## Functions of Bounded Variation and Johnson's Indicatrix by Ng Tze Beng

In the course of proving a change of variable theorem for the Lebesgue integral, K. G. Johnson in "Discontinuous Functions of Bounded Variation and A New Change of Variable Theorem For A Lebesgue Integral, Duke. Math. Journal, vol 36 (1969) 117-124" introduced an indicatrix function. We shall use this function to prove a generalization of the following result to discontinuous function of bounded variation.

Theorem. Suppose g: $[a, b] \rightarrow \mathbf{R}$ is a continuous function of bounded variation. Then for any subset $E$ such that the measure of its image under $g, m(g(E))$, is zero, we have that $m\left(v_{g}(E)\right)=0$, where $v_{g}$ is the total variation function of $g$.

We state our result as Theorem 1.
Theorem 1. Suppose $\mathrm{g}:[a, b] \rightarrow \mathbf{R}$ is a function of bounded variation. Then for any subset $E$ such that the measure of its image under $g$, $m(g(E))$, is zero, we have that $m\left(v_{g}(E)\right)=0$.

We shall next describe Johnson's indicatrix function below. Note that the function is only unique up to a subset of measure zero.

Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a function of bounded variation. Take a closed subinterval $I$ $=\left[a_{1}, a_{2}\right]$ of $[a, b]$. Let $\left\{P_{i}\right\}$ be a sequence of partitions of $I=\left[a_{1}, a_{2}\right]$ such that $P_{i} \subseteq P_{i+1}$ and

$$
\operatorname{Lim}_{n \rightarrow \infty} \sum_{P_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right|=\text { Total variation of } f \text { over } I=\left[a_{1}, a_{2}\right],
$$

where $P_{n}: a_{1}=x_{0, n}<x_{1, n}<\ldots<x_{k_{n}, n}=a_{2}$ is the given partition in the sequence
$\left\{P_{i}\right\}$ and $\sum_{P_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right|$ denotes $\sum_{j=1}^{k_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right|$.
For each positive integer $n$ and $1 \leq j \leq k_{n}$, let $S_{j, n}$ be the closed interval with $f\left(x_{j, n}\right)$ and $f\left(x_{j-1, n}\right)$ as end points, i.e.,

$$
S_{j, n}=\left[f\left(x_{j-1, n}\right), f\left(x_{j, n}\right),\right] \text { or }\left[f\left(x_{j, n}\right), f\left(x_{j-1, n}\right)\right] .
$$

Let $\chi\left(S_{j, n}\right)$ be the characteristic function of $S_{j, n}$. Then plainly $\chi\left(S_{j, n}\right)$ is Lebesgue integrable and

$$
\int_{-\infty}^{\infty} \chi\left(S_{j, n}\right)=\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right| \text { for } 1 \leq j \leq k_{n} .
$$

Corresponding to each partition $P_{n}$, let

$$
T_{n}=\sum_{j=1}^{k_{n}} \chi\left(S_{j, n}\right) .
$$

Then $T_{n}$ is measurable. In particular,

$$
\int_{-\infty}^{\infty} T_{n}(y) d y=\sum_{j=1}^{k_{n}} \int_{-\infty}^{\infty} \chi\left(S_{j, n}\right)=\sum_{j=1}^{k_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right|=\sum_{P_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right| .
$$

Since $P_{n+1}$ refines $P_{n}$, it can be easily shown that $T_{n+1}(y) \geq T_{n}(y)$. Then $\left\{T_{n}\right\}$ is an increasing sequence of non-negative Lebesgue integrable (hence measurable) functions.
We now define with respect to this sequence of partition $\left\{P_{i}\right\}$ for $I$,

$$
T_{I}=T_{\left[a_{1}, a_{2}\right]}=\lim _{n \rightarrow \infty} T_{n} .
$$

Then $T_{I}$ is Lebesgue integrable or summable and by the Monotone Convergence Theorem,

$$
\begin{aligned}
\int_{-\infty}^{\infty} T_{I}(y) d y & =\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} T_{n}(y) d y=\lim _{n \rightarrow \infty} \sum_{P_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right| \\
& =\text { Total variation of } f \text { over } I=\left[a_{1}, a_{2}\right],
\end{aligned}
$$

Definition 2. Following K.G. Johnson, we define the indicatrix of $f_{I}$, the restriction of $f$ to the subinterval $\left.f\right|_{I}$ to be $T_{I .}$. Note that $T_{I L}$ is not unique, it depends on the sequence of partitions $\left\{P_{n}\right\}$ used. However, $T_{I}$ is unique upto a subset of measure zero. That is to say, if we have obtained $T_{I}{ }^{\prime}$ using another sequence of partitions $\left\{Q_{n}\right\}$, then $T_{I}{ }^{\prime}=T_{I}$ almost everywhere.

