Functions of Bounded Variation and Johnson's Indicatrix by Ng Tze Beng

In the course of proving a change of variable theorem for the Lebesgue integral, K. G. Johnson in "*Discontinuous Functions of Bounded Variation and A New Change of Variable Theorem For A Lebesgue Integral, Duke. Math. Journal, vol 36 (1969)* 117-124" introduced an indicatrix function. We shall use this function to prove a generalization of the following result to discontinuous function of bounded variation.

Theorem. Suppose g: $[a, b] \rightarrow \mathbf{R}$ is a continuous function of bounded variation. Then for any subset *E* such that the measure of its image under *g*, m(g(E)), is zero, we have that $m(v_g(E)) = 0$, where v_g is the total variation function of g.

We state our result as Theorem 1.

Theorem 1. Suppose g: $[a, b] \rightarrow \mathbf{R}$ is a function of bounded variation. Then for any subset *E* such that the measure of its image under *g*, m(g(E)), is zero, we have that $m(v_g(E)) = 0$.

We shall next describe Johnson's indicatrix function below. Note that the function is only unique up to a subset of measure zero.

Suppose $f:[a, b] \to \mathbf{R}$ is a function of bounded variation. Take a closed subinterval $I = [a_1, a_2]$ of [a, b]. Let $\{P_i\}$ be a sequence of partitions of $I = [a_1, a_2]$ such that $P_i \subseteq P_{i+1}$ and

$$\lim_{n \to \infty} \sum_{P_n} |f(x_{j,n}) - f(x_{j-1,n})| = \text{Total variation of } f \text{ over } I = [a_1, a_2],$$

where $P_n : a_1 = x_{0,n} < x_{1,n} < ... < x_{k_n,n} = a_2$ is the given partition in the sequence $\{P_i\}$ and $\sum_{P_n} |f(x_{j,n}) - f(x_{j-1,n})|$ denotes $\sum_{i=1}^{k_n} |f(x_{j,n}) - f(x_{j-1,n})|$.

For each positive integer *n* and $1 \le j \le k_n$, let $S_{j,n}$ be the closed interval with $f(x_{j,n})$ and $f(x_{j-1,n})$ as end points, i.e.,

 $S_{j,n} = [f(x_{j-1,n}), f(x_{j,n}),] \text{ or } [f(x_{j,n}), f(x_{j-1,n})].$

Let $\chi(S_{j,n})$ be the characteristic function of $S_{j,n}$. Then plainly $\chi(S_{j,n})$ is Lebesgue integrable and

$$\int_{-\infty}^{\infty} \chi(S_{j,n}) = \left| f(x_{j,n}) - f(x_{j-1,n}) \right| \text{ for } 1 \le j \le k_n.$$

Corresponding to each partition P_n , let
$$T_n = \sum_{j=1}^{k_n} \chi(S_{j,n}).$$

Then T_n is measurable. In particular,

$$\int_{-\infty}^{\infty} T_n(y) dy = \sum_{j=1}^{k_n} \int_{-\infty}^{\infty} \chi(S_{j,n}) = \sum_{j=1}^{k_n} |f(x_{j,n}) - f(x_{j-1,n})| = \sum_{P_n} |f(x_{j,n}) - f(x_{j-1,n})|.$$

Since P_{n+1} refines P_n , it can be easily shown that $T_{n+1}(y) \ge T_n(y)$. Then $\{T_n\}$ is an increasing sequence of non-negative Lebesgue integrable (hence measurable) functions.

We now define with respect to this sequence of partition $\{P_i\}$ for *I*, $T_I = T_{[a_1, a_2]} = \lim_{n \to \infty} T_n$. Then T_I is Lebesgue integrable or summable and by the Monotone Convergence Theorem,

$$\int_{-\infty}^{\infty} T_I(y) dy = \lim_{n \to \infty} \int_{-\infty}^{\infty} T_n(y) dy = \lim_{n \to \infty} \sum_{P_n} |f(x_{j,n}) - f(x_{j-1,n})|$$

= Total variation of f over $I = [a_1, a_2],$

Definition 2. Following K.G. Johnson, we define the indicatrix of f_I , the restriction of f to the subinterval $f|_I$ to be T_L . Note that T_L is not unique, it depends on the sequence of partitions $\{P_n\}$ used. However, T_I is unique upto a subset of measure zero. That is to say, if we have obtained T_I' using another sequence of partitions $\{Q_n\}$, then $T_I' = T_I$ almost everywhere.

