
i=k+1

∞ a i

2 i
[ �

i=1

k−1 a i

2 i
+

1
2k

+ �
i=k+1

∞ bi

2i
= g(y)

Hence, if x < y and x and y are in C0, then g(x) ≤ g(y).   Suppose now that x < y,  x ∉

C0  and y is in C0.  Then x ∈ I(i, j) = (a(i, j), b(i, j)) for some (i, j). Obviously  x < y

implies that a(i, j) < y and so since both a(i, j) and y are in C0 by what we have just

proved, g(a(i, j)) ≤ g(y).  Therefore, by definition of g, g(x) = g(a(i, j)) ≤ g(y).  

Similarly, if x < y,  y ∉ C0  and x is in C0, then y ∈ I(i, j) = (a(i, j), b(i, j)) for some (i,

j) and x < b(i, j).  Again since both x and b(i, j) are in C0, we have g(x) ≤ g(b(i, j) ) =

g(y).

Suppose now x < y, x,  y ∉ C0.   Then for some (i,  j) and  (i ',  j' ) , x ∈ I(i, j), y ∈ I(i ' ,

j ').  Then  a(i, j) < x < y < b(i ', j' ).  Therefore, since both a(i, j)  and b(i ', j' ) are in

C0, g(a(i, j)) ≤  g(b(i', j' ) and so g(x) = g(a(i, j)) ≤ g(b(i', j' ) = g(y).  Hence g is

monotonically increasing.  This completes the proof.

Next we shall state a general result concerning bounded monotone function whose

range is an interval.

Theorem 6.  Suppose   f : [a, b] →R  is an increasing function.   Then f  is

continuous, if and only if, the range of  f , J =  f ([a, b]) is an interval.
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Proof.   If  f  is  continuous, then by the Intermediate Value Theorem, the range f ([a,

b]) is an interval.  Now if  f  is increasing, then by Theorem 2 of  Monotone Function,

Function of Bounded Variation, Fundamental Theorem of Calculus,  the discontinuity

of  f can only be jump discontinuity.  Suppose the range J is an interval.  Suppose  f  is

discontinuous at x = k in (a, b).    Then we have

    and  .
xdk−
lim f (x) = f (k−) [ f (k) [ f (k+) =

xdk+
lim f (x) f (k−) < f (k+)

Note that for any y < k,  because  f  is increasing  .   Also for any z > k, f (y) [ f (k−)

.   Therefore, ( f ( [a, k)∪(k, b]))∩( f (k − ),  f (k + )) =∅.  But byf (k+) < f (z)

assumption the range J  is an interval and so  ( f (k − ),  f (k + )) ⊆ J  and ( f ( [a, k)∪(k,

b]))∩( f (k − ),  f (k + )) = (J − { f (k)})∩( f (k − ),  f (k + ))≠ ∅.  This contradicts 

( f ( [a, k)∪(k, b]))∩( f (k − ),  f (k + )) =∅ and so we have  f (k − ) =  f (k + ) =  f (k) and

so    and that means  f  is continuous at x = k.   We can similarly derive
xdk
lim f (x) = f (k)

a contradiction when k = a or b.  If  f is not continuous at k = a, then  f (a) <  f (a+)  

and so  ( f (a) ,  f (a+))∩J = ∅,  contradicting ( f (a) ,  f (a+)) ⊆ J.  Thus  f  must be

continuous at x = a.  If  f is not continuous at k = b, then  f (b−) <  f (b)  and so              

( f (b−) ,  f (b))∩J = ∅,  contradicting ( f (b−) ,  f (b)) ⊆ J.  Thus,  f  must be continuous

at x = b.   Therefore,  f  cannot have any discontinuity and so it is continuous.  This

completes the proof.

Proposition 7.   The function  g:[0, 1] →[0, 1] is continuous.

Proof.   By  Proposition 5,  the map g is onto and increasing.  Since the range [0, 1] is

an interval, by Theorem 6,  g is continuous.

Next we shall reveal some interesting facts concerning the Cantor set C0 .

Theorem 8.   The Cantor set C0 is

(1)  compact,

(2)  no where dense, i.e., it contains no open intervals,

(3)  its own boundary points,

(4)  perfect, i.e.,it is its own set of accumulation point,

(5) totally disconnected and

(6)  between any two points in C0 , there is an open interval not contained in C0.

Proof.   (1) Since C0 is closed and bounded, it is compact by the Heine-Borel

Theorem.

(2)  Let   denote the union of the collection of disjoint openGp =4
k=1

p

4
j=1

2k−1

I(k, j)

intervals deleted after the p-th stage in the construction.  Suppose  C0 contains an open

interval, then there is a point x in C0  and a δ > 0 such that (x −δ , x + δ)⊆ C0.   Hence

(x −δ , x + δ)∩G = (x −δ , x + δ)∩([0, 1] − C0 ) = ∅.  Since (x −δ , x + δ) and G are

disjoint and are contained in [0,1],  µ(G) + µ((x −δ , x + δ))≤ 1.  Hence 1 + 2δ ≤ 1

7
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implies δ ≤ 0, contradicting δ > 0.  Therefore, C0 cannot contain any open interval and

so is nowhere dense.  (We can also use µ((x −δ , x + δ)) ≤ µ(C0) = 0 and so 2δ ≤ 0

contradicting δ > 0.)

(3).  C0 is closed, by a characterization of closed set, because C0 = [0, 1] − G =  

  and each [0, 1] − Gp is closed.  Hence the closure of  C0  is C0  and so3
p=1

∞

([0, 1] − Gp)

its set of cluster points C0' is contained in C0.   Let x be in [0, 1].   Then for any open

set  J containing  x, say J = U ∩ [0, 1], where U is an open interval,  J is non empty

and contains more than one point and J ∩ G ≠ ∅ because J ⊄ [0, 1] − G = C0  by part

(2).  This is because if J ⊆ C0 , then the interior of  J, which is a non empty open

interval is contained in C0 contradicting part (2).  Thus the closure of G,   = [0, 1].   
_

G

Therefore, the boundary of C0,  .  ØC0 =
_

C0 3
_

G= C0 3 [0, 1] = C0

(4)  Since C0 is closed the set of accumulation points of C0,  C0'  is a subset of

C0.   We claim that C0' = C0 .  Let x ∈ C0 .   Suppose x ∉  C0'  .  Then   there exists δ >

0, such that  ( x − δ, x + δ) ∩ C0 = {x}.    Thus  ( x − δ, x + δ)∩([0, 1] - C0) =( x − δ,  x)

∪ (x, x + δ).   That means (x − δ,  x) ⊆ ([0, 1] − C0) =    and so G =4
k=1

∞

4
j=1

2k−1

I(k, j)

(x − δ,  x) =  4
k=1

∞

4
j=1

2k−1

I(k, j) 3 (x − �, x).