Remark. Note that $\int_{-\infty}^{\infty} T_{I}(y) d y=$ Total variation of $f$ over $I$ so long as $f$ is of bounded variation. So the equality applies to discontinuous function of bounded variation, whereas for the Banach indicatrix function $N$, for discontinuous function of bounded variation, $\int_{-\infty}^{\infty} N_{I}(y) d y=$ the total variation of $f$ on $I$ - the sum of all the saltuses of $f$ on $I$.

Proposition 3. $T_{I}$ is unique up to a subset of measure zero. That is to say, if the sequence of partitions $\left\{P_{i}\right\}$ is used to define the indicatrix function $T_{I(P)}$ and the sequence of partitions $\left\{Q_{i}\right\}$ for $I$ is used to define the indicatrix function $T_{I(Q)}$, then $T_{I(P)}=T_{I(Q)}$ almost everywhere.

Proof. Let $\left\{R_{n}\right\}$ be the sequence of common refinement for $\left\{P_{n}\right\}$ and $\left\{Q_{n}\right\}$. We can take $R_{n}=P_{n} \cup Q_{n}$. Let $T_{I(R)}$ be the indicatrix function defined by $\left\{R_{n}\right\}$. Then $T_{I(R)}=\lim _{n \rightarrow \infty} T_{I(R), n}=\lim _{n \rightarrow \infty} \sum_{R_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right|$ and $\int_{-\infty}^{\infty} T_{I(R)}(y) d y=$ Total variation of $f$ over $I\left(=\left[a_{1}, a_{2}\right]\right)$ and is equal to $v_{f}\left(a_{2}\right)-v_{f}\left(a_{1}\right)$, where $v_{f}$ is the total variation function of $f$. Also, since $R_{n}$ is a refinement of both $P_{n}$ and $Q_{n}$,

$$
T_{I(R), n}(y) \geq T_{I(P), n}(y) \text { and } T_{I(R), n}(y) \geq T_{I(Q), n}(y) .
$$

Thus passing to the limit we have,

$$
T_{I(R)}(y) \geq T_{I(P)}(y) \text { and } T_{I(R)}(y) \geq T_{I(Q)}(y) .
$$

We now claim that $T_{I(R)}=T_{I(P)}$ almost everywhere. We show this by way of contradiction. Suppose there exists a set of measure $>0$ such that $T_{I(R)}(y)>T_{I(P)}(y)$ for $y$ in this set. Then $\int_{-\infty}^{\infty} T_{I(R)}(y) d y>\int_{-\infty}^{\infty} T_{I(P)}(y) d y$. But $\int_{-\infty}^{\infty} T_{I(R)}(y) d y=$ $\int_{-\infty}^{\infty} T_{I(P)}(y) d y=$ Total variation of $f$ over $I$. This contradiction shows that $T_{I(R)}=T_{I(P)}$ almost everywhere. Similarly, we show that $T_{I(R)}=T_{I(Q)}$ almost everywhere and so $T_{I(P)}=T_{I(Q)}$ almost everywhere.

Our next result is a technical lemma, which says that the indicatrix function over the whole of the interval $[a, b]$ dominates the sum of indicatrix functions over a countable (finite or denumerable) sequence of disjoint closed intervals in $[a, b]$.

Lemma 4. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a function of bounded variation and $\left\{I_{i}\right\}$ is a sequence of pairwise disjoint closed intervals, each a subset of $I=[a, b]$. Then

$$
T_{I}(y) \geq \sum_{i} T_{I_{i}}(y) \text { almost everywhere. }
$$

Proof. We prove the inequality for a finite collection of disjoint closed intervals, $\left\{I_{1}, I_{2}, I_{3}, \ldots, I_{k}\right\}$. Note that any union of the finite collection of partitions of $\{I$
$\left.{ }_{1}, I_{2}, I_{3}, \ldots, I_{k}\right\}$ is a subset of a partition of $I=[a, b]$ since the members of the collection $\left\{I_{1}, I_{2}, I_{3}, \ldots, I_{k}\right\}$ are disjoint closed intervals. Take typical sequences of partitions for $I$ and for $\left\{I_{1}, I_{2}, I_{3}, \ldots, I_{k}\right\}$ for definition of the indicatrix functions. Refine the sequence of partitions for $I$ to include the partitions for $I_{1}, I_{2}$, $I_{3}, \ldots$ and $I_{k}$. Denote the sequence of partitions for $I$ by $\left\{R_{n}\right\}$ and the sequence of partitions for $I_{j}$, by $\left\{P_{j, n}: n=1, \ldots\right\}$. Then we have