Remark. Note that $\int_{-\infty}^{\infty} T_I(y) dy =$ Total variation of f over I so long as f is of bounded variation. So the equality applies to discontinuous function of bounded variation, whereas for the Banach indicatrix function N, for discontinuous function of bounded variation, $\int_{-\infty}^{\infty} N_I(y) dy =$ the total variation of f on I – the sum of all the saltuses of f on I.

Proposition 3. T_I is unique up to a subset of measure zero. That is to say, if the sequence of partitions $\{P_i\}$ is used to define the indicatrix function $T_{I(P)}$ and the sequence of partitions $\{Q_i\}$ for I is used to define the indicatrix function $T_{I(Q)}$, then $T_{I(P)} = T_{I(Q)}$ almost everywhere.

Proof. Let $\{R_n\}$ be the sequence of common refinement for $\{P_n\}$ and $\{Q_n\}$. We can take $R_n = P_n \cup Q_n$. Let $T_{I(R)}$ be the indicatrix function defined by $\{R_n\}$. Then $T_{I(R)} = \lim_{n \to \infty} T_{I(R),n} = \lim_{n \to \infty} \sum_{R_n} |f(x_{j,n}) - f(x_{j-1,n})|$ and $\int_{-\infty}^{\infty} T_{I(R)}(y) dy =$ Total variation of f

over $I (= [a_1, a_2])$ and is equal to $v_f(a_2) - v_f(a_1)$, where v_f is the total variation function of f. Also, since R_n is a refinement of both P_n and Q_n ,

 $T_{I(R), n}(y) \ge T_{I(P), n}(y)$ and $T_{I(R), n}(y) \ge T_{I(Q), n}(y)$.

Thus passing to the limit we have,

 $T_{I(R)}(y) \ge T_{I(P)}(y)$ and $T_{I(R)}(y) \ge T_{I(Q)}(y)$.

We now claim that $T_{I(R)} = T_{I(P)}$ almost everywhere. We show this by way of contradiction. Suppose there exists a set of measure > 0 such that $T_{I(R)}(y) > T_{I(P)}(y)$ for *y* in this set. Then $\int_{-\infty}^{\infty} T_{I(R)}(y) dy > \int_{-\infty}^{\infty} T_{I(P)}(y) dy$. But $\int_{-\infty}^{\infty} T_{I(R)}(y) dy = \int_{-\infty}^{\infty} T_{I(P)}(y) dy$ = Total variation of *f* over *I*. This contradiction shows that $T_{I(R)} = T_{I(P)}$ almost everywhere. Similarly, we show that $T_{I(R)} = T_{I(Q)}$ almost everywhere and so $T_{I(P)} = T_{I(Q)}$ almost everywhere.

Our next result is a technical lemma, which says that the indicatrix function over the whole of the interval [a, b] dominates the sum of indicatrix functions over a countable (finite or denumerable) sequence of disjoint closed intervals in [a, b].

Lemma 4. Suppose $f:[a, b] \to \mathbf{R}$ is a function of bounded variation and $\{I_i\}$ is a sequence of pairwise disjoint closed intervals, each a subset of I = [a, b]. Then $T_I(y) \ge \sum_i T_{I_i}(y)$ almost everywhere.

Proof. We prove the inequality for a finite collection of disjoint closed intervals, $\{I_1, I_2, I_3, \dots, I_k\}$. Note that any union of the finite collection of partitions of $\{I$

 $_1, I_2, I_3, \dots, I_k$ is a subset of a partition of I = [a, b] since the members of the collection $\{I_1, I_2, I_3, \dots, I_k\}$ are disjoint closed intervals. Take typical sequences of partitions for I and for $\{I_1, I_2, I_3, \dots, I_k\}$ for definition of the indicatrix functions. Refine the sequence of partitions for I to include the partitions for I_1 , I_2 , I_3, \ldots and I_k . Denote the sequence of partitions for I by $\{R_n\}$ and the sequence of partitions for I_j , by $\{P_{j,n} : n = 1, ...\}$. Then we have

$$T_{I(R),n}(y) \ge \sum_{j=1}^{\kappa} T_{I_j(P_j),n}(y)$$
.