Since the collection  is a collection of disjoint{I(k, j) : k = 1,£,∞; j = 1, 2,£, 2k−1}

open intervals, and  (x − δ,  x) is connected, (x − δ,  x) ⊆ I(i, j)  for some i and j.    This

is because otherwise (x − δ,  x) would be a disjoint union of open intervals

contradicting that it is connected.  Since x ∉  I(i, j),  x = sup I(i, j) = b(i, j).   Similarly,

(x,  x+δ) =  4
k=1

∞

4
j=1

2k−1

I(k, j) 3 (x, x + �).

We deduce as before then that for some p and q , (x, x + δ) ⊆ I(p, q).  Thus because   x

∉  I(p, q),  x = inf I(p, q) = a(p, q).   Therefore,  a(p, q) = x = b(i, j), contradicting that

a(p, q)  ≠ b(i, j) by virtue of the definition of  I(i, j)'s .   Therefore x ∈ C0' .  Thus C0' =

C0 .

(5)  Since by (2) C0 does not contain any open interval and since the connected

subsets of  R are either the singleton sets or the intervals, the only components of C0

are the singletons {x}, x ∈ C0.    Therefore,  C0 is totally disconnected.

(6)  Suppose  x < y and x , y are in C0.   Then (x, y)∩([0, 1] − C0) ≠ ∅ and is a

disjoint union of open intervals and so (x, y) contains at least one open interval.

The Cantor Set Ck

Now we turn our attention towards constructing a Cantor set of positive measure in [0,

1].   Indeed the construction also applies to give a different Cantor set of measure zero.  The

procedure of deleting the middle portion of each of the remaining closed sets is followed here

but using a different specified length.  (This idea can be generalised by not  requiring  the

intervals to be deleted to be the middle portion, to give a generalised Cantor set.)  Hence the

8
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construction is canonical.  Let k be any real number with 0 ≤ k < 1.  Let  δ = (1 − k) > 0.   Start

with the closed unit interval [0, 1].  Let I(1,1) be the middle open interval of length δ/2.   

Then if we write I(1,1) = (a(1,1), b(1,1)), then a(1,1) = 1/2 − δ/4.  Then let G1 = I(1,1) and F1

= [0,1] − G1.  The first stage is to form F1 .   Then F1 is the disjoint union of 2 closed intervals

each of length equal to a(1,1) = 1/2 − δ/4.  Let I(2,1) and I(2,2) be respectively the middle

open intervals, each of length δ/23, of the 2 closed intervals of F1 .   The open intervals are

ordered from the left to the right by the second indices.  Let G2 = I(1,1)∪I(2,1)∪I(2,2).

Suppose  I(2,1) = (a(2,1), b(2,1)).  Then a(2,1) = 1/2 a(1,1) − δ/24 = 1/22 −δ(1/22 − 1/24).  The

second stage is to form F2 = [0,1] − G2 =  [0,1] − G1 − I(2,1)∪I(2,2).  Then F2 is the disjoint

union of 22 closed intervals each of length equaling  a(2,1) = 1/22 −δ(1/22 − 1/24).  Then let

I(3, j), j =1,..,22 be respectively the middle portion of length δ/25 of the 22 closed intervals

again ordered by the second indices, from left to right in the sense that I(3, j) < I(3, k), if and

only if, j < k, if and only if,,there exist x in I(3, j) and y in I(3, k) such that x < y.  Stage three

is to remove from F2 these 22 open intervals, that is to form F3 = F2 − ∪{ I(3, j), j =1,..,22 } =

[0, 1] − G3 , where .   Thus F3 consists of 23 disjoint closed intervals, each ofG3 =4
k=1

3

4
j=1

2k−1

I(k, j)

 length equaling a(3,1), where I(3,1) = (a(3,1), b(3,1)).  It is easily seen that  a(3,1) = 1/23

−δ(1/23 − 1/26).  Let   ,  where I(4, j), j =1,..,23 are the middle open intervalsH4 = 4
j=1

24−1

I(4, j)

each of length δ/27,  of each of the disjoint closed intervals.   Continuing in this way, at the

n-th stage we have , where I(n, j) = (a(n, j), b(n, j)) is an open interval ofHn = 4
j=1

2n−1

I(n, j)

length δ/22n−1  and the I(n, j)'s are ordered from left to right by the second indices according to

the natural ordering of elements in the intervals.   Note that a(n,1) = 1/2 a(n−1,1)−δ(1/22n)

=1/2n −δ(1/2n−1/22n).  We obtain Fn by deleting from Fn−1 the uion of open intervals Hn.   

Hence Fn = Fn-1− Hn = [0,1] − Gn , where   and Fn  is a disjoint union of 2nGn =4
k=1

n

4
j=1

2k−1

I(k, j)

closed intervals each of length equaling a(n,1) = 1/2n −δ(1/2n−1/22n).  To obtained Fn+1 , we

shall delete from Fn open intervals each of length equaling δ/2 2n+1 from the  2n closed

intervals.   That is, if we let , where I(n+1, j),  j =1,..,2n  are these openHn+1 =4
j=1

2n

I(n + 1, j)

intervals to be deleted, then Fn+1 = Fn − Hn+1 =[0, 1] − Gn+1 , where  

.     Obviously  Fn+1  is a collection of disjoint closed intervals,Gn+1 =4
k=1

n+1

4
j=1

2k−1

I(k, j) = 4
k=1

n+1

Hk

each of length equal to a(n+1,1).   Note also that for each n ≥ 1,  Fn+1 ⊆ Fn.

Let  .   Then G is a disjoint union of open intervals.  TheG =4
k=1

∞

4
j=1

2k−1

I(k, j) =4
k=1

∞

Hk

length or measure of  Hk is given by  .   Thus the measure or length of G, 2k−1 �
22k−1

=
�
2k

�(G) = �
k=1

∞

�(Hk) = �
k=1

∞
�
2k

=
�
2 �k=1

∞
1

2k−1
=
�
2 kd∞

lim
1−

1
2

k

1−
1
2

= �.

