1. Find all those x for which the following series converge.
(i) $\sum_{n=1}^{\infty} \frac{n^{2}(n+2)}{(n+5) 3^{n}} x^{n}$
(ii) $\sum_{n=1}^{\infty} \frac{3 \sqrt{n}}{n} x^{n}$
(iii) $\sum_{n=1}^{\infty} \frac{2^{n}+3^{n}}{n^{2}}(2 x+1)^{n}$
(Hint: Use ratio test.)
2. Use trigonometric formula to prove that $4 \sin ^{3}(x)=3 \sin (x)-\sin (3 x)$. Use this and the power series expansion for $\sin (x)$ to show that
(i) $\sin ^{3}(x)=\frac{3}{4} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{3^{2 n}-1}{(2 n+1)!} x^{2 n+1}$ for all real x.
(ii) Use partial fraction and obvious series expansion of the resulting rational functions, or otherwise, show that $\frac{x}{1+x-2 x^{2}}=\frac{1}{3} \sum_{n=1}^{\infty}\left[1-(-2)^{n}\right] x^{n}$ for $|x|<1 / 2$.
3. Assuming that $y^{\prime \prime}+y=0, y(0)=0, y^{\prime}(0)=1$ has a solution given by a power series. Find the power series and determine its radius of convergence.
(Hint: Use the three conditions to obtain relation among the coefficients of the power series and solving the relation.)
4. Find the radius of convergence of $. y(x)=a_{0}\left(1-x^{2}\right)-a_{1} \sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)(2 n-1)}$, where a_{0} and a_{1} are arbitrary real numbers.
Show that $y(x)$ satisfies the differential equation $\left(1-x^{2}\right) y^{\prime \prime}=-2 y$ on its interval of convergence.
5. Show that $f_{n}(x)=\left(1-x^{2}\right) x^{n}$ converges uniformly on $[-1,1]$ and find its limiting function g. Hence conclude that $\int_{0}^{1} f_{n}(x) d x \rightarrow 0$.
6. Explain what results you would use to show that $\sum_{n=1}^{\infty} \frac{e^{-n x^{2}}}{n^{2}}$ is continuous on \mathbf{R}.
