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This article gives a formula for the length of a curve in Rn .   This is a general formula, which

does not assume differentiability and in the derivation of this formula, some interesting

results about function of bounded variation will be used.  We shall give a more complete

picture with the method and concepts used in its derivation than otherwise given in most

elementary text.

Definition 1.   A curve in Rn  is a continuous function  f : [a, b]  Rn , where the non-trivial

interval [a, b] is called the parameter interval and  f  is called a parametrized curve.

We can consider an estimate of the length by taking points on this curve and take the length

of a inscribed polygonal curve passing through these points.   To do this we take a partition 
: a = x0 < x1 < x2 <  < xn = b  for the interval [a, b].  Let P0 be the point  f (x0) and Pi =  f (xi).

Then the length of the  polygonal curve P0P1Pn  is an approximation of the arc length P0Pn . 

We shall consider Rn as the usual space with Euclidean metric.   That is, the distance between

two points is the usual Euclidean distance.  We have the usual Euclidean norm function,

                         ||  || : Rn  R , 

defined by  ||V || =   ( V1
2 + V2

2 + V3
2 +  + Vn

2 ) , where  Vi is the  i-th component of V.   The

distance between two points V and W in Rn  is then given by || V  W||.

The length of the polygonal curve P0P1Pn  is  given  by

                                 |P0P1| + |P1P2| + £ + |Pn-1Pn|   or   .�
i1

n

P i1P i

Now, the length of each line segment |Pi-1Pi| is the length of the line joining  f (xi-1) to  f (xi).

Thus, by the Euclidean distance, 

                                       .|P i1P i|  || f x i  f x i1||

Therefore, the length of the polygonal curve P0P1Pn  is  given  by

                                     .         ------------------      (1)�
i1

n

|| f x i  f x i1||

We define the arc length of the curve  f (x), for  a  x  b to be the least upper bound of all

possible polygonal approximation as given by (1), if it exists.  Therefore, the length of the

curve  f  is just the total variation Tf [a, b].  If it exists, the curve is called a rectifiable curve,

otherwise it is not rectifiable.  Thus, by the definition of a function of bounded variation,  f  is

rectifiable, if and only if,  f  is of bounded variation.  Not all continuous curves on a closed

and bounded domain are rectifiable. 

Now we consider the component functions of  f  .    First an easy observation.

Theorem 2.   A curve  f : [a, b]  Rn  is rectifiable if and only if each component function is

continuous of bounded variation.
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Theorem 2 is an easy consequence of the definition of bounded variation and the following

inequality,

               |Vj | ||V || =   ( V1
2 + V2

2 + V3
2 +  + Vn

2 ) V1 | + |V2 | + |V3 |+  + |Vn|.

Using the first part of this inequality, we can show that if  f  is of bounded variation, then each

component function  f j  is also of bounded variation.  Using the second part of the above

inequality, we can show that if each  f j  is of bounded variation, then f  is of bounded

variation.  Also note that  f  is continuous, if and only if, each component of  f  is continuous.

One may use the above inequality to prove this or simply observe that a map into a product

space is continuous, if and only if, each component is continuous.

           

The next result is to show that there is a relation between the derivative of the variation

function of  f   and the norm of the derived function of  f .  Note that if   f   is of bounded

variation, then  it is differentiable almost everywhere.  In particular, if g: [a, b]  R is of

bounded variation, then g' is measurable and summable or integrable.  This is a consequence

of the fact that if g is of bounded variation, then it is the difference of two increasing

functions.  (See Theorem 13 in "Monotone Function, Function of Bounded Variation,

Fundamental Theorem of Calculus”.).  Note that for any increasing function g on  [a, b], g is

differentiable almost everywhere and g'  is measurable and Lebesgue integrable.  (For a

reference, see Proposition 24 in "Change of Variable or Substitution in Riemann and

Lebesgue Integration".)   

Lemma 3.  Suppose  g: [a, b]  R  is of bounded variation.  Then the variation function,       

Vg : [a, b]  R, defined by Vg(x) = Tg[a, x] for a < x  b and Vg(a) = 0, satisfies

                          (Vg)'(x) = |g'(x)|  almost everywhere.

This results carries over to curve in Rn.

Lemma 4.   Suppose   f : [a, b]  Rn  is of bounded variation.  Then the variation function,   

Tf : [a, b]  R, defined by Tf (x) = Tf [a, x]  for a < x  b and Tf (a) = 0, satisfies

                                  (Tf )'(x) = || f '(x)|| almost everywhere on [a, b].