$$
T_{I(R), n}(y) \geq \sum_{j=1}^{k} T_{I_{j}\left(P_{j}\right), n}(y)
$$

Thus, passing to the limit we have,

$$
T_{I}(y) \geq \sum_{j=1}^{k} T_{I_{j}}(y) \quad \text { almost everywhere. }
$$

Therefore, for a sequence $\left\{I_{i}\right\}$ of pairwise disjoint closed intervals in $[a, b]$,

$$
T_{I}(y) \geq \operatorname{Lim}_{k \rightarrow \infty} \sum_{j=1}^{k} T_{I_{j}}(y)=\sum_{j=1}^{\infty} T_{I_{j}}(y) \quad \text { almost everywhere. }
$$

The next result is a trivial consequence of the definition of the indicatrix function.
Lemma 5. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a function of bounded variation and $I$ is a closed interval in $[a, b]$. Suppose

$$
y \notin[\inf \{f(x): x \in I\}, \sup \{f(x): x \in I\}] .
$$

Then $T_{I}(y)=0$.

Lemma 6. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a function of bounded variation and $I=\left[a_{1}, a_{2}\right]$ $\subseteq[a, b]$. Let $v_{f}$ be the total variation function of $f$, i.e., $v_{f}(t)=$ total variation of $f$ on $[a, t]$ for $t$ in $[a, b]$. Then

$$
m^{*}\left(v_{f}(I)\right) \leq \int_{-\infty}^{\infty} T_{I}(y) d y
$$

where $m^{*}$ is the Lebesgue outer measure.
If $f$ is also continuous, the inequality becomes an equality.

$$
\text { Proof. } \begin{aligned}
m^{*}\left(v_{f}(I)\right)=m^{*}\left(v_{f}\left(\left[a_{1}, a_{2}\right]\right)\right) & \leq v_{f}\left(a_{2}\right)-v_{f}\left(a_{1}\right) \\
& =\text { total variation of } f \text { on } I, \\
& =\int_{-\infty}^{\infty} T_{I}(y) d y .
\end{aligned}
$$

If $f$ is also continuous, then $v_{f}$ is also continuous and increasing and so

$$
v_{f}(I)=\left[v_{f}\left(a_{1}\right), \quad v_{f}\left(a_{2}\right)\right] .
$$

Consequently,

$$
m^{*}\left(v_{f}(I)\right)=m^{*}\left(v_{f}\left(\left[a_{1}, a_{2}\right]\right)\right)=v_{f}\left(a_{2}\right)-v_{f}\left(a_{1}\right)=\int_{-\infty}^{\infty} T_{I}(y) d y .
$$

Lemma 7. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a function of bounded variation and $\left\{I_{j}\right\}$ is a sequence of pairwise disjoint closed intervals, each a subset of $I=[a, b]$. Let $S=\bigcup_{j} I_{j}$, the union of all the $I_{j}$ 's. Suppose $A$ is a measurable subset of $\mathbf{R}$ such that $\left[\inf \left\{f(x): x \in I_{j}\right\}, \sup \left\{f(x): x \in I_{j}\right\}\right] \cong A$ for each $j$. Then $m^{*}\left(v_{f}(S)\right) \leq \int_{A} \sum_{j=1} T_{I_{j}}(y) d y \leq \int_{A} T_{I}(y) d y$.
Proof. $\quad m^{*}\left(v_{f}(S)\right) \leq \sum_{j=1}^{\infty} m^{*}\left(v_{f}\left(I_{j}\right)\right) \leq \sum_{j=1}^{\infty} \int_{-\infty}^{\infty} T_{I_{j}}(y) d y$, by Lemma 6,

$$
\begin{aligned}
& \leq \sum_{j=1}^{\infty} \int_{A} T_{I_{j}}(y) d y=\int_{A} \sum_{j=1}^{\infty} T_{I_{j}}(y) d y, \text { by Lemma } 5 \\
& \leq \int_{A} T_{I}(y) d y, \text { by Lemma } 4
\end{aligned}
$$

We shall need also the following result concerning the measure of a union of a denumerable collection of subsets of $[a, b]$.