Thus, passing to the limit we have,

 $T_I(y) \ge \sum_{j=1}^k T_{I_j}(y)$ almost everywhere. Therefore, for a sequence $\{I_i\}$ of pairwise disjoint closed intervals in [a, b],

$$T_I(y) \ge \lim_{k \to \infty} \sum_{j=1}^{k} T_{I_j}(y) = \sum_{j=1}^{\infty} T_{I_j}(y)$$
 almost everywhere.

The next result is a trivial consequence of the definition of the indicatrix function.

Lemma 5. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a function of bounded variation and I is a closed interval in [a, b]. Suppose

 $y \notin [\inf\{f(x) : x \in I\}, \sup\{f(x) : x \in I\}].$ Then $T_I(y) = 0$.

Lemma 6. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a function of bounded variation and $I = [a_1, a_2]$ $\subseteq [a, b]$. Let v_f be the total variation function of f, *i.e.*, $v_f(t) = \text{total variation of } f$ on [a, t] for t in [a, b]. Then

$$m^*(v_f(I)) \leq \int_{-\infty}^{\infty} T_I(y) dy,$$

where m^* is the Lebesgue outer measure.

If f is also continuous, the inequality becomes an equality.

Proof.
$$m^*(v_f(I)) = m^*(v_f([a_1, a_2])) \le v_f(a_2) - v_f(a_1)$$

= total variation of f on I ,
 $= \int_{-\infty}^{\infty} T_I(y) dy.$

If f is also continuous, then v_f is also continuous and increasing and so

 $v_f(I) = [v_f(a_1), v_f(a_2)].$

Consequently,

$$m^*(v_f(I)) = m^*(v_f([a_1, a_2])) = v_f(a_2) - v_f(a_1) = \int_{-\infty}^{\infty} T_I(y) dy.$$

Lemma 7. Suppose $f:[a, b] \to \mathbf{R}$ is a function of bounded variation and $\{I_i\}$ is a sequence of pairwise disjoint closed intervals, each a subset of I = [a, b]. Let $S = \bigcup I_j$, the union of all the I_j 's. Suppose A is a measurable subset of **R** such that $[\inf\{f(x): x \in I_j\}, \sup\{f(x): x \in I_j\}] \subseteq A \text{ for each } j. \text{ Then} \\ m^*(v_f(S)) \leq \int_A \sum_{j=1}^{\infty} T_{I_j}(y) dy \leq \int_A T_I(y) dy .$ $m^*(v_f(S)) \le \sum_{j=1}^{\infty} m^*(v_f(I_j)) \le \sum_{j=1}^{\infty} \int_{-\infty}^{\infty} T_{I_j}(y) dy$, by Lemma 6, Proof.

$$\leq \sum_{j=1}^{\infty} \int_{A} T_{I_{j}}(y) dy = \int_{A} \sum_{j=1}^{\infty} T_{I_{j}}(y) dy, \text{ by Lemma 5},$$

$$\leq \int_{A} T_{I}(y) dy, \text{ by Lemma 4}.$$

We shall need also the following result concerning the measure of a union of a denumerable collection of subsets of [a, b].

Lemma 8. Suppose $A_1, A_2, ...$ is a sequence of subsets of [a, b]. Then there exists an integer k such that

$$m^*(\bigcup_{n=1}^k A_n) \geq \frac{1}{2}m^*(\bigcup_{n=1}^\infty A_n),$$

where m^* denotes the Lebesgue outer measure.

Proof. If $m^*(\bigcup_{n=1}^{\infty} A_n) = 0$, we have nothing to prove since both sides of the inequality is zero. If $m^*(\bigcup_{n=1}^{\infty} A_n) > 0$, its just an exercise in the convergence of sequence. Since the Lebesgue outer measure is regular,

$$m^*(\bigcup_{n=1}^{\infty} A_n) = \lim_{j \to \infty} m^*(\bigcup_{n=1}^{j} A_n).$$

Since $\bigcup_{n=1}^{\infty} A_n \subseteq [a, b]$, $0 < m^* (\bigcup_{n=1}^{\infty} A_n) \le b - a < \infty$, the limit is finite. By the definition of limit, there exists an integer *k* such that for all $j \ge k$,

$$\left| m^* (\bigcup_{n=1}^j A_n) - m^* (\bigcup_{n=1}^\infty A_n) \right| < \frac{1}{2} m^* (\bigcup_{n=1}^\infty A_n).$$

Hence, $m^*(\bigcup_{n=1}^k A_n) > \frac{1}{2}m^*(\bigcup_{n=1}^\infty A_n)$. Thus, there exists an integer k such that $m^*(\bigcup_{n=1}^k A_n) \ge \frac{1}{2}m^*(\bigcup_{n=1}^\infty A_n)$.