Lemma 3 is well known although not as well known as the weaker statement when g is also

absolutely continuous.

To prove Lemma 4 we require several results.

Lemma 5.  Suppose   f : [a, b]  Rn  is such that each component is Lebesgue integrable.   

Then  .¶
a

b
f xdx [ ¶

a

b
æf xædx

Proof.   , where  < , > is the inner product for Rn .¶
a

b
f xdx

2

 ¶
a

b
f xdx,¶

a

b
f xdx

Let  .  Then�  ¶
a

b
f xdx

                 æ�æ
2  ¶

a

b
f xdx,¶

a

b
f xdx,  �,¶

a

b
f xdx
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                       , where i and  f i are respectively the i-th          ¶
a

b
…�, f x�dx �

i1

n

� i ¶a

b
f ixdx

                                                                              components of  and f ,

                    �
i1

n

¶
a

b
� i f ixdx  ¶

a

b

�
i1

n

� i f ix dx

                    , by the Schwarz inequality, ¶
a

b
…�, f x�dx [ ¶

a

b
æ�æ æf xædx

                                              . æ�æ ¶
a

b
æf xædx

                                                

Hence  .   This proves the required inequality.æ�æ [ ¶
a

b
æf xædx

Now we state a weaker version of Lemma 4.

Lemma 6.   Suppose   f : [a, b]  Rn  is absolutely continuous.   Then the variation function,  

Tf : [a, b]  R, defined by Tf (x) = Tf [a, x]  for a < x  b and Tf (a) = 0, satisfies

                                  (Tf )'(x) = || f '(x)|| 

almost everywhere on [a, b].

Proof.   Recall  that  f : [a, b]  Rn  is absolutely continuous if for any  > 0, there exists

some  > 0 such that for any finite disjoint open intervals, (a1, b1), (a2, b2),, (an bn) in [a, b],

such that   , then we have .  Obviously, each component�
i1

n

b i  a i  � �
i1

n

æ f b i  f a iæ  �

of  f  is also absolutely continuous.

Firstly, observe that if  f  is of bounded variation, then

                                 ||  f (x)   f (y) ||   Tf (x)  Tf (y)  for x > y.

From this we easily deduce, that for almost all x in [a, b],

                                                  || f ' (x) ||  (Tf )'(x) .    ----------------------------------    (2)

Now fixed a x in [a, b].  For any partition,  : a = x0 < x1 < x2 <  < xk  = x , for the interval

[a, x],

     ,�
i1

k

æf x i  f x i1æ �
i1

k

¶
xi1

xi

f ∏tdt

                 because   for  each j as  f j is absolutely continuous,f jx i  f jx i1  ¶
xi1

xi

f j
∏tdt

     , by  Lemma 5,[�
i1

k

¶
xi1

xi
æf ∏tædt

    . ¶
a

x
æf ∏tædt

Thus, as Tf (x) is the supremum for such sum, for any partition,  : a = x0 < x1 < x2 <  < xk  =

x, we have 

                                              T fx [ ¶
a

x
æf ∏tædt.

Therefore, for any y >  x we get, by taking the interval[x, y] in place of [a, x] above, 

                                                          T fx, y [ ¶
x

y
æf ∏tædt.
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Thus,    .  Taking limits as y tends to x from above we
Tfy  T fx

y  x 
T fx, y
y  x [

¶
x

y
æf ∏tædt

y  x

have,     , whenever the limits exist.
ydx
lim

T fy  Tfx
y  x [

ydx
lim

¶
x

y
æf ∏tædt

y  x

Similarly, interchanging the role of x and y for x > y we get

             , whenever the limits exist.
ydx
lim

T fx  Tfy
x  y [

ydx
lim

¶
y

x
æf ∏tædt

x  y

Therefore, (Tf )'(x)  || f '(x)|| almost everywhere.  Thus, (Tf )'(x) = || f '(x)|| almost everywhere.

This completes the proof of Lemma 6.

Note that since  f  is of bounded variation on [a, b],  f i '  is measurable and integrable and so 

|| f ' (x)|| is integrable since it is dominated by the integrable function    because of the�
i1

n

|f i
∏x|

inequality  .æf ∏xæ [�
i1

n

|fi
∏t|

Now we shall prove Lemma 4.   Our strategy is to write f  as the sum of an absolutely

continuous function and a singular function.  Indeed for any function f : [a, b]  Rn of

bounded variation,  f  =  g + h , where  g is absolutely continuous and h is a singular function

such that h'(x) = 0 almost everywhere.  We can let g be defined by    and  h(x)gx  ¶
a

x
f ∏tdt

= f (x) g(x).

