Functions of Bounded Variation and Johnson's Indicatrix
by Ng Tze Beng

In the course of proving a change of variable theorem for the Lebesgue integral, K. G.
Johnson in "Discontinuous Functions of Bounded Variation and A New Change of
Variable Theorem For A Lebesgue Integral, Duke. Math. Journal, vol 36 (1969)
117-124" introduced an indicatrix function. We shall use this function to prove a
generalization of the following result to discontinuous function of bounded variation.

Theorem. Suppose g: [a, b] — R is a continuous function of
bounded variation. Then for any subset £ such that the measure of
its image under g, m(g(F)), is zero, we have that m(v,(E)) = 0, where
Ve 1s the total variation function of g.

We state our result as Theorem 1.

Theorem 1. Suppose g: [a, bp] > R is a function of bounded variation. Then for any
subset £ such that the measure of its image under g, m(g(E)), is zero, we have that

m(v(E)) = 0.

We shall next describe Johnson's indicatrix function below. Note that the function is
only unique up to a subset of measure zero.

Suppose f:[a, b] > R is a function of bounded variation. Take a closed subinterval /
=[a1, a2] of [a, b]. Let { P;} be a sequence of partitions of /= [ai, a>] such that
P,c P;+, and

Lim ;|f(xj,,,) —f(xj_lv,,)| = Total variation of fover I = [ai, a2],

where P, : a1 = X0, <X1x < ... <Xk, .n=ax is the given partition in the sequence
kn
(P} and SIf (i) =/ (xj-1.0)| denotes 21 (xjn) =/ Cor1.)]
n J=

For each positive integern and 1 <j <k ,, let §; , be the closed interval with
f(xjn) and f(x;-1,,) as end points, i.e.,
Sin =[f &j-1)s S )y T 08 [f (1), S (Xjm1.0)]-
Let x(S;) be the characteristic function of S, . Then plainly x(S;,) is Lebesgue
integrable and
Vo S =f G = f G| for 1< <k,
Corresponding to each partition P, , let

ko
Tn = 21 )((S],n)
i
Then T, is measurable. In particular,
k n 0 k n
Vo Ty =20 1, 7(S1) = 21 ) =1 G| = Zlf @) =7 @)

Since P, refines P,, it can be easily shown that 7,,.; (v) > T, (v). Then { T, } is an
increasing sequence of non-negative Lebesgue integrable (hence measurable)
functions.
We now define with respect to this sequence of partition { P; } for /,

T1=Tiay an =him T, .



Then 7; 1s Lebesgue integrable or summable and by the Monotone Convergence
Theorem,

J 7, Ty =Jim, [, Tu)dy =Jim, Z1 o)~/ (10|

= Total variation of fover I = [ay, a2],

Definition 2. Following K.G. Johnson, we define the indicatrix of f';, the restriction
of f to the subinterval f] ; to be T;. Note that 7} is not unique, it depends on the
sequence of partitions { P, } used. However, 7; is unique upto a subset of measure
zero. That is to say, if we have obtained 7; ' using another sequence of partitions

{ O, },then T; "= T, almost everywhere.

Remark. Note that ji) T1(y)dy = Total variation of f over / so long as f is of
bounded variation. So the equality applies to discontinuous function of bounded
variation, whereas for the Banach indicatrix function N, for discontinuous function of
bounded variation, fl Ni(y)dy = the total variation of f on/ — the sum of all the
saltuses of f on /.

Proposition 3. 7; is unique up to a subset of measure zero. That is to say, if the
sequence of partitions { P; } is used to define the indicatrix function 7}y and the
sequence of partitions { Q; } for I is used to define the indicatrix function T}, , then
Typ) = Ty o) almost everywhere.