Theorem 9. Suppose $f : [a, b] \to \mathbf{R}$ is a function of bounded variation. Suppose *E* is a subset of [a, b] such that *f* is continuous at each point of *E* and that the measure of its image under *f*, m(f(E)), is zero. Then $m(v_f(E)) = 0$.

Proof. Since m(f(E)) = 0, for each positive integer *n* there exists an open set A_n such that $f(E) \subseteq A_n$ and $m(A_n) \le 1/n$. For each *e* in *E*, *f* is continuous at *e* and $f(e) \in A_n$. Therefore, there exists $\varepsilon > 0$ such that $(f(e) - \varepsilon, f(e) + \varepsilon) \subseteq A_n$. Then there exists $\delta(e) > 0$ such that

 $f((e - \delta(e), e + \delta(e))) \subseteq (f(e) - \varepsilon/2, f(e) + \varepsilon/2) \subseteq A_n$. Note that $f([e - \delta(e)/2, e + \delta(e)/2])) \subseteq (f(e) - \varepsilon/2, f(e) + \varepsilon/2) \subseteq A_n$. Let $I_e = (e - \delta(e)/2, e + \delta(e)/2)$. Then

$$f(\overline{I_e}) = f([e - \delta(e)/2, e + \delta(e)/2]) \subseteq [\inf f(\overline{I_e}), \sup f(\overline{I_e})]$$
$$\subseteq [f(e) - \varepsilon/2, f(e) + \varepsilon/2] \subseteq (f(e) - \varepsilon, f(e) + \varepsilon) \subseteq A_n$$

The collection $\{I_e; e \in E\}$ is an open cover for *E*. Therefore, by Lindelöf Theorem, there exists a countable subcover $\{I_1, I_2, I_3, ...\}$ for *E*. We claim that

 $m^*(v_f(\bigcup_{i=1}^{\infty} I_i)) \le 2 \int_{A_n} T_I(y) dy,$ (1) where I = [a, b]. By Lemma 8, $\frac{1}{2}m^*(v_f(\bigcup_{i=1}^{\infty} I_i))) \le m^*(v_f(\bigcup_{i=1}^{k} I_i))$ for some positive integer k. Thus,

 $m^*(v_f(\bigcup_{i=1}^{\infty} I_i))) \le 2m^*(v_f(\bigcup_{i=1}^{k} I_i)).$ -----(2)

Note that $\bigcup_{i=1}^{k} \overline{I_i}$ is a finite union of closed interval and so it is a disjoint union of closed interval say, C_1 , C_2 , C_3 , ..., C_N . In particular, note that each C_j is

connected and is a finite union of members $\{\overline{I_1}, \overline{I_2}, ..., \overline{I_k}\}$, where the union cannot be partitioned into two disjoint collections, so the corresponding collections

{[inf $f(I_i)$, sup $f(I_i)$], i = 1, 2, ..., k} inherits the same property that the union cannot be partitioned into two disjoint collections. It follows then, since each [inf $f(\overline{I_j})$, sup $f(\overline{I_j})$] $\subseteq A_n$,

 $[\min_{1 \le i \le k} \inf f(\overline{I_i}), \max_{1 \le i \le k} \sup f(\overline{I_i})] = [\inf f(C_j), \sup f(C_j)] \subseteq A_n.$ Then by Lemma 7,

 $m^* \left(v_f(\bigcup_{i=1}^k I_i) \right) \le m^* \left(v_f(\bigcup_{i=1}^k \overline{I}_i) \right) \le m^* \left(v_f(\bigcup_{i=1}^N C_i) \right) \le \int_{A_n} T_I(y) dy.$ It then follows from (2) that

 $m^*(v_f(\bigcup_{i=1}^{\infty} I_i)) \le 2 \int_{A_n} T_I(y) dy.$ Since $E \subseteq \bigcup_{i=1}^{\infty} I_i$, $m^*(v_f(E)) \le m^*(v_f(\bigcup_{i=1}^{\infty} I_i)) \le 2 \int_{A_n} T_I(y) dy.$ It follows that $m^*(v_f(E)) \le 0$ because $m(A_n) \to 0$ as $n \to \infty$ so that $\lim_{n \to \infty} \int_{A_n} T_I(y) dy = 0.$ (Apply for instance, the Lebesgue Dominated Convergence Theorem.) This means $m^*(v_f(E)) = 0.$

Proof of Theorem 1.