The Cantor set  Ck is defined to be the complement of G in [0, 1].  That is,  

. Thus theCk = [0, 1] − G = [0, 1] −4
k=1

∞

4
j=1

2k−1

I(k, j) = [0, 1] −4
k=1

∞

Gk =3
k=1

∞

([0, 1] − Gk ) =3
k=1

∞

Fk

measure of Ck  is equal to µ([0,1]) − µ(G) = 1 − δ = k.

9
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Then Ck satisfies the properties stated in Theorem 8.

 

Theorem 9.   The Cantor set Ck defined above for 0 ≤ k < 1  is  uncountable and

(1)  compact,

(2)  no where dense, i.e., it contains no open intervals,

(3)  its own boundary points,

(4)  perfect, i.e., is its own set of accumulation point,

(5)  totally disconneceted and

(6)  between any two points in Ck , there is an open interval not contained in Ck.

Proof.   Part (1) and part (3) to part(6) are proved in exactly the same way as in

Theorem 8.  Part (2) needs a different approach to prove.  Suppose Ck contains an

open interval say (c, d).  Then   implies that (c, d)⊆ Fk for each k ≥(c, d) ` Ck =3
k=1

∞

Fk

1.  Now since , there exists  an integer N such that k > N  
kd∞
lim ( 1

2k
− �( 1

2k
− 1

22k
)) = 0

implies that    Now we fix a k > N.    Note first that  (c,
1
2k

− �( 1
2k

− 1
22k

) < d − c.

d)∩Fk =(c, d).   Since the non-trivial interval (c, d) is connected and Fk is a disjoint

union of closed intervals, (c, d) must be contained in one of these closed intervals,

each of length  .   Hence,  contradicting  1
2k

− �( 1
2k

− 1
22k

) d − c [
1
2k

− �( 1
2k

− 1
22k

)

  Therefore, Ck does not contain an open interval.  (The main
1
2k

− �( 1
2k

− 1
22k

) < d − c.

thrust of the argument is that the Fk consists of disjoint closed intervals, whose

maximum length tends to zero as k tends to infinity.)  This proves part (2).  That Ck is

uncountable is a consequence of the following proposition.

Proposition 10.  There is a continuous strictly increasing bijective map f  : [0, 1] →

[0,1] mapping the Cantor set Ck onto the the Cantor set C0 defined earlier using the

"deleted middle third intervals" construction.

Proof.   This is given by Lemma 1 of Composition and Riemann Integrability.  Note

that the proof given there applies also to the case k = 0.

Since  C0 constructed using the "deleted middle third intervals" construction is

uncountable and  the function  f  given by Proposition 10 maps Ck bijectively onto C0,

Ck is also uncountable.
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 Νg Tze Beng  2001



The Construction of Cantor Sets

By Ng Tze Beng

Cantor sets play an important role in real analysis, particularly in furnishing counter

examples and exotic or pathological functions.  Most frequently, we meet Cantor set of zero

measure but the construction is canonical enough to apply to give Cantor set of positive

measure.  These are subsets of the closed interval [0,1] having measure greater or equal to 0

but less than 1.  For the use of Cantor sets see Composition and Riemann Integrability,

Lebesgue Integration and Composition and Change of Variable or Subsitution in Riemann

Integration. 

The first Cantor set we shall construct is the Cantor set of measure zero.   This is the

set left over after repeatedly deleting the middle third open intervals.

The Cantor set C0 

We shall start from the closed unit interval [0,1].  At the first stage, we delete the

middle open interval (1/3, 2/3) from [0, 1].  We shall enumerate the open intervals to be

deleted.  We denote  (1/3, 2/3) by I(1,1).  That is I(1,1) = (1/3,2/3).  The first construction

gives us the remaining 2 closed intervals

[0, 1] − I(1,1) = [0,1] − (1/3,2/3) = [0, 1/3] ∪[2/3, 1].

Then at the second stage we delete the middle third open interval from each of the closed

intervals.  Thus, there are 2 open intervals to be deleted  and they are 

                          I(2,1) = 1/3 I(1, 1) =(1/9, 2/9) and

                          I(2, 2) = I(2, 1) + 2/3 , the translation of I(2,1) by 2/3.

Hence, we are left with 4 = 22 closed intervals, two in [0, 1/3] and two in [2/3, 1].  By

rescaling we see that the middle open third intervals of each of these 4 closed intervals are

given by

I(3,1) = 1/3 I(2,1),  I(3,2) =1/3 I(2,2)  and

I(3, 3) = I(3,1) + 2/3,  I(3, 4) = I(3,2) +2/3.

Repeating this construction, at the k-th stage, there are 2k−1 open intervals, each of length 1/3k,

 to be deleted from [0, 1] and for k ≥ 3, they are given by

I(k, j) = 1/3 I(k−1, j),  j = 1, 2, …, 2k−2 ;

I(k, 2k−2+ j) = I(k, j) + 2/3,  j = 1, 2, …, 2k−2.

Let G be the union of these countable collection of disjoint open intervals, i.e.,

                                     .G =4
k=1

∞

4
j=1

2k−1

I(k, j)

So G is open.  The Cantor set C0 is defined to be the complement of G in [0, 1].  That is C0 =

[0, 1] − G and is therefore a closed subset of [0, 1].   Note that at the k-th stage the total

length of the intervals to be deleted is  2k−1 (1/3k).  Therefore, the measure of G, since the

intervals in G are all disjoint, is given by

�(G) = �
k=1

∞

2k−1 1
3k

=
1
3 �k=1

∞
2
3

k−1

=
1
3 kd∞

lim
1−

2
3

k

1−
2
3

= 1.

Thus the measure of  C0 is equal to µ([0, 1]) − µ(G) = 1−1 = 0.

In order to define the Cantor function, we shall consider another representation of the

Cantor set C0 .  This will also show that C0  has the same cardinality as [0, 1] and so it is
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uncountable.  We shall make use of the ternary representation of numbers in [0, 1].  There is a

unique way of representing real numbers in (0, 1] by non-terminating ternary expansion.

We shall redefine these real numbers as the supremum of a sequence of rational numbers.

Take any 1 ≥ x > 0 in [0,1].  Choose the greatest integer a1 such that  a1/3 < x ≤ a1/3 + 1/3.   