Proof of Lemma 4.   We shall prove the lemma for the case when  f  is also singular, that is,  

f '(x) = 0 almost everywhere.  That means for each i =1,2, , n,  f i '(x) = 0 almost

everywhere. 

For any y > x, we have, 

                            ,            T fy  T fx  T fx, y [�
i1

n

Tfi
x, y �

i1

n

Tfi
y  Tfi

x

where  f  = ( f 1, f 2, , f n ).   Therefore, for y > x,

                               .0 [
T fy  T fx

y  x [�
i1

n T fi
y  Tfi

x
y  x

Hence, for almost all x in [a, b], 

                            .0 [
ydx
lim

T fy  T fx
y  x [�

i1

n

ydx
lim

T fi
y  T fi

x
y  x

Similarly, by interchanging the role of x and y, we have, for almost all x in [a, b],

                                .0 [
ydx
lim

T fy  T fx
y  x [�

i1

n

ydx
lim

T fi
y  T fi

x
y  x

Thus,   almost everywhere by Lemma 3.0 [ T f∏x [�
i1

n

T fi
 ∏x �

i1

n

f i
∏x  0

Hence, (Tf )'(x) = || f '(x)|| = 0 almost everywhere. 

  

Now we proceed to consider the general case when  f  is of bounded variation.  Write  f  = g +

h , where g is absolutely continuous and h is a singular function.   Then for y > x,

              T fy  T fx  T fx, y [ Tgx, y  Thx, y  Tgy  Tgx  Thy  Thx.
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Therefore, for y > x,

                           .
Tfy  T fx

y  x [
Tgy  Tgx

y  x 
Thy  Thx

y  x

Thus, as before,  for almost all x,

                         .
ydx
lim

T fy  T fx
y  x [

ydx
lim

Tgy  Tgx
y  x 

ydx
lim

Thy  Thx
y  x

This means, for almost all x, 

                   (Tf )'(x) (Tg)'(x) + (Th )'(x) = (Tg)'(x) + 0, since h is singular,              

                                = || g '(x)||, by Lemma 6, since g is absolutely continuous,

                                = || f '(x)||, since   f '(x) = g'(x) almost everywhere. 

On the other hand, by (2), for almost all x in [a, b]

                                                    || f ' (x) ||  (Tf )'(x).

Therefore, (Tf )'(x) = || f ' (x) || almost everywhere.

   

       Now it remains to look at the arc length of the curve  f : [a, b]  Rn itself.  Note that this

is just the total variation Tf [a,b] of the function.  By the definition of a curve,  f  is continuous

and so uniformly continuous since the domain [a, b] is compact.   Thus, there is actually a

practical way to obtain an approximation of the arc length.   That is for each n, we consider a

regular partition of [a, b], n : a = x0 < x1 < x2 <  < xn = b, such that the norm of the partition

||n|| = (b  a)/n.   Then the arc length Ln of the polygonal curve defined by the partition n  

tends to the arc length of  f  as n tends to infinity.   We could not obtain totally an integral

formula for the arc length of  f  in general.   There will be an error term, which vanishes if  f  

is absolutely continuous.  The integral part of the formula will actually come from the

absolutely continuous part of  f .   The next theorem will imply that the total variation of the

function  f  is the sum of the total variation of its absolutely continuous part and that of the

singular part.

Theorem 7.   Suppose  g : [a, b]  Rn  is absolutely continuous and h : [a, b]  Rn is such

that each component of h is of bounded variation and that h'(x) = 0  almost everywhere in [a,

b].   Then Tg + h[a, b] = Tg[a, b] + Th[a, b]. 

Proof.  First note that g + h is of bounded variation.  It then follows that for any y > x in [a,

b],

                                Tg + h[x, y]  Tg[x, y] + Th[x, y].  

Similarly,            T h[x, y] = Tg+h-g [x, y] Tg+h[x, y] + T-h[x, y] = Tg+h[x, y] + Th[x, y].