Proof. Let { R, } be the sequence of common refinement for { P, } and { O, }. We
cantake R, =P, U Q,. Let Ty be the indicatrix function defined by { R, }. Then

Tyry =lim Tyr), =lim Z| fCejn)—f (xj_l,,,)| and f: Tyr)(y)dy = Total variation of 1
Rn

n — o0 n — oo

over I (= [a1, a2]) and is equal to v ;(a,) — v, (a:), where v, is the total variation
function of f'. Also, since R, is a refinement of both P, and Q,,

Tuwy . n(v) 2 Ty n(y) and Ty n(y) 2 Tr0) . n(y)-
Thus passing to the limit we have,

Ty () = Tipy(v) and Tiw)(v) 2 Tro)(v).
We now claim that 7y )= Ty p) almost everywhere. We show this by way of
contradiction. Suppose there exists a set of measure > 0 such that Ty (y) > Trr)(»)

fOI‘y in this set. Then j:o TI(R)(y)dy > jio TI(p)(y)dy. But §io T](R)(y)dy =
f: Typ)(y)dy = Total variation of fover /. This contradiction shows that Ty )= Ty )

almost everywhere. Similarly, we show that Ty )= T} o) almost everywhere and so
Tyr) = Ti o) almost everywhere.

Our next result is a technical lemma, which says that the indicatrix function over the
whole of the interval [a, b] dominates the sum of indicatrix functions over a countable
(finite or denumerable) sequence of disjoint closed intervals in [a, b].

Lemma 4. Suppose f:[a, b] > R is a function of bounded variationand {7, } isa
sequence of pairwise disjoint closed intervals, each a subset of 7= [a, b]. Then
T/(y) > Z Tr,(y) almost everywhere.

Proof. We prove the inequality for a finite collection of disjoint closed intervals,
{1,,1,15,...,1}. Note that any union of the finite collection of partitions of {/
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1,12, 15, ...,1} 1s a subset of a partition of / = [a, b] since the members of the
collection { /,,/1,,15,...,1} are disjoint closed intervals. Take typical sequences
of partitions for /and for {7 ,,1>,15, ..., 1} for definition of the indicatrix
functions. Refine the sequence of partitions for / to include the partitions for 7 , 7 ,,
I5,... and /. Denote the sequence of partitions for /by {R, } and the sequence of
partitions for 7/ ;, by {P;,: n=1, ...}. Then we have

k
Tiwyn(y) = le Ty, () -
]:

Thus, passing to the limit we have,
k
Ti(y)> 2 T;,(y) almost everywhere.
=

Therefore, for a sequence { /; } of pairwise disjoint closed intervals in [a, b],
k

0

T1(y) z%im > T ;0= 2T ; () almost everywhere.
= =

The next result is a trivial consequence of the definition of the indicatrix function.

Lemma 5. Suppose f:[a, b] > R is a function of bounded variation and / is a closed
interval in [a, b]. Suppose

y e [inf{ f(x):xel}, sup{ f(x):xel}].
Then T/(y)=0.

Lemma 6. Suppose f:[a, b] - R is a function of bounded variation and /= [a), a]
c [a, b]. Letv, be the total variation function of f, i.e., v (f) = total variation of /'
on [a, t] for ¢t in [a, b]. Then

m* (v (D)< |7, Ty,
where m* is the Lebesgue outer measure.
If f is also continuous, the inequality becomes an equality.

Proof. m*(v (1)) =m*(vs([a1,az2])) <vs(a2)—vs(ar)
= total variation of f on/,

=" Ti)dy.
If f is also continuous, then v , is also continuous and increasing and so

vi(l)=[vs(ar), vy(a2)l
Consequently,

m* (v (1) =m* v p([ar,a2]) = v (az) —vpan) = | Tiy)dy.

Lemma 7. Suppose f:[a, b] — R is a function of bounded variation and { /,} is a
sequence of pairwise disjoint closed intervals, each a subset of 7= [a, b]. Let
S =J 1, the union of all the /,'s. Suppose 4 is a measurable subset of R such that
J
[inf{ f(x) :x € l;}, sup{f(x):xel;}] S Aforeachj. Then
m (S)N<, 21 T, dy < |, Tiy)dy .
J:

Proof. m* (SN <2 m*(v(1)) <D, ji) T1,(y)dy, by Lemma 6,
= =1



M

<

—_

jA T, (v)dy = jA; Tr, (v)dy, by Lemma 5,
T1/(y)dy , by Lemma 4.

"
N

<

We shall need also the following result concerning the measure of a union of a
denumerable collection of subsets of [a, b].