Consider the rational numbers 0/3,  1/3 ,  2/3.  Then take the largest of these which is < x.

That is we choose a1 in {0,1,2} such that   < x ≤   + .   Thus a1 = 0 ⇔ 0/3 < x ≤ 1/3,  
a1

3
a1

3
1
3

a1 = 1 ⇔ 1/3 < x ≤ 2/3 and a1 = 2 ⇔ 2/3 < x ≤ 3/3=1.  Let d1 = 0 + .  Then  d1 < x ≤ d1 + .
a1

3
1
3

 Now choose integer a2  in {0,1,2} such that d1 + < x ≤ d1 + .  Let now  d2 = d1 + 
a2

32

a2

32 + 1
32

 = 0  +   +  .  We have d2 < x ≤ d2 + .  Continuing like this we shall obtain a
a2

32

a1

3
a2

32

1
32

sequence a0 , a1 , a2 , …,  of integers,  0 ≤  ai ≤ 2,  such that if dn = dn−1 +  = 0+   +  
an

3n

a1

3
a2

32

+ …+   then  dn < x ≤ dn + .  The symbol 0 ⋅ a1  a2   a3 …  is called the non-terminating
an

3n
1
3n

ternary expansion of x .  So the set {d1 ,  d2 , d3 ,  d4  … } is bounded above by x.   Then the

least upper bound or supremum of this set is x.  We deduce this as follows. If x ≠ sup{d1 ,  d2 ,

d3 ,  d4 … } = M, then x > M .  Then by the Archimedean property of the set of real numbers,

there exists a counting number m such that  < x − M  and so M +   < x.  Now take a1
m

1
m

non-terminating ternary expansion 0 ⋅ c1  c2   c3 …  for .  Let L be the first integer such that
1
m

cL ≠ 0.  Then .  Therefore, M +  < M +   < x.  Hence since M =  sup{d1 ,  d2 , d3 ,  
1
3L < 1

m
1
3L

1
m

d4 … },  dL +  ≤ M +   < x and this contradicts  x ≤ dL + .  Hence x = sup{d1 ,  d2 , d3 ,
1
3L

1
3L

1
3L

 d4 … }.  

Τhis representation of the real number x in (0, 1] is unique.  Suppose two

non-terminating ternary expressions 0⋅ a1  a2   a3 … and 0⋅ b1  b2   b3 … are such that for some

integer j ≥ 0,  aj ≠ bj and ai = bi for i  ≤  j − 1.  If  0⋅ a1  a2   a3 …  represents x and 0⋅ b1  b2   b3

… represents y we shall show that x ≠ y.  Suppose that aj < bj .  By the hypothesis we have       

            

 0 +   +   + …+  +  < x  ≤ 0  +   +   + …+  +   .      
a1

3
a2

32

a j−1

3 j−1

a j

3 j

a1

3
a2

32

a j−1

3 j−1

a j + 1

3 j

But 0 +   +   + …+  + = 0 +   +   + …+  +          
a1

3
a2

32

a j−1

3 j−1

a j + 1

3 j

b1

3
b2

32

b j−1

3 j−1

a j + 1

3 j

≤ 0 +   +   + …+  +  < y. 
b1

3
b2

32

b j−1

3 j−1

b j

3 j

Therefore,  x < y and so x ≠ y.  Similarly if aj > bj, we can show that x ≠ y.  Thus, this way of

representing any real number in (0, 1] is unique.  Let 0 be represented by the terminating

ternary expansion 0.00.  Notice that for x = , the corresponding non-terminating expansion1
3

is the expression 0.022222……  which is a non-terminating expression with recurring '2'.    
2
3

is represented by 0.122222....... a non-terminating expression with recurring '2'.  1 is

represented by  0.22222........  a non-terminating expression with recurring '2'.   We are going

to change our representation a little.  We are going to use some terminating expansion in our

representation as follows.   If the non-terminating expansion of  x consists of exactly one '1' in

its expansion, say 0⋅ a1  a2   a3  ....    has precisely aj = 1 and that ak = 2 for k > j ,  then we

replace it by the terminating expansion  0⋅ b1  b2   b3 ... bj −1 2 with bk = ak  for k ≤ j−1,  bj = 2

2
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and bk = 0 for k > j, hence this representation has no '1' in it.  Thus we are going to use the

following convention: if a number x in [0, 1] has two ternary expansion, one with no 1's and

one with at least one '1', then it is the one that has no 1's that is to be used.  We refer to this as

our system of expansion.  We are going to use this representation to describe the set G in [0,

1].

 x ∈ I(1,1) = (1/3, 2/3) ⇔ the non terminating expansion of x has a1 = 1 and a2 and

subsequent aj  are not all equal to 2 ⇔ the system of expansion used for x has a1 = 1. (Thi is

because the terminating expansion excluded here has no '1', namely 2/3 which has terminating

expansion 0.2 and recurring expansion 0.12 , where the underscore denotes repeating

infinitely many times the number underscored. ) 

Now dividing by 3 has the effect of shifting the expansion by one place to the right

and introducing a zero, i.e., it has the effect of moving the ternary point to the left.  Thus, 

x ∈ I(2,1) = 1/3 I(1,1) = (1/9, 2/9) 

⇔ the system of expansion used for x has a1 = 0 and a2  = 1.

Therefore, x ∈ I(2,2) = I(2,1) + 2/3

⇔ the system of expansion used for x has a1 = 2 and a2  = 1.

Hence  x ∈ I(2,1)∪ I(2,2) ⇔ the system of expansion used for x has  the first  '1' occurring in

the second ternary place.

Then since I(3,1) = 1/3 I(2,1) and I(3,2) =1/3 I(2,2),  x ∈ I(3,1)∪ I(3,2) ⇔ the system of

expansion used for x has a1 = 0 and has the first '1' occurring in the third ternary place.  Since

I(3, 3) = I(3,1) + 2/3 and I(3, 4) = I(3,2) +2/3, x ∈ I(3, 3)∪ I(3, 4) ⇔ the system of expansion

used for x has a1 = 2 and has the first '1' occurring in the third ternary place.  Therefore,  x ∈

I(3,1)∪ I(3,2)∪I(3, 3)∪ I(3, 4) ⇔ the system of expansion used for x has the first '1'

occurring in the third ternary place.  Thus by induction we see that   ⇔ thex c 4
j=1

2k−1

I(k, j)

system of expansion used for x has the first '1' occurring in the k-th ternary place.  Therefore,  

⇔ the system of expansion used for x has at least one '1'.  Hence x ∈ C0 =x c G =4
k=1

∞

4
j=1

2k−1

I(k, j)

[0, 1] − G ⇔ the system of expansion used for x has no 1's.   We have thus proved the

following:

Lemma 1.  C0 consists of those numbers in [0, 1] whose representation in the above

system of ternary expansion has no 1's.   Therefore, we can write for any x in C0

,  where bk = 0 or 1.x = �
k=1

∞ 2bk

3k

Lemma 2.  C0  is uncountable.