Lemma 8. Suppose $A_{1}, A_{2}, \ldots$ is a sequence of subsets of $[a, b]$. Then there exists an integer $k$ such that

$$
m^{*}\left(\bigcup_{n=1}^{k} A_{n}\right) \geq \frac{1}{2} m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right),
$$

where $m^{*}$ denotes the Lebesgue outer measure.
Proof. If $m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=0$, we have nothing to prove since both sides of the inequality is zero. If $m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right)>0$, its just an exercise in the convergence of sequence. Since the Lebesgue outer measure is regular,

$$
m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\lim _{j \rightarrow \infty} m^{*}\left(\bigcup_{n=1}^{j} A_{n}\right) .
$$

Since $\bigcup_{n=1}^{\infty} A_{n} \subseteq[a, b], 0<m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq b-a<\infty$, the limit is finite. By the definition of limit, there exists an integer $k$ such that for all $j \geq k$,

$$
\left|m^{*}\left(\bigcup_{n=1}^{j} A_{n}\right)-m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right)\right|<\frac{1}{2} m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right) .
$$

Hence, $m^{*}\left(\bigcup_{n=1}^{k} A_{n}\right)>\frac{1}{2} m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right)$. Thus, there exists an integer $k$ such that

$$
m^{*}\left(\bigcup_{n=1}^{k} A_{n}\right) \geq \frac{1}{2} m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right) .
$$

Theorem 9. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a function of bounded variation. Suppose $E$ is a subset of $[a, b]$ such that $f$ is continuous at each point of $E$ and that the measure of its image under $f, m(f(E))$, is zero. Then $m\left(v_{f}(E)\right)=0$.

Proof. Since $m(f(E))=0$, for each positive integer $n$ there exists an open set $A_{n}$ such that $f(E) \subseteq A_{n}$ and $m\left(A_{n}\right) \leq 1 / n$. For each $e$ in $E, f$ is continuous at $e$ and $f(e)$ $\in A_{n}$. Therefore, there exists $\varepsilon>0$ such that $(f(e)-\varepsilon, f(e)+\varepsilon) \subseteq A_{n}$. Then there exists $\delta(e)>0$ such that

$$
f((e-\delta(e), e+\delta(e))) \subseteq(f(e)-\varepsilon / 2, f(e)+\varepsilon / 2) \subseteq A_{n} .
$$

Note that $f([e-\delta(e) / 2, e+\delta(e) / 2])) \subseteq(f(e)-\varepsilon / 2, f(e)+\varepsilon / 2) \subseteq A_{n}$. Let $I_{e}=(e-$ $\delta(e) / 2, e+\delta(e) / 2)$. Then

$$
\begin{aligned}
f\left(\overline{I_{e}}\right) & =f([e-\delta(e) / 2, e+\delta(e) / 2]) \subseteq\left[\inf f\left(\overline{I_{e}}\right), \sup f\left(\overline{I_{e}}\right)\right] \\
& \cong[f(e)-\varepsilon / 2, f(e)+\varepsilon / 2] \subseteq(f(e)-\varepsilon, f(e)+\varepsilon) \subseteq A_{n} .
\end{aligned}
$$

The collection $\left\{I_{e} ; e \in E\right\}$ is an open cover for $E$. Therefore, by Lindelöf Theorem, there exists a countable subcover $\left\{I_{1}, I_{2}, I_{3}, \ldots\right\}$ for $E$.
We claim that

$$
\begin{equation*}
m^{*}\left(v_{f}\left(\bigcup_{i=1}^{\infty} I_{i}\right)\right) \leq 2 \int_{A_{n}} T_{I}(y) d y \tag{1}
\end{equation*}
$$

where $I=[a, b]$.
By Lemma 8, $\left.\frac{1}{2} m^{*}\left(v_{f}\left(\bigcup_{i=1}^{\infty} I_{i}\right)\right)\right) \leq m^{*}\left(v_{f}\left(\bigcup_{i=1}^{k} I_{i}\right)\right)$ for some positive integer $k$. Thus,

$$
\begin{equation*}
\left.m^{*}\left(v_{f}\left(\bigcup_{i=1}^{\infty} I_{i}\right)\right)\right) \leq 2 m^{*}\left(v_{f}\left(\bigcup_{i=1}^{k} I_{i}\right)\right) . \tag{2}
\end{equation*}
$$

