National University of Singapore

Department of Mathematics

Level 2000 Semester 2 (2003/2004) MA2108 Advanced Calculus II Tutorial 4

- 1. Let A be a non-empty subset of **R**. Suppose $f: A \to \mathbf{R}$ is a function. Prove that the function f is continuous at a point a in A if and only if for every sequence (a_n) in A converging to a, $(f(a_n))$ converges to f(a).
- 2. Using question 1, show that the function $f: [0, 1] \rightarrow \mathbf{R}$ defined by

$$f(x) = \begin{cases} x, & x \text{ rational} \\ 1 - x, & x \text{ irrational} \end{cases}$$

is discontinuous at all x in [0, 1] except at the point 1/2.

- Suppose $f: [0, 1] \rightarrow \mathbf{R}$ is continuous and has the property that $f(x) = x^2$ for rational x. Prove that f 3. is identically equal to x^2 .
- Use the Bolzano-Weierstrass Theorem to prove that if f is continuous on [a, b], then f is bounded 4. on [a, b]. (Hint: Suppose f is unbounded. Find a sequence (a_n) such that $f(a_n) > n$ and use question 1.)
- Suppose $\sum a_n$ and $\sum b_n$ are two series of positive terms. Suppose $a_n / b_n \rightarrow k$ and k > 0. Prove 5. that $\sum a_n$ is convergent if and only $\sum b_n$ is convergent. Suppose $a_n / b_n \to \infty$. Prove that if $\sum b_n$ is divergent, then $\sum a_n$ is divergent.
- 6. Suppose $\sum a_n$ and $\sum b_n$ are absolutely convergent, then $\sum a_n b_n$ is also absolutely convergent. Hence deduce that $\sum a_n$ converges absolutely implies that $\sum a_n^2$ is convergent. Is the converse true?
- Using question 5 or otherwise, test the convergence of the following series: 7.

(i)
$$\sum_{1}^{\infty} \frac{1}{1+n^2}$$
 (ii) $\sum_{1}^{\infty} \frac{n+1}{n(n+2)}$ (iii) $\sum_{1}^{\infty} \frac{1}{n} \sin(\frac{1}{n})$
(iv) $\sum_{1}^{\infty} \frac{1}{2n+5}$ (v) $\sum_{1}^{\infty} \left(\frac{n+1}{n^2+1}\right)^3$ (vi) $\sum_{1}^{\infty} \frac{\ln(n)}{\sqrt{n+1}}$

Test the following series for convergence. 8.

(i)
$$\sum_{1}^{\infty} \frac{(n!)^2}{(2n)!}$$
 (ii) $\sum_{1}^{\infty} \frac{n!}{n^n}$ (iii) $\sum_{1}^{\infty} \frac{n^2}{2^n}$ (iv) $\sum_{1}^{\infty} \frac{2^n}{n!}$ (v) $\sum_{2}^{\infty} \frac{1}{n \ln(n)}$

Determine the convergence of the following series, say whether the convergence is absolute or 9. conditional.

(i)
$$\sum_{1}^{\infty} (-1)^{n+1} \frac{n+3}{n(n+1)}$$
 (ii) $\sum_{1}^{\infty} (-1)^n \frac{\ln(n)}{n}$ (iii) $\sum_{1}^{\infty} (-1)^{n+1} \frac{n}{2^n}$ (iv) $\sum_{1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!}$, any *x*.
Investigate the convergence of $\sum_{1}^{\infty} \frac{\sin(nx)}{n^p}$ for $p > 0$.

10. Investigate the convergence of
$$\sum_{i=1}^{n}$$