Proof.   Define g : C0 →[0, 1] by   ,  where  .   Then sinceg(x) = �
k=1

∞ bk

2k
x = �

k=1

∞ 2bk

3k

every real number y in [0, 1] has a non-terminating binary representation of the form  

3
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 or y = 0, we can take x in C0 to be  or  0 if y = 0 and so g(x) = y.  Hence,�
k=1

∞ bk

2k �
k=1

∞ 2bk

3k

g is surjective.  Since [0, 1] is uncountable, C0  is uncountable.

Next we would like to extend the function to all of [0, 1].   Let I(i, j) be denoted by the

open interval (a(i, j), b(i, j)).  Then {a(i, j),  b(i, j)} ⊆ C0 .  We shall show that g(a(i,

j)) = g(b(i, j)).  It is easily seen that in our system of ternary representation

  and a(i, j) = �
k=1

i−1 2bk

3k
+

0
3 i

+ �
k=i+1

∞
2
3k

  , for some bk  = 0 or 1, k =1,2,…i−1.b(i, j) = �
k=1

i−1 2bk

3k
+

2
3 i

Hence .  We define for x ing(a(i, j)) = �
k=1

i−1 bk

2
+

0
2 i

+ �
k=i+1

∞
1
2k

= �
k=1

i−1 bk

2
+

1
2 i

= g(b(i, j))

I(i, j), g(x) = g(b(i, j)) = g(a(i, j)) .  We shall next show that g is a non decreasing

function, that is, g is a monotonic increasing function (not necessarily strictly

increasing).

Lemma 3.   Represent the real numbers in [0, 1] by non-terminating ternary

expansions except for 0.   In this representation suppose   and .x = �
k=1

∞ ak

3k
y = �

k=1

∞ bk

3k

Then 

1.  x = y ⇔ ai = bi for all i ≥1.

2.  x < y ⇔ a1 < b1  or there exists integer k ≥ 2 such that  ai = bi for all 1 ≤ i ≤ k −1

and  ak < bk.

Proof.   Part 1 follows from the  uniqueness of the representation of the numbers

either by the non terminating ternary expansion or by the system of representation

used above.

Suppose a1 < b1.  Then   .   Similarly, if there existsx [
a1

3
+

1
3

=
a1 + 1

3
[

b1

3
< y

integer k ≥ 2 such that  ai = bi for all 1 ≤ i ≤ k −1 and  ak < bk, then

  .x [ �
i=1

k−1 a i

3 i
+

ak

3k
+

1
3k

= �
i=1

k−1 b i

3 i
+

ak + 1
3k

[ �
i=1

k−1 b i

3 i
+

bk

3k
< y

Now if x < y, then y − x > 0.   Then by the Archimedean property of the real number

system, there exists an integer k ≥ 1 such that .     Then 
1
3k < y − x

.x [�
i=1

k a i

3 i
+

1
3k

<�
i=1

k a i

3 i
+ y − x < y [�

i=1

k b i

3 i
+

1
3k

Therefore,  .    Then a1 ≤ b1 .  For if  a1 > b1, then �
i=1

k a i

3 i
<�

i=1

k b i

3 i

a1

3
>

b1 + 1
3

>�
i=1

k b i

3 i

and so   contradicting  .   Hence either a1 < b1 or a1 = b1.  If�
i=1

k a i

3 i
>�

i=1

k b i

3 i �
i=1

k a i

3 i
<�

i=1

k b i

3 i

4
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a1 = b1,  then   Therefore, we conclude again that a2 ≤ b2.  If a2 < b2, then�
i=2

k a i

3 i
<�

i=2

k b i

3 i
.

we get the conclusion of the Lemma.   Because 

,   ai = bi  cannot hold for all 1 ≤ i ≤ k.   Thus for some j  with 1 ≤ j ≤ k�
i=1

k a i

3 i
<�

i=1

k b i

3 i

ai = bi  for 1 ≤ i < j  and aj < bj .  This completes the proof.

Next we shall see how our system of representation also gives the same conclusion.

Observe that the convention used  in our system of representation deviates from a

non-terminating expansion only if the number is zero or has two possible ternary expansions

with one of them involving no 1's.   Thus if y has a terminating expansion either y = 0 or the

terminating expansions has no 1's and ends in the number '2'.    Thus if  x < y , and  y has a

terminating ternary expansion,  

 , where bi'  is equal to 0 or 2 and bl' = 2.y =�
i=1

l−1 b i

3 i
+

2
3 l

=�
i=1

l bi
∏

3i

Then we can write    Thus if ,  x < y implies thaty =�
i=1

l−1 b i

3 i
+

1
3 l

+ �
i=l+1

∞
2
3i

=�
i=1

∞ c i

3 i
. x =�

i=1

∞ a i

3 i

there exists integer k ≥ 1 such that  ai = ci for all 1 ≤ i ≤ k −1 and  ak < ck or a1 < c1, if k = 1 .   

If k ≤ l −1, then we have ai =  ci = bi' for all 1 ≤ i ≤ k −1 and  ak < bk'.   If  k = l ,  then we have  

ai = bi' for all 1 ≤ i ≤ l −1  and al < cl = 1< 2 = bl'.  If  k > l ,  then we have  ai = bi' for all 1 ≤ i

≤ l −1 and al =  cl = 1 < 2 = bl'.  Hence, in all cases, we obtain that x < y implies that there

exists integer l ≥ k > 1 such that  ai = bi' for all 1 ≤ i ≤ k −1 and  ak < bk' or a1 < b1' .  