Thus,  we have 

                                       |Tg + h[x, y] Th[x, y] Tg[x, y]  ---------------------------   (3)

We shall show that Tg + h(x) Tg(x) + Th(x) for all x in [a, b].  To do this, it is sufficient to

show that Tg + h(x) Th(x) is absolutely continuous.

Let  f (x) =  Tg + h(x) Th(x).  Then for any y > x,

              | f (y)  f (x)| = | Tg + h(y) Tg + h(x)  (Th(y) Th(x))|

                                  =  | Tg + h[x, y]   Th[x, y] |

                                     Tg[ x, y]= Tg(y)  Tg(x), by inequality (3).  --------------- (4)
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Since g is absolutely continuous, it follows that the variation function Tg is also absolutely

continuous.   Therefore, using (4) and the definition of absolute continuity, we can easily

show that  f  is absolutely continuous.

Then, for almost all x in [a, b],

              f '(x) =  (Tg + h)'(x) (Th)'(x)        

                       =  || (g + h)'(x)|| ||h'(x)|| , by  Lemma 4,

                       = || g'(x)|| , since  h'(x) = 0 almost everywhere,

                       =  (Tg )'(x) , by Lemma 6.

Now since  f (x)  Tg (x) is absolutely continuous as both f (x) and Tg (x) are absolutely

continuous and that its derivative  f '(x)  (Tg )'(x)  = 0 almost everywhere on [a, b],  f (x)  Tg

(x) is a constant.  Because  f (a)  Tg (a) = 0, we conclude that f (x) = Tg (x) for all  x in [a, b].   

This means Tg + h(x) Th(x) = Tg (x)  and so Tg + h(x) = Tg (x) + Th(x) for all x in [a, b].  In

particular, Tg + h(b) = Tg (b) + Th(b), i.e.,

                               Tg + h[a, b] = Tg[a, b] + Th[a, b].

This completes the proof.

Theorem 8.  Suppose   f : [a, b]  Rn  is a rectifiable curve .  Then the arc length of  f , Lf is

given by the following formula,

                                         ,L f  ¶
a

b
æf ∏tædt  Tha, b

for some singular function h such that  f  = g  +  h, where g is absolutely continuous and h'(x)

= 0 for almost all  x in [a, b].   We may take  .   In particular,  f  ishx  f x  ¶
a

x
f ∏tdt

absolutely continuous, if and only if,  .L f  ¶
a

b
æf ∏tædt

Proof.   Let .   Then g is absolutely continuous since it is an indefinitegx  ¶
a

x
f ∏tdt

integral.  Let .  Then  f  = g  +  h.   Therefore, by Theorem 7,hx  f x  ¶
a

x
f ∏tdt

           Lf  = Tf[a, b] = Tg + h[a, b] = Tg[a, b] + Th[a, b]

                = Tg(b) + Th[a, b]

                 , since Tg is absolutely continuous, ¶
a

b
Tg ∏tdt  Tha, b

                 ,  since (Tg)'(t) = || g'(t)||  almost everywhere, ¶
a

b
æg ∏tædt  Tha, b

                  ,  since  g'(t) = f '(t)  almost everywhere. ¶
a

b
æf ∏tædt  Tha, b

If  f  is absolutely continuous, i.e., each component of  f  is absolutely continuous, then 

 is a constant function and so Th[a, b] = 0.hx  f x  ¶
a

x
f ∏tdt  f x   f x  f a  f a

Conversely suppose  Th[a, b] = 0, then Th[a, x] = 0 for all x in [a, b].  Therefore, by Theorem

7,  Tf (x) =Tg + h(x) = Tg + h[a, x] = Tg[a, x] + Th[a, x] = Tg[a, x] + 0 =Tg(x).   Since g is

absolutely continuous, Tg(x) is also absolutely continuous and so  Tf (x) =Tg(x) is absolutely

continuous. (See Theorem 23 of "Change of Variable or Substitution in Riemann and

Lebesgue Integration" or Theorem 29.14 and its proof in "Principles of Real Analysis" by

C.D. Aliprantis and Owen Burkinshaw.)  It follows easily that  f  is absolutely continuous.

This completes the proof.

