1. By using the binomial series expansion for $\frac{1}{\sqrt{1-x^{2}}}$, show that

$$
\sin ^{-1}(x)=x+\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots 2 n} \frac{x^{2 n+1}}{2 n+1} \text {, for }|x|<1
$$

2. Using question 1 , or otherwise, show that

$$
\cos ^{-1}(x)=\frac{\pi}{2}-x-\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots 2 n} \frac{x^{2 n+1}}{2 n+1} \text {, for }|x|<1
$$

3. Let $f_{1}(x)=1$ on $[0,1]$, i.e., f_{1} is the constant function 1 on $[0,1]$. For $\mathrm{n} \geq 2$, define

$$
f_{n}(x)=\left\{\begin{aligned}
& n x, 0 \leq x<\frac{1}{n} \\
& 2-n x, \frac{1}{n} \leq x<\frac{2}{n} \\
& 0, \frac{2}{n} \leq x \leq 1
\end{aligned}\right.
$$

Show that $f_{n}(x)$ converges to some function $f(x)$ on $[0,1]$ but that the convergence is not uniform.
4 Show that $f(x)=\sum_{n=0}^{\infty} e^{-n x} \cos (n x)$ converges uniformly on any subset of \mathbf{R}, which is bounded below by a positive constant. Show that

$$
f^{\prime}(x)=-\sum_{n=0}^{\infty} n e^{-n x}[\cos (n x)+\sin (n x)] \text { for all } x>0
$$

5 Prove the following Ratio Test for uniform convergence.
Suppose $u_{n}(x)$ are bounded non-zero functions on the set S and that there exists $r<1$ such that

$$
\left|\frac{u_{n+1}(x)}{u_{n}(x)}\right| \leq r \text { for all } n \geq N \text {, some integer } N \text { and all } x \text { in S. }
$$

Then $\sum_{n=1}^{\infty} u_{n}(x)$ converges uniformly on S.
6. If $\sum_{n=0}^{\infty} a_{n} X^{n}$ has a radius of convergence $R>0$, denote its sum by $f(x)$, then show that $a_{k}=\frac{f^{(k)}(0)}{k!}$ for each integer $k>0$.
7. Show that the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}-n \sin (n x)}$ is uniformly convergent on \mathbf{R}.
8. (Optional). Show that if f is continuous on [0,1], then there is a sequence of polynomial functions $p_{n}(x)$ such that $f(x)=\sum_{n=1}^{\infty} p_{n}(x)$. [Hint: use Weierstrass Approximation Theorem.]