Now if x has the terminating ternary expansion    ,  we canx = �
i=1

p−1
a i

3 i
+

2
3p =�

i=1

p a i
∏

3 i

write it as     Hence by what we have just proved,  therex = �
i=1

p−1
a i

3 i
+

1
3p + �

i=p+1

∞
2
3 i

=�
i=1

∞ d i

3 i
.

exists integer l ≥ k > 1 such that  di = bi' for all 1 ≤ i ≤ k −1 and  dk < bk' or d1 < b1' .    If  p =1,

then d1 = 1 and if  d1 < b1' ,  b1' =2 and l must be greater than 1, otherwise x = y.  Thus if  p =1,

then a1' = 2 =b1'  and there exists an integer l ≥ k > 1 such that ai = bi' for all 1 ≤ i ≤ k −1 and  

ak '< bk' .  We  now assume that p > 1.  If  k < p,  then ai'= di = bi' for all 1 ≤ i ≤ k −1 and ak'=

dk < bk'.   If  If  k = p,  then ai'= di = bi' for all 1 ≤ i ≤ k −1 and  dk = dp = 1 < bp'.  Hence bp' = 2

and so  ap'=2 = bp'.  Then it follows that l > p and that there exists q such that p < q ≤ l  and ai'

= bi' for all 1 ≤ i ≤ q −1 and  aq < bq'.  Now we shall see that k ≤ p.   if  k > p,  then we have

ai'= di = bi' for all 1 ≤ i ≤ k −1 and  dk < bk'.  Therefore,   ai'= di = bi'  for 1 ≤ i ≤ p −1,  1 =  dp

= bp' , hence contradicting that bp' is even.  Hence we have shown that the same conclusion for

Lemma 3 is true also for our system of representation of real numbers in [0, 1] by ternary

expansion.  The converse of the statement is obvious.

We summarise what we have proved in the following lemma.
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Lemma 4.   Represent the real numbers in [0, 1] by the system of  ternary expansion

as described above.   In this representation suppose   and .  Then x = �
k=1

∞ ak
∏

3k
y = �

k=1

∞ bk
∏

3k

1.  x = y ⇔ ai' = bi' for all i ≥1.

2.  x < y ⇔ a1' < b1'  or there exists integer k ≥ 2 such that  ai' = bi' for all 1 ≤ i ≤ k −1

and  ak' < bk'.

Now we are ready to investigate the monotonicity of the function g:[0, 1] →[0, 1].

We have shown that g is a surjective map.

Proposition 5.  The map, g:[0, 1] →[0, 1], defined previously, is a bounded surjective

monotonic increasing map. That is to say  x < y  ⇒ g(x) ≤ g(y).

Proof.    We have already seen that g is surjective.  It is obviously bounded.  Now

suppose x and y are in C0 and that x < y.  Then x and y have the representation,

 and , where the ai's and bi's are either 0 or 1.  By Lemma 4 eitherx =�
i=1

∞ 2a i

3 i
y =�

i=1

∞ 2b i

3 i

a1 = 0 and b1 =1 or there exists integer k ≥ 2 such that  ai = bi for all 1 ≤ i ≤ k −1 and  

ak = 0 < bk = 1.   Note that  and .  Hence if a1 = 0 and b1 =1,g(x) =�
i=1

∞ a i

2 i
g(y) =�

i=1

∞ b i

2 i

then  .   If  there exists integer k ≥ 2 such that  ai =g(x) =
0
2

+�
i=2

∞ a i

2 i
[

1
2

+�
i=2

∞ b i

2 i
= g(y)

bi for all 1 ≤ i ≤ k −1 and  ak = 0 < bk = 1, then

.g(x) = �
i=1

k−1 a i

2 i
+

0
2k

+ �
i=k+1

∞ a i

2 i
[ �

i=1

k−1 a i

2 i
+

1
2k

+ �
i=k+1

∞ bi

2i
= g(y)

Hence, if x < y and x and y are in C0, then g(x) ≤ g(y).   Suppose now that x < y,  x ∉

C0  and y is in C0.  Then x ∈ I(i, j) = (a(i, j), b(i, j)) for some (i, j). Obviously  x < y

implies that a(i, j) < y and so since both a(i, j) and y are in C0 by what we have just

proved, g(a(i, j)) ≤ g(y).  Therefore, by definition of g, g(x) = g(a(i, j)) ≤ g(y).  

Similarly, if x < y,  y ∉ C0  and x is in C0, then y ∈ I(i, j) = (a(i, j), b(i, j)) for some (i,

j) and x < b(i, j).  Again since both x and b(i, j) are in C0, we have g(x) ≤ g(b(i, j) ) =

g(y).

Suppose now x < y, x,  y ∉ C0.   Then for some (i,  j) and  (i ',  j' ) , x ∈ I(i, j), y ∈ I(i ' ,

j ').  Then  a(i, j) < x < y < b(i ', j' ).  Therefore, since both a(i, j)  and b(i ', j' ) are in

C0, g(a(i, j)) ≤  g(b(i', j' ) and so g(x) = g(a(i, j)) ≤ g(b(i', j' ) = g(y).  Hence g is

monotonically increasing.  This completes the proof.

Next we shall state a general result concerning bounded monotone function whose

range is an interval.

Theorem 6.  Suppose   f : [a, b] →R  is an increasing function.   Then f  is

continuous, if and only if, the range of  f , J =  f ([a, b]) is an interval.
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Proof.   If  f  is  continuous, then by the Intermediate Value Theorem, the range f ([a,

b]) is an interval.  Now if  f  is increasing, then by Theorem 2 of  Monotone Function,

Function of Bounded Variation, Fundamental Theorem of Calculus,  the discontinuity

of  f can only be jump discontinuity.  Suppose the range J is an interval.  Suppose  f  is

discontinuous at x = k in (a, b).    Then we have

    and  .
xdk−
lim f (x) = f (k−) [ f (k) [ f (k+) =

xdk+
lim f (x) f (k−) < f (k+)

Note that for any y < k,  because  f  is increasing  .   Also for any z > k, f (y) [ f (k−)

.   Therefore, ( f ( [a, k)∪(k, b]))∩( f (k − ),  f (k + )) =∅.  But byf (k+) < f (z)

assumption the range J  is an interval and so  ( f (k − ),  f (k + )) ⊆ J  and ( f ( [a, k)∪(k,

b]))∩( f (k − ),  f (k + )) = (J − { f (k)})∩( f (k − ),  f (k + ))≠ ∅.  This contradicts 

( f ( [a, k)∪(k, b]))∩( f (k − ),  f (k + )) =∅ and so we have  f (k − ) =  f (k + ) =  f (k) and

so    and that means  f  is continuous at x = k.   We can similarly derive
xdk
lim f (x) = f (k)

a contradiction when k = a or b.  If  f is not continuous at k = a, then  f (a) <  f (a+)  

and so  ( f (a) ,  f (a+))∩J = ∅,  contradicting ( f (a) ,  f (a+)) ⊆ J.  Thus  f  must be

continuous at x = a.  If  f is not continuous at k = b, then  f (b−) <  f (b)  and so              

( f (b−) ,  f (b))∩J = ∅,  contradicting ( f (b−) ,  f (b)) ⊆ J.  Thus,  f  must be continuous

at x = b.   Therefore,  f  cannot have any discontinuity and so it is continuous.  This

completes the proof.