Since $g : [a, b] \rightarrow \mathbf{R}$ is a function of bounded variation, its set of discontinuity *D* is at most denumerable. Note that then $m(g(D)) = m(v_g(D)) = 0$, since the image set g(D) and $v_g(D)$ are at most denumerable. Suppose a subset *E* is such that m(g(E)) = 0. Then m(g(E - D)) = 0 and g is continuous at every point of E - D. Therefore, by Theorem 9, $m(v_g(E-D)) = 0$. It follows that

 $m^{*}(v_{g}(E)) \le m^{*}(v_{g}(E-D)) + m^{*}(v_{g}(E\cap D)) = 0 + 0 = 0.$ Hence, $m(v_{g}(E)) = 0.$

Some properties of monotone functions

Lemma 10. Suppose $f : [a, b] \to \mathbf{R}$ is a monotone increasing function and *E* a subset of [a, b]. Then we can write f = g + h, where g is an absolutely continuous increasing function on [a, b] and h is an increasing singular function on [a, b]. (See Theorem 15 of my article, "Arc Length, Functions of Bounded Variation and Total Variation".) Then

 $m^*\left(f(E)\right) \ge m^*(g(E)),$

where m^* is the Lebesgue outer measure. If E is measurable, then we have

 $m^*(f(E)) \ge m(g(E)),$

where *m* is the Lebesgue measure.

Proof. Since $m^*(f(E))$ is finite, given $\varepsilon > 0$, there exists an open set V such that $f(E) \subseteq V$ and

 $m^*(V) < m^*(f(E)) + \varepsilon$. ----- (1)

Since *V* is open, it is a union of countable (finite or denumerable) disjoint open intervals. That is, $V = \bigcup B_k$, where each B_k is an open interval. Since *f* is measurable, each $f^{-1}(B_k)$ is measurable and the collection $\{f^{-1}(B_k): k = 1, 2, ...\}$ is a collection of disjoint measurable subsets in [a, b] and $\bigcup_k f^{-1}(B_k) \supseteq E$.

We claim that $m^*(g(f^{-1}(B_k))) \le m(B_k)$. We show this below.

Suppose β and γ are in $g(f^{-1}(B_k))$ such that $\beta > \gamma$. Then there exist x and y in B_k such that $\beta = g(f^{-1}(x))$ and $\gamma = g(f^{-1}(y))$. Since f and g are increasing, x > y. Then

$$\beta - \gamma = g(f^{-1}(x)) - g(f^{-1}(y)) = f(f^{-1}(x)) - h(f^{-1}(x)) - (f(f^{-1}(y)) - h(f^{-1}(y)))$$

= $x - h(f^{-1}(x)) - (y - h(f^{-1}(y))) = x - y - (h(f^{-1}(x))) - h(f^{-1}(y))$
 $\leq x - y \leq \text{diameter of } B_k.$

Since this is true for any β and γ in $g(f^{-1}(B_k))$, we conclude that the diameter of $g(f^{-1}(B_k) \leq \text{diameter of } B_k$. Hence,

$$m^{*}(g(f^{-1}(B_{k}))) \leq \text{diameter of } B_{k} = m(B_{k}). \quad (2)$$

Therefore,

$$m^{*}(g(E)) \leq m^{*} \left(\bigcup_{k} g(f^{-1}(B_{k})) \right) \leq \sum_{k} m^{*}(g(f^{-1}(B_{k})))$$

$$\leq \sum_{k} m(B_{k}) = m(V), \text{ by } (2),$$

$$< m^{*} (f(E)) + \varepsilon, \text{ by } (1).$$

Since ε is arbitrarily small,

$$m^*(g(E)) \le m^*(f(E)).$$

If *E* is measurable, since g is absolutely continuous, g(E) is measurable and so $m^*(g(E)) = m(g(E))$.