Lemma 8. Suppose 4, 4,, ... is a sequence of subsets of [a, b]. Then there exists
an integer k such that

* k 1 * ©
m (Un=1 An) 2 Hm (Un=1 An),
where m* denotes the Lebesgue outer measure.

Proof. If m*(UZO:1 A,) =0, we have nothing to prove since both sides of the
inequality is zero. If m*(\J, _, 4,)> 0, its just an exercise in the convergence of
sequence. Since the Lebesgue outer measure is regular,

m* (U, 4,) =lim m*(U),_, 4.).
j—o®©
Since U, _, 4, S[a,b], 0 <m*(J,_, 4,) <b —a <o, the limit is finite. By the
definition of limit, there exists an integer & such that for all j > &,

|m* (U 2y An)—m* (U 40| < 2me (U] A0,
Hence, m*(U/,:=1 Ay) > %m*(U:}:] A,). Thus, there exists an integer & such that
* k * ©
m* (U 40 2 Sme U7 40).

Theorem 9. Suppose f : [a, b] = R is a function of bounded variation. Suppose E
is a subset of [a, b] such that f is continuous at each point of £ and that the measure
of its image under f, m( f(E)), is zero. Then m(v,(E)) = 0.

Proof. Since m( f(E)) =0, for each positive integer n there exists an open set 4,
such that f(E) c A, and m(4, ) < 1/n. Foreachein E, f is continuous at e and f'(e)
€ A, . Therefore, there exists € > 0 such that ( f(e) — €, f(e) + &) < 4,. Then there
exists d(e) > 0 such that
f ((e—=3(e), et d(e))c(f(e)—el2, f(e)+&l2)c A,

Note that f ([e —d(e)/2, e+ d(e)/2])) < (f(e)—¢€/2, f(e) +€/2)c A, Letl.=(e-
d(e)/2, e+ d(e)/2). Then

f(le) =f([e—d(e)2,e+0d(e)/2]) < [inf f(L.),sup f(L.)]

Slfle)—e2, fle)+e2]=(f(e)—¢, f(e)+e) S An.

The collection { /. ; e €E} 1s an open cover for E. Therefore, by Lindelof Theorem,
there exists a countable subcover { I,,/,, 15, ... } forE.
We claim that

m* o (UL 1) <2 ], Ty, (1
where / = [a, b].
By Lemma 8, %m*(vf(U;il 1)) < m*(vf(Uf=1 I,-)) for some positive integer k.
Thus,

m (v /(U7 1)) <2m*(v o (UE, 1)) )
Note that Ule I; is a finite union of closed interval and so it is a disjoint union of
closed interval say, C,C,, C;, ..., Cy. In particular, note that each C; is
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connected and is a finite union of members {I1, I, ...,1;}, where the union cannot be
partitioned into two disjoint collections, so the corresponding collections

{linf £ (Z; ),sup f(L;)],i=1,2,....k}
inherits the same property that the union cannot be partitioned into two disjoint
collections. It follows then, since each [inf f (1_]‘ ),sup f (I_j )] S 4.,

[min inf £ (Z; ), max sup f(7; )] =[inf /(C; ), sup f(C;)] S A
Then by Lemma 7,
m* (v (Ui 10) <m (v, Uiz 1) < m (UL €)) < [, Ty
It then follows from (2) that
m v (Ur, I <2, Ti)dy.
Since EC U, I, m*(v p(E) <m*(v (U2, 1) <2 jA Tr(ydy. It follows that
m*(v 7(E)) < 0 because m(4,) — 0 as n—oo so that Lim jA Ti(y)dy =0. (Apply for

instance, the Lebesgue Dominated Convergence Theorem.) This means
m*(v ¢(E)) = 0.

Proof of Theorem 1.
Since g : [a, b] = R is a function of bounded variation, its set of discontinuity D is at
most denumerable. Note that then m(g(D)) = m(v, (D)) = 0, since the image set g(D)
and v,(D) are at most denumerable. Suppose a subset E is such that m(g(E)) = 0.
Then m(g(E — D)) =0 and g is continuous at every point of £ — D. Therefore, by
Theorem 9, m(v, (E-D)) = 0. It follows that

m*(vg (E)) <m*(vy (E-D)) + m*(vy (END))=0+0=0.
Hence, m(v4 (E)) =0.