Proposition 7.   The function  g:[0, 1] →[0, 1] is continuous.

Proof.   By  Proposition 5,  the map g is onto and increasing.  Since the range [0, 1] is

an interval, by Theorem 6,  g is continuous.

Next we shall reveal some interesting facts concerning the Cantor set C0 .

Theorem 8.   The Cantor set C0 is

(1)  compact,

(2)  no where dense, i.e., it contains no open intervals,

(3)  its own boundary points,

(4)  perfect, i.e.,it is its own set of accumulation point,

(5) totally disconnected and

(6)  between any two points in C0 , there is an open interval not contained in C0.

Proof.   (1) Since C0 is closed and bounded, it is compact by the Heine-Borel

Theorem.

(2)  Let   denote the union of the collection of disjoint openGp =4
k=1

p

4
j=1

2k−1

I(k, j)

intervals deleted after the p-th stage in the construction.  Suppose  C0 contains an open

interval, then there is a point x in C0  and a δ > 0 such that (x −δ , x + δ)⊆ C0.   Hence

(x −δ , x + δ)∩G = (x −δ , x + δ)∩([0, 1] − C0 ) = ∅.  Since (x −δ , x + δ) and G are

disjoint and are contained in [0,1],  µ(G) + µ((x −δ , x + δ))≤ 1.  Hence 1 + 2δ ≤ 1
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implies δ ≤ 0, contradicting δ > 0.  Therefore, C0 cannot contain any open interval and

so is nowhere dense.  (We can also use µ((x −δ , x + δ)) ≤ µ(C0) = 0 and so 2δ ≤ 0

contradicting δ > 0.)

(3).  C0 is closed, by a characterization of closed set, because C0 = [0, 1] − G =  

  and each [0, 1] − Gp is closed.  Hence the closure of  C0  is C0  and so3
p=1

∞

([0, 1] − Gp)

its set of cluster points C0' is contained in C0.   Let x be in [0, 1].   Then for any open

set  J containing  x, say J = U ∩ [0, 1], where U is an open interval,  J is non empty

and contains more than one point and J ∩ G ≠ ∅ because J ⊄ [0, 1] − G = C0  by part

(2).  This is because if J ⊆ C0 , then the interior of  J, which is a non empty open

interval is contained in C0 contradicting part (2).  Thus the closure of G,   = [0, 1].   
_

G

Therefore, the boundary of C0,  .  ØC0 =
_

C0 3
_

G= C0 3 [0, 1] = C0

(4)  Since C0 is closed the set of accumulation points of C0,  C0'  is a subset of

C0.   We claim that C0' = C0 .  Let x ∈ C0 .   Suppose x ∉  C0'  .  Then   there exists δ >

0, such that  ( x − δ, x + δ) ∩ C0 = {x}.    Thus  ( x − δ, x + δ)∩([0, 1] - C0) =( x − δ,  x)

∪ (x, x + δ).   That means (x − δ,  x) ⊆ ([0, 1] − C0) =    and so G =4
k=1

∞

4
j=1

2k−1

I(k, j)

(x − δ,  x) =  4
k=1

∞

4
j=1

2k−1

I(k, j) 3 (x − �, x).

Since the collection  is a collection of disjoint{I(k, j) : k = 1,£,∞; j = 1, 2,£, 2k−1}

open intervals, and  (x − δ,  x) is connected, (x − δ,  x) ⊆ I(i, j)  for some i and j.    This

is because otherwise (x − δ,  x) would be a disjoint union of open intervals

contradicting that it is connected.  Since x ∉  I(i, j),  x = sup I(i, j) = b(i, j).   Similarly,

(x,  x+δ) =  4
k=1

∞

4
j=1

2k−1

I(k, j) 3 (x, x + �).

We deduce as before then that for some p and q , (x, x + δ) ⊆ I(p, q).  Thus because   x

∉  I(p, q),  x = inf I(p, q) = a(p, q).   Therefore,  a(p, q) = x = b(i, j), contradicting that

a(p, q)  ≠ b(i, j) by virtue of the definition of  I(i, j)'s .   Therefore x ∈ C0' .  Thus C0' =

C0 .

(5)  Since by (2) C0 does not contain any open interval and since the connected

subsets of  R are either the singleton sets or the intervals, the only components of C0

are the singletons {x}, x ∈ C0.    Therefore,  C0 is totally disconnected.

(6)  Suppose  x < y and x , y are in C0.   Then (x, y)∩([0, 1] − C0) ≠ ∅ and is a

disjoint union of open intervals and so (x, y) contains at least one open interval.

The Cantor Set Ck

Now we turn our attention towards constructing a Cantor set of positive measure in [0,

1].   Indeed the construction also applies to give a different Cantor set of measure zero.  The

procedure of deleting the middle portion of each of the remaining closed sets is followed here

but using a different specified length.  (This idea can be generalised by not  requiring  the

intervals to be deleted to be the middle portion, to give a generalised Cantor set.)  Hence the
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construction is canonical.  Let k be any real number with 0 ≤ k < 1.  Let  δ = (1 − k) > 0.   Start

with the closed unit interval [0, 1].  Let I(1,1) be the middle open interval of length δ/2.   

Then if we write I(1,1) = (a(1,1), b(1,1)), then a(1,1) = 1/2 − δ/4.  Then let G1 = I(1,1) and F1

= [0,1] − G1.  The first stage is to form F1 .   Then F1 is the disjoint union of 2 closed intervals

each of length equal to a(1,1) = 1/2 − δ/4.  Let I(2,1) and I(2,2) be respectively the middle

open intervals, each of length δ/23, of the 2 closed intervals of F1 .   The open intervals are

ordered from the left to the right by the second indices.  Let G2 = I(1,1)∪I(2,1)∪I(2,2).

