Department of Mathematics

Level 2000 Semester 2 (2003/2004) MA2108 Advanced Calculus II Tutorial 2

1. Let $a_n = \begin{cases} 1 + \frac{1}{n}, & n \text{ odd} \\ 1 - \frac{1}{2^n}, & n \text{ even} \end{cases}$.

- (i) Find positive integer N_1 such that $n > N_1 \Longrightarrow |a_n 1| < 0.01$.
- (ii) Find positive integer N_2 such that $n > N_2 \Rightarrow |a_n 1| < 0.000016$.
- (iii) Given ϵ in R, $\epsilon > 0$, find positive integer N such that

$$n > N \implies |a_n - 1| < \varepsilon.$$

(Hint: Prove $2^n > n$ for any n in **N**. Let [x] be the greatest integer $\le x$, i.e. $[x] = n \in \mathbf{N}$ and $n \le x < n + 1$. Then take $N = [1/\varepsilon]$.)

- 2. Prove that a sequence cannot converge to two different limits.
- 3. Prove that if $a_n \to a$, then $|a_n| \to |a|$. If $(|a_n|)$ converges, show by a counter example that (a_n) need not converge.
- 4. (Existence of *n*-th root.). Suppose $a \ge 0$ and $n \in \mathbb{N}$, prove that there is a unique *b* in \mathbb{R} , $b \ge 0$ such that $b^n = a$. (Use the completeness property of \mathbb{R} .)

Prove by induction or otherwise, that $h > 0 \Longrightarrow (1 + h)^n \ge 1 + nh$ and deduce that

 $a > 1 \Longrightarrow 1 < a^{1/n} \le 1 + \frac{a-1}{n}$ and conclude that $a^{1/n} \to 1$.

Show that $a > 1 \Rightarrow \lim_{n \to \infty} a^n = +\infty$. I.e., for any K > 0, there exists an integer N such that $n \ge N \Rightarrow a_n > K$.

Show that if $a_n \to +\infty$ and $a_n \neq 0$ for all *n*, then $1/a_n \to 0$.

Using these results find $\lim_{n \to \infty} a^n$ and $\lim_{n \to \infty} a^{1/n}$ for a = 1, 0 < a < 1 and a = 0.

5. Prove the following

(i)
$$\lim_{n \to \infty} \frac{n}{n+1} = 1$$
 (ii) $\lim_{n \to \infty} \frac{n+1}{n^3+4} = 0.$

- 6. Use Squeeze Theorem or the Comparison test to prove
 - (i) $\lim_{n \to \infty} \frac{\sin(n)}{n} = 0$ (ii) $\lim_{n \to \infty} \frac{n!}{n^n} = 0$ (iii) $\lim_{n \to \infty} \sqrt[8]{n^2 + 1} \sqrt[4]{n + 1} = 0$
 - (iv) $\lim_{n \to \infty} n^{1/n} = 1$ [Hint: write let $h_n = n^{1/n} 1$ and show that $n = (1 + h_n)^n \ge 1 + \frac{n(n-1)}{2}h_n^2$]
 - (v) $\lim_{n \to \infty} \frac{\alpha(n)}{n} = 0$, where $\alpha(n) =$ number of primes dividing *n*. [Hint: show $\alpha(n) \le \sqrt{n}$.]
- 7. Show that if (a_n) converges to 0 and (b_n) is a bounded sequence, then $(a_n b_n)$ converges to 0. Hence, or otherwise, show that $\lim_{n \to \infty} \left(\frac{2n-1}{3n+1}\right)^n = 0.$
- 8. Find the limit of the following sequences. (i) $\left(n\left(1-\left(1-\frac{a}{n}\right)^{1/3}\right)\right)$, $a \le 1$ (ii) (a_n) , where $a_n = \frac{1}{n^2+1} + \frac{1}{n^2+2} + \dots + \frac{1}{n^{2}+n}$ [Hint : $1 - k^3 = (1-k)(1+k+k^2)$. Use Squeeze Theorem.]