Some properties of monotone functions

Lemma 10. Suppose f :[a, b] — R is a monotone increasing function and £ a
subset of [a, b]. Then we can write f = g + h, where g is an absolutely continuous
increasing function on [a, b] and /4 is an increasing singular function on [a, b]. (See
Theorem 15 of my article, "Arc Length, Functions of Bounded Variation and Total
Variation" .) Then

m* (f(E)) 2 m*(g(E) ),
where m* is the Lebesgue outer measure. If E is measurable, then we have

m* (f(E)) = m(g(E)),

where m is the Lebesgue measure.

Proof. Since m*( f(£)) is finite, given € > 0, there exists an open set V' such that
f(E)c Vand

m* (V) <m*(f(E))+e. (1)
Since V' is open, it is a union of countable (finite or denumerable) disjoint open
intervals. Thatis, ¥ =|J By , where each B; is an open interval. Since fis
measurable, each /' (By ) is measurable and the collection { /' ' (By): k=1,2, ...}
is a collection of disjoint measurable subsets in [a, b] and LkJ fY(By)2E.

We claim that m*(g (f ™' (Bx))) < m(B:). We show this below.




Suppose B and y are in g(f ' (By)) such that  >vy. Then there exist x and y in B ;
such that B = g(/ (x)) and y = g(/ '(y)). Since f and g are increasing, x > y.
Then
B-v=g(/ ") —g(f ' ON=/(f ") =h( )= (S(fON=h( ()

=x—h(f @)= (y —h(f () =x—y =(h(f (x)) =h(f "(»)

<x — y < diameter of B;.
Since this is true for any B and y in g(f ™' (B:)), we conclude that the diameter of
g(f " (By) < diameter of B, . Hence,

m*( g(f 7 (By))) < diameter of By, =m(By). )

Therefore,
m*(g(E)) < M(LkJ g(f™! (Bk))J < % m*(g(f 71 (Bx)))
< Ek: m(Bi) =m(V), by (2),

<m*(f(£))+&, by (1)
Since ¢ is arbitrarily small,
m*(g(E)) <m*(f(E)).

If E is measurable, since g is absolutely continuous, g(E) is measurable and so

m*(g(E)) = m(g(E)).

Theorem 11. Suppose f :[a, b] & R is a monotone increasing absolutely continuous
function and E is a measurable subset of [a, b]. Then

V., f'@)dx = m(f(E)).

Proof. We begin by proving the theorem for the special case when E is an open
subset of [a, b]. Since E is open, E = a countable (finite or denumerable) union of
disjoint open intervals , say {U,, U, ... }. Thus

m(fE)) =m(f()Un) =m()f (Un) = Zm(f (),

since {f (U)), f(Us), ... } is a collection of non-overlapping intervals,

= Z(f(b”l) _f(an)), Where Un :(an » bn ),
=2 f:” Sf'(x)dx , because f is absolutely continuous,

= f'®@dx.
E
Note that since £ is measurable and 1 is absolutely continuous, /() is measurable so
that m*( f(E)) =m(f(E)). Also, for any open U, f(U) is measurable and so

m*(f(U)) =m(f(U)).

For the general case, suppose now E is a measurable subset in [a, b]. Then for each
positive integer n, there exists an open set G, , such that E < G, and m(G , ) <m(E) +
1/n and an open set H, , such that f(E) < H, and m(H,) <m (f (E)) + 1/n . Thus,
Lim m(Gy) =m(E) and Lim m(H,) = m(f (E)).
For each positive integer n, /™ (H, ) is open by continuity of /. Therefore,
C,=f " (H,)NG, is also open and contains £. Note that
m(E) <Lim m(Cy) <Lim m(G,) = m(E).

Hence, Lim m(C,)=m(E).
Similarly, since f(E) < f(C.)=f(f " (H,)"G,) c H,,

m(f(E)) <Lim m(f(Cn)) <Lim m(H,) = m( f(E)).
Thus, Lim m(f(Cy)) =m(f(E)).



Therefore,
m(f(E)) =Lim m(f(C,)) =Lim jc f'(x)dx , since C, is also open,
= f s '(x)dx , by Lebesgue Dominated Convergence Theorem.
This completes the proof.

If f1is monotone increasing but not necessarily absolutely continuous, we have the
following result.

Theorem 12. Suppose f :[a, bp] — R is a monotone increasing function and C'is a
measurable subset of [a, b]. If E is the subset of C where /' exists (finitely), then

Vo fl@)dx=m*(f(E)) <m*(f(C)).

Proof. Note that since f :[a, b] > R is a monotone increasing function, f is
differentiable almost every where. Thus, m(C— E) = 0.

First we note the following result.

By Theorem 2 of my article, "Functions Having Finite Derivatives, Bounded
Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallée
Poussin's Theorem",

m*(fE) <[ ) f'@ldx= [, f'@dx= [, f@)dx. -mememeeem 0

By Lemma 10, we can decompose f as asum f = g + h, where g is absolutely
continuous and increasing and 4 is an increasing singular function on [a, b] and

m*(f(E)) =m(g(E)).

Since g is monotone increasing and absolutely continuous, by Theorem 11,
mg(E)) = |, &'@ax.
But
f 5 & ()dx = f o f'(0dx, since g' =f" almost everywhere,
= | /' (@)dx.
Hence,  m"(f(C) =m*(f(E) 2m(gE) =] f'®)dx.

Corollary 13. Suppose f :[a, b] — R is a function of bounded variation and £ is a
measurable subset of [a, b]. Then

m*(ve(E) = [, If'(x)ldx.

If f is absolutely continuous, the inequality becomes an equality.

Proof. By Theorem 12,
m*(v(E) 2 |, v/'(x) dx.
Since f is of bounded variation, |f'(x) | =v,'(x) almost everywhere and so
§, '@ = {1 f'(0)ldx
and m*(vi(E)) 2 |, If'()ldx.
If f is absolutely continuous, then v, is also absolutely continuous and since it is
increasing, by Theorem 11,

m*(ve(E)) = |, ve'@)de=[, If'@)ldx.



Theorem 14. Suppose f :[a, b] & R is a monotone increasing function and £ is the
subset of [a, b], where /' exists finitely. Then

[" F e =m*(f(E)) <f(B)~1(a).

Proof. By leeorem 12,
J, f'dx=] . f'@dx=m*(f(E) <f(B)~f(a).

We now apply our results to prove a weaker version of Theorem 2 in my article
"Change of Variables Theorem".

Theorem 15. Suppose f :[a, b] & R is a function of bounded variation and £ is a
measurable subset of [a, b] such that m( f(£))=0. Then /' = 0 almost everywhere
on k.

Proof. By Theorem 1, m(v ;(E)) = 0. By Corollary 13, since v ; is monotone
increasing,

m*(ve(E) > |, If'(x)ldx.
Plainly, m*( vs(E)) =m(vs(E)) =0 and so jE If'(x)ldx=0. This implies that /'
= 0 almost everywhere on E.

We close this article with the converse to Theorem 1.

Theorem 16. Suppose g: [a, b] — R is a function of bounded variation. Then for
any subset £ such that the measure of its image under v, , m( v,(E)), is zero we have
that m(g(E)) = 0.

Proof.
Since m(vy(E)) = 0, given ¢> 0, there exists an open set U such that U 2 v,(E) and
m*(U) < & Since U is open, U is a disjoint union of countable number of open

intervals I, i=1, .., n, ie., U= UI and m*(U) = Zm () <& Thenvg'(U)2E.

Let A; = g(vy'(1;)). For any x and y in 4, , there ex1sts a, b in v,'(I;) such that x = g(a)
and y = g(b). Therefore,

|x =y |=]gla) —g) | <|ve(a) — ve (b) | <m'(£).
It follows that Diameter 4, < m’(Z ) and so m"(4;)) < m'(f).

Note that g(F)  g(v,'(U)) = g(v‘l(u I;||. Hence,

m* (g(E)) Sm{g(v; (Ul IJD <Z m*(g(vg' (1)) = z m*(4; ><2 m (1) <.

Since ¢1is arbitrary, we conclude that m'(g(E)) = 0.
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