Theorem 11. Suppose $f : [a, b] \to \mathbf{R}$ is a monotone increasing absolutely continuous function and *E* is a measurable subset of [a, b]. Then

$$\int_{E} f'(x) dx = m(f(E)).$$

Proof. We begin by proving the theorem for the special case when *E* is an open subset of [a, b]. Since *E* is open, E = a countable (finite or denumerable) union of *disjoint* open intervals, say $\{U_1, U_2, \dots\}$. Thus

 $m(f(E)) = m(f(\bigcup_n U_n)) = m(\bigcup_n f(U_n)) = \sum_n m(f(U_n)),$

since $\{f(U_1), f(U_2), ...\}$ is a collection of non-overlapping intervals, $= \sum_n (f(b_n) - f(a_n)), \text{ where } U_n = (a_n, b_n),$ $= \sum_n \int_{a_n}^{b_n} f'(x) dx \text{ , because } f \text{ is absolutely continuous,}$ $= \int_E^n f'(x) dx.$

Note that since E is measurable and f is absolutely continuous, f(E) is measurable so that $m^*(f(E)) = m(f(E))$. Also, for any open U, f(U) is measurable and so $m^*(f(U)) = m(f(U))$.

For the general case, suppose now *E* is a measurable subset in [*a*, *b*]. Then for each positive integer *n*, there exists an open set G_n , such that $E \subseteq G_n$ and $m(G_n) < m(E) + 1/n$ and an open set H_n , such that $f(E) \subseteq H_n$ and $m(H_n) < m(f(E)) + 1/n$. Thus, $\lim_{n \to \infty} m(G_n) = m(E)$ and $\lim_{n \to \infty} m(H_n) = m(f(E))$.

For each positive integer n, $f^{-1}(H_n)$ is open by continuity of f. Therefore, $C_n = f^{-1}(H_n) \cap G_n$ is also open and contains E. Note that

$$m(E) \leq \underset{n \to \infty}{Lim} m(C_n) \leq \underset{n \to \infty}{Lim} m(G_n) = m(E).$$

Hence, $\lim_{n \to \infty} m(C_n) = m(E)$. Similarly, since $f(E) \subseteq f(C_n) = f(f^{-1}(H_n) \cap G_n) \subseteq H_n$, $m(f(E)) \leq \lim_{n \to \infty} m(f(C_n)) \leq \lim_{n \to \infty} m(H_n) = m(f(E))$.

Thus, $\lim_{n \to \infty} m(f(C_n)) = m(f(E)).$

Therefore,

 $m(f(E)) = \lim_{n \to \infty} m(f(C_n)) = \lim_{n \to \infty} \int_{C_n} f'(x) dx$, since C_n is also open, $=\int_{E} f'(x)dx$, by Lebesgue Dominated Convergence Theorem.

This completes the proof.

If f is monotone increasing but not necessarily absolutely continuous, we have the following result.

Theorem 12. Suppose $f : [a, b] \to \mathbf{R}$ is a monotone increasing function and C is a measurable subset of [a, b]. If E is the subset of C where f' exists (finitely), then $\int_{C} f'(x) dx = m^{*}(f(E)) \le m^{*}(f(C)).$

Proof. Note that since $f : [a, b] \rightarrow \mathbf{R}$ is a monotone increasing function, f is differentiable almost every where. Thus, m(C-E) = 0.

First we note the following result.

By Theorem 2 of my article, "Functions Having Finite Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallée Poussin's Theorem",

$$m^{*}(f(E)) \leq \int_{E} |f'(x)| dx = \int_{E} f'(x) dx = \int_{C} f'(x) dx .$$
(1)

By Lemma 10, we can decompose f as a sum f = g + h, where g is absolutely continuous and increasing and h is an increasing singular function on [a, b] and $m^*(f(E)) \ge m(g(E)).$

Since g is monotone increasing and absolutely continuous, by Theorem 11, $m(g(E)) = \int_{E} g'(x) dx.$

But

 $\int_{E} g'(x)dx = \int_{E} f'(x)dx, \text{ since } g' = f' \text{ almost everywhere,} \\ = \int_{C} f'(x)dx.$ $m^*(f(C)) \ge m^*(f(E)) \ge m(g(E)) = \int_C f'(x)dx.$

Hence,

Corollary 13. Suppose $f : [a, b] \rightarrow \mathbf{R}$ is a function of bounded variation and E is a measurable subset of [a, b]. Then

$$m^*(v_f(E)) \geq \int_E |f'(x)| dx.$$

If f is absolutely continuous, the inequality becomes an equality.

