Level 2000 Semester 2 (2003/2004) MA2108 Advanced Calculus II
Tutorial 2

1. Let $a_{n}=\left\{\begin{array}{ll}1+\frac{1}{n}, & n \text { odd } \\ 1-\frac{1}{2^{n}}, & n \text { even }\end{array}\right.$.
(i) Find positive integer N_{1} such that $n>N_{1} \Rightarrow\left|a_{n}-1\right|<0.01$.
(ii) Find positive integer N_{2} such that $n>N_{2} \Rightarrow\left|a_{n}-1\right|<0.000016$.
(iii) Given ε in $\mathrm{R}, \varepsilon>0$, find positive integer N such that

$$
n>N \Rightarrow\left|a_{n}-1\right|<\varepsilon .
$$

(Hint: Prove $2^{n}>n$ for any n in \mathbf{N}. Let [x] be the greatest integer $\leq x$, i.e. [$\left.x\right]=n \in \mathbf{N}$ and $n \leq x<$ $n+1$. Then take $N=[1 / \varepsilon]$.)
2. Prove that a sequence cannot converge to two different limits.
3. Prove that if $a_{n} \rightarrow a$, then $\left|a_{n}\right| \rightarrow|a|$. If ($\left|a_{n}\right|$) converges, show by a counter example that (a_{n}) need not converge.
4. (Existence of n-th root.). Suppose $a \geq 0$ and $n \in \mathbf{N}$, prove that there is a unique b in $\mathbf{R}, b \geq 0$ such that $b^{n}=a$. (Use the completeness property of \mathbf{R}.)
Prove by induction or otherwise, that $h>0 \Rightarrow(1+h)^{n} \geq 1+n h$ and deduce that $a>1 \Rightarrow 1<a^{1 / n} \leq 1+\frac{a-1}{n}$ and conclude that $a^{1 / n} \rightarrow 1$.
Show that $a>1 \Rightarrow \operatorname{Lim}_{n \rightarrow \infty} a^{n}=+\infty$. I.e., for any $K>0$, there exists an integer N such that $n \geq N \Rightarrow a_{n}$ $>K$.
Show that if $a_{n} \rightarrow+\infty$ and $a_{n} \neq 0$ for all n, then $1 / a_{n} \rightarrow 0$.
Using these results find $\operatorname{Lim}_{n \rightarrow \infty} a^{n}$ and $\operatorname{Lim}_{n \rightarrow \infty} a^{1 / n}$ for $a=1,0<a<1$ and $a=0$.
5. Prove the following
(i) $\operatorname{Lim}_{n \rightarrow \infty} \frac{n}{n+1}=1$
(ii) $\operatorname{Lim}_{n \rightarrow \infty} \frac{n+1}{n^{3}+4}=0$.
6. Use Squeeze Theorem or the Comparison test to prove
(i) $\operatorname{Lim}_{n \rightarrow \infty} \frac{\sin (n)}{n}=0$
(ii) $\operatorname{Lim}_{n \rightarrow \infty} \frac{n!}{n^{n}}=0$
(iii) $\operatorname{Lim}_{n \rightarrow \infty} \sqrt[8]{n^{2}+1}-\sqrt[4]{n+1}=0$
(iv) $\operatorname{Lim}_{n \rightarrow \infty} n^{1 / n}=1$ [Hint: write let $h_{n}=n^{1 / n}-1$ and show that $n=\left(1+h_{n}\right)^{n} \geq 1+\frac{n(n-1)}{2} h_{n}^{2}$]
(v) $\operatorname{Lim}_{n \rightarrow \infty} \frac{a(n)}{n}=0$, where $\alpha(n)=$ number of primes dividing n. [Hint: show $\alpha(n) \leq \sqrt{ }$.]
7. Show that if $\left(a_{n}\right)$ converges to 0 and $\left(b_{n}\right)$ is a bounded sequence, then $\left(a_{n} b_{n}\right)$ converges to 0 . Hence, or otherwise, show that $\operatorname{Lim}_{n \rightarrow \infty}\left(\frac{2 n-1}{3 n+1}\right)^{n}=0$.
8. Find the limit of the following sequences.
$\begin{array}{ll}\text { (i) }\left(n\left(1-\left(1-\frac{a}{n}\right)^{1 / 3}\right)\right), a \leq 1 & \text { (ii) }\left(a_{n}\right) \text {, where } a_{n}=\frac{1}{n^{2}+1}+\frac{1}{n^{2}+2}+\cdots+\frac{1}{n^{2}+n}\end{array}$
[Hint : $1-k^{3}=(1-k)\left(1+k+k^{2}\right)$. Use Squeeze Theorem.]