Now we specialize to the graph of a function, the curve given by a continuous function 

 f : [a, b]  R .   Then the arc length of the curve in R2 is the arc length of the function g : [a,

b]  R2 given by g(x) = (x, f (x)).  Thus g is rectifiable, if and only if,  f  is of bounded

© Ng Tze Beng 6



variation.  The arc length of the curve is the total variation of g.  Thus applying Theorem 8 to

g we get:

Theorem 9.  Suppose  f : [a, b]  R  is continuous and the graph of f  is rectifiable (hence  f  

is of bounded variation).  Then the arc length L  of the curve is given by,

                                ,L  ¶
a

b
1  f ∏t2 dt  Tha, b

for some singular function h such that h'(x) = 0 almost everywhere and hx  f x  ¶
a

x
f ∏tdt

.  In particular,  f  is absolutely continuous, if and only if,  

                                 .L  ¶
a

b
1  f ∏t2 dt

Proof.   The graph of  f  is the curve in question.  Let g : [a, b]  R2  be defined by g(x) = (x,  

f (x)) for each x in [a, b].  Then g is of bounded variation.   Then we can take a decomposition

of g as follows,

                g (x) = (x, F(x)) + (0, h(x)),

where   and .Fx  ¶
a

x
f ∏tdt hx  f x  ¶

a

x
f ∏tdt

Then G(x) = (x, F(x)) is absolutely continuous  and H(x) = (0, h(x)) is singular since h'(x) = 0

almost everywhere.   Therefore, by Theorem 8, the arc length L  is given by the arc length of

g,

                 L=L g  =   ¶
a

b
æG ∏tædt  THa, b  ¶

a

b
1  F ∏t2 dt  THa, b

                             , ¶
a

b
1  f ∏t2 dt  Tha, b

since F'(x) = f ' (x) almost everywhere and the total variation TH[a, b] =T(0,h) [a, b] = Th[a, b].    

f  is absolutely continuous, if and only if, h(x) is a constant function, if and only if,

               L=L g  . ¶
a

b
1  f ∏t2 dt  Tha, b  ¶

a

b
1  f ∏t2 dt

This completes the proof. 

Now we proceed to show that a sequence of polygonal length tends to the arc length.  This is

a consequence of the following result.

Theorem 10.  Suppose   f : [a, b]  Rn  is a rectifiable curve.  Then for any  > o there exists

a  > 0 such that if P: a = x0 < x1 < x2 <  < xn = b is a partition for [a, b] with ||P|| < , then 

                              .T fa, b  � �
i1

n

|| f x i  f x i1|| [ Tfa, b

Proof.    Since T fa, b  sup�
i1

n

|| f x i  f x i1|| : � : a  x0  x1  £  xn  b

                                               is a partition for [a, b]},

given any  > 0, there exists a partition, Q : a=  T0 < T1 < T2 <  < TN = b, such that 

                           .  ------------------  (5)T fa, b  � �
i1

N

|| f Ti  f T i1|| [ T fa, b

Let  .  Now  f  is continuous on [a, b] implies that  f  is uniformly continuous onL  T fa, b
[a, b].   Therefore, there exists a  > 0 such that whenever |x  y| < , we have

                                   .  -------------------------------------------- (6)||f y  f x||  �
4N

Suppose now P: a = t0 < t1 < t2 <  < tm = b is any partition such that the norm of the

partition, ||P|| < .  Then the length of the polygonal curve defined by this partition is given by

                                      .LP �
i1

m

|| f ti  f t i1||

Let S= Q P  and write the partition as
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                                S: a=  s0 < s1 < s2 <  < sM = b .

Then the length of the polygonal curve defined by S is given by

                                       .LS �
i1

M

|| f s i  f s i1||

Obviously, by the triangle inequality,  LP  LS  and LQ  LSWe shall show that our partition

P satisfies the conclusion of the  theorem.

Note that S is formed by adding points in Q to Pdding a point Ti to Pwill increase the

polygonal length of  P by at most /(2N).  This is seen as follows.

Suppose for some j,  tj1 < Ti < tj ,  

              LP4T i  �
k1

j1

|| f tk  f tk1||  || f T i  f t j1||  || f t j  f T i||

                             �
kj1

m

|| f tk  f tk1||

Then,

                   LP4T i  LP  || f T i  f t j1||  || f t j  f T i||  || f t j  f t j1||

                                        [ || f T i  f t j1||  || f t j  f T i||

                                           by (6).[
�

4N
 �

4N
 �

2N
Therefore, since Q has at most N1 points different from points in P, we conclude that  

              .LS  LP  LP4Q  LP [ N  1 $ �
2N
[
�
2

Hence,   by (5).  Thus, the partition P: a = t0 < t1 <LP m LS 
�
2
m LQ 

�
2
 L  �

2
 �

2
 L  �

t2 <  < tm = b satisfies  .    This completesT fa, b  �  LP �
i1

m

|| f t i  f ti1|| [ Tfa, b

the proof.