Suppose  I(2,1) = (a(2,1), b(2,1)).  Then a(2,1) = 1/2 a(1,1) − δ/24 = 1/22 −δ(1/22 − 1/24).  The

second stage is to form F2 = [0,1] − G2 =  [0,1] − G1 − I(2,1)∪I(2,2).  Then F2 is the disjoint

union of 22 closed intervals each of length equaling  a(2,1) = 1/22 −δ(1/22 − 1/24).  Then let

I(3, j), j =1,..,22 be respectively the middle portion of length δ/25 of the 22 closed intervals

again ordered by the second indices, from left to right in the sense that I(3, j) < I(3, k), if and

only if, j < k, if and only if,,there exist x in I(3, j) and y in I(3, k) such that x < y.  Stage three

is to remove from F2 these 22 open intervals, that is to form F3 = F2 − ∪{ I(3, j), j =1,..,22 } =

[0, 1] − G3 , where .   Thus F3 consists of 23 disjoint closed intervals, each ofG3 =4
k=1

3

4
j=1

2k−1

I(k, j)

 length equaling a(3,1), where I(3,1) = (a(3,1), b(3,1)).  It is easily seen that  a(3,1) = 1/23

−δ(1/23 − 1/26).  Let   ,  where I(4, j), j =1,..,23 are the middle open intervalsH4 = 4
j=1

24−1

I(4, j)

each of length δ/27,  of each of the disjoint closed intervals.   Continuing in this way, at the

n-th stage we have , where I(n, j) = (a(n, j), b(n, j)) is an open interval ofHn = 4
j=1

2n−1

I(n, j)

length δ/22n−1  and the I(n, j)'s are ordered from left to right by the second indices according to

the natural ordering of elements in the intervals.   Note that a(n,1) = 1/2 a(n−1,1)−δ(1/22n)

=1/2n −δ(1/2n−1/22n).  We obtain Fn by deleting from Fn−1 the uion of open intervals Hn.   

Hence Fn = Fn-1− Hn = [0,1] − Gn , where   and Fn  is a disjoint union of 2nGn =4
k=1

n

4
j=1

2k−1

I(k, j)

closed intervals each of length equaling a(n,1) = 1/2n −δ(1/2n−1/22n).  To obtained Fn+1 , we

shall delete from Fn open intervals each of length equaling δ/2 2n+1 from the  2n closed

intervals.   That is, if we let , where I(n+1, j),  j =1,..,2n  are these openHn+1 =4
j=1

2n

I(n + 1, j)

intervals to be deleted, then Fn+1 = Fn − Hn+1 =[0, 1] − Gn+1 , where  

.     Obviously  Fn+1  is a collection of disjoint closed intervals,Gn+1 =4
k=1

n+1

4
j=1

2k−1

I(k, j) = 4
k=1

n+1

Hk

each of length equal to a(n+1,1).   Note also that for each n ≥ 1,  Fn+1 ⊆ Fn.

Let  .   Then G is a disjoint union of open intervals.  TheG =4
k=1

∞

4
j=1

2k−1

I(k, j) =4
k=1

∞

Hk

length or measure of  Hk is given by  .   Thus the measure or length of G, 2k−1 �
22k−1

=
�
2k

�(G) = �
k=1

∞

�(Hk) = �
k=1

∞
�
2k

=
�
2 �k=1

∞
1

2k−1
=
�
2 kd∞

lim
1−

1
2

k

1−
1
2

= �.

The Cantor set  Ck is defined to be the complement of G in [0, 1].  That is,  

. Thus theCk = [0, 1] − G = [0, 1] −4
k=1

∞

4
j=1

2k−1

I(k, j) = [0, 1] −4
k=1

∞

Gk =3
k=1

∞

([0, 1] − Gk ) =3
k=1

∞

Fk

measure of Ck  is equal to µ([0,1]) − µ(G) = 1 − δ = k.
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Then Ck satisfies the properties stated in Theorem 8.

 

Theorem 9.   The Cantor set Ck defined above for 0 ≤ k < 1  is  uncountable and

(1)  compact,

(2)  no where dense, i.e., it contains no open intervals,

(3)  its own boundary points,

(4)  perfect, i.e., is its own set of accumulation point,

(5)  totally disconneceted and

(6)  between any two points in Ck , there is an open interval not contained in Ck.

Proof.   Part (1) and part (3) to part(6) are proved in exactly the same way as in

Theorem 8.  Part (2) needs a different approach to prove.  Suppose Ck contains an

open interval say (c, d).  Then   implies that (c, d)⊆ Fk for each k ≥(c, d) ` Ck =3
k=1

∞

Fk

1.  Now since , there exists  an integer N such that k > N  
kd∞
lim ( 1

2k
− �( 1

2k
− 1

22k
)) = 0

implies that    Now we fix a k > N.    Note first that  (c,
1
2k

− �( 1
2k

− 1
22k

) < d − c.

d)∩Fk =(c, d).   Since the non-trivial interval (c, d) is connected and Fk is a disjoint

union of closed intervals, (c, d) must be contained in one of these closed intervals,

each of length  .   Hence,  contradicting  1
2k

− �( 1
2k

− 1
22k

) d − c [
1
2k

− �( 1
2k

− 1
22k

)

  Therefore, Ck does not contain an open interval.  (The main
1
2k

− �( 1
2k

− 1
22k

) < d − c.

thrust of the argument is that the Fk consists of disjoint closed intervals, whose

maximum length tends to zero as k tends to infinity.)  This proves part (2).  That Ck is

uncountable is a consequence of the following proposition.

Proposition 10.  There is a continuous strictly increasing bijective map f  : [0, 1] →

[0,1] mapping the Cantor set Ck onto the the Cantor set C0 defined earlier using the

"deleted middle third intervals" construction.

Proof.   This is given by Lemma 1 of Composition and Riemann Integrability.  Note

that the proof given there applies also to the case k = 0.

Since  C0 constructed using the "deleted middle third intervals" construction is

uncountable and  the function  f  given by Proposition 10 maps Ck bijectively onto C0,

Ck is also uncountable.
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