Department of Mathematics

Level 2000 Semester 2 (2003/2004) MA2108 Advanced Calculus II Tutorial 10

1. Suppose $\sum a_n$ is absolutely convergent. Let $\sum b_n$ be a rearrangement of the same series. Let

 $U_n = \frac{1}{2} (|a_n| + a_n)$, $V_n = \frac{1}{2} (|a_n| - a_n)$, $r_n = \frac{1}{2} (|b_n| + b_n)$ and $s_n = \frac{1}{2} (|b_n| - b_n)$. Verify that these are non-negative sequences.

(i) Show that ΣU_n and ΣV_n are convergent series with non-negative terms and that

 $a_n = U_n - V_n$ and $b_n = r_n - s_n$.

- (ii) Note that $\sum r_n$ is a rearrangement of $\sum U_n$ and $\sum s_n$ is a rearrangement of $\sum V_n$. Use this, or otherwise, prove that $\sum r_n = \sum U_n$ and $\sum s_n = \sum V_n$.
- (iii) Deduce that $\Sigma b_n = \Sigma a_n$.
- 2. The "error function" is defined by $\operatorname{erf}(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt$.
 - (i) Show that erf(x) can be represented by a power series $\sum_{n=0}^{\infty} a_n x^n$ valid for all x and compute a_0, a_1, a_2, a_3, a_4 and a_5 .
 - (ii) Use part (i) to estimate the value of $\frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-\frac{t^2}{2}} dt$.
- 3. Prove that $\sum_{n=1}^{\infty} \left(\frac{\sin(nx)}{n^3}\right) x^3$ defines a continuous function on **R**.
- 4. Let $f_n(x) = \frac{x^2}{x^2 + (1 nx)^2}$ for x in [0, 1]. Show that (f_n) converges pointwise but not uniformly.
- 5. Can we differentiate $x = \sum_{n=1}^{\infty} \left(\frac{x^n}{n} \frac{x^{n+1}}{n+1} \right)$, for x in [0, 1] term by term ?
- 6. Show that $\sum_{n=1}^{\infty} \left(\frac{\pi}{n} \sin(\frac{\pi}{n})\right)$ converges.