Now it remains to investigate how Lemma 3 can be proven.  We shall use the Lebesgue

decomposition of an increasing function to prove the assertion of the Lemma.   We shall

recall some interesting properties of increasing function.   We shall define the saltus function

of an increasing function.  This is made possible because the set of points of discontinuity of

an increasing function is at most countable.

Theorem 11.  Suppose  f : [a, b]  R is a monotone function.  Then the set of discontinuity

of  f  is countable.

This is Theorem 3 in my article "Monotone Function, Function of Bounded Variation and

Fundamental Theorem of Calculus".

We shall decompose an increasing function as a sum of a continuous function and a 'jump'

function.

Definition 12.  Suppose  f : [a, b]  R is an increasing function.  Then the discontinuity of  f  

can only be jump discontinuity.  By Theorem 11, the set of discontinuity of  f  is countable.   

So let the set of discontinuity be {x1, x2,   , xn , } where x1 < x2 <   < xn < , i.e., the xi 's

is ordered in an increasing order.  We define the saltus function (or jump function)   s : [a, b]

 R  of  f  by 

          s (a) = 0,
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           ,  for a < x  b,sx  f a   f a  �
xk  x

f xk   f xk   f x  f x 

where   are the respective right and left limits at x.f x 
k dx
lim f kand f x 

k dx
lim f k

Plainly, s(x) is an increasing function.

Let  (x) = f (x)  s(x) for x in [a, b].   Then we shall show that   : [a, b]  R is an

increasing, continuous function.

Theorem 13.  Suppose  f : [a, b]  R is an increasing function.  Let s be the saltus function

of  f  .  Then the function  : [a, b]  R defined by (x) = f (x)  s(x) for x in [a, b] is

increasing and continuous on [a, b].

Proof.  For  a   x < y  b,

    sy  sx  �
x[xk  y

f xk   f xk   f y  f y   f x  f x 

                       

[










�
xxk  y

f xk   f xk   f y  f y , if x is not a point of discontinuity

f x   f x  �
xxk  y

f xk   f xk   f y  f y , if x is a point of discontinuity

  f (y)    f (x)    by Theorem 2 of  "Monotone Function, Function of Bounded Variation and

Fundamental Theorem of Calculus".

Therefore,  (x) = f (x) s(x)   f (y)  s(y)= (y) and so  is an increasing function.

Now, if x is a point of continuity of  f , then obviously, for x < y,

               f (x+) f (x)   s(y)  s(x)

and if x is a point of discontinuity of  f, i.e., x = xj for some j, then 

               sy  sx  �
x[xk  y

f xk   f xk   f y  f y   f x  f x 

                                 f x   f x  �
xxk  y

f xk   f xk   f y  f y 

                                   f (x+) f (x).                           

Therefore, f (x+) f (x)   s(y)  s(x) for  x < y.

Hence,   .  Therefore,        f x   f x [
ydx
lim sy  sx  sx   sx

                  (x+) = f (x+) s(x+)   f (x)  s(x)= (x).        

Since  is increasing, (x)  (x+).  It follows that (x)  (x+).

Now, for x < y, if x is a point of discontinuity of  f  , 

                 sy  sx  �
x[xk  y

f xk   f xk   f y  f y   f x  f x 

                                 f x   f x  �
xxk  y

f xk   f xk   f y  f y 

                                  f ( y) f ( y) .                                                     

Plainly, if x is a point of continuity of  f , then   and so f x  f x   0

                    sy  sx  �
x[xk  y

f xk   f xk   f y  f y   f x  f x 

                                           �
x[xk  y

f xk   f xk   f y  f y 

                                       f ( y) f ( y).

Therefore,  . I.e.,  s( y)  s( y) f ( y)  f ( y).sy 
xdy
lim sx m f y  f y 
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Thus, ( y) = f ( y) s( y)   f (y)  s(y)= (y).  Since  is increasing,  ( y)  (y).  Thus,  

 for any y in [a, b].  It then follows that (x)  (x+)=(x).  Thus,   is�y   �y
continuous at x for any x in [a, b].  This completes the proof.

Now we summarize the above in the following:

Theorem 14.  Suppose  f : [a, b]  R is an increasing function.  Then f  can be decomposed

as a sum of a continuous function and a saltus type function as follows. 