Note that $\bigcup_{i=1}^{k} \bar{I}_{i}$ is a finite union of closed interval and so it is a disjoint union of closed interval say, $C_{1}, C_{2}, C_{3}, \ldots, C_{N}$. In particular, note that each $C_{j}$ is
connected and is a finite union of members $\left\{\overline{I_{1}}, \overline{I_{2}}, \ldots, \overline{I_{k}}\right\}$, where the union cannot be partitioned into two disjoint collections, so the corresponding collections

$$
\left\{\left[\inf f\left(\bar{I}_{i}\right), \sup f\left(\bar{I}_{i}\right)\right], i=1,2, \ldots, k\right\}
$$

inherits the same property that the union cannot be partitioned into two disjoint collections. It follows then, since each $\left[\inf f\left(\bar{I}_{j}\right), \sup f\left(\bar{I}_{j}\right)\right] \cong A_{n}$,


Then by Lemma 7,

$$
m^{*}\left(v_{f}\left(\bigcup_{i=1}^{k} I_{i}\right)\right) \leq m^{*}\left(v_{f}\left(\bigcup_{i=1}^{k} \bar{I}_{i}\right)\right) \leq m^{*}\left(v_{f}\left(\bigcup_{i=1}^{N} C_{i}\right)\right) \leq \int_{A_{n}} T_{I}(y) d y .
$$

It then follows from (2) that

$$
m^{*}\left(v_{f}\left(\bigcup_{i=1}^{\infty} I_{i}\right)\right) \leq 2 \int_{A_{n}} T_{I}(y) d y
$$

Since $E \subseteq \bigcup_{i=1}^{\infty} I_{i}, m^{*}\left(v_{f}(E)\right) \leq m^{*}\left(v_{f}\left(\bigcup_{i=1}^{\infty} I_{i}\right)\right) \leq 2 \int_{A_{n}} T_{I}(y) d y$. It follows that $m^{*}\left(v_{f}(E)\right) \leq 0$ because $m\left(A_{\mathrm{n}}\right) \rightarrow 0$ as $n \rightarrow \infty$ so that $\operatorname{Lim}_{n \rightarrow \infty} \int_{A_{n}} T_{I}(y) d y=0$. (Apply for instance, the Lebesgue Dominated Convergence Theorem.) This means $m^{*}\left(v_{f}(E)\right)=0$.

## Proof of Theorem 1.

Since $\mathrm{g}:[a, b] \rightarrow \mathbf{R}$ is a function of bounded variation, its set of discontinuity $D$ is at most denumerable. Note that then $m(g(D))=m\left(v_{g}(D)\right)=0$, since the image set $g(D)$ and $v_{g}(D)$ are at most denumerable. Suppose a subset $E$ is such that $m(g(E))=0$. Then $m(g(E-D))=0$ and g is continuous at every point of $E-D$. Therefore, by Theorem 9, $m\left(v_{g}(E-D)\right)=0$. It follows that

$$
m^{*}\left(v_{g}(E)\right) \leq m^{*}\left(v_{g}(E-D)\right)+m^{*}\left(v_{g}(E \cap D)\right)=0+0=0 .
$$

Hence, $m\left(v_{g}(E)\right)=0$.

## Some properties of monotone functions

Lemma 10. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a monotone increasing function and $E$ a subset of $[a, b]$. Then we can write $f=g+h$, where $g$ is an absolutely continuous increasing function on $[a, b]$ and $h$ is an increasing singular function on $[a, b]$. (See Theorem 15 of my article, "Arc Length, Functions of Bounded Variation and Total Variation" .) Then

$$
m^{*}(f(E)) \geq m^{*}(g(E)),
$$

where $m^{*}$ is the Lebesgue outer measure. If $E$ is measurable, then we have

$$
m^{*}(f(E)) \geq m(g(E)),
$$

where $m$ is the Lebesgue measure.

Proof. Since $m^{*}(f(E))$ is finite, given $\varepsilon>0$, there exists an open set $V$ such that $f(E) \subseteq V$ and

$$
\begin{equation*}
m^{*}(V)<m^{*}(f(E))+\varepsilon . \tag{1}
\end{equation*}
$$

Since $V$ is open, it is a union of countable (finite or denumerable) disjoint open intervals. That is, $V=\bigcup B_{k}$, where each $B_{k}$ is an open interval. Since $f$ is measurable, each $f^{-1}\left(B_{k}\right)$ is measurable and the collection $\left\{f^{-1}\left(B_{k}\right): k=1,2, \ldots\right\}$ is a collection of disjoint measurable subsets in $[a, b]$ and $\bigcup_{k} f^{-1}\left(B_{k}\right) \supseteqq E$.
We claim that $m^{*}\left(\mathrm{~g}\left(f^{-1}\left(B_{k}\right)\right)\right) \leq m\left(B_{k}\right)$. We show this below.

