1. Suppose Σa_{n} is absolutely convergent. Let $\sum b_{n}$ be a rearrangement of the same series. Let $U_{n}=1 / 2\left(\left|a_{n}\right|+a_{n}\right), V_{n}=1 / 2\left(\left|a_{n}\right|-a_{n}\right), r_{n}=1 / 2\left(\left|b_{n}\right|+b_{n}\right)$ and $s_{n}=1 / 2\left(\left|b_{n}\right|-b_{n}\right)$. Verify that these are non-negative sequences.
(i) Show that ΣU_{n} and ΣV_{n} are convergent series with non-negative terms and that $a_{n}=U_{n}-V_{n}$ and $b_{n}=r_{n}-s_{n}$.
(ii) Note that Σr_{n} is a rearrangement of ΣU_{n} and Σs_{n} is a rearrangement of ΣV_{n}. Use this, or otherwise, prove that $\Sigma r_{n}=\Sigma U_{n}$ and $\Sigma s_{n}=\Sigma V_{n}$.
(iii) Deduce that $\Sigma b_{n}=\Sigma a_{n}$.
2. The "error function" is defined by $\operatorname{erf}(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} d t$.
(i) Show that erf (x) can be represented by a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ valid for all x and compute $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5}.
(ii) Use part (i) to estimate the value of $\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} e^{-\frac{t^{2}}{2}} d t$.
3. Prove that $\sum_{n=1}^{\infty}\left(\frac{\sin (n x)}{n^{3}}\right) x^{3}$ defines a continuous function on \mathbf{R}.
4. Let $f_{n}(x)=\frac{x^{2}}{x^{2}+(1-n x)^{2}}$ for x in $[0,1]$. Show that $\left(f_{n}\right)$ converges pointwise but not uniformly.
5. Can we differentiate $x=\sum_{n=1}^{\infty}\left(\frac{x^{n}}{n}-\frac{x^{n+1}}{n+1}\right)$, for x in $[0,1]$ term by term ?
6. Show that $\sum_{n=1}^{\infty}\left(\frac{\pi}{n}-\sin \left(\frac{\pi}{n}\right)\right)$ converges.