                                f (x) = (x) + s(x) for all x in [a, b],

where (x) = f (x) s(x) is increasing and continuous and s(x) is the saltus function of  f  .

Obviously s'(x) = 0 almost everywhere on [a, b] and f '(x) =  '(x) almost everywhere.

We shall seek for a better decomposition of  f  .  We would like to decompose the function

into a sum of an absolutely continuous function and a singular function.  This is the Lebesgue

decomposition of a monotone function.

Theorem 15.  Suppose  f : [a, b]  R is an increasing function.  Then

                                f (x) = F(x) + g(x) + s(x)  for all x in [a, b],   -------------------  (7)

where F(x) is an increasing, absolutely continuous function, g(x) is a continuous increasing

function, which is singular, i.e., g'(x) = 0 almost everywhere on [a, b] and s(x) is a saltus

function of  f .

Proof.   Take the decomposition f (x) = (x) + s(x) given by Theorem 14.

Let  .    Then F(x) is absolutely continuous being the indefinite integral of anFx  ¶
a

x
f ∏tdt

integrable function.   Then  F'(x) = f '(x) =  '(x) almost everywhere on [a, b].  Let g(x) =

(x)F(x).  Then g(x) is continuous since both F  and g are continuous on [a, b].  Also g'(x) =  

 '(x) F'(x) = f '(x)  f '(x) = 0 almost everywhere on [a, b].   Note that g is also increasing.

For  a   x < y  b,

         gx  gy  � x  �y  Fx  F y
                            � x  �y  Fy  F x  � x  �y  ¶

x

y
� ∏tdt

                           ,[ � x  �y  �y  �x  0

                                because  for increasing function ¶
x

y
� ∏tdt [ �y  �x

                                (see for example Proposition 24 in "Change of Variable or substitution in

                                        Riemann and Lebesgue Integration").

Therefore,  g(x)  g(y) for x < y.  Hence, g is increasing.

Thus,  f (x) = (x) + s(x) = F(x) + g(x) + s(x) is the desired decomposition.

Next we shall consider for a function of bounded variation  f : [a, b]  R the most efficient

way of decomposing  f (x)  f (a) as the difference of two increasing functions. 

Let  Q: a = x0 < x1 < x2 <  < xn = b  be a partition for [a, b].  Define 

                   ,pQ �
i1

n

max0,  f x i  f x i1

                  ,nQ  �
i1

n

min0,  f x i  f x i1

                   .tQ  pQ  nQ �
i1

n

f x i  f x i1
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Note that  p(Q) is just the sum over the terms for which  f ( xi)   f (xi-1)  0, n(Q) is the sum

over the terms for which  f ( xi)   f (xi-1)  0 and so  

                              .pQ  nQ �
i1

n

 f x i  f x i1  f b  f a

Define for a function f : [a, b]  R of bounded variation, 

the positive variation, 

           Pf [a,b] = sup { p(Q): Q a partition of  [a, b] },

 the negative variation,

            Nf [a,b] = sup { n(Q): Q a partition of  [a, b] }

and the total variation,

             Tf [a,b] = sup { t(Q): Q a partition of  [a, b] }.

Plainly, all three variations exist since  f  is of bounded variation.  

Since p(Q) + n(Q) = t(Q), 

                             Pf [a,b] + Nf [a,b] = Tf [a,b].   -------------------------   (8)

We deduce this as follows. Plainly, p(Q) + n(Q)   Tf [a,b].  It follows that Pf [a,b] + Nf [a,b] 
 Tf [a,b].  On the other hand, t(Q)= p(Q) + n(Q) Pf [a,b] + Nf [a,b], consequently Tf [a,b]  Pf

[a,b] + Nf [a,b]. Thus, we have Pf [a,b] + Nf [a,b] = Tf [a,b].

Similarly, since  p(Q) n(Q) = f (b)  f (a),  

                              Pf [a,b]  Nf [a,b] = f (b)  f (a).        ---------------------- (9)

Now we define the positive variation function Pf : [a, b]  R of  f  by

                   Pf (a)= 0,   Pf (x) = Pf [a,x]  for  a < x  b.

The negative variation function Nf : [a, b]  R of  f  is defined similarly by 

                    Nf (a)= 0,   Nf (x) = Nf [a,x]  for  a < x  b.