Suppose $\beta$ and $\gamma$ are in $g\left(f^{-1}\left(B_{k}\right)\right)$ such that $\beta>\gamma$. Then there exist $x$ and $y$ in $B_{k}$ such that $\beta=\mathrm{g}\left(f^{-1}(x)\right)$ and $\gamma=\mathrm{g}\left(f^{-1}(y)\right)$. Since $f$ and g are increasing, $x>y$. Then

$$
\begin{aligned}
\beta-\gamma & =\mathrm{g}\left(f^{-1}(x)\right)-\mathrm{g}\left(f^{-1}(y)\right)=f\left(f^{-1}(x)\right)-h\left(f^{-1}(x)\right)-\left(f\left(f^{-1}(y)\right)-h\left(f^{-1}(y)\right)\right) \\
& =x-h\left(f^{-1}(x)\right)-\left(y-h\left(f^{-1}(y)\right)\right)=x-y-\left(h\left(f^{-1}(x)\right)-h\left(f^{-1}(y)\right)\right. \\
& \leq x-y \leq \text { diameter of } B_{k} .
\end{aligned}
$$

Since this is true for any $\beta$ and $\gamma$ in $g\left(f^{-1}\left(B_{k}\right)\right)$, we conclude that the diameter of $g\left(f^{-1}\left(B_{k}\right) \leq\right.$ diameter of $B_{k}$. Hence,

$$
\begin{equation*}
m^{*}\left(g\left(f^{-1}\left(B_{k}\right)\right)\right) \leq \text { diameter of } B_{k}=m\left(B_{k}\right) . \tag{2}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
m^{*}(g(E)) & \leq m^{*}\left(\bigcup_{k} g\left(f^{-1}\left(B_{k}\right)\right)\right) \leq \sum_{k} m^{*}\left(g\left(f^{-1}\left(B_{k}\right)\right)\right) \\
& \leq \sum_{k} m\left(B_{k}\right)=m(V), \text { by }(2), \\
& <m^{*}(f(E))+\varepsilon, \text { by }(1) .
\end{aligned}
$$

Since $\varepsilon$ is arbitrarily small,

$$
m^{*}(g(E)) \leq m^{*}(f(E)) .
$$

If $E$ is measurable, since g is absolutely continuous, $g(E)$ is measurable and so $m^{*}(g(E))=m(g(E))$.

Theorem 11. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a monotone increasing absolutely continuous function and $E$ is a measurable subset of $[a, b]$. Then

$$
\int_{E} f^{\prime}(x) d x=m(f(E)) .
$$

Proof. We begin by proving the theorem for the special case when $E$ is an open subset of $[a, b]$. Since $E$ is open, $E=$ a countable (finite or denumerable) union of disjoint open intervals, say $\left\{U_{1}, U_{2}, \ldots\right\}$. Thus

$$
\begin{aligned}
m(f(E))= & m\left(f\left(\cup_{n} U_{n}\right)\right)=m\left(\cup_{n} f\left(U_{n}\right)\right)=\sum_{n} m\left(f\left(U_{n}\right)\right), \\
& \text { since }\left\{f\left(U_{1}\right), f\left(U_{2}\right), \ldots\right\} \text { is a collection of non-overlapping intervals, } \\
= & \sum_{n}\left(f\left(b_{n}\right)-f\left(a_{n}\right)\right), \text { where } U_{n}=\left(a_{n}, b_{n}\right), \\
= & \sum_{n} \int_{a_{n}}^{b_{n}} f^{\prime}(x) d x, \text { because } f \text { is absolutely continuous, } \\
= & \int_{E} f^{\prime}(x) d x .
\end{aligned}
$$

