1. Let A be a non-empty subset of \mathbf{R}. Suppose $f: A \rightarrow \mathbf{R}$ is a function. Prove that the function f is continuous at a point a in A if and only if for every sequence (a_{n}) in A converging to $a,\left(f\left(a_{n}\right)\right)$ converges to $f(a)$.
2. Using question 1 , show that the function $f:[0,1] \rightarrow \mathbf{R}$ defined by

$$
f(x)=\left\{\begin{aligned}
x, & x \text { rational } \\
1-x, & x \text { irrational }
\end{aligned}\right\}
$$

is discontinuous at all x in $[0,1]$ except at the point $1 / 2$.
3. Suppose $f:[0,1] \rightarrow \mathbf{R}$ is continuous and has the property that $f(x)=x^{2}$ for rational x. Prove that f is identically equal to x^{2}.
4. Use the Bolzano-Weierstrass Theorem to prove that if f is continuous on $[a, b]$, then f is bounded on $[a, b]$. (Hint: Suppose f is unbounded. Find a sequence $\left(a_{n}\right)$ such that $f\left(a_{n}\right)>n$ and use question 1.)
5. Suppose $\sum a_{n}$ and $\sum b_{n}$ are two series of positive terms. Suppose $a_{n} / b_{n} \rightarrow k$ and $k>0$. Prove that $\sum a_{n}$ is convergent if and only $\sum b_{n}$ is convergent.
Suppose $a_{n} / b_{n} \rightarrow \infty$. Prove that if $\sum b_{n}$ is divergent, then $\sum a_{n}$ is divergent.
6. Suppose $\sum a_{n}$ and $\sum b_{n}$ are absolutely convergent , then $\sum a_{n} b_{n}$ is also absolutely convergent. Hence deduce that $\sum a_{n}$ converges absolutely implies that $\sum a_{n}{ }^{2}$ is convergent. Is the converse true?
7. Using question 5 or otherwise, test the convergence of the following series:
(i) $\sum_{1}^{\infty} \frac{1}{1+n^{2}}$
(ii) $\sum_{1}^{\infty} \frac{n+1}{n(n+2)}$
(iii) $\sum_{1}^{\infty} \frac{1}{n} \sin \left(\frac{1}{n}\right)$
(iv) $\sum_{1}^{\infty} \frac{1}{2 n+5}$
(v) $\sum_{1}^{\infty}\left(\frac{n+1}{n^{2}+1}\right)^{3}$
(vi) $\sum_{1}^{\infty} \frac{\ln (n)}{\sqrt{n+1}}$
8. Test the following series for convergence.
(i) $\sum_{1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$
(ii) $\sum_{1}^{\infty} \frac{n!}{n^{n}}$
(iii) $\sum_{1}^{\infty} \frac{n^{2}}{2^{n}}$
(iv) $\sum_{1}^{\infty} \frac{2^{n}}{n!}$
(v) $\sum_{2}^{\infty} \frac{1}{n \ln (n)}$
9. Determine the convergence of the following series, say whether the convergence is absolute or conditional.
(i) $\sum_{1}^{\infty}(-1)^{n+1} \frac{n+3}{n(n+1)}$
(ii) $\sum_{1}^{\infty}(-1)^{n} \frac{\ln (n)}{n}$
(iii) $\sum_{1}^{\infty}(-1)^{n+1} \frac{n}{2^{n}}$
(iv) $\sum_{1}^{\infty}(-1)^{n+1} \frac{x^{2 n-1}}{(2 n-1)!}$, any x.
10. Investigate the convergence of $\sum_{1}^{\infty} \frac{\sin (n x)}{n^{p}}$ for $p>0$.