Proof. By Theorem 12,

 $m^{*}(v_{f}(E)) \geq \int_{E} v_{f}'(x) dx.$ Since f is of bounded variation, $|f'(x)| = v_{f}'(x)$ almost everywhere and so $\int_{E} v_{f}'(x) dx = \int_{E} |f'(x)| dx$ and $m^{*}(v_{f}(E)) \geq \int_{E} |f'(x)| dx.$

If f is absolutely continuous, then v_f is also absolutely continuous and since it is increasing, by Theorem 11,

$$m^*(v_f(E)) = \int_E v_f'(x) dx = \int_E |f'(x)| dx$$
.

Theorem 14. Suppose $f : [a, b] \to \mathbf{R}$ is a monotone increasing function and *E* is the subset of [a, b], where f' exists finitely. Then

$$\int_{a}^{b} f'(x) dx = m^{*}(f(E)) \le f(b) - f(a).$$

Proof. By Theorem 12, $\int_{a}^{b} f'(x)dx = \int_{[a,b]} f'(x)dx = m^{*}((f(E)) \le f(b) - f(a).$

We now apply our results to prove a weaker version of Theorem 2 in my article "*Change of Variables Theorem*".

Theorem 15. Suppose $f : [a, b] \to \mathbf{R}$ is a function of bounded variation and *E* is a measurable subset of [a, b] such that m(f(E)) = 0. Then f' = 0 almost everywhere on *E*.

Proof. By Theorem 1, $m(v_f(E)) = 0$. By Corollary 13, since v_f is monotone increasing,

$$m^*(v_f(E)) \ge \int_E |f'(x)| dx.$$

Plainly, $m^*(v_f(E)) = m(v_f(E)) = 0$ and so $\int_E |f'(x)| dx = 0$. This implies that f' = 0 almost everywhere on E.

We close this article with the converse to Theorem 1.

Theorem 16. Suppose $g: [a, b] \to \mathbf{R}$ is a function of bounded variation. Then for any subset *E* such that the measure of its image under v_g , $m(v_g(E))$, is zero we have that m(g(E)) = 0.

Proof.

Since $m(v_g(E)) = 0$, given $\varepsilon > 0$, there exists an open set U such that $U \supseteq v_g(E)$ and $m^*(U) < \varepsilon$. Since U is open, U is a disjoint union of countable number of open intervals I_i , i = 1, ..., n, i.e., $U = \bigcup_{i=1}^{\infty} I_i$ and $m^*(U) = \sum_{i=1}^{\infty} m^*(I_i) < \varepsilon$. Then $v_g^{-1}(U) \supseteq E$. Let $A_i = g(v_g^{-1}(I_i))$. For any x and y in A_i , there exists a, b in $v_g^{-1}(I_i)$ such that x = g(a) and y = g(b). Therefore, $|x - y| = |g(a) - g(b)| \le |v_g(a) - v_g(b)| \le m^*(I_i)$.

 $|x - y| = |g(a) - g(b)| \le |v_g(a) - v_g(b)| \le m^*(I_i).$ It follows that Diameter $A_i \le m^*(I_i)$ and so $m^*(A_i) \le m^*(I_i).$ Note that $g(E) \subseteq g(v_g^{-1}(U)) = g\left(v_g^{-1}\left(\bigcup_{i=1}^{\infty} I_i\right)\right)$. Hence, $m^*(g(E)) \le m^*\left(g\left(v_g^{-1}\left(\bigcup_{i=1}^{\infty} I_i\right)\right)\right) \le \sum_{i=1}^{\infty} m^*\left(g\left(v_g^{-1}(I_i)\right)\right) = \sum_{i=1}^{\infty} m^*(A_i) \le \sum_{i=1}^{\infty} m^*(I_i) < \varepsilon.$ Since ε is arbitrary, we conclude that $m^*(g(E)) = 0.$

Ng Tze Beng November 2009