Note that since $E$ is measurable and $f$ is absolutely continuous, $f(E)$ is measurable so that $m^{*}(f(E))=m(f(E))$. Also, for any open $U, f(U)$ is measurable and so $m^{*}(f(U))=m(f(U))$.
For the general case, suppose now $E$ is a measurable subset in $[a, b]$. Then for each positive integer $n$, there exists an open set $G_{n}$, such that $E \subseteq G_{n}$ and $m\left(G_{n}\right)<m(E)+$ $1 / n$ and an open set $H_{n}$, such that $f(E) \subseteq H_{n}$ and $m\left(H_{n}\right)<m(f(E))+1 / n$. Thus, $\operatorname{Lim}_{n \rightarrow \infty} m\left(G_{n}\right)=m(E)$ and $\operatorname{Lim}_{n \rightarrow \infty} m\left(H_{n}\right)=m(f(E))$.
For each positive integer $n, f^{-1}\left(H_{n}\right)$ is open by continuity of $f$. Therefore, $C_{n}=f^{-1}\left(H_{n}\right) \cap G_{n}$ is also open and contains $E$. Note that

$$
m(E) \leq \operatorname{Lim}_{n \rightarrow \infty} m\left(C_{n}\right) \leq \operatorname{Lim}_{n \rightarrow \infty} m\left(G_{n}\right)=m(E) .
$$

Hence, $\operatorname{Lim}_{n \rightarrow \infty} m\left(C_{n}\right)=m(E)$.
Similarly, since $f(E) \subseteq f\left(C_{n}\right)=f\left(f^{-1}\left(H_{n}\right) \cap G_{n}\right) \subseteq H_{n}$,

$$
m(f(E)) \leq \operatorname{Lim}_{n \rightarrow \infty} m\left(f\left(C_{n}\right)\right) \leq \operatorname{Lim}_{n \rightarrow \infty} m\left(H_{n}\right)=m(f(E)) .
$$

Thus, $\operatorname{Lim}_{n \rightarrow \infty} m\left(f\left(C_{n}\right)\right)=m(f(E))$.

Therefore,

$$
\begin{aligned}
m(f(E)) & =\operatorname{Lim}_{n \rightarrow \infty} m\left(f\left(C_{n}\right)\right)=\operatorname{Lim}_{n \rightarrow \infty} \int_{C_{n}} f^{\prime}(x) d x, \text { since } C_{n} \text { is also open, } \\
& =\int_{E} f^{\prime}(x) d x, \text { by Lebesgue Dominated Convergence Theorem. }
\end{aligned}
$$

This completes the proof.
If $f$ is monotone increasing but not necessarily absolutely continuous, we have the following result.

Theorem 12. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a monotone increasing function and $C$ is a measurable subset of $[a, b]$. If $E$ is the subset of $C$ where $f^{\prime}$ exists (finitely), then

$$
\int_{C} f^{\prime}(x) d x=m^{*}(f(E)) \leq m^{*}(f(C)) .
$$

Proof. Note that since $f:[a, b] \rightarrow \mathbf{R}$ is a monotone increasing function, $f$ is differentiable almost every where. Thus, $m(C-E)=0$.

First we note the following result.
By Theorem 2 of my article, "Functions Having Finite Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallée Poussin's Theorem",

$$
\begin{equation*}
m^{*}(f(E)) \leq \int_{E}\left|f^{\prime}(x)\right| d x=\int_{E} f^{\prime}(x) d x=\int_{C} f^{\prime}(x) d x \tag{1}
\end{equation*}
$$

By Lemma 10, we can decompose $f$ as a $\operatorname{sum} f=g+h$, where $g$ is absolutely continuous and increasing and $h$ is an increasing singular function on $[a, b]$ and

$$
m^{*}(f(E)) \geq m(g(E)) .
$$

Since $g$ is monotone increasing and absolutely continuous, by Theorem 11,

$$
m(g(E))=\int_{E} g^{\prime}(x) d x .
$$

But

$$
\begin{aligned}
\int_{E} g^{\prime}(x) d x & =\int_{E} f^{\prime}(x) d x, \text { since } g^{\prime}=f^{\prime} \text { almost everywhere, } \\
& =\int_{C} f^{\prime}(x) d x .
\end{aligned}
$$

Hence, $\quad m^{*}(f(C)) \geq m^{*}(f(E)) \geq m(g(E))=\int_{C} f^{\prime}(x) d x$.
Corollary 13. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a function of bounded variation and $E$ is a measurable subset of $[a, b]$. Then

$$
m^{*}\left(v_{f}(E)\right) \geq \int_{E}\left|f^{\prime}(x)\right| d x
$$

If $f$ is absolutely continuous, the inequality becomes an equality.
Proof. By Theorem 12,

$$
m^{*}\left(v_{f}(E)\right) \geq \int_{E} \quad v_{f}^{\prime}(x) d x
$$

Since $f$ is of bounded variation, $\left|f^{\prime}(x)\right|=v_{f}{ }^{\prime}(x)$ almost everywhere and so

