Level 2000 Semester 2 (2003/2004) MA2108 Advanced Calculus II Tutorial 8

1. Test the following for convergence and uniform convergence, in the respective domain..
(i) $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n}, 0 \leq x \leq 1$
(ii)) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+x}, 0 \leq x<\infty$
(iii) $\sum_{n=1}^{\infty} n e^{-n x} \sin (n x), x \geq a>0$.
2. Show, by establishing the uniform convergence of the series under the integral sign on the left of each of the following statements, that the equality hold in each case.
(i) $\int_{0}^{\pi}\left(\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}}\right) d x=\sum_{n=1}^{\infty} \frac{2}{(2 n-1)^{3}}$
(ii) $\int_{1}^{2} \sum_{n=1}^{\infty}\left(\frac{\ln (n x)}{n^{2}}\right) d x=\sum_{n=1}^{\infty} \frac{\ln (4 n)-1}{n^{2}}$
(iii) $\int_{1}^{2}\left(\sum_{n=1}^{\infty} n e^{-n x}\right) d x=\frac{e}{e^{2}-1}$
(Hint: Show that each of the series under the integral sign is dominated by a convergent constant series and apply Weierstrass M-test)
3. Show, by establishing the uniform convergence of the term by term differentiated series, each of the following.
(i) $\frac{d}{d x}\left(\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{3}}\right)=\sum_{n=1}^{\infty} \frac{\cos (n x)}{n^{2}}$ for all real x. (ii) $\frac{d}{d x}\left(\sum_{n=1}^{\infty} \frac{n}{x^{n}}\right)=-\sum_{n=1}^{\infty} \frac{n^{2}}{x^{n+1}}$ for $|x|>1$.
(iii) $\frac{d}{d x}\left(\sum_{n=1}^{\infty} \frac{1}{n^{3}\left(1+n x^{2}\right)}\right)=-2 x \sum_{n=1}^{\infty} \frac{1}{n^{2}\left(1+n x^{2}\right)^{2}}$ for all real x.

4 (i) Use Abel's Test to show that the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{e^{-n x}}{n}$ converges uniformly on $[0, \infty)$.
Explain, why if $f(x)=\sum_{n=1}^{\infty}(-1)^{n} \frac{e^{-n x}}{n^{2}}$, then $f^{\prime}(x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{e^{-n x}}{n}$ for $x \geq 0$.
(ii) Use Dirichlet's Test to show that $f(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+x^{2}}$ converges uniformly for all x on \mathbf{R}.

Explain why we can differentiate term by term to get $f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2 x}{\left(n+x^{2}\right)^{2}}$
5. Knowing your theorem.

Suppose $\left(f_{n}\right)$ is a sequence of differentiable functions defined on an interval [a,b]. Suppose that f_{n} converges pointwise to a function f. Suppose each $f_{n}{ }^{\prime}$ is continuous on $[a, b]$ and f_{n} ' converges uniformly to a function g on $[a, b]$. Give justifications or reasons for the following propositions.
(i) The function g is continuous on $[a, b]$.
(ii) Each function f_{n} ' and the function g are integrable on $[a, b]$.
(iii) $\int_{a}^{x} g=\lim _{n \rightarrow \infty} \int_{a}^{x} f_{n}^{\prime}$
(iv) $\lim _{n \rightarrow \infty} \int_{a}^{x} f_{n}^{\prime}=\lim _{n \rightarrow \infty}\left(f_{n}(x)-f_{n}(a)\right)$
(v) $\int_{a}^{x} g=\lim _{n \rightarrow \infty}\left(f_{n}(x)-f_{n}(a)\right)=f(x)-f(a)$
(vi) $g=f^{\prime}$
(vii) f_{n} converges uniformly to f on $[a, b]$.