Finally the total variation function of  f  is of course defined by 

                     Tf (a)= 0,   Tf (x) = Tf [a,x]  for  a < x  b.

Thus, it follows from (8), that

                        Tf (x) = Pf (x) + Nf (x)          ---------------------   (10)

and from (9),

                         f (x)  f (a) = Pf (x)  Nf (x).         ------------------- (11).

Plainly, these three variation functions are increasing functions.

We state the above conclusion as follows:

Theorem 16.  Suppose  f : [a, b]  R is a function of bounded variation.  Let  Tf (x), Pf (x)

and Nf (x) be respectively the total, positive and negative variation functions of  f .  Then  f (x)

 f (a) = Pf (x)  Nf (x) and Tf (x) = Pf (x) + Nf (x).

The decomposition (11) is the most efficient in the sense of the following theorem.

Theorem 17.  Suppose  f : [a, b]  R is a function of bounded variation.  Suppose we have

another decomposition of  f (x)  f (a),

                          f (x)  f (a) = g(x)  h(x)

where g and h are increasing functions with g(a)=h(a) =0.  Then Pf (x)  g(x) and Nf (x)  h(x)

on [a, b].
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Proof.  Let  Q: a = x0 < x1 < x2 <  < xn = b  be a partition for [a, b].  Then

              f ( xi)   f (xi-1) g( xi)  g(xi-1)  [h( xi)  h(xi-1)] g( xi)  g(xi-1).

Therefore, as p(Q) is the sum over the terms for which  f ( xi)   f (xi-1)  0, 

                            .pQ [�
i1

n

 gx i  gx i1  gb  ga  gb

Thus  Pf [a,b]  g(b).   It follows from this that Pf [a,x]  g(x), for any a < x b  This means

Pf (x)  g(x) for all x in [a, b].   Therefore, Pf (x)  Nf (x) =f (x)  f (a)= g(x)  h(x) g(x)  Nf

(x) and so  Nf (x)  h(x).

Proof of Lemma 3.  If  f : [a, b]  R is a function of bounded variation, then (Tf )'(x) = | f

'(x)| almost everywhere on [a, b].

Let  P(x) = Pf (x) and N (x) = Nf (x) be the positive and negative variation functions of  f .   

Take their respective Lebesgue decomposition as given by Theorem 15,

                           andPx  ¶
a

x
P ∏tdt  r1x

                       Nx  ¶
a

x
N ∏tdt  r2x

where r1'(x) = r2'(x) = 0 almost everywhere on [a, b] and both r1(x) and  r2(x) are increasing

functions satisfying r1(a) = r2(a) = 0.

Let  h(x) = min(P'(x), N'(x)).  This is defined almost everywhere on [a, b].  Now define

           and w1x  ¶
a

x
P ∏t  htdt  r1x

          .w2x  ¶
a

x
N ∏t  htdt  r2x

Then obviously both w1(x) and w2(x) are increasing functions since both P'(x)h(x) and

N'(x)h(x) are greater or equal to 0 almost everywhere on [a, b].  Also we have w1(a) = w2(a)

= 0.

In particular,

                  w1(x) w2(x) = P(x)  N(x) =f (x)  f (a).      --------------------    (12)   

Therefore, by Theorem 17,  P (x)  w1(x).

Thus,   and so .w1x  ¶
a

x
P ∏t  htdt  r1x m Px  ¶

a

x
P ∏tdt  r1x ¶

a

x
htdt m 0

Hence, .  But , since h(t) = min( P'(t), N'(t))  0 almost everywhere.¶
a

x
htdt [ 0 ¶

a

x
htdt m 0

Therefore,  for all x and consequently, h(x) = 0 almost everywhere on [a, b].   ¶
a

x
htdt  0

That is to say, min( P'(x), N'(x)) = 0 almost everywhere on [a, b].

Now by (12),  f '(x) = P'(x)  N'(x) almost everywhere on [a, b] and so

                           [P'(x)  h(x)] + [N'(x)  h(x)] = |P'(x)  N'(x)| = | f '(x)| 

almost everywhere.

Hence, | f '(x)| = P'(x) + N'(x) 2h(x) = P'(x) + N'(x) almost everywhere since h(x) = 0 almost

everywhere.  But because Tf (x) = P(x) + N(x),  (Tf )'(x) = P'(x) + N'(x) almost everywhere and

so (Tf )'(x) = | f '(x)| almost everywhere on [a, b].  This completes the proof of Lemma 3.
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