$$
\int_{E} v_{f}^{\prime}(x) d x=\int_{E}\left|f^{\prime}(x)\right| d x
$$

and

$$
m^{*}\left(v_{f}(E)\right) \geq \int_{E}\left|f^{\prime}(x)\right| d x .
$$

If $f$ is absolutely continuous, then $v_{f}$ is also absolutely continuous and since it is increasing, by Theorem 11,

$$
m^{*}\left(v_{f}(E)\right)=\int_{E} v_{f}^{\prime}(x) d x=\int_{E}\left|f^{\prime}(x)\right| d x .
$$

Theorem 14. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a monotone increasing function and $E$ is the subset of $[a, b]$, where $f^{\prime}$ exists finitely. Then

$$
\int_{a}^{b} f^{\prime}(x) d x=m^{*}(f(E)) \leq f(b)-f(a)
$$

Proof. By Theorem 12,

$$
\int_{a}^{b} f^{\prime}(x) d x=\int_{[a, b]} f^{\prime}(x) d x=m^{*}((f(E)) \leq f(b)-f(a) .
$$

We now apply our results to prove a weaker version of Theorem 2 in my article "Change of Variables Theorem".

Theorem 15. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a function of bounded variation and $E$ is a measurable subset of $[a, b]$ such that $m(f(E))=0$. Then $f^{\prime}=0$ almost everywhere on $E$.

Proof. By Theorem $1, m\left(v_{f}(E)\right)=0$. By Corollary 13, since $v_{f}$ is monotone increasing,

$$
m^{*}\left(v_{f}(E)\right) \geq \int_{E}\left|f^{\prime}(x)\right| d x
$$

Plainly, $m^{*}\left(v_{f}(E)\right)=m\left(v_{f}(E)\right)=0$ and so $\int_{E}\left|f^{\prime}(x)\right| d x=0$. This implies that $f^{\prime}$ $=0$ almost everywhere on $E$.

We close this article with the converse to Theorem 1.
Theorem 16. Suppose $g:[a, b] \rightarrow \mathbf{R}$ is a function of bounded variation. Then for any subset $E$ such that the measure of its image under $v_{g}, m\left(v_{s}(E)\right)$, is zero we have that $m(g(E))=0$.

## Proof.

Since $m\left(v_{g}(E)\right)=0$, given $\varepsilon>0$, there exists an open set $U$ such that $U \supseteq v_{g}(E)$ and $m^{*}(U)<\varepsilon$. Since $U$ is open, $U$ is a disjoint union of countable number of open intervals $I_{i}, i=1, \ldots, n$, i.e., $U=\bigcup_{i=1}^{\infty} I_{i}$ and $m^{*}(U)=\sum_{i=1}^{\infty} m^{*}\left(I_{i}\right)<\varepsilon$. Then $v_{g}^{-1}(U) \supseteq E$.
Let $A_{i}=g\left(v_{g}^{-1}\left(I_{i}\right)\right)$. For any $x$ and $y$ in $A_{i}$, there exists $a, b$ in $v_{g}^{-1}\left(I_{i}\right)$ such that $x=g(a)$ and $y=g(b)$. Therefore,

$$
|x-y|=|g(a)-g(b)| \leq\left|v_{g}(a)-v_{g}(b)\right| \leq m^{*}\left(I_{i}\right) .
$$

It follows that Diameter $A_{i} \leq m^{*}\left(I_{i}\right)$ and so $m^{*}\left(A_{i}\right) \leq m^{*}\left(I_{i}\right)$.
Note that $g(E) \subseteq g\left(v_{g}^{-1}(U)\right)=g\left(v_{g}^{-1}\left(\bigcup_{i=1}^{\infty} I_{i}\right)\right)$. Hence,

$$
m^{*}(g(E)) \leq m^{*}\left(g\left(v_{g}^{-1}\left(\bigcup_{i=1}^{\infty} I_{i}\right)\right)\right) \leq \sum_{i=1}^{\infty} m^{*}\left(g\left(v_{g}^{-1}\left(I_{i}\right)\right)\right)=\sum_{i=1}^{\infty} m^{*}\left(A_{i}\right) \leq \sum_{i=1}^{\infty} m^{*}\left(I_{i}\right)<\varepsilon .
$$

Since $\varepsilon$ is arbitrary, we conclude that $m^{*}(g(E))=0$.
Ng Tze Beng